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Algoritmos avanzados para el Problema de la Suma del
Ancho de Banda Cíclico en Grafos

por

María Valentina Narváez Terán
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Dr. Eduardo Arturo Rodríguez Tello, Director

El problema de la suma del ancho de banda cíclico (CBSP) es un problema de embebido de grafos.

Esta clase de problemas consiste en la incrustación de los vértices y aristas de un grafo huésped

dentro de los vértices y caminos de un grafo anfitrión. En el problema de la suma del ancho de

banda cíclico, el objetivo es minimizar la suma de distancias cíclicas de los vértices adyacentes del

grafo huésped embebidos en el anfitrión, el cuál tiene una topología de ciclo. Se trata de un problema

de optimización combinatoria que pertenece a la clase NP-hard.

En este trabajo, se estudiaron los aspectos que influyen en la dificultad del CBSP, se desarrollaron

mejores métodos de solución y se propuso un análisis del problema desde una perspectiva integral.

La dificultad del CBSP es influenciada por la baja capacidad de discriminación de la función objetivo,

causando neutralidad y multimodalidad en el paisaje de aptitud, lo cual puede afectar negativamente

el desempeño de los algoritmos de búsqueda. Con el fin de lidiar con la neutralidad y multimodalidad,

se propuso una función de evaluación alternativa capaz de incrementar la capacidad de discriminación

entre soluciones, manteniendo la compatibilidad con el objetivo del problema. Al ser incorporada

en diversos algoritmos de búsqueda, esta función permitió mejorar significativamente su desempeño.

Los efectos de la función de evaluación alternativa fueron estudiados mediante el análisis del paisaje

de aptitud, comprobando que permite reducir la neutralidad y multimodalidad, mientras mantiene

la estructura global del paisaje de aptitud. Los enfoques de solución propuestos consideran el

compromiso entre calidad de solución y tiempo de ejecución ofrecido por las técnicas metaheurísticas,

la capacidad adaptativa de las hiperheurísticas y la obtención de óptimos mediante algoritmos exactos.

xv



Se llevó a cabo un análisis extensivo de diferentes configuraciones de operadores genéticos en el marco

de un algoritmo memético y su interacción con la función de evaluación alternativa, obteniendo un

algoritmo memético capaz de mejorar significativamente los resultados reportados en la literatura.

Se implementó un bandido multiarmado dinámico como método hiperheurístico para la selección

automática de los operadores y de la función de evaluación en el algoritmo memético. El resultado

fue una mejora significativa en la calidad de solución obtenida. En este trabajo se propusieron

los primeros enfoques de tipo exacto para el problema, consistiendo en modelos programación con

restricciones y un algoritmo de ramificación y poda. Comparativamente, el uso de programación con

restricciones obtuvo un mejor desempeño en términos de calidad de solución y tiempo de ejecución.

Finalmente, este trabajo reporta un análisis conjunto ligando el paisaje de aptitud, las características

de las instancias del problema y el desempeño observado en los algoritmos propuestos. Lo anterior

reveló nuevo conocimiento sobre la interacción de dicho factores y su efecto en la dificultad.
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The cyclic bandwidth sum problem (CBSP) is a graph embedding problem. These problems consist

in the embedding of the vertices and edges of a guest graph in the vertices and paths of a host

graph, respectively. In the CBSP the objective is to minimize the sum of the cyclic distances for

adjacent guest vertices embedded in a cycle host graph. This is an NP-hard problem.

This work extended to the study of aspects influencing the CBSP difficulty, the development

of improved solution approaches and the analysis of the problem from a global perspective. The

CBSP difficulty is influenced by the low discrimination ability of the objective function, which causes

neutrality and multimodality in the fitness landscape of the problem and can negatively affect the

performance of search algorithms. In order to address the neutrality and multimodality issues,

an alternative evaluation function was proposed. This function was proven able to increase the

discrimination ability while being compatible with the problem’s objective. It was also demonstrated

to help improving the results of search algorithms. The effects of the alternative evaluation function

on the fitness landscape were studied, showing that it reduces the neutrality and multimodality, while

mostly preserving the global structure of the fitness landscape.

The proposed solution approaches considered the compromise between solution quality and

execution time offered by metaheuristics, the adaptive ability of hyperheuristics and the production

of optimal solutions offered by exact algorithms. An extensive analysis of different operator

configurations within a memetic algorithm and their interaction with the alternative evaluation

function was performed, resulting in a memetic algorithm able to significantly improve previously

xvii



reported results. A dynamic multi-armed bandit hyperheuristic approach was implemented in order to

automatize the operator selection of the memetic algorithm. The result was a significant improvement

of the solution quality.

The first exact approaches for the CBSP were proposed, consisting in the use of constraint

programming and a branch and bound algorithm. Comparatively, the former approach had the best

performance, considering solution quality and execution time. Finally, this work reports an analysis

that links fitness landscape features, instance specific features and the performance of the proposed

solution approaches, revealing new knowledge on the interaction of these features and problem

difficulty.
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1
Introduction

1.1 Antecedents

A graph G is a mathematical object that consists of a set of vertices V and a set of edges E. The

order of G is given by its number of vertices n = |V |, while its number of edges e = |E| is the size

of the graph. Two vertices u and v are adjacent if, and only if, there is an edge (u, v) ∈ E. For the

scope of this document, the referred graphs are simple, undirected, and finite. A graph is undirected

if the set of edges E is a set of non-ordered pairs of elements of V . If for each edge (u, v) ∈ E

it is true that u 6= v and there is only one edge between each pair of adjacent vertices, then the

graph is a simple graph. A graph is finite if the set of vertices is finite. For further information in

terminology, see [42, 114].

Graphs are widely employed for representing a broad variety of problems in numerous subareas

of computer science, from the design of circuits, network infrastructures and data bases, to social

network analysis and automatized route generation. In the combinatorial optimization area there are

1
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multiple problems involving graphs, such as the Traveling Salesman Problem, Graph Coloring, Max

Vertex Cover, etc.

Graph Embedding Problems (GEP) are a family of combinatorial problems, which objective is to

find the best way of embedding a guest graph G = (V,E) into a host graph H = (VH , EH), in

such a way that the vertices of the guest are assigned to host vertices and its edges are placed into

paths of the host graph. Figure 1.1 illustrates an example of graph embedding. The guest graph G

is shown in Figure 1.1(a), with colored edges to visually identify their the correspondent host paths

in the embedding. The host graph H is the path graph P6 of size n = 6 in Figure 1.1(b), its edges

are gray and thick to better picture the embedding of guest edges. Figure 1.1(c) shows how guest

graph’s vertices are embedded into host graph’s vertices, and how the edges of the guest graph are

embedded into host graph’s paths.

Several tasks across different areas of computer science can be modeled as GEP instances.

Some relevant examples include: automatized graph drawing [84, 120], error correcting codes

[49], modeling of channel disposition in electric circuits [75], parallel and distributed computer

architecture simulation [81], code theory [12], multidiffusion network design, compressed sensing

in sensor networks [69], etc.

In the general case, which corresponds to guest graphs of any order size and topology, finding

optimal solutions for the GEP is a complex and non-viable task. This is because the number

of potential solutions for this type of problems grows at factorial rate, and there is no algorithm

able to solve them in polynomial time. However, in practical applications, approximated solutions

for optimization problems are often accepted as good enough. It has been demonstrated that

metaheuristic algorithms are able to get solutions very close to the optimum in acceptable execution

time [30, 74, 79, 95]. The performance of these types of algorithms has been particularly successful

when the design of their essential components includes relevant information concerning the problem.

For example, by implementing neighborhood functions suitable for an efficient exploration of the

search space [80, 112], or alternative evaluation schemes to better guide the search [107, 108].
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(a) Guest graph G. (b) Host graph H = P6.

(c) An embedding of G into P6.

Figure 1.1: Embedding of a guest graph G into a host path graph H = P6. Vertices and edges of
G are embedded into vertices and paths of H. Guest edges were colored for identifying them in the
embedding.

Specific GEP can be distinguished from each other by their optimization objective and the

topology of the host graph. GEP can be classified into three main categories [20] according to

the objective of the problem.

• Bandwidth: the objective is to optimize the distance among guest nodes when embedded in

host nodes.

• Bandwidth sum: the sum of distances among guest nodes when embedded in host nodes.

• Cudwidth: the number of disrupted guest edges affected by a cut on any host edge.

The bandwidth problem, bandwidth sum problem and cutwidth problem exemplify each of the

three GEP categories, where in all cases, the host graph is a path graph. The cyclic bandwidth

[67], the cyclic bandwidth sum [59] and the cyclic cutwidth [71] are similar problems, where the host

graph is a cycle instead.
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The cyclic bandwidth sum problem (CBSP) is a GEP where the host graph is a cycle and the

objective is to minimize the sum of cyclic distances. The CBSP is is the main object of study of this

thesis.

1.2 Motivation

The CBSP is a challenging subject with relevancy in the areas of graph theory and combinatorial

optimization. As other GEP [28], it is also an NP-Hard problem [139].

Formulas for calculating the theoretical value of the optimum have been reported [58], for some

specific graph topologies such as paths, cycles, wheels, complete bipartite graphs, cycle powers,

etc. Upper bounds for some other topologies, specifically Cartesian products of paths, cycles and

complete graphs have also been established [18].

In 2012, Satsangi et al. [117] proposed a General Variable Neighborhood Search (GVNS)

algorithm. GVNS was able to achieve optimal solutions for graphs with known optimal values.

Later in 2016 Hamon et al. [48] developed a heuristic, named mach, for solving the CBSP by

following the guest graph structure. mach was able to reach theoretical optimums for specific graph

topologies in less time than GVNS. Two new algorithms for the CBSP were proposed in 2014, a

Memetic Algorithm (MA) and a Basic Variable Neighborhood Search [85], that improved the results

reached by Hamon et al. [48], specially in the case of guest graphs with random topologies and

graphs derived from sparse matrices.

While these proposals exist, the development of algorithms able to efficiently solve the CBSP

presents an opportunity for proposing solution approaches that improve previous results. Another

relevant aspect, not previously approached in the literature of this problem, is the study of the

difficulty of the problem by analysing its fitness landscape.
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Lorem 
ipsum 

Problem specific 
aspects Efficient algorithms for solving 
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Hyperheuristics
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Figure 1.2: Outline of the proposal main aspects.

1.3 Solution approach

Some factors associated to the difficulty of the CBSP are the neutrality and multimodality of its

fitness landscape, and they are directly related to the objective function. In other combinatorial

problems this type of challenges have been addressed by proposing alternative evaluations schemes,

that effectively transform the relationships among potential solutions in such a way that they can be

exploited by search methods [104, 107, 108].

In regards to the evaluation function of the CBSP, this thesis proposes the design of a new

evaluation scheme for the problem, which considers not only the sum of cyclic distances but also the

distribution of their values, as a mean to reduce neutrality by prioritizing solutions that are easier

to be further improved. Such approach is to be studied in depth, addressing its impact on the

performance of particular solution methods and its effects on the structure of the fitness landscape.

The proposal extends to the design and implementation of efficient algorithms for the CBSP. It was

considered worth exploring the use of metaheuristics and exact algorithms, as well as tools such as

the automatized selection of operators via hyperheuristic methods.

Figure 1.2 summarizes the proposal as a combination of the aforementioned problem specific

aspects as well as the algorithms and techniques in order to develop solution methods for the CBSP,

able to improve the current results from the literature and in the process, to gain further knowledge

about the problem and its difficulty.
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1.4 Hypothesis

The research hypothesis can be stated as follows.

• The analysis of the fitness landscape of the CBSP, specially related to the evaluation function,

will allow us to 1) understand the aspects that influence the problem difficulty and 2) design

efficient algorithms able to manage the challenges associated to the optimization problem,

such as neutrality and multimodality.

1.5 Aim of the thesis

The main objective of this research is:

• To develop advanced (exact and approximate) algorithms for solving the CBSP that are

competitive with those from the literature in terms of solution quality, execution time, and

maximum size of the problem instances processed.

To this end, the following specific objectives must be fulfilled.

• Propose an alternative evaluation scheme for the CBSP that reduces the neutrality, while being

consistent with the objective of the problem and provides a better guidance for search based

methods helping them to improve their performance.

• Study the interactions of different types of genetic operators and evaluation schemes in order

to propose an improved memetic algorithm for the CBSP.

• Propose a hyperheuristic algorithm able to self-adapt its configuration of multiple operators

and the evaluation schemes during execution time, achieving improved results in a consistent

way with respect to variations on the topology of the instances.
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• Study the difficulty of the CBSP by analyzing its fitness landscape, the effects of the proposed

alternative evaluation scheme on the fitness landscape, the behavior of search algorithms when

exploring it and the relation with instance features and difficulty.

• Propose the first exact algorithm for the CBSP able to solve instances of n ≤ 40 vertices.

1.6 Outline of the document

The following is a summary of the content of the remaining chapters of the document.

• Chapter 2 formally defines the problem and it summarizes the related work on the CBSP . It

also presents background concepts about the fitness landscape analysis, the type of algorithms

and techniques involved with this work.

• Chapter 3 introduces three alternative evaluation schemes for the CBSP. The ability of each

of the new evaluation schemes to provide more discrimination among solution and guide

local search-based algorithms are assessed experimentally and compared with the conventional

evaluation function.

• Chapter 4 presents a comparative of Memetic Algorithms for the CBSP employing different

genetic operators and comparing the conventional evaluation function with the best performing

of the alternative evaluation schemes from Chapter 3. The chapter includes a performance

evaluation of the different MA versions compared with that of previously reported algorithms,

and it discusses the strengths of certain combinations of operators for producing an efficient

MA for the CBSP.

• The use of the Dynamic Multi-Armed Bandit as a hyper-heuristic approach to adapt the use

of the different MA operators is explored in Chapter 5. Experimental results of this technique

are compared with the results of the best-performing MA and the state-of-the-art algorithms.
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• Chapter 6 presents the fitness landscape analysis of the CBSP, studying how its features

are affected by the proposed alternative evaluation function. The chapter examines the

relationship among instance features, the fitness landscape characteristics and the performance

of algorithms. The search dynamics of the proposed memetic algorithm and the dynamic multi-

armed bandit based implementation are analyzed using a recently devised technique for the

visualization and measurement of search trajectories.

• Chapter 7 introduces the proposal for modeling and solving the CBSP as a constraint

programming problem. An initial model was built and iteratively refined by the incorporation

of new constraints based on the known exact, upper and lower bounds of the optimal value

according to instance topology. The chapter presents an assessment of the success in solving

relatively small CBSP instances (n ≤ 40) when implementing different strategies for exploring

the search space.

• Chapter 8 is a summary of the main findings and achieved contributions produced across

the different aspects contemplated in this research. This includes the proposed metaheuristic,

hyperheuristic and exact algorithms, the alternative evaluation scheme, its impact on the search

process and on the fitness landscape, as well as the relationship among instance features, fitness

landscape and problem difficulty. Finally, a general outline for further research topics derived

from this research is presented.



2
State of the art

2.1 Introduction

This chapters provides an overview of the current literature on the CBSP in order for the reader to

understand the starting point of this research. The chapter also introduces the main algorithms and

techniques involved in the proposal.

The formal definition of the CBSP and the proof of its complexity are presented in Section 2.2.1

and Section 2.2.3, respectively. Section 2.3 summarizes the related work, including the theoretical

bounds of the optimal value and the algorithms to solve it that have been reported in the literature.

Meanwhile, Section 2.4 introduces concepts related to the algorithms and techniques involved with

the proposed solution approach to the CBSP.

9
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2.2 The Cyclic Bandwidth Sum Problem

The CBSP was originally formulated by Yuan in 1995 [59]. Later, Yuan proved that the CBSP

belongs to the NP-Hard class. The problem arises in some relevant application areas like VLSI

designs [10], code design [49], simulation of network topologies for parallel computer systems [81],

scheduling in broadcasting based networks [70], and sensor networks [69].

2.2.1 Formal definition of the CBSP

The CBSP is formally defined as follows. Let G = (V,E) be a simple finite undirected graph (the

guest) of order n, and Cn a cycle graph (the host) with vertex set |VH | = n and edge set EH . Given

an injection ϕ : V → VH , representing an embedding of G into Cn, the Cyclic Bandwidth Sum

(CBS) for G with respect to ϕ is defined as:

CBS(G,ϕ) =
∑

(u,v)∈E

|ϕ(u)− ϕ(v)|n , (2.1)

where |x|n = min{ |x|, n − |x| } (with 1 ≤ |x| ≤ n − 1) is called the cyclic distance, and the

vertex in VH associated to vertex u ∈ V is denoted by the label ϕ(u). The CBSP consists in finding

the optimal embedding ϕ∗, such that CBS(G,ϕ∗) is minimum, i.e., ϕ∗ = arg minϕ∈Φ{CBS(G,ϕ)}

with Φ denoting the set of all possible embeddings. The embedding that satisfies this condition is

the optimal embedding. An embedding can be seen as a labeling of the guest graph G, using as

labels the vertices of the host graph H, numbered from 1 to n. Because of this reason, the terms

embedding and labeling are often used interchangeably.

For example, consider the graph G = (V,E) of order n = 10 in the Figure 2.1(a), with the

embedding ϕ given by the numbers shown inside each vertex. The cyclic distance for each edge

(u, v) ∈ E is evaluated using the expression min{|ϕ(u)−ϕ(v)|, n−|ϕ(u)−ϕ(v)|}, and represented

by the number associated to that edge. In this particular example, the CBS of G is CBS(G,ϕ) = 39.
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Figure 2.1: Example of a CBSP instance.
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The embedding ϕ′ presented in the Figure 2.1(c) produces the value CBS(G,ϕ′) = 33, which is

better. The resulting embeddings of graph G into Cn with respect to ϕ and ϕ′ are presented in the

Figures 2.1(b) and 2.1(d), respectively.

2.2.2 Search space size

The search space of the problem is composed by all the possible embeddings. Since the host graph

is a cycle, the number of possible embeddings equals to the number of possible ways to assign n

items to n slots arranged circularly, i.e., cyclic permutations. Therefore, the size of the search space

for the problem is:

|Φ| = (n− 1)!

2
. (2.2)

2.2.3 Problem complexity

The complexity theory studies problems in relationship to how demanding the process of solving

them can be, quantifying this in terms of the amount of resources, whether in space or time, that

are required. Problems are classified into classes, according to said amount of resources, with the

classes that require more resources being considered harder.

A decision problem belongs to the class P if a deterministic Turing machine can be solve it in

polynomial time. The class NP includes decision problems that can solved in polynomial time by a

non-deterministic machine and can also be verified by a deterministic Turing machine in polynomial

time [4]. The class P is contained within the class NP , since it is obvious that any problem that

can be solved in polynomial time by a deterministic machine can also be solved in polynomial time

by a non-deterministic one. An open question is if P = NP , i.e., if NP problems could be solved

in polynomial time by a deterministic machine [35, 121]. However, there is a strong suspicion that

P 6= NP , being this a common assumption.

A problem belongs to a particular class if it can be established a polynomial time reduction
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between said problem and a known member of the class [2]. The class-complete problems are

problems to which all the other members of their class can be reduced to in this way. The NP-

Complete problems are therefore decision problems to which all other decision problems in NP can

be reduced to. The problem of boolean satisfactibility belongs to the class NP and it was the first

problem proven to be NP-Complete [4].

The optimization problems are characterized by a set of instances, a set of solutions, a cost

function and an objective. Depending on the nature of the solution [4], they can be stated as:

• Construction: to build an optimal solution

• Evaluation: to find the value of the optimum

• Decision: to determine if there is an optimum of cost ≤ k.

An optimization problem belongs to the NP-Hard class if their associated decision problem can be

reduced to problems in NP in polynomial time. Optimization problems in the NP-Hard class are at

least as difficult as NP problems, being stated that the decision problem can not be harder than the

constructive one. Yuan [59] proved that the CBSP belongs to the NP-Hard class by establishing a

polynomial time reduction relationship between the CBSP and the also NP-Hard Bandwidth Sum

Problem (BSP) [20, 28].

The BSP is another GEP mathematically related to the CBSP (see Section 2.3.1.1). A similarity

between the problems is that both of them consist on minimizing a sum of distances, but in the case

of the BSP, the host graph is a path instead of a cycle, meaning that the distances are linear instead

of cyclic. Formally, the BSP is defined as follows. Let G = (V,E) be a simple finite undirected

graph (the guest) of order n, and Pn a path graph (the host) with vertex set |VH | = n and edge set

EH . Given an injection ψ : V → VH , representing an embedding of G into Pn, the Bandwidth Sum

(BS) for G with respect to ψ is defined as:
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BS(G,ψ) =
∑

(u,v)∈E

|ψ(u)− ψ(v)| , (2.3)

where |ψ(u)− ψ(v)| is the (linear) distance for edge (u, v) ∈ E, and the vertices in VH associated

to vertices u, v ∈ V are denoted by the labels ψ(u) and ψ(v). The BSP consists in finding the

optimal embedding ψ∗, such that BS(G,ψ∗) is minimum, i.e., ψ∗ = arg minψ∈Ψ{BS(G,ψ)}, with

Φ denoting the set of all possible embeddings.

Yuan’s work [59] proved that the CBS can be solved for graph G, by constructing, in polynomial

time, another graph G′, and solving the BSP for that graph. Graph G′ = (VG′ , EG′) is created with

order n′ = |VG′ | = 2n3 + 1, such that graph G is a subgraph of G′ and G′ − E = S2n3 , i.e., if the

edges of G are removed from G′, the result is the star graph S2n3 . The central node of the star

subgraph is a node v0 ∈ EG′ such that v0 6∈ EG. Notice graph G′ can be built from G in polynomial

time.

The core of the demonstration is then showing that there is two spanning subgraphs of G′ that

share no edges: one of which has the same edge set than the star S2n3 , and another which has the

same edge set than G. Yan then proves that the second graph can not have overstep edges, this is

edges for which |ψ(u)− ψ(v)| ≥ n/2, implying cyclic distances are equal to the linear ones. Thus,

the CBS for graph G′ would be:

CBS(G′) = BS(G′) = BS(G) + n3(n3 + 1) , (2.4)

where n3(n3 + 1) is the BS for the star S2n3 .

2.2.4 Differences from the Bandwidth Sum Problem

While the problems can be reduced to each other, in practice, the difference in host graph topology

is relevant in the creation of solving algorithms for GEP. Therefore, n algorithm designed specifically
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Figure 2.2: A wheel graph W30 of order n = 30.

for one of these problems may not have a good performance for the other. Consider as example the

wheel graph W30 of order n = 30 in Figure 2.2. For this graph, 1,000 locally optimal embeddings

were generated by a first-improvement hill-climber algorithm for the CBSP, starting from random

solutions and running by 10,000 iterations. The cost of each embedding was evaluated for both the

CBSP and BSP as depicted in Equations 2.1 and 2.3, respectively.

Pearson’s correlation coefficient between both cost samples was little (r = 0.28), showing that

the correlation between the problems is weak. Also, for this problem instance, an embedding with

the optimal cost for the CBSP (CBS(G,ϕ∗) = 255) has a cost of 491 for the BSP, which is far

away from the optimal cost for this instance (BS(G,ϕ∗) = 283). Thus, there is a need to develop

algorithms especially dedicated to the resolution of the CBSP.

2.3 Existing solution approaches

2.3.1 Calculating the value of the optimum

Early approaches to the CBSP were focused on the mathematical nature of the problem, particularly

on the calculation of the value of the optimum respect to the topology of the guest graph. In this
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regard, there are topologies for which this value can be calculated exactly, and other ones for which

there are lower and upper bounds.

2.3.1.1 Topology independent bounds

Upper bound for any graph. In 2001, Jianxiu [58] calculated an upper bound for any guest graph G,

independently of its topology, with respect to its number of vertices n and edges e:

CBS(G) ≤
e
⌊
n
2

⌋⌈
n
2

⌉
n− 1

. (2.5)

Upper and lower bounds respect to the BSP. In 2007, Chen and Yan [18] established the following

topology independent relationship between the optimal values of the BSP and the CBSP:

BS(G)

2
≤ CBS(G) ≤ BS(G) , (2.6)

where BS(G) is the Bandwidth Sum of G detailed in Equation ??.

2.3.1.2 Optimal value for specific topologies

Chen and Yan [18] established the formulas for calculating the value of the optimum for the following

specific graph topologies.

Path: A graph Pn with n = |V | vertices V = {v1, v2, v3, . . . , vn−1, vn} connected by e = n− 1

edges such as E = {(v1, v2), (v2, v3), . . . , (vn−1, vn)}.

CBS(Pn) = n− 1 . (2.7)

Cycle: A graph Cn with n vertices V = {v1, v2, v3, . . . , vn−1, vn} connected by e = n edges such

as E = {(v1, v2), (v2, v3), . . . , (vn−1, vn), (vn, v1)}.
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CBS(Cn) = n . (2.8)

Wheel : A graph Wn consisting of a cycle Cn−1 and a vertex vn ∈ V , such as (vi, vn)∀vi ∈

Cn−1, vn /∈ Cn−1. A wheel has n vertices and e = 2n− 2 edges.

CBS(Wn) = n+
⌊1

4
n2
⌋
. (2.9)

Complete: A graph Kn with n vertices, with an edge connecting each pair of vertices.

CBS(Kn) =


n3

8
n is even

n(n−1)(n+1)
8

n is odd
. (2.10)

Complete Bipartite: A graph Kx,y with two disjoint subsets of vertices X and Y with sizes

|X| = x and |Y | = y. There is an edge between a pair of vertices u and v if, and only if, u and v

belong to different subsets.

CBS(Kx,y) =



xy2+x2y
4

x, y are even

xy2+x2y+x
4

x is even, y is odd

xy2+x2y+x+y
4

x, y are odd

xy2+x2y+y
4

x is odd, y is even

. (2.11)

Power of cycle: Let Cn be the cycle graph or order n. The k-th power of Cn, denoted Ck
n is

a graph of order n, where a pair of vertices u and v are adjacent if its distance (the length of the

shortest path between them) is not greater than k.

CBS(Ck
n) =

1

2
nk(k + 1), 1 ≤ k ≤

⌊n− 1

2

⌋
. (2.12)
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2.3.1.3 Upper bounds for the Cartesian products of graphs

Let V (Gn) and E(Gn) be the set of vertices and edges of a graph Gn of order n. The Cartesian

product of two graphs Gn and Hm, denoted Gn × Hm is the graph with the set of vertices

V (Gn) × V (Hm) where [u1, v1] is adjacent to [u2, v2] if (u1, u2) ∈ E(Gn) and v1 = v2 or if

(v1, v2) ∈ E(Hm) and u1 = u2. Jianxiu [58] reported the following upper bounds for graphs resulting

from the Cartesian product of two graphs with path Pn, cycle Cn and complete Kn topologies.

Cartesian product of paths Pm × Pn:

CBS(Pm × Pn) ≤ m(n− 1) + n2(m− 1), m ≥ n . (2.13)

Cartesian product of cycles Cm × Cn:

CBS(Cm × Cn) ≤ m(n2 + 2n− 2), m ≥ n ≥ 3 . (2.14)

Cartesian product of complete graphs Km ×Kn:

CBS(Km ×Kn) ≤ 1

6
mn
(
n2 + 3n

⌊m
2

⌋⌈m
2

⌉
− 1
)
, m ≥ n . (2.15)

Cartesian product of a path and a complete graph Pm ×Kn:

CBS(Pm ×Kn) ≤ 1

2
m2n

⌊n
2

⌋⌈n
2

⌉
+ n(m− 1) . (2.16)

Cartesian product of a path and a cycle Pm × Cn:

CBS(Pm × Cn) ≤ n(m2 +m− 1) . (2.17)

Cartesian product of a cycle and a complete graph Cm ×Kn:



2. State of the art 19

CBS(Cm ×Kn) ≤ n
(1

2
m2
⌊n

2

⌋⌈n
2

⌉
+ 2m− 2

)
. (2.18)

2.3.2 Algorithms for the CBSP

There are relatively few algorithms proposed to solve the CBSP in the general case. These proposals

include a combination of general and reduced variable neighborhood search (RVNS) reported by

Satsangi et al. [116, 117], a constructive heuristic based on following the guest graph structure by

Hamon et al. [46, 48], as well as MA and BVNS by the author of this document [85]. The most

relevant aspects of these proposals are summarized in this section.

2.3.2.1 General Variable Neighborhood Search

This approach, by Satsangi et al. [117], employs RVNS as a method to improve the initial solution,

previous to the application of the GVNS routine. The initial solution is the identity permutation.

RVNS improves the initial solution along an established number of iterations, using a set of six

neighborhood operators. Each iteration starts by getting a new solution by means of the first

neighborhood. The new solution replaces the current one if its CBS value is lower. The same steps

take place with the remaining neighborhoods.

GVNS starts by getting a new solution via perturbation of the best solution obtained in the RVNS

phase. The perturbation operators are the same as the operators from the RVNS phase. Next, local

search is applied, using two different neighborhoods. The resulting solution replaces the current one,

if it is better. Otherwise, the same process takes place using the next perturbation operator. An

iteration concludes once all perturbation and neighborhood operators have been used. The algorithm

executes a fixed number of iterations.

Satsangi et al. [117] reported the first benchmark, which included graphs with unknown optimal

values up to n ≤ 199 vertices and e ≤ 1, 342 edges, and graphs of order n ≤ 200 and size e ≤ 1, 000

with known optimal values. For the former group, GVNS provided the first best-know solutions,
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and for the later one, it was able to produce optimal solutions. Satsangi et al. also proved that for

many graphs exist solutions with a lower cost than the suggested by the theoretical upper bounds.

However, the performance of GVNS has been proved poor and time consuming when compared to

more recent approaches.

2.3.2.2 mach

mach is a constructive heuristic proposed by Hamon et al. [48]. It has two phases, the first one is

the partitioning of the graph in disjoint paths; the second phase is the labeling and recombination

of the paths to construct a full solution.

The disjoint paths are constructed by a depth-first search (DFS) algorithm guided by a vertex

similarity criterion. The DFS starts in the non-visited vertex with the lowest degree and continues

to the non-visited adjacent vertex with higher similarity. The similarity among adjacent vertices is

assessed by the Jaccard index [57]. The construction of a path concludes when there is no more non-

visited adjacent vertices, and the process continues until all vertices are included in a path. mach

constructs a solution by labeling and merging the disjoint paths. First, the paths are sorted according

to their length in a decreasing order. The longest path is inserted in an empty list, becoming a partial

solution. Next, mach extends the partial solution by finding the best position in the list to insert the

second longest path. The best insertion position is the one that produces the lowest cost increment.

The same process is repeated until all paths have been inserted, so the solution is completed.

In the experimental results reported by Hamon et al., mach had a better performance than

GVNS, reaching better results for graphs with known optimal values up to n ≤ 448 vertices and

e ≤ 50, 176 edges; and graphs with unknown optimal values up to n ≤ 1, 474 vertices and e ≤ 1, 923

edges [48]. mach is a purely constructive algorithm with low execution time for most topologies

with known optimal values. But some other graphs have topologies not suitable for this algorithm,

such as random graphs and graphs derived from sparse matrices. In those cases, the execution time

of mach can increase considerably: up to 13, 803 seconds for a graph of order n = 5, 300 [85].
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2.3.2.3 Memetic Algorithm

In 2016, the author of this document presented a mememtic algorithim (MA) for the CBSP [85]. This

MA employed binary tournament selection and the order-based crossover operator for producing a

feasible permutation encoded offspring. A selective mutation operator was implemented. It exchanges

each gen with a random one and keeps only the mutations that produce fitness improvements. To

balance this, an inversion operator was also used on some mutated individuals. The survival strategy

implemented was (µ, λ).

Experiments with MA extended the benchmark up to 412 instances, with graphs with known

optimal value up to n ≤ 1, 000 vertices and e ≤ 250, 000 edges, and graphs with unknown optimal

value up to n ≤ 5, 300 vertices and e ≤ 8, 271 nodes. The topologies included were random graphs,

Harwell-Boeing sparse matrices, Cartesian products, paths, cycles, wheels, powers of graphs and

complete bipartite graphs. For all the experiments the execution time was limited to 300 seconds.

MA reached equal cost solutions when compared to mach for 165 instances and better cost for 231

instances, with only 16 instances on which mach had better results than MA.

2.3.2.4 Basic Variable Neighborhood Search

The author of this document also presented a basic variable neighborhood search (BVNS) for the

CBSP. BVNS implemented an iterative process of variable size perturbation and first-improvement

local search with two neighborhood alternatives. When the local search fails to find a better

solution, the neighborhood changes and the perturbation size for the next iteration is increased.

The perturbation size is reset to one when a new best-found solution is reached.

In the experiments with BVNS, three strategies for the initial solutions were tested:

random solutions [34], a greedy algorithm, and mach. The greedy initialization version of

BVNS (BVNS+Greedy) offered the best balance between solution quality and execution time.

BVNS+Greedy was tested under the same methodology than MA [85], producing results equal
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Table 2.1: Algorithms for the CBSP.
Algorithm Known optimal value Unknown optimal value

G n e G n e

GVNS Satsangi et al.
[117] Poor solution quality, time demanding C200 and C10

100 200 1,000 will_199 199 1,342

mach Hamon et al.
[48]

Topology dependent and time
demanding in some cases K224,224 448 50,176 bcspwr06 1,474 1,923

MA Narváez-Terán
[85] Premature convergence K500,500 1,000 250,000 bcspwr10 5,300 8,271

BVNS Narváez-Terán
[85] Local optima stagnation K500,500 1,000 250,000 bcspwr10 5,300 8,271

to mach for 157 instances, better ones for 238 of them and worse ones for 17.

Table 2.1 summarizes the reported algorithms for the CBSP, their performance issues, as well as

the maximal order and size of the graphs in the benchmarks they employed.

2.4 Optimization algorithms and techniques

There is a wide variety of techniques designed to tackle optimization problems. This section presents

a general overview of the optimization techniques divided in broad groups, specifically the ones

involved with this work.

2.4.1 Exact algorithms and approximation algorithms

Exact algorithms are methods to produce optimal solutions for problems. Some exact algorithms,

such as branch and bound (BB) and constraint programming (CP), focus on reducing the size of

search space by defining rules to discard certain subregions where the optimum is assumed not to be

located [128]. Even with this type of strategies in place, for most optimization problems, the size of

the search space causes that the application of exact algorithms would be limited to relatively small

size instances [128]. While the scope for exact algorithms is limited, they can be very efficient within

it.
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The approximated methods are algorithms that produce suboptimal good solutions. They

are often classified in approximation algorithms and heuristics, where the later also comprehends

metaheuristics and hyperheuristics. The approximation algorithms are polynomial time methods that

produce bounded nearly optimal solutions [5]. The performance ratio of an approximation algorithm

is a constant factor expression that defines how much worse than the optimum are the solutions

produced by it [22], in other words, how proximal to the optimum those solutions are in the worst

or the average case scenarios.

For other approximated methods, such as heuristics and metaheuristics, it can be complicated to

calculate performance ratios, specially in the average case scenario, not only because of the difficulty

to predict the behavior of sophisticated stochastic operators, but also because of the often wide

performance variations among problem instances [5]. There can be significant differences between

the worst case scenario and the average one, since these estimations depend on assumptions about

the distribution of instances, which may not be realistic [128]. Moreover, an algorithm having

a better theoretical performance ratio than other does not necessarily mean that in practice its

solutions would also be better for all the cases. Because of this, the claims of good performance

for approximation methods are typically supported by their actual average results among a diverse

enough set of instances and a big enough number executions, employing performance metrics such

as solution quality, execution time and statistical significance [5, 19]. These types of analysis are

essential for the comparison and evaluation of approximation algorithms.

2.4.2 Heuristics and metaheuristics

Heuristics are problem specific exploration methods based on educated guesses for exploiting some

aspect of the problem. In contrast, metaheuristics are not defined by any specific problem, they are

instead algorithmic frameworks applicable to a wide variety of problems. In the literature [16, 19],

metaheuristics are defined by:
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• Absence of any hypothesis on mathematical properties of the objective function, besides it

being computable for all solutions in the search space.

• Performance dependence on parameters, which values are often set empirically. These

parameters control the balance between exploration of new areas of the search space and

the exploitation of known good ones.

• An initial solution is required. It can be obtained by a trivial method, such as a random solution

initialization, or by a more elaborated heuristic.

• Execution ends by meeting predefined stop criteria, such as: number of iterations, execution

time, or number of evaluations of the objective function.

• Generally, they are easy to implement and often they can be turned into parallel algorithms

achieving a significant speedup.

2.4.3 Single-solution and population-based metaheuristics

Single-solution metaheuristics focus on the improvement of one solution by employing neighborhoods

and local search [128]. The neighborhood of a solution is the set of solutions than can be obtained

by applying once an operation that slightly modifies the current solution to become a different one

[68]. For example, for a binary encoded solution, the one-flip neighborhood is the set of solutions

obtained by flipping one bit. A distance can be calculated between pairs of solutions, in terms of

how many times the neighborhood operator has to be applied to one solution to obtain the other

[118]. Following the previous example, two binary solutions that differ in exactly three bits are

at three steps of distance from each other. In local search, the neighborhood operator is used to

look around the immediate surroundings of a solution in the search space, and based on that, the

algorithm takes a step towards a neighboring solution better than the current one [40, 54]. There

are different strategies to choose among neighboring solutions, for example, to choose a random
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one, to take a step towards the first better neighboring solution to be found (first-improvement); or

to compute the whole neighborhood and choose the best solution in it (best-improvement). Single-

solution metaheuristics can be seen as customized, more intelligent extensions of local search, and

are also referred as trajectory-based methods [16]. Some examples of single-solution metaheuristics

are Iterated local search (ILS), variable neighborhood search (VNS), simulated annealing (SA), and

tabu search (TS) [16].

Population-based metaheuristics employ a group of solutions to search simultaneously on multiple

regions of the search space [128]. In this sense, population-based metaheuristics are multi-trajectory

search algorithms. Population-based metaheuristics use the quality of their solutions as feedback

in the creation of new solutions via some sort of recombination, and they often incorporate nature

inspired behaviors [15]. Some examples of population-based metaheuristics inspired by nature are

evolutionary algorithms, like genetic algorithms (GA) [137] and differential evolution (DE) [99], and

swarm intelligence, such as ant colony optimization [29] and particle swarm optimization (PSO)

[140]. In population-based metaheuristics, the search is a group effort, guided heavily by solutions

in good regions of the search space. For example, in a GA the genes of fitter individuals are more

likely to proliferate, and in PSO, particles in good regions are likely to pull the swarm towards their

direction.

There are hybrid metaheuristics as well [14], some of them employ typical single-solution

approaches within population-based metaheuristics. For example, the memetic algorithms (MA)

combining the use of evolutionary operators and local search [82], and some of them hybridize

metaheuristics and exact algorithms [61].

2.4.4 Fitness landscape

The concept of the fitness landscape was first devised by Wright [138]. It became an approach

to analyze the behavior of evolutionary algorithms [101] in terms of populations moving through a

landscape, with valleys and hills representing the variations on fitness values. The fitness landscape
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is also a very useful tool to better understand problems and their challenging factors.

The fitness landscape of a problem is defined as a triplet [62] consisting of:

• A set of solutions under a certain encoding.

• A fitness function to evaluate the fitness values of solutions.

• A neighborhood structure that can provide a distance measure between pairs of solutions.

Ideally, this should capture the number of times that an operator is applied to make a transition

from one solution to the other one.

Assuming minimization, the valleys are the regions of better fitness, with the global optimum

located in the lowest point of the landscape. A solution is a local optimum if it is the fittest

solution among its neighborhood. Of course, to make a full computation of the fitness landscape of

a problem would be equivalent to knowing all the possible solutions and their distances to each other,

and therefore having solving the problem, which is impractical. To keep the fitness landscape analysis

practicable, it is typical to base it on the assumption that the fitness landscape looks generally the

same everywhere, i.e., it is isotropic [97], and therefore, studying selected samples of it is enough to

get a generalized idea of its structure.

Fitness landscapes that contain a high number of local optima are generally thought to be more

difficult [1, 50], but this is not the only criterion to consider. Other important related aspects

are ruggedness and neutrality [93, 100]. Ruggedness is associated with little correlation between

neighboring solutions, while neutrality presents as large plateaus of solutions with the same fitness.

Both are indicatives of difficulty because they mean that there is few useful information to decide a

good search direction.

The fitness landscape analysis has proven to be a useful tool for a better understanding of

problems, search dynamics and algorithm performance [78, 125]. Numerous techniques have been

devised in order to decompose landscapes into measurable features that describe the intrinsic

difficulties of a problem [76, 77, 96, 100? ]. Some of these techniques include measures based
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on correlation to determine how much the fitness of a solution may depend from solutions around

it [126, 135], the relationship between the distance to the optimum and fitness [60], analyzing the

the distribution of fitness values [113], the estimating the size of structures like plateaus and basins

[51], examining operator’s ability to improve solutions [123, 131, 132, 134], visualization techniques

related to search dynamics [89, 90], etc.

2.4.5 Hyperheuristics and adaptive operator selection

Often, the success of metaheuristics depends on the combination of operators and their ability to

cope with the intrinsic difficulties of a problem. Choosing the operators that better suit a given

problem (or a set of instances of a problem) can be a defiant and time consuming task [37]. The

adaptive operator selection (AOS) is the problem of choosing suitable operators during execution

time [33, 37]. An approach to the AOS are hyperheuristic frameworks based on reward systems [44].

Hyperheuristics are methods to decide which one from a set of low level heuristics (operators or

entire algorithms) to use at a given time during execution [17]. The decision making process within

hyperheuristics is an empirical one. It is based on rewards directly influenced by the performance

of low level heuristics in past iterations. When dealing with optimization problems, which difficulty

may vary among instances, hyperheuristics frameworks can help to build more robust algorithms

able to self adapt their operators to unknown scenarios. Some hyperheuristic frameworks are the

multi-armed bandit (MAB) [3] and the island model [11] for evolutionary algorithms.

2.4.6 Conclusions

The chapter introduced key fitness landscape concepts, such as ruggedness and neutrality, related

with challenges associated to the traditional evaluation scheme of the CBSP; as well as an overview

of optimization techniques and tools to be implemented in combination with problem specific

information in the scope of the proposal described in Section 1.3.
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After having considered the current related work for the CBSP presented in this chapter, it is

notorious that there are opportunity areas in both the analysis of the problem and the development

of better, more efficient algorithms to solve it. The remaining chapters present the aspects of the

proposed approach to the CBSP related to the design of an alternative evaluation scheme with

improved capability to guide the search, the design of algorithms for the CBSP, the selection of their

operators, the analysis of the fitness landscape of the problem, and the implementation of tools such

as adaptive paradigms and parallelism to further improve the performance of the proposed algorithms

for solving the CBSP.



3
An alternative evaluation function for the CBSP

3.1 Introduction

The fitness function is highly associated with the main challenges of solving an optimization problem,

whether it is by exact or heuristic based methods. The function has not only the role of assessing

the cost of a given potential solution; its nature is relevant for establishing cost bounds, to predict

the value of the optimal cost and it impacts directly on the structure of the fitness landscape.

Search based approaches rely on the fitness function to make crucial decisions regarding further

search directions that determine whether or not the algorithm will be able to reach certain regions of

the search space, will be able to escape from local optima, and overall, how successful it will be for

solving the problem. It has been demonstrated that some fitness functions impact negatively in those

aspects, and that solving methods can have their performance significantly improved by employing

more informative fitness functions that still keep consistency regarding the objective of the problem

[38, 39].

29
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When looking for a fitness function that is different from the objective function of the problem, it

arises the question of what makes a fitness function more or less helpful guiding the search and under

which circumstances. To begin with, a fitness function should make it easy to determine if a solution

is better than another one. Focusing on this particular aspect, in the ideal case, each solution should

get assigned a different cost. Extrapolating to the fitness landscape, which also involves a notion of

neighbourhood under a particular solution encoding, the fitness of solutions should become better

as they become closer to the global optimum, and it would also imply the absence of multimodality.

However, in practice, that is rarely the case for problems that are not already easily solved, and it is

indeed not the case for the CBSP.

The CBS function is a sum of e cyclic distances, which can have values in the range 1 to bn/2c.

There can be more than one combination of cyclic distances adding up to the same total value.

The number of fitness equivalence classes that the CBS function can create is relatively small when

compared to the number of possible embeddings, specifically, (ebn/2cdn/2e)/(n − 1) − (n − 1)

different cost values to assign to solutions in a search space of size (n− 1)!/2.

In order to establish how the poor discrimination capabilities of the CBS function are, this

was assessed for a set of 20 representative instances [109]. The instances belong to the different

topologies described in Appendix A.1. This set is also employed in the rest of experiments along

this chapter. It includes: six Cartesian products of graphs with known upper bounds, five standard

graphs with known optimal solution values, five graphs from the Harwell-Boeing Sparse Matrix

Collection, and four Erdös-Rényi random graphs. The graphs in the set have 199 ≤ n240 vertices

and 199 ≤ e ≤ 651128 edges. In the case of Harwell-Boeing instances, graphs of order as close as

possible to 200 were chosen from the collection. The rest of the graphs have exactly 200 vertices.

A sample of c = 100, 000 random embeddings for each graph in the set was taken. The

embeddings were assigned descending ranks in function of their cost, with same cost solutions sharing

the same rank. The relative entropy RE(D) metric in Equation 3.1 was measured for the distribution

of ranks [109]. The maximum value of the relative entropy metric is RE(D) = 1, representing the
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(a) Average relative entropy among instances. (b) Relative entropy for each instance.

Figure 3.1: Potential of discrimination for the CBS function, measured by the relative entropy of
100,000 embeddings for 20 representative instances.

ideal case where for each rank j, there is Dj = 1 solution. The maximum relative entropy would

correspond to every embedding in the sample belonging to a different fitness equivalence class.

RE(D) =

c∑
j=1

Dj

c
log
(
Dj

c

)
log
(

1
c

) , (3.1)

As expected, the potential of discrimination of the CBS function is not the ideal, with the relative

entropy measure ranging from 0.58 to 0.77.

In the scenario of a neighbourhood based search, it is possible that the neighborhood of a solution

contains one or more improving candidates of the same fitness. Under the CBS function, which of

those candidates is chosen is a random decision instead of one based on which one is more likely to

lead towards improvements, so the search would be blindly moving across a fitness plateau. While

fitness plateaus are composed of neighboring solutions within the same fitness equivalence class,

those solutions are not equivalent search-wise, in the sense that each one of them could lead towards

different search directions, some of them better, some others worse. Also, in a plateau the search
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could spend valuable iterations cycling among its solutions.

So far, all previous solution approaches have employed the problem’s objective function as their

fitness function [47, 117]. It is likely that the poor discrimination of the CBS function has played

a role on hindering their performance by propitiating the type of neutrality inducing blind search

decisions discussed before and thus guiding those solution methods to local optima where they

become stagnant.

The goal of designing a new alternative fitness function for the problem is to introduce distinctions

among solutions belonging to the same fitness equivalence class under the CBS function. Those

distinctions should be based on a notion of which features make a solution more likely to lead to

further improvements than other solutions in their same fitness equivalence class. For example,

consider a scenario where a neutral fitness neighbour of a visited local optima happens to be in the

attraction basin of another local optima of better quality. How could an alternative fitness function

asses that? Our assumption is that the distribution of the cyclic distances contains useful information

towards this task. Based on that, three candidates for a new alternative fitness function for the CBSP

were designed.

This chapter describes the research work on designing a new more informative evaluation function

that also keeps consistency with the main goal of the CBSP and that it is able to provide improved

guidance for search methods through neutral regions of the search space improving their performance.

A comparative study considering the CBS function and the three new evaluation schemes is

carried out by following the methodology devised by Garza-Fabre et al. [39]. It includes: a) an

investigation of their discrimination potential, b) an analysis concerning the consistency of the three

new evaluation functions with regard to the primary objective of the CBSP, and c) an assessment

of the practical usefulness of the four evaluation approaches when used within two distinct search

algorithms.

The remaining sections of the chapter are organized as follows. Section 3.2 explains the

methodology used for function comparisons. Section 3.3 introduces three new evaluation schemes
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for the CBSP and it presents the analysis of their complexity. Section 3.4 discusses the studied

evaluation schemes, addressing their capacity for discrimination and the CBS-compatibility. In

Section 3.5 the ability of the proposed functions to guide search algorithms and their influence

in the convergence process is compared to that of the CBS function by employing Steepest Descent

and Iterated Local Search. A comparison of performance between two state-of-the-art methods and

the ILS implementation, equipped with the best alternative evaluation scheme is presented in Section

3.5.4. Finally, Section 3.6 summarises this chapter.

3.2 A framework for comparing fitness functions

The idea of exploring the use of different fitness functions for a given problem has been employed

numerous times outside of this work. It has been successfully applied in problems such as the

prediction of protein structure [39], vehicle routing [73], nurse rostering [122], the job-shop problem

[83]. Alternative fitness functions have also been proposed for other GEP, such as the bandwidth

problem [105] and the minimum linear arrangement [103] (another name sometimes employed for

the bandwidth sum problem).

Across those previous works, a generalized framework for studying the effectiveness of alternative

fitness functions has taken shape [38]. It focuses on assessing the quality of the new proposed

functions under three main criteria: a) that the new function is able to increase the discrimination

by inducing more fitness equivalence classes with lower cardinality, b) that it remains consistent with

the original objective of the problem and c) that it has demonstrated effectiveness in guiding search

algorithms.

In this work, the first criteria was evaluated employing the notion of potential for discrimination,

measured as the relative entropy [23] for a set of fitness-ranked embeddings [109]. In order to

address the second criteria, the notion of CBS-compatibility [109] was devised, in a similar way to

the HP-compatibility formulated for analyzing alternative fitness functions for the problem of protein
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structure prediction under the HP model [38].

Definition 1 An alternative evaluation function f : Φ → R is said to be CBS-compatible if and

only if f(ϕ) < f(ϕ′) ⇒ CBS(ϕ) ≤ CBS(ϕ′) for every pair of solutions ϕ, ϕ′ ∈ Φ. Otherwise, if

at least one pair of embeddings ϕ, ϕ′ exists such that CBS(ϕ) < CBS(ϕ′) but f(ϕ) > f(ϕ′), then

function f is not CBS-compatible.

The notion of compatibility with respect to the original objective function of the problem is

crucial for ensuring that the goal of the optimization process does not change. It is desirable that an

alternative fitness function introduces changes in fitness relationships among solutions belonging to

the same fitness class under the original function. However, it is also desirable that those relationships

are not disrupted among the rest of the solutions.

Finally, for the third criteria, a thoughtful comparison on the performance of two basic search

algorithms, steepest descent (SD) and iterated local search (ILS) was performed, employing each of

the new evaluation functions and the original one.

3.3 Alternative evaluation scheme candidates

It was observed that one feature that distinguish CBS embeddings of the same cost is their distribution

of cyclic distances. Under the problem’s objective function, each cyclic distance contributes to the

CBS value independently. For example, a solution where more than half the cost is due to one

particularly big cyclic distance, while the rest of cyclic distances are comparatively small, can be

evaluated the same than a solution where the all the cyclic distances are around the same magnitude.

The core idea for the design of the fitness function alternatives is that the exemplified cases should

not be evaluated as equivalent. Such distinction is intended to be relevant and helpful regarding the

search space exploration, and not as a change in the problem definition.

In order to design evaluation schemes that weight-in the cost contribution of each cyclic distance,

a rewritten version of the CBS function in terms of how many distances of each possible value are
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present given a particular solution is introduced. This is expressed in Equation 3.2, where dk accounts

for the number of cyclic distances of cost k. Under this definition, a cyclic distance has an implicit

weight equal to its value k.

CBS(G,ϕ) =

bn/2c∑
k=1

k · dk , (3.2)

The three alternative fitness functions have a similar structure than Equation 3.2, each of them

with its particular way of assigning cyclic distance weights in function of k. Figure 3.2 shows how

the weights for the alternative functions behave with respect to the cost k of the cyclic distances,

along with the implicit weights of the CBS function. The weight assignations were designed under

distinct approaches to define what makes a solution potentially more desirable regarding its cyclic

distance values distribution. For function f1 and f2, it was assumed that solutions where most of

the cyclic distances have small values are more likely to lead to further improvement.

The intended effect for this feature is to direct the search towards solutions where the majority

of cyclic distances are small.

Function f3 was design under the opposite assumption, with the idea that the occurrences of

large cyclic distances may be easier to eliminate after applying operations such as swaps, insertions

or mutations, thus resulting in solutions of lower cost. Therefore, function f3 assigns weights that

decrease exponentially as the magnitude k of cyclic distances increases, with the intended effect of

giving preference to solutions with majority of large cyclic distances. Since the sum of the weights

times their occurrences will always be in the range of 0 to 1, function f3 design was complemented

by adding that result to the CBS original value. Thanks to that, function f3 allows to preserve the

CBS evaluation as the integer part of the result, ensuring that the new fitness evaluation will only

cause fitness relationship changes among solutions that are equal under the original CBS function.

f1(G,ϕ) =

bn/2c∑
k=1

(
k∑
i=1

i3

)
· dk , (3.3)
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f2(G,ϕ) =

bn/2c∑
k=1

n(k+1) · dk , (3.4)

f3(G,ϕ) = CBS(G,ϕ) +

bn/2c∑
k=1

(
1

n2k

)
· dk . (3.5)

(a) CBS function (b) f1

(c) f2 (d) f3

Figure 3.2: Weights assignations in function of cyclic distance values (1 ≤ k ≤ dn/2e) for the CBS
function and the three alternative evaluation functions, for n = 20.

3.3.1 Alternative fitness functions complexity

The CBS function, computed as the sum of the cyclic distances for all edges of G has a complexity

of O(e). Since e ≤ (n(n− 1))/2, O(e) ≈ O((n2 − n)/2).
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For an efficient evaluation of the alternative functions, the weights assignations can be

precalculated, since they are invariable with respect to the possible values k. As previously mentioned,

k ∈ 1, ..., n/2, so the complexity for weight computation is O(n). The sum of weights for

particular embeddings is computed in e steps, so the complexity for the alternative functions is

O(e+ n) ≈ O((n2 − n)/2 + n).

All the alternative functions, as well as the CBS function, can be implemented to efficiently update

the cost of potential solutions after operations that only affect part of them, such as swaps, insertions

or mutations. To do this, it is enough to recalculate values for at most |A(u1)|+, ...,+|A(ux)| edges

involving nodes affected by the operation, where x is the number of nodes affected.

3.4 Comparing alternative evaluation schemes

In order to determine the success of the alternative evaluation schemes the evaluation methodology

previously introduced in Section 3.2 was applied.

3.4.1 Potential of discrimination

The design goal of the alternative functions was to increase the potential of discrimination with

respect to the CBS function. In order to evaluate the achievement of this goal, the potential of

discrimination was measured as the relative entropy (RE) of the distribution of ranks for 100,000

embeddings for each instance [109].

Figure 3.3 presents the results for the potential of discrimination assessment. All the three

new evaluation schemes have better relative entropy values than the CBS function, as well as less

dispersion across varying topologies. This last aspect is better illustrated by Figure 3.4, showing the

relative entropy values for each instance, where function f3 behaves perfectly, with RE values equal

to one in all cases, and f1 is a close competitor with RE values superior to 0.9997.

The relative entropy values for functions f1 and f2 behave roughly similarly to the CBS function
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(a) Overall statistics for the 20 selected instances. (b) Zoom-in of Figure 3.3(a), with focus on results for f1
and f3.

Figure 3.3: The three proposed alternative fitness functions exhibit increased relative entropy (RE)
values when compared with the CBS function, thus offering a better potential for discrimination.

regarding certain graphs. For example, the higher RE values correspond to the Erdos-Renyi random

graphs and HB graphs, and the worst to Cartesian products, cycle and wheel topologies. That

suggest that the occurrence of more high cardinality fitness classes is caused by the existence of size

n cycle subgraphs inside of the host graph in topologies such as the ones with lowest RE values:

wheel, cycle and the Cartesian product of cycles. Meanwhile, in this experiment function f3 was

the only one to produce perfect rank distributions (with RE=1), and to remain unaffected by graph

topology.

Even though this experiment is not specifically measuring fitness landscape neutrality, it is possible

to infer from it that the CBS function induces more fitness neutrality in comparison with the other

three. Notice, for example, that only an average of 68% of the sample had unique fitness values. If

the remaining solutions will cluster into neutral fitness plateaus would also depend on the solution

encoding and the neighborhood definition, but the fitness function alone can offer useful insights.

Contrasting with the CBS function, the alternative functions assure that the likeness of neutrality is

reduced in varying degrees by each one of them. Remarkably, under function f3 the sampled set of

100,000 solutions per instance contains no fitness equivalent solutions, so it is possible to conclude
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(a) RE values for each instance. (b) Zoom-in of Figure 3.4(a), focused on RE values for
f1 and f3.

Figure 3.4: Relative entropy (RE) for each analyzed evaluation function. Each point represents the
average of 50 independent executions over one tested instance.

that, at least for this sample, there are not any plateaus.

3.4.2 CBS-compatibility

Consider a set of solutions and the pair-wise fitness relationships among them, which define if one

is worse, better or equal than the other. The CBS-compatibility is expressed as a percentage,

measuring the proportion of pair-wise unequal fitness relationships, induced by the CBS function,

that are preserved by the each of the alternative functions. If the result of this metric is lower

than 100% it indicates that there are some solutions that are considered better than their respective

pairs by the CBS function, but worse by the alternative function, and vice-versa. Low percentages

of CBS-compatibility indicate that an alternative function is unlikely to keep consistency with the

original problem goal.

The CBS-compatibility was measured for the pair-wise unequal fitness relationships of a set of

100,000 random solutions sampled for each of the 20 instances in the set [109]. This experiment

was repeated 50 times and its average results appear in Figure 3.5.
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(a) Overall RC value for the 20 selected graphs instances. (b) Average results by instance

Figure 3.5: Relative CBS-compatibility (RC) values for the alternative functions computed for a
sample of 100,000 solutions.

The worst compatibility evaluation corresponds to function f1 with 84% on average, followed by

f2 with 92%. As expected, function f3 exhibits 100% compatibility, since it was designed to add a

smaller than 1 value to the CBS evaluation. That particular feature also makes the CBS-compatibility

of f3 invariable across topologies.

From this experiment it was inferred that the assignation of exponential growing weights based

on cyclic distance values used in f2 and f3 resulted in smaller deviations from the relative quality

of embeddings. It also demonstrates that design of f3, incorporating the CBS original value as its

integer part, makes its perfectly compatible with the problem objective.

3.5 Search performance

In the experiments for evaluating the potential of discrimination and CBS-compatibility of the

alternative fitness functions, f3 got perfect scores in both cases. Regarding the two first criteria,

offering more discrimination and being consistent with the problem definition, function f3 is the

leading candidate. The final criteria concerns practical usability as the ability to guide search
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algorithms. It was expected that, if so far f3 is better discriminating potential solutions and CBS-

compatible, it should observed an improvement in search performance when compared to the CBS

function and the other two alternative functions.

The search performance tests for the functions were carried on by implementing two basic search

algorithms: a steepest descent (SD) and an iterated local search (ILS) [109]. The steepest descent is

the equivalent of a hill-climber algorithm applied to a minimization problem. It consists in exploring

the neighborhood of the current solution, replacing that solution by an improving neighboring solution

and repeating the process until there is no improving neighbors. At that point, the search has found

a local optimum and it stops. The iterated local search instead performs a perturbation of the local

optimum and then a new local search iteration. The perturbation has the purpose of producing a

new solution relatively close to the previously found local optimum, but hopefully in the attraction

basin of another one.

The SD and ILS algorithms are simple enough to not have their behaviour influenced by a large

number of parameters and their implementations are quite straightforward. Therefore, their simplicity

allowed us to focus the analysis on the impact of changing the evaluation scheme.

For the implementation of both algorithms, best-improvement and the 2-swap neighborhood

were employed, for embeddings encoded as permutations [109]. The steepest descent was executed

50 independent times per instance for each function. For a fair comparison, every run starts from

fixed initial random solutions. For the ILS experiments, the tested values for perturbation strength

were PS = {5, 10, 15}, and a maximum running time of MT = {300, 600, 900} seconds as stop

criterion. The assessments of O-RMSE and statistical significance followed the methodology that

was previously introduced in Appendix ??.

3.5.1 Steepest descent performance

Table 3.1 presents the number of vertices |V | and edges |E| of the each graph and their best-

known/optimal∗ cost B followed by the results of particular algorithms. Those results include the
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Average Avg solution cost, its standard deviation Dev and average iterations I, as well as the

O-RMSE values. The statistical comparison is shown in Table 3.2, according to the methodology

described in Appendix A.3.

The worst performance for the SD agorithm was attained when using the alternative function

f1, as denoted by the O-RMSE metric in Table 3.1 and distribution of RMSE values in Figure

3.6. Function f1 exhibited a near perfect behaviour in the experiments for assessing the potential of

discrimination, where it was able to assign unique fitness values to most of the solutions in the sample.

However, it was demonstrated that f1 is not CBS-compatible, as its RC values were the lowest among

the three considered alternatives. As expected, the augmented potential of discrimination is only truly

useful if the new evaluation scheme does not affect the original objective. In contrast, the increment

in potential of discrimination of function f2 with respect to the CBS function is not as high as the

one of f1, but f2 has better compatibility. As result, f2 was able to lead the SD algorithm towards

better solutions than both f1 and the CBS function. It is therefore not surprising that the SD using

function f3, which has the highest potential of discrimination as well as the highest compatibility,

achieved a significantly improved performance compared with its pairs.

The fitness relationship changes among solutions that function f3 introduces are limited to the

scope of solutions that had the same CBS value under the original function. The design of f3 states

that, when solutions have the same CBS, the one with more occurrences of higher cost cyclic distances

is picked, as large cyclic distances may be easier to further improve. That unique particularity of

function f3 allows that, while the SD algorithm is still primarily optimizing the CBS represented by

the integer part of the fitness, it is now possible to decide among equal CBS solutions by considering

their cyclic distance values encapsulated on the strictly smaller than one floating part of their f3

fitness.
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Table 3.1: Performance by instance of the SD algorithm when using the four studied evaluation functions.
CBS f1 f2 f3

Graph |V | |E| B Avg Dev I Avg Dev I Avg Dev I Avg Dev I

c20c10 200 400 2360? 4993.24 585.13 1561.46 8692.44 683.55 4766.96 6049.16 632.13 4739.20 4197.64 703.10 3803.36
c20k10 200 1100 5300 10976.28 1304.90 1873.26 13787.64 2949.38 4820.22 9525.32 923.80 3378.38 11067.44 1366.13 2607.32
k20k10 200 2800 62300? 62436.00 755.59 2280.46 84772.16 862.00 3302.62 62304.92 2.50 3633.68 62300.00 0.00 3455.10
p20c10 200 390 2256 4809.28 600.77 1572.40 8342.26 738.01 4888.98 5585.40 802.18 4873.40 4062.96 551.73 3518.82
p20k10 200 1090 5200 10537.88 1227.61 1899.76 13101.64 3262.07 4727.20 9056.20 804.87 3393.70 10464.00 1104.77 2596.04
p20p10 200 370 2385 4082.90 619.52 1653.46 7315.62 926.58 4827.54 4657.02 730.89 5159.54 3354.56 489.50 3335.00
bip100-100 200 10000 500000 500000.00 0.00 115.02 500000.00 0.00 914.74 500000.00 0.00 870.84 500000.00 0.00 133.94
path200 200 199 199 1817.30 209.11 831.34 1799.12 260.51 6812.78 1366.92 219.50 5961.18 1066.42 175.07 4975.28
cycle200 200 200 200 1888.56 207.06 850.68 1894.00 262.91 6639.96 1445.96 242.10 6201.88 1080.16 200.13 5226.80
cycleP200-10 200 2000 11000? 20534.36 4437.49 2851.96 18292.24 7242.48 7333.08 15249.36 6166.86 6184.46 15624.40 5275.83 5543.84
wheel200 200 398 10200 11885.32 206.32 819.16 11854.64 261.79 6801.38 11455.80 254.86 6136.12 11082.36 173.86 5158.52
can_229 229 774 6301? 9281.88 1409.97 3260.88 15772.50 2090.70 6498.38 10778.56 1910.59 6577.76 8577.52 1566.76 4946.46
dwt_209 209 767 7119? 8964.78 817.21 2171.70 13774.14 1721.82 6805.96 9382.72 1410.75 6062.88 8978.40 681.48 2815.02
steam1 240 1761 24158? 30878.12 3037.17 3422.12 43278.28 5591.47 4852.92 31692.08 4180.80 4890.12 30305.04 3396.44 3753.00
ash219 219 431 6705? 8269.36 542.69 1953.90 12586.34 472.12 4731.16 9480.28 652.37 5555.60 7848.82 645.95 4256.12
will199 199 660 14116? 15722.04 653.69 2239.12 21010.08 606.12 3786.00 17658.28 817.34 4135.80 15522.24 629.90 3361.78
ran200P1 200 1991 71394? 72802.78 705.67 2422.18 80034.24 938.28 3039.18 75927.04 654.93 3567.24 72693.96 619.91 3269.74
ran200P3 200 5970 256987? 259502.00 1061.70 2770.02 269017.16 1041.76 2812.12 263671.86 1043.50 3453.40 259250.16 923.42 3476.50
ran200P5 200 9955 452486? 455109.68 1167.33 2955.38 465122.66 1223.02 2646.84 459212.96 1329.09 3380.70 454989.04 1178.27 3542.62
ran200P7 200 13827 651128? 653407.40 1134.01 2816.72 661903.78 1417.15 2274.00 656706.26 1221.45 3135.66 653187.90 837.67 3448.70

O-RMSE 122.86% 169.67% 105.44% 76.51%

Table 3.2: Statistical analysis for comparing the performance of the SD algorithm when using the four analyzed evaluation
approaches.
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Overall

CBS / f1 + + + + + + ? ? ? ? ? + + + + + + + + + 15 + 0 −
CBS / f2 + − − + − + ? − − − − + ? ? + + + + + + 10 + 7 −
CBS / f3 − ? ? − ? − ? − − − − − ? ? − ? ? ? ? ? 0 + 9 −
f1 / f2 − − − − − − ? − − − − − − − − − − − − − 0 + 19 −
f1 / f3 − − − − − − ? − − ? − − − − − − − − − − 0 + 18 −
f2 / f3 − + − − + − ? − − ? − − ? ? − − − − − − 2 + 14 −
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Figure 3.6: RMSE values for the SD algorithm when employing the CBS function and the three
alternative functions.

3.5.2 Iterated local search performance

Since the performance of the ILS can be affected by the choice of perturbation strength, for the

sake of fairness, it was first tested for three perturbation values per function. In this experiment, the

maximum running time was considered as well. The results are summarized by Figure 3.7, showing

the O-RMSE values for each of the ILS configurations.

It was observed that the best perturbation strength values for the ILS using each of the functions

were PS = 10 for the CBS function, PS = 5 for f1, PS = 10 for f2 and PS = 15 for f3. Overall,

all ILS configurations benefit from a higher time budget, and in the case of the ILS with f3, also

from a stronger perturbation.

The previously discussed results for the SD are consistent with the observed performance of the

ILS for the different functions. The worst O-RMSE values correspond to the ILS using f1 and its

performance is also the most susceptible to perturbation strength increases, possible due to the low
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Figure 3.7: O-RMSE values for the ILS employing each of the functions, for perturbation values
PS = {5, 10, 15} and maximum running time MS = {300, 600, 900} seconds.

compatibility of f1 causing a scenario where relatively close solutions have unrelated CBS values,

even if their f1 values are related. The ILS configurations using function f2 and the original one had

quite similar behaviours across perturbation strength variations, with both attaining close O-RMSE

values for PS = 5 and the ILS using f2 being slightly outperforming.

As in the case of the SD, the best performance for the ILS is achieved when using the function f3.

It is notable that this is the only function where the strongest perturbation is preferred. Function f3

search choices for navigating plateaus are heuristically shaped by its design assumption: that when

solutions have the same CBS, the one with more occurrences of large cyclic distances may be easier

to improve. If this is the case, the ILS f3 would be able to reach better local optima by navigating

across neutral fitness areas. Most of the search performance evidence supports that claim. For

example, consider the convergence plots for the best performing ILS configurations of each function

presented in Figure 3.8. Where a stronger perturbation would cause the search lead by the original

CBS function to get trapped in local optima, function f3 allows the ILS to detect promising search

directions in neutral areas and keep moving towards them.
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(a) c20k10 (b) path200

(c) dwt_209 (d) ran200P1

Figure 3.8: Comparison of the convergence profiles of the ILS algorithm equipped with the studied
evaluation functions on four representative instances.

There are a couple of outlier instances where some other alternative function bests f3 regarding

the ILS. The outlier instances are spotted in Tables 3.3 and 3.4 showing instance specific results and

a victory based statistical significance assessment. In concrete, the ILS using f1 for instances c20k10

and p20k10, and f2 for instance p20c10. However, it is also worth remarking that the results of the

ILS using the original CBS function are often better than those when employing either f1 or f2, and

always equal or worse in the case of f3. Therefore, regardless of instance, the ILS demonstrated to

be most reliable when it uses the function f3.
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Table 3.3: Performance of the ILS algorithm when using the four studied evaluation functions.
CBS f1 f2 f3

Graph |V | |E| B Avg Dev I Avg Dev I Avg Dev I Avg Dev I

c20c10 200 400 2360? 2521.36 489.60 26.10 3492.92 1228.57 139.02 2395.96 254.28 73.30 2422.44 309.24 246.38
c20k10 200 1100 5300 10251.40 946.65 2.44 6725.40 1253.63 37.08 7596.00 943.50 20.88 7943.28 1502.48 39.02
k20k10 200 2800 62300? 63755.28 2022.45 1.02 83941.12 925.83 37.42 62300.24 0.66 23.86 62300.00 0.00 33.08
p20c10 200 390 2238? 2455.68 399.46 25.42 3251.12 897.94 140.94 2263.92 1.66 71.70 2335.58 268.12 240.90
p20k10 200 1090 5200 9925.76 1040.17 2.96 6169.62 702.93 38.20 7016.00 831.61 21.72 7119.30 1228.09 43.64
p20p10 200 370 1991? 2092.58 168.86 47.42 2684.10 363.98 141.56 2199.94 152.18 61.78 2015.12 34.83 229.06
bip100-100 200 10000 500000 500000.00 0.00 8.96 500000.00 0.00 4.28 500000.00 0.00 4.50 500000.00 0.00 8.06
path200 200 199 199 352.12 69.76 57.40 738.94 65.79 111.18 489.66 74.28 36.88 363.26 51.51 97.92
cycle200 200 200 200 378.68 81.20 58.76 760.92 71.55 107.72 531.28 80.94 37.84 389.08 56.41 93.16
cycleP200-10 200 2000 11000? 16951.28 5441.33 22.70 15153.60 5602.16 61.02 15230.60 6110.02 64.14 16238.20 5297.60 48.62
wheel200 200 398 10200 10439.72 75.58 27.70 10837.24 74.86 56.22 10611.28 89.39 18.68 10421.64 53.25 49.98
can_229 229 774 6243? 6915.46 1169.85 12.80 9402.98 1988.30 61.26 6671.48 885.43 31.30 6264.80 4.23 91.88
dwt_209 209 767 6355? 7369.46 508.75 9.48 9629.50 962.30 50.18 7587.88 525.68 26.92 6677.90 328.73 120.04
steam1 240 1761 24158? 31853.64 3633.94 1.00 45230.10 4189.08 1.00 34145.88 3490.00 1.00 31261.18 2842.05 1.00
ash219 219 431 6229? 6644.94 239.91 11.32 9766.48 490.43 130.04 7357.54 352.16 40.40 6410.88 216.71 137.30
will199 199 660 13699? 13976.68 218.81 18.58 17658.06 625.05 115.94 15132.26 256.08 48.82 13801.82 50.37 144.76
ran200P1 200 1991 69993? 71291.26 386.19 5.84 76954.72 564.40 52.44 73234.92 456.13 26.64 70444.86 230.92 44.64
ran200P3 200 5970 255001? 258634.08 931.37 1.30 265569.88 941.25 21.90 260282.90 811.22 10.24 256094.34 467.71 13.34
ran200P5 200 9955 451266? 455114.62 995.99 1.00 461683.78 1167.28 12.74 456302.98 826.20 6.42 452517.20 592.95 6.24
ran200P7 200 13827 648917? 654312.52 1174.19 1.00 658789.40 1049.85 11.08 654406.30 885.77 4.34 651048.42 697.50 4.30

O-RMSE 29.57% 59.76% 31.05% 21.50%

Table 3.4: Statistical analysis for comparing the performance of the ILS algorithm when using the four analyzed evaluation
approaches.
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Overall

CBS / f1 + − + + − + ? + + ? + + + + + + + + + + 16 + 2 −
CBS / f2 ? − − − − + ? + + ? + − ? + + + + + + ? 10 + 5 −
CBS / f3 ? − − − − − ? ? ? ? ? ? − ? − − − − − − 0 + 12 −
f1 / f2 − + − − + − ? − − ? − − − − − − − − − − 2 + 16 −
f1 / f3 − + − − + − ? − − ? − − − − − − − − − − 2 + 16 −
f2 / f3 ? ? − + ? − ? − − ? − − − − − − − − − − 1 + 14 −
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3.5.3 Dealing with search cycles

Search cycles are present when, after the perturbation, the search falls again in the attraction basin

of some previously visited local optimum. The occurrence of search cycles can be a symptom of a

deficient search and it is prejudicial because it represents a waste of execution time budget.

In order to identify search cycles occurrences in the ILS, a sample of 10,000 local optima visited

by the algorithm with each of the functions was created, for four representative instances c20k10,

path200, dwt_209 and rand200P1. The method for identifying search cycles was to measure the

distance between pairs of local optima. The distance metric was the interchange distance [21], which

is suitable for cyclic permutations.

Figure 3.9 allows to visualize the search cycle occurrences for the fist 250 local optima in the

sample for instance dwt_209.According with Figure 3.9, search cycles are much more common when

the ILS uses the CBS function than when it is guided by any of the alternative functions. The search

cycles issue here is associated with the potential of discrimination. Among the alternative functions,

f2 is the only one that causes some search cycles in the ILS and it is also the one with the lowest

discrimination, besides the CBS function; and when using either function f1 or f3, which have the

two highest potentials of discrimination, the ILS does not present search cycles. This is evidence

that a low discrimination capability and the blind search decisions function f2 induces result in a

worst performing exploration of the search space in the form of search cycles.

While a high potential of discrimination is helpful for avoiding the search cycles, and their presence

has a negative impact, their absence does not necessarily guarantees a successful search. That is

the case for the ILS when it uses function f1, because even if f1 has high discrimination and it does

not induces search cycles, its compatibility is the lowest. Therefore, the same local optima are not

revisited, but the search can be still focusing in poor quality regions of the search space because the

fitness assigned to them by function f1 is inconsistent with their CBS cost.
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Figure 3.9: Matrices of interchange distances for local optima visited by the ILS using each of the
functions. A search cycle occurrence is a revisit of a local optima. Its occurrence is represented by a
red cell in the main diagonals, where the interchange distance between two local optima was equal
to zero.

The analysis regarding search cycles allowed us to better understand how the potential of

discrimination and CBS-compatibility affect search dynamics and why function f3 was more successful

guiding both the SD and ILS as a result of its high scores in both those metrics.
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Figure 3.10: RMSE values of the ILS algorithm using function f3 compared with GVNS and Mach

3.5.4 ILS guided by function f3 compared with algorithms from

literature

Across all the experiments discussed in the previous section, function f3 matched all the criteria

and proved to be a successful alternative to the CBS function. To conclude the analysis on the

usefulness of function f3, the performance of the ILS algorithm using f3 was compared with that of

the algorithms from the CBSP literature, GVNS and Mach. The results detailing O-RMSE, best

and average cost and its respective deviation for the instance set are presented in Table 3.5, followed

by the pair-wise analysis of statistical significance in Table 3.6.

It is remarkable that the very simple ILS implementation using function f3 achieved significantly

better results than GVNS for all instances, as well as better or equal than Mach for 14 of them.

The O-RMSE for the ILS is the lowest among these three algorithms. As shown in Figure 3.10, the

RMSE values have a close to zero median and a smaller variation, indicated by their compact box

plot and the distance of outliers to the median. Also, the ILS was able to produce optimal solution

for 2 out of 5 instances with known optimal value and 14 new best-known solutions for the rest of
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the considered graphs.
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Table 3.5: Performance comparison of the ILS algorithm, equipped with the evaluation function f3, with respect to two state-
of-the-art methods.

GVNS Mach ILS
Graph |V | |E| Opt UB Best Avg Dev Best Avg Dev Best Avg Dev

c20c10 200 400 1560 6432 6467.80 24.66 2446 3754.24 1097.34 2360 2422.44 309.24
c20k10 200 1100 50380 15578 15733.00 49.57 5300 5300.00 0.00 5300 7943.28 1502.48
k20k10 200 2800 103300 78610 78911.00 316.92 76614 76973.88 139.44 62300 62300.00 0.00
p20c10 200 390 3790 5657 5663.48 8.30 2256 2256.00 0.00 2238 2335.58 268.12
p20k10 200 1090 100190 15092 15298.88 76.67 5200 5200.00 0.00 5200 7119.30 1228.09
p20p10 200 370 2080 5434 5441.40 5.35 4482 6271.36 703.74 2004 2015.12 34.83
bip100-100 200 10000 500000 500014 500014.00 0.00 500000 500000.00 0.00 500000 500000.00 0.00
path200 200 199 199 2350 2355.20 4.16 199 199.00 0.00 234 363.26 51.51
cycle200 200 200 200 2036 2042.88 7.30 200 200.00 0.00 220 389.08 56.41
cycleP200-10 200 2000 11000 39210 39430.16 77.25 11070 11217.00 72.84 11000 16238.20 5297.60
wheel200 200 398 10200 12476 12476.00 0.00 10200 10200.00 0.00 10280 10421.64 53.25
can_229 229 774 44505 13842 13933.84 37.31 7764 11899.82 2358.96 6255 6264.80 4.23
dwt_209 209 767 40268 13576 13639.50 32.27 8264 10169.66 1124.26 6371 6677.90 328.73
steam1 240 1761 106102 51938 52210.00 158.50 36713 40831.46 2373.94 25913 31261.18 2842.05
ash219 219 431 23705 10364 10397.42 18.94 8335 8955.44 339.76 6245 6410.88 216.71
will199 199 660 33000 17613 17657.68 8.64 19218 21205.34 788.45 13738 13801.82 50.37
ran200P1 200 1991 100050 76487 76533.32 27.12 88900 91052.80 1410.98 70037 70444.86 230.92
ran200P3 200 5970 300000 269521 269526.92 29.30 294397 294397.00 0.00 255192 256094.34 467.71
ran200P5 200 9955 500251 472432 472466.08 22.22 502332 504694.76 1334.77 451417 452517.20 592.95
ran200P7 200 13827 694824 668810 668853.12 6.22 703730 704559.46 947.28 649478 651048.42 697.50

O-RMSE 182.90% 34.96% 21.01%

Table 3.6: Statistical analysis for comparing the performance of the ILS algorithm using evaluation function f3 against that of
the state-of-the-art methods.
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Overall

GVNS / Mach − − − − − + − − − − − − − − − + + + + + 6 + 14 −
GVNS / ILS − − − − − − − − − − − − − − − − − − − − 0 + 20 −
Mach / ILS − + − + + − + + + − − − − − − − − − 6 + 12 −
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3.6 Conclusions

This chapter exposed the issues associated with using the CBS function and the setbacks that can

arise as result of employing it as fitness function in search algorithms. With the purpose of countering

those issues, three alternative fitness functions were proposed, each of them designed to introduce a

notion of preference among potential solutions that belong to the same fitness class under the CBS

function.

The three alternative functions were extensively tested under the three criteria of an evaluation

framework for alternative functions that include a) better discrimination ability, b) compatibility

with the definition of the problem, and c) demonstrable success guiding search algorithms. The

first criteria was addressed by determining the potential of discrimination of the CBS function and

the three alternatives using the relative entropy (RE) metric. It was demonstrated that the three

proposed functions provide better discrimination than the CBS function, with functions f3 and f1

scoring perfect and near-perfect RE values. Regarding the second criteria, the CBS-compatibility

definition was introduced and empirically measured, finding relative compatibility percentages of

83.40% for f1, 92.01% for f2, and 100% for f3. The interplay of potential of discrimination and

CBS-compatibility was discussed along with the third criteria, analyzing the search performance of

the SD and ILS algorithms for each of the functions. It was demonstrated that a high discrimination

is only useful if the consistency problem definition is maintained. On this regard for both SD and



54 3.6. Conclusions

ILS, function f1, which has high discrimination but poor compatibility, was the weakest contender.

Compared with f1, function f2, with not as high discrimination, got better results than f1 and the

CBS function, due to its better compatibility. The best performance for both the SD and the ILS

across different perturbation values was achieved when the algorithms employ function f3, which has

both the best discrimination and compatibility scores.

Consistent results were achieved for the ILS with different perturbation strengths. It was found

that function f3 benefits from stronger perturbations without loosing sight of the good search space

regions. It was determined that the search decisions function f3 takes when it encounters equal

CBS solutions (giving preference to solutions with many large cost cyclic distances) resulted in a

more effective exploration of the search space, avoiding search cycles and taking advantage of larger

perturbations. Our analysis regarding search cycles demonstrated that their occurrence is linked to

discrimination capabilities of the fitness functions. It was shown that search cycles are harmful to the

search, but also that their absence does not guarantee good search results if the alternative function

looses CBS-compatibility.

Finally, the simple ILS implementation equipped with function f3 was compared against two

algorithms from the problem literature. In this experiment the ILS achieved lower O-RMSE rates,

significantly improved the results for 70% of the instances, including 2 optimal solutions and 14 new

best-found solutions.

The remaining of this works deepens on the study of cases where function f3 is more effective,

while also studying the effect that of other algorithmic components have over diverse solving

approaches. The next chapter continues with the investigation of the effect of the alternative

evaluation scheme over the performance of Memetic Algorithms employing different configurations

of genetic operators.
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Memetic Algorithms

4.1 Introduction

Memetic algorithms (MA) surged as an approach to optimization through the evolution of biological

and behavioral aspects of the individuals in a population, in the form of a genetic algorithm combined

with local search. The genetic algorithm is already powerful and one of the most widespread

techniques in evolutionary computing. As a population based metaheuristic, it is able to consider

several search space regions simultaneously, with the crossover and mutation mechanisms keeping

balance between the exploitation of promising regions and the exploration of new ones. The

incorporation of local search in the MA adds on extra layers of exploitation and exploration, since it

is meant to improve the known solutions generated by the evolutionary process and it can also result

in the addition of new genetic material to the population.

MA were initially proposed for solving the TSP [88], and through the decades numerous

other optimization problems have been successfully tackled using MA, including GEP such as the

55
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antibandwith [102] and the BSP [106]. The previous chapter of this work discussed the promising

results obtained by using our proposal of a more informative fitness function in very simple local

search methods. In that particular scenario, function f3 was remarkably successful. We continue by

further researching the use of function f3 into the MA: a population based evolutionary metaheuristic

with a local search component. The success of the MA depends on the genetic operators it utilizes

and how those operators interact with the problem in question. We investigated this aspect by

considering four selection schemes, two recombination mechanisms, three mutation schemes, two

survival strategies under two different evaluation schemes, the conventional CBS function and the

new function f3. The results provide insights on how to design a successful MA for the CBSP by

analyzing how particular operators and the fitness function interact and affect the MA decisions and

overall performance.

The rest of this chapter continues by introducing our MA implementation and the operators that

participate in it in Sections 4.2 and 4.3. In Section 4.4 we first address the analysis of how the

operators (the interactions among themselves and with the fitness function) affect the performance

of the MA and later discuss the top five best performing MA implementations. Section 4.5 contains

the comparison of our best performing MA with the algorithms from the problem’s literature. Finally,

Section 4.6 closes the chapter by summarizing the main findings and how some of they relate to the

contents of Chapter 5.

4.2 The memetic algorithm framework

All our memetic algorithms were implemented over the same basic skeleton, with code structures that

can be used interchangeably by the different operators. The main routine receives as parameter a set

defining the specific operators for selection, crossover, mutation, fitness function and survival strategy.

Across this work each specific combination of operators is referred as an operator configuration, or

just a configuration for short. The operators available [110, 111] are four selection schemes [128]:
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stochastic, roulette, random and binary tournament; two crossover operators [26, 92]: cyclic and

order-based; three mutation operators [128]: insertion, reduced-3-swap and cumulative-swap; two

fitness functions: the CBS function and f3; and two survival strategies [128]: (µ, λ) and (µ+λ). Each

of them is described in detail in the following section. In total, there are 96 operator configurations,

each one of them creating a different MA implementation, which are referred as numerated MA

versions.

Once the operator configuration is defined, all MA versions follow a similar pattern, starting by

the initialization of population P and then the population evaluation by the specified fitness function

f . In order to keep track of the best-found solution, even if it disappears from the population, a copy

of the fittest individual in the initial population is stored in g and kept updated accordingly through

the entire process.

A generation begins with the selection operator s picking a couple of candidate parent individuals

Pa, Pb ∈ P . After selection, the crossover operator c produces an offspring individual o by

recombining parent individuals Pa and Pb, with probability probc. With probability 1 − probc,

individual o is instead a copy of the fittest between the candidate parents. To keep the population

diverse, new genetic material is incorporated by employing operators for mutation and inversion.

First, the chromosome of the offspring individual o is altered by the mutation operator m (producing

individual o′), and later by the inversion fixed operation (producing individual o′′), under probabilities

probm and probi, respectively. The final offspring individual o′′ joins the offspring population O,

but the best-found solution g is updated considering also individuals o and o′. Next, the survival

determines which individuals remain in the population for the next generation. Finally, the local

search is applied to only the fittest individual in the surviving population. The algorithm ends when

a stop criterion is met, in this case, a maximum number of fitness function evaluations.
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Algorithm 1 Memetic Algorithm
1: input A set of operators {s, c,m, f, ss}
2: output The best-found solution g
3: P ← initializePopulation(P )
4: evaluate(f , P )
5: O ← ∅
6: g ← Pbest
7: repeat
8: for j ← 1 to µ do
9: Pa, Pb ← selection(s, P )
10: o← crossover(c, Pa, Pb, probc)
11: o′ ← mutation(m, o, probm)
12: o′′ ← inversion(o′, probi)
13: O ← O ∪ o′′
14: g ← fitter individual among current g, o, o′ and o′′ under function f
15: end for
16: P ← survival(ss, P , O)
17: O ← ∅
18: Pbest ← localsearch(Pbest, tries)
19: g ← fitter individual among current g and Pbest
20: until stop criteria is met
21: return g

4.2.1 Solution encoding and initialization

We choose a permutation based encoding because it simplifies the implementation of the operators

and it keeps the complexity of determining cyclic distances simple. This makes it easy to compute

the fitness of individuals and to use quick partial recalculations when necessary, for example after a

mutation that affects only a couple of vertices.

A permutation of n distinct consecutive numbers can directly be employed as an embedding,

where each element represents a guest vertex, and their index in the permutation represents a

host vertex, or vice-versa. In fact, our MA implementation uses both cases, defining them as

labelings, so that every mapping from a guest vertex to a host vertex takes just one operation. Under

these conditions, an individual is formally defined as follows [110]: An individual is represented as

Pi = (ϕi, ρi, fi) where ϕi and ρi are two labelings representing the same embedding: ϕi(u) stands
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for the label associated to vertex u (i.e., the vertex in the host graph associated to vertex u). ρi(u′)

denotes the vertex in G having the label u′ (i.e., the vertex hosted in vertex u′); and fi = f(ϕi, G)

is the fitness of the individual assessed by the fitness function. Most of the operators work primarily

over ϕi, then ρi is updated to reflect the changes. The only exception is the insertion mutation,

which operates vice-versa over ρi.

The population was initialized with random permutations because in that way the performance

of the MA is not conditioned by any fancy initialization, which allows to focus the analysis solely on

the interplay of its operators.

4.3 Operator set

Each operator plays a particular role in the MA. The selection process is intended to introduce fitness

based preferences, in such a way that the fittest individuals have more opportunities to reproduce and

pass on their genes to the offspring. From a search perspective, the recombination of visited solutions

via crossover is a form of exploiting the intermediate regions around known areas of the search space,

as it is expected that the offspring of fit parents results even fitter. However, when the genes of the

previous fit individuals proliferate along the generations and individuals in the population eventually

become genetically similar to each other, the search process converges towards an increasingly narrow

search space region. In such conditions, the scope for exploration is reduced and the evolutionary

process would loose the ability to generate individuals that differ from the existing population. Using

mutation to introduce new genetic material helps to diversify the genetic pool and prevent that the

convergence occurs prematurely. The survival strategy also plays a relevant role in this aspect. While

the survival of the fittest makes sense at first glance, being too restrictive can have negative impacts

on diversity. For example, mutation would result pointless if the individuals carrying new genes were

not be allowed to thrive. The local search is also a valuable opportunity to search independently

of the evolution process, but overflowing the population with local optima too quickly can result in
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being unable to escape from them.

An adequate balance between a high fitness population and diversity can be greatly important for

avoiding the potential problems that can arise within a MA. Our choosing of the operators studied

along this research is intended to consider the strengths of a variety of approaches to do so.

Since we are interested in examining the interaction of MA components and the alternative

evaluation scheme in the context of the CBSP, we assembled a set of genetic operators that features

a diverse assortment of approaches for shaping the evolutionary process. This section introduces

each of those operators and discusses what they offer in terms of creating a successful MA for

our problem. It also presents some particularities in our MA implementation, specifically regarding

mutation and local search.

4.3.1 Fitness function

Most of the decisions in the evolutionary process of the MA are made in terms of fitness, therefore the

definition of the evaluation scheme is relevant. In the previous chapter we exposed the discrimination

related issues that the problem’s objective function can introduce in search algorithms. The research

regarding the proposal of an alternative evaluation function yielded promising results, with function

f3 helping simple local search algorithms to significantly improve compared with how they perform

when using the conventional CBS function and even allowing them to achieve better solutions than

those reported in the literature. We are interested in observing the effect that function f3 has

over a multi-trajectory evolutionary algorithm, such as the MA, and examining how the operator’s

interaction with the fitness function reflects on the overall performance.

For efficiency, both the CBS function and function f3 were implemented to compute the fitness

in an incremental fashion whenever suitable. Specifically, full calculation of all cyclic distances occurs

only after the initialization and crossover procedures. Since the operators for mutation, inversion

and local search modify small sections of the chromosome, the fitness values are calculated in an

incremental way, as described in Section 3.3.1.
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4.3.2 Selection

Selection approaches often focus on creating a dependency between the fitness of individuals and

their chances to produce offspring. Typically, the fitter an individual is, the higher its chances to

reproduce. However, the exclusion of the individuals with worse fitness can result in limiting the

scope for exploring new areas of the search space that are not immediately proven better.

The selection scheme is the operator for which we considered the highest number of alternatives,

four in total: stochastic, roulette, random and binary-tournament. Selection shapes decisions that

occur later in the generation, it determines which individuals would even be considered for crossover,

mutation and local search, and in this way it influences the search directions that would be further

explored. This does not mean that the rest of operators are not relevant, but instead that selection

has the capacity to either overshadow or highlight the effects of other operators. For example, if the

individuals produced by mutation are not picked by an over pressuring selection, it is almost as if they

were not in the population. The first two selection strategies are stochastic selection and roulette.

Both assign deterministic expected values to each individual and then conduct a drafting process.

The expected values are set in function of the relative fitness of individuals with respect to the rest

of the population. Higher expected values correspond to better fitness and thus more opportunities

for an individual to be chosen. Since we are dealing with minimization, the expected value ev(Pi)

for an individual Pi is computed over its normalized fitness f̂(Pi). The min-max normalization of

fitness is depicted in Equation 4.1

f̂(Pi) =
f(Pi) + f(Pworst)

f
+ 1.1 , (4.1)

where f(Pi) is the fitness of an individual, f(Pworst) is the fitness of the worst individual in the

population and f is the population average fitness. Equation 4.2 shows the calculation of expected

values, where 2µ is the number individuals to be drafted in order get µ couples that would produce

one descendant each. Therefore, the sum of the expected values is equal to 2µ.
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ev(Pi) =
2µf̂(Pi)∑µ
j=1 f̂(Pj)

(4.2)

The drafting process for stochastic selection picks each individual as many times as the integer

part of its expected value indicates. Then, any remaining gap on the total number of selected

individuals is filled by using the floating part of the expected values, in a probabilistic fashion, to

decide if the correspondent individual will be chosen once more.

In the roulette selection, the expected values set the size of the roulette portion that corresponds

to each individual. It follows that fitter individuals have larger portions assigned and more chances

to be picked. Each drafting occurs simply by spinning the roulette.

Both stochastic and roulette selection rely strongly on the fitness of the individuals. Stochastic

selection combines the direct use of expected values with independent probabilities, since the floating

part does not depend of fitness. Roulette selection may be the most restrictive regarding fitness,

because implements fixed fitness dependant probabilities for each individual and the final set of picks

would reflect the expected values quite closely.

The random selection does not consider fitness. Instead, all individuals have a uniform probability

of being selected. Since we are doing that 2µ times, it can be assumed that every individual would

be chosen 2 times on average.

Binary tournament has a different approach. It does not require expected values and the fitness

distribution plays an underlying role. It works similarly to the random selection, in the sense that

all individuals have uniform probabilities to be drafted, but instead of picking just one individual per

draft, it picks two, compares their fitness and selects the one that is fittest. This introduces fitness

preferences, where the fittest individual among the population will never be defeated, but it keeps

opportunities to the rest of individuals to be chosen if the tournament pairs them with an equal or

worse opponent. The worst individual in the population has chances to be picked if it is paired with

itself or a fitness equal in the tournament.
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Both stochastic and roulette selection involve the calculation of expected values that can be

performed in linear time with µ steps for the average fitness calculation, µ steps for the normalization

and µ steps for the expected value assignation. This whole process would take approximately 3µ

steps. The complexity of stochastic selection is determined by the operation of deciding the number

of times the individuals are picked. This is linear as well, and it stops when 2µ individuals have

been chosen, so the corresponding complexity is O(2µ+ 3µ) ≈ O(µ). Roulette is the most complex

among the four selection operators. It performs 2µ spins, with the cost of determining the winner

of a spin being at most µ steps. Since this would result in a quadratic expression, we omit the linear

number of steps for the expected values. Its complexity is then O(2µ(µ)) ≈ O(µ2). The random and

binary tournament selection are the simplest ones, performing 2µ random drafts. The comparison

between the drafted individuals for the binary tournament selection is a constant operation, so we

have a complexity of O(2µ) ≈ O(µ) for both.

4.3.3 Crossover

The considered crossover operators are permutation based in order to produce feasible chromosomes

under the previously described solution encoding, while the differences between them allow us to

examine the effect that implicit mutations have on overall performance. Implicit mutations can

be introduced during the crossover operation, resulting in an offspring individual that has genes in

different positions than the ones they occupied in any of the parents. On one hand, implicit mutations

are a way of introducing genetic diversity within crossover, but on the other hand, their combined

effect with the actual mutation could result too disruptive.

The cyclic crossover operator [92] employs the notion of cycles between two permutations. By

definition, these cycles do not overlap. Therefore, a new chromosome can be obtained by inheriting

alternatively different cycles from each parent. Furthermore, every gene in the resulting chromosome

will be in the same position that it was in the parent individual from whom the cycle was inherited.

This avoids the occurrence of implicit mutations during crossover.
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Cyclic crossover uses a mapping for determining the cycles between permutations that takes n2

steps to be created. Then, the cycles can be inherited in linear time with respect to their lengths,

which at most sum n, for a complexity of O(n2 + n) ≈ O(n2).

The order-based crossover defines a random section of the chromosome where the offspring

individual directly inherits the corresponding genes from one of the parents. The other parent

individual provides the genes to fill the remaining part of the offspring’s chromosome. Since the

result must be a permutation, these genes are inherited in the same relative order they appeared

in the parent’s chromosome. In contrast with the cyclic crossover, the order-based crossover allows

potential implicit mutations limited to a section of the chromosome.

The complexity of order-based crossover is O(c + n(n − c)) ≈ O(n2), where c is the number

of genes directly inherited from one of the parents and it takes at most n steps to find the next free

gene in the other parent’s chromosome.

4.3.4 Mutation

The role of mutation is to introduce new genetic material in the population, with the purpose

of preventing that the lack of diversity causes the search to converge prematurely. However, not

all diversification is equal, some mutations can lead to further fitness improvements, others can

result in loosing fitness. Genes that negatively affect the fitness would eventually be purged from

the population by the selection or survival mechanisms. Then, why would it be a problem if the

mutation operates without regarding fitness? To begin with, it could drag the search away from

promising regions. For example, in rugged fitness landscapes where relatively close solutions exhibit

abrupt fitness variations a reckless mutation would cause the average fitness of the population to

drop, thus reducing the chances for further improvements. If we account for mutation affecting

several individuals per generation, the resources employed in producing individuals that lead to no

improvements and the eventual purging of poor genes became a potentially significant waste of often

limited budgets in terms of time, number of evaluations or maximum number of generations.
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The mutation operators we decided to include are meant to represent different strategies for

mutation. The first is a classical insertion operation that takes into account the cyclic feature

of the embeddings that the individuals represent. The focus of the second and third operators,

reduced 3-swap and cumulative swap, is to also seek fitness improvements, under different levels of

restrictiveness and number of affected genes.

The commonly used cyclic insertion is applied with probability probm for each individual and

modifies at most half of the genes. We define it in terms of what it does on regards to the embedding,

as shown in the example of Figure 4.1. Let u′ and v′ be distinct randomly chosen host vertices.

Recall that under our solution encoding, labeling ρi encapsulates an embedding by assigning guest

vertices as labels to host vertices, in such a way that the label ρi(u′) is the guest vertex assigned to

host vertex u′. The insertion mutation reassigns guest vertex ρi(u′) to host vertex v′, and displaces

the labels of vertices in between u′ and v′ in a clockwise or counterclockwise fashion, depending on

which alternative affects the smaller number of labels. The insertion mutation does not consider

fitness, but it thus will help us contrast the mutation operators that do it, as well as the ability of

the rest of operators to compensate the potential drops in fitness.

With at most n/2 affected labels per individual, and if every affected node had the maximum

degree, this would cause all the edges in the graph to be reevaluated. Since the maximal degree is

n− 1, then the complexity is O(n/2 + n/2(n− 1)) ≈ O(n2).

The design of the reduced 3-swap mutation is meant to diversify in a smart way, by combining

the random picking of three genes to be modified and a fitness oriented choice. There are up to five

different ways on which these swappings can be performed. The reduced 3-swap mutation computes

the potential changes in fitness that each of the swappings would induce and performs the one that

improves fitness the most, or the one that decrements it in the lesser amount, if there is not an

improving one. This operator functions like a small exploration of the 3-swap neighbourhood, hence

its naming. It follows that the solution created by reduced 3-swap is at a Hamming distance equal

to three from the original solution, and that the same resulting solution could be achieved by two
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consecutive swaps with a common element. Since there are three affected nodes with at most n−1

neighbours each, assuming that those neighbours do not overlap, the complexity of evaluating the

five mutation candidates is O(5(3(n− 1))) ≈ O(n).

While the insertion mutation has no fitness preferences and reduced 3-swap considers fitness, but

still allows non improving mutations, the cumulative swap operator performs only strictly improving

mutations. This mutation operator executes n/2 iterations, choosing in each of them a pair of

distinct random genes that are swapped with probability probm. However, each single swapping

is only accepted if the fitness of the individual was improved by it. The cumulative swap is the

only one that employs the mutation probability probm at the gene level and also the one with the

most variability on the number of affected genes. If none of the swaps it attempts results in a

fitness improvement, there are no mutations at all, but if all n/2 attempts, under probability probm,

are successful swaps, then the whole chromosome could be modified, therefore its complexity is

O(n+ n(n−1)
2

) ≈ O(n2).

The mutation operators previously exposed are complemented by a fixed inversion operator that

works independently. The inversion operator serves as an extra diversification layer that is not affected

by the particularities of the mutation operators. It has its own probability probi, so individuals

unaffected by mutation may still have a second chance, and mutated individuals can be modified

further. The inversion picks a random section of the chromosome and inverts the order of the genes

that are included in it, as shown in Figure 4.2. It can affect at most n/2 genes in a similar fashion

than the insertion mutation, so its complexity is O(n/2(n− 1)) ≈ O(n2).

4.3.5 Survival

The survival strategies considered in this work are (µ, λ) and (µ + λ). Both are opposite ends

of the spectrum between survival based on fixed life spans and pure fitness elitism. The (µ, λ)

strategy replaces the population of parents with the offspring individuals, regardless of their fitness.

In contrast, under (µ+λ) the fittest µ individuals among parents and offspring are the ones surviving.
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(a) Counterclockwise displacements
for u′ = 5 and v′ = 9.

(b) Clockwise displacements for u′ = 5
and v′ = 9.

(c) Clockwise displacements for u′ = 9
and v′ = 5.

(d) Counterclockwise displacements
for u′ = 9 and v′ = 5.

Figure 4.1: Insertion mutation. Numbers represent host vertices. Example in Figure 4.1(a)
corresponds to counterclockwise insertion when u′ < v′, performing five steps. Also for u′ < v′,
clockwise insertion will perform seven steps, as shown in Figure 4.1(b), therefore counterclockwise
insertion is preferred. If instead u′ > v′, clockwise insertion will perform five steps, while seven steps
will be required by counterclockwise insertion, as shown in Figures 4.1(c) and 4.1(c). In this case,
clockwise insertion is preferred.
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(a) Clockwise inversion. (b) Counterclockwise inversion.

Figure 4.2: Inversion over ϕi. In Figure 4.2(a) a clockwise inversion between vertices u = 10 and
v = 4 would perform two exchanges of labels. Figure 4.2(b) shows the respective counterclockwise
inversion which performs three exchanges of labels, therefore clockwise inversion is preferred.

On one hand, allowing potentially fit individuals to leave the population after only one generation

would cause the search to rely more on selection and crossover for managing to pass their genes to

new offspring individuals. On the other hand, the proliferation of the genes of the fittest individuals

throughout multiple generations is more likely to result in a genetically uniform population, specially

in late search stages where new improvements become rarer.

The complexity of the (µ, λ) survival is simply O(µn) for directly replacing µ parents, each with n

genes, by the offspring. Meanwhile, the (µ+λ) survival a more computationally demanding approach,

because it requires sorting parents and offspring by fitness. Its complexity is O(µn + µ log µ) ≈

O(µ log µ), taking into account the sorting process carried on by a quicksort algorithm.

We considered that contrasting both strategies was interesting, from the point of view of gaining

insight on the ability of the rest of operators for creating fitter offspring and introducing diversity in

a smart way.
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4.3.6 An intermittent non intensive local search approach

The local search approach incorporates design particularities that make it intermittent and less

intensive regarding the number of individuals it tries to improve and the iterations it spends trying

to do so.

At its core, the local search phase consists of a steepest descent, similar to the one that was

employed for assessing alternative evaluation functions, described in Chapter 3. It also employs the

2-swap operator, but with a first-improvement move strategy. However, it has two main differences.

The first one is that it is not employed on the whole population, but only on the fittest individual after

survival Pbest. The second one is that its execution is limited to a maximum number of iterations

tries. In this way, the local search phase of the MA does not always produce a local optimum.

Instead, it settles for a potentially improved individual that could be achieved within its limited

budget.

Considering a complete neighborhood exploration, the local search visits at most tries(n
2−n
2

)

neighbouring solutions per generation. The number of affected edges that must then be reevaluated

for each of them is no more than 2(n− 1), if the swapped vertices have both maximum degree and

their adjacent vertices do not overlap. Therefore, the complexity of the local search in the worst

case is at most O(2(tries(n(n−1)
2

))(n− 1)) ≈ O(n3).

The idea is that the remaining operators of the MA complement the work of the local search

by exploring areas that may be passed over if the output was a local optimum. Since the individual

entering local search is the fittest after the survival, is very likely that through selection and crossover

its genes, or even complete copies of its chromosome, would be replicated into the next generation’s

offspring. Some of the mutation operators also incorporate their own fitness oriented behaviours that

take inspiration from search and can add to the exploration effort.

When the local search is reached again in the following generation, there are two possible

scenarios. Either Pbest is the same chromosome from the previous generation, or it is a further
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improved one. If it is the first scenario, the local search phase can continue exploring exactly where

it left in the previous generation, until its budget ends or it reaches a local optimum. In the later

scenario, the local search restarts from the new Pbest individual, trying to improve it within the time

budget.

If the evolutionary process continuously replicates the genes of a population filled with local

optima, improvements are only possible if the genetic operators eventually produce a solution that

happens to be in the attraction basin of a new improving local optima. However, the genetic

operators are often likely to direct the search towards the surroundings of the fittest individual, so

they could be reducing the chances of exploring other areas. Therefore, a softer non intensive local

search approach that does not fill the population with locally optimal solutions may help to avoid

getting trapped by them.

4.3.7 MA complexity

Table 4.1 summarizes the worst case complexity for the set of operators and the two evaluation

functions. From there we can determine that the most demanding MA would combine function

f3, the roulette selection, the cyclic crossover, any mutation different from reduced 3-swap and the

(µ+λ) survival. In contrast, the least demanding would be combining the CBS function, random or

binary tournament selection, order-based crossover, insertion or cumulative swap mutation and the

(µ, λ) survival. By adding the complexity of the operators in each MA configuration we could find

their respective complexities, but it is noticeable that all of them would include a cubic term for the

evaluations during local search and a quadratic term for fitness evaluation, therefore all the MA are

O(n3 + µn2), even the ones that use linear operators for selection, mutation or survival.
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Table 4.1: Summary of the worst case complexity for the set of operators and fitness functions
employed in the MA.

Operator Main operations Worst case complexity

Fitness function CBS function Evaluating e cyclic distances O((n2 − n)/2) quadratic
function f3 Weights recalculation and evaluating e weighted

cyclic distances
O((n2 − n)/2 + n) quadratic

Selection stochastic Selecting 2µ individuals based on the integer and
floating parts of their expected values

O(µ) linear

roulette Finding the winner for 2µ roulette O(µ2) quadratic
random 2µ random drafts O(µ) linear
binary tournament mu tournament matches O(µ) linear

Crossover cyclic Finding and inheriting cycles between
permutations

O(n2) quadratic

order-based Finding and inheriting unused genes in the
correct order

O(n2) quadratic

Mutation insertion Inserting a gene, evaluating up to n/2
displacements

O(n2) quadratic

reduced 3-swap Evaluating five 3 swaps O(n) linear
cumulative 2-swap Evaluating at most n/2 2-swaps O(n2) quadratic
inversion Evaluating at most n/2 2-swaps O(n2) quadratic

Survival (µ, λ) Replacing µ individuals, each one having n genes O(µn) linear
(µ+ λ) Sorting 2µ by fitness and maintaining the fittest

µ
O(µ log µ) quasilinear

Local search first-improvement Up to tries complete neighborhood explorations,
with 2(n− 1) affected edges per neighbor

O(n3) cubic

4.4 MA operators and solution quality performance

The complete factorial experimental design that was employed allowed for the examination of the

interactions between the genetic operators as well as to contrast the effect of the alternative fitness

function on a varied collection of MA configurations. The four operators for selection, two for

crossover, three for mutation, two survival strategies and the two alternatives for fitness function

yield a total of 96 operator configurations.

For the experiments within this chapter we used a set of 40 instances that represent a diverse

assortment of graph topologies that are commonly studied in the literature of GEP and the CBSP.

The set includes Harwell-Boeing matrices, Cartesian products, random graphs, paths, cycles, wheels

and powers of cycles.



72 4.4. MA operators and solution quality performance

Table 4.2: Input parameter values for the MA algorithms.
Parameter Tested Final value Parameter Tested Final value

Population size µ 10,20,50,100 20 Inversion rate probi 0,1 0.240
Crossover rate probc 0,1 0.788 Local search iterations tries 5,10,15,20 10
Mutation rate probm 0,1 0.543 Fitness function calls T - 4.0E+08

Table 4.3: Keys used to identify the operators involved in the MA configurations. For example,
S1_C1_M1_SS1_V1 describes an operator configuration that combines stochastic selection, cyclic
crossover, (µ, λ) survival and the CBS function to evaluate fitness.

Operator key Operator key

Stochastic selection S1 Insertion mutation M1
Roulette selection S2 Reduced triple-swap mutation M2
Random selection S3 Cumulative swap mutation M3
Binary tournament selection S4 (µ, λ) survival SS1
Cyclic crossover C1 (µ+ λ) survival SS2
Oder-Based crossover C2 CBS function V1

Function f3 V2

The stop criteria for each execution was a maximum number of fitness function evaluations.

Table 4.2 lists the parameter values we use for the experiments with the different MA configurations.

The values were assigned after performing preliminary tests supported by the irace utility [72] for

automatized parameter tuning. When assessing the performance of the MA versions, we employ the

O-RMSE metric introduced in Appendix A.2, which is calculated considering also results achieved

by the GVNS and Mach algorithms from literature, and the methodology for testing statistical

significance described in Appendix A.3. Tables comparing results of algorithms include either the

upper bound or optimal value for each instance, calculated according to formulas presented in Section

2.3.1.

4.4.1 A global discussion of operator interactions

Ratter than discussing each operator configuration on an individual basis, our intention is trying to

observe general tendencies regarding the behaviour of groups of MA that use a specific operator and

evaluation function, and then contrasting the global tendencies with particular cases. For example, to

analyze the selection operators we can look at how the groups of MA using each alternative perform
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and what does that imply about the helpfulness of said alternatives. Such an approach is intended

to identify strengths in the operators and their combinations. We put special attention on the role of

the fitness function by framing the performance variations of each MA group under the conventional

CBS function and the alternative function f3. For this analysis the MA were sorted into groups

that share common features. MA belonging to the same group employ the same fitness function

and one of the genetic operators for selection, crossover, mutation or survival. Global tendencies in

the relationship between operators and solution quality can be identified by examining the O-RMSE

across MA groups, while the RMSE distributions for single MA provide contrasting evidence for

particular cases.

Figure 4.3 summarizes the O-RMSE variations for subsets of MA that employ each of the

genetic operators variants when their fitness function is either the CBS function or f3. Both the

average (Figure 4.3(a)) and median (Figure 4.3(b)) of the O-RMSE are presented, as they give

complementary perspectives to better understand the variations in performance and the scope of the

general tendencies.

Selection and survival operators tend to be the most determinant operators for the success of the

search, as it is shown by the average and median O-RMSE values of MA groups employing binary

tournament selection and (µ+λ) survival, which correspond to the lowest O-RMSE values for any of

the considered groups of MA. In both cases, the average and median O-RMSE are even better under

function f3. For the remaining genetic operators, crossover and mutation, the respective groups of

MA have less cohesive behaviours, reflected by the differences between the average and the median

of the O-RMSE, but in general, cyclic crossover and insertion mutation appear as the operators that

help their respective MA groupings perform better.

Across all the MA groups, function f3 has the effect of lowering the group’s O-RMSE median but

increasing its average. This seems to indicate that function f3 has a polarizing effect, often helping

good performance MA to become better, but also causing the MA with poor performance to worsen.

For example, in Figure 4.4, lets define the worst MA as those where the maximum non outlier RMSE
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value is over the 3% mark. If we compare the group of the worst MA under the CBS function with

the group that has the same genetic operator configurations but instead uses function f3, we found

that the later has higher RMSE values per instance. In contrast, most of the best performing MA

under the CBS function have better RMSE values reflected in more compact boxes and less disperse

outliers. To understand why this happens we look at what makes the worse MA different from the

rest: the use of (µ, λ) survival with a selection different from binary tournament, which are arguably

the most harmful combinations among our genetic operators.

Survival (µ, λ) lets the offspring population directly replace their parents, regardless of their

fitness, thus leaving selection on charge of most fitness decisions. Clearly, stochastic, roulette and

random selection are not good enough for the task. Random selection has no fitness considerations at

all; stochastic and roulette depend too much on expected values and with survival (µ, λ) making the

population to rapidly change, they will tend to favor a different search direction on each generation.

Function f3 was designed to help distinguish between neutral CBS solutions, but such distinctions

are not helpful if used inadequately. Under function f3, CBS neutral implicit and explicit mutations

can become improvements, so the order-based crossover, the fitness oriented mutation and local

search are more likely to perform movements that once evaluated, contribute to rapid genetic changes.

Those changes will not result in CBS improvements, since the search directions they would have lead

to will not be explored for more than a generation. Binary tournament selection provides the MA

with a more reliable method to follow promising and diverse search directions, therefore the guidance

of function f3 is actually exploited and typically results in RMSE improvements.
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(a) Average values (b) Median values

Figure 4.3: Comparison of average and median O-RMSE values across MA with particular operators,
grouped by their fitness function.
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Figure 4.4: RMSE distributions for the 96 MA versions over the set of instances. Each version is lexicographical numerated
according with the operator keys listed in Table 4.3, which are used to identify their operator configurations.
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4.4.2 The top five MA

The hidden strengths of some other operators are also better employed when paired with the binary

tournament. For example, the survival (µ, λ) is more characteristic of poor performing MA, the

evidence of that is the large average and median O-RMSE for the group of MA that employ

it. However, among the top five MA with the lowest O-RMSE values, listed in Table 4.4, the

first four of them use (µ, λ) survival. These results show that the specific combination of binary

tournament, cyclic crossover and either insertion or reduced 3-swap mutation creates the conditions

for a diverse population where good genes are effectively inherited without the need of keeping around

the individuals for several generations.

Selection by binary tournament ensures that individuals chosen for crossover are fit, without

imposing an excessive selection pressure, so they can also be diverse. This helps to prevent the

offspring population from getting too homogeneous. While the changes introduced by mutation

are generally considered necessary for the exploration of new search areas, the results reveal that

implicit mutations during crossover are not helpful for the overall performance of our MA. The

implicit mutations during order-based crossover cause changes in the chromosome that can not be

directly controlled or accounted for, so their effect combined with further actual mutations results

too disruptive. Regarding O-RMSE values for the top five MA, the algorithms using insertion perform

very similarly to the ones using reduced 3-swap. For example, MA-19 and MA-20 differ only on the

mutation operator and both have close O-RMSE values and so do MA-68 and MA-67. The difference

on execution time among the top five MA are linked to these mutation operators. The MA versions

using reduced 2-swap complete the maximum number of fitness function evaluations quicker, due to

the smaller number of affected genes.

In order to better understand how the algorithms in the top five MA compare to each other and

to determine which one is better, we examined at their solution quality results in more detail. Figure

4.5 presents the distributions of their RMSE values and Table 4.5 a pair-wise assessment of statistical
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Table 4.4: O-RMSE ranking for the Top-5 MA versions, Mach and GVNS.
Rank Algorithm Operator configuration O-RMSE (%) Average execution time (s) Time to local opt. (s)

1 MA-19 S4_C1_M1_SS1_V1 0.229 185.14 57.01
2 MA-20 S4_C1_M2_SS1_V1 0.227 230.24 68.66
3 MA-68 S4_C1_M2_SS1_V2 0.285 246.05 134.70
4 MA-67 S4_C1_M1_SS1_V2 0.287 294.64 158.31
5 MA-43 S4_C1_M1_SS2_V1 0.427 690.91 508.10

Mach 0.496 7.72
GVNS 0.776 900.1

significance.

Among the top-five MA, MA-43 was the worst performing, with its notoriously worse solution

quality and higher execution time. MA-43 has the largest median and average RMSE values and

in the comparisons this algorithm very rarely defeats any of its pairs. It is remarkable than MA-

43 differs from the first ranked MA-19 only in the survival scheme. While as previously discussed,

focusing survival on fitness typically helps our MA to achieve lower O-RMSE values, there is a

certain point in the search process at which it stops being helpful and instead causes the algorithm

to converge prematurely. Since this type of survival will not allow a non improving individual to

enter the population, it can accelerate convergence in early stages of the search, but as the search

continues, the population is no longer able to explore enough. On top of that, the sorting process

required by the (µ+ λ) survival causes MA-43 to be by far the most demanding in execution time.

MA-67 and MA-68 are the respective function f3 counterparts of MA-19 and MA-20. These

four algorithms have close average O-RMSE rates, although the ones using the alternative function

present higher outliers and require more execution time. In the Chapter 3 we show that function

f3 was able to help the SD and ILS algorithms to achieve better results, here we found that it is

often the same for our MA implementations, but not in all cases. For example, MA-68 (ranked third

according to O-RMSE) is able to get similar or significantly better solutions than MA-19 (ranked

first) in 30 out of 40 instances. Moreover, MA-68’s victories concentrate in Harwell-Boing instances,

which are the bigger in order and size. Yet the remaining 10 instances where MA-19 defeats MA-67

are enough to increase its RMSE median and average stats, pushing it to the 3th ranking. The
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(a) RMSE values. (b) Average execution time.

Figure 4.5: Distribution of RMSE values and average time in seconds to the best-found solution for
MA in the top five group.

explanation for this phenomenon relates to how function f3 interacts with the local search. Our

previous experiments with ILS and SD used the best-improvement strategy, the local search phase

of the MA use instead first-improvement. We implemented first-improvement because we wanted to

prevent the population from being quickly filled with local optima. The resulting side effect is that

when the local search finds a neutral CBS neighbor solution, under function f3 it can accept it as the

first improvement. These neutral CBS steps that the local search takes are responsible of keeping

MA-67 and MA-68 from reaching better search regions as fast as MA-19 and MA-20. However, we

still remark that the differences on average O-RMSE for these algorithms are small and that there is

a fair amount of statistically significant ties among them.

The MA version that dominates the instance by instance statistical comparisons is MA-20. Even

when MA-20 ranked in second place, it is always the overall winner of all the statistically significance

matches where it participates, including the one against the first ranked MA-19. Among all these

matches, MA-20 is only defeated on seven instances. MA-20 offers the best compromise between

good solution quality performance, execution time and statistical significance of the results and thus

it was chosen to compare it against the state-of-the-art algorithms.
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Table 4.5: Statistical analysis for comparing the performance of the Top5 MA group.
Instances |V | |E| 19 / 20 19 / 43 19 / 67 19 / 68 20 / 43 20 / 67 20 / 68 43 / 67 43 / 68 67 / 68
path100 100 99 − − − − − ? − + ? −
path200 200 199 − ? + + ? + + + ? −
cycle100 100 100 + + ? + + − + − ? +
cycle200 200 200 − + + + + + + ? ? −
wheel100 100 198 + + − + + − + − ? +
wheel200 200 398 + + + + + + + ? ? −
cyclePow100-2 100 200 ? ? ? ? ? ? ? ? ? ?
cyclePow200-2 200 400 ? + + ? + + ? ? ? −
cyclePow100-10 100 1000 ? + ? + + ? + − ? +
cyclePow200-10 200 2000 ? ? + ? ? + ? + ? ?
c9c9 81 162 ? ? ? ? ? ? ? − ? ?
c9k9 81 405 ? ? ? ? ? ? ? ? ? ?
k9k9 81 648 ? + ? + + ? ? − ? ?
p9c9 81 153 ? + + ? + + ? − − ?
p9k9 81 396 ? ? ? ? ? ? ? ? ? ?
p9p9 81 144 ? + ? ? + ? ? − − ?
jgl011 11 49 ? ? ? ? ? ? ? ? ? ?
ash85 85 219 ? + ? + + − ? − − +
curtis54 54 124 ? + ? ? + ? ? − − ?
ibm32 32 90 + + ? + + − ? − − +
will57 57 127 ? + ? ? + ? ? − − ?
impcol_b 59 281 ? + ? ? + ? ? − − ?
impcol_d 425 1267 − − ? − − + ? + + −
nos4 100 247 ? ? ? ? ? ? ? ? ? ?
nos6 675 1290 − + + − + + + − − −
494_bus 494 586 − + + − + + + − − −
662_bus 662 906 − + + − + + + − − −
685_bus 685 1282 − + + − + + ? − − −
can_24 24 68 ? ? ? ? ? ? ? ? ? ?
can_144 144 576 ? ? ? ? ? ? ? ? ? ?
can_292 292 1124 − + + − + + + − − −
can_445 445 1682 − + + − + + + − − −
can_715 715 2975 − + ? − + + ? − − −
bcspwr01 39 46 ? + ? ? + ? ? − − ?
bcspwr02 49 59 ? + ? ? + ? ? − − ?
bcspwr03 118 179 − + ? − + + ? − − −
bcsstk01 48 176 + + ? + + − ? − − +
bcsstk06 420 3720 − + ? − + + ? ? − −
dwt_503 503 2762 − + ? − + + + − − −
dwt_592 592 2256 − + ? − + + ? ? − −
+ 5 28 12 10 28 18 12 4 1 6
− 15 2 2 13 2 5 1 24 21 17
? 20 10 26 17 10 17 27 12 18 17
Overall winner MA-20 MA-19 MA19 MA-68 MA-20 MA-20 MA-20 MA-67 MA-68 MA-68
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4.5 The best performing MA and the state-of-the-art

algorithms

After comparing the MA in a general way and the top-five MA in more detail, in this section we

discuss how MA-20 compares with the algorithms form the problem’s literature described in Section

2.3.2. For the experiments with GVNS we established 900 seconds as stop criterion. The case

of Mach was a little different. To be able to compare actual solution qualities, this constructive

heuristic was allowed to run until complete solutions were generated. Similarly to the MA, GVNS

and Mach were executed 50 times in the same computing platform described in Appendix A.4.

Figure 4.6 compares the performance of MA-20, GVNS and Mach, presenting the RMSE

distributions for the three algorithms, and for more focus in the two closest competitors, the instance

by instance RMSE values. Table 4.6 lists the instances, their size, order and upper bound/optimal

value, as well as the specific solution costs that Mach and MA-20 were able to obtain, the

corresponding average and standard deviation and the average execution time. It also includes

the pair-wise comparison between Mach and MA-20.

In the comparisons of this section, GVNS is by far the worst performing algorithm, it has a large

execution time that is not justified by the quality of its solutions, which correspond to the largest O-

RMSE and very high outliers. On the other extreme, MA-20 was able to consistently achieve better

solutions than any of the other two algorithms for the selected benchmark instances. Comparing

the O-RMSE values, we found that MA-20 reduces the O-RMSE of Mach by more than 50%. For

around a half of the instances, MA-20 provides the best solutions in almost all cases, hence its close

to zero median and 75% of RMSE values under the RMSE median of Mach.

In Figure 4.6(b) we present the RMSE values for each instance in ascending order for MA-20, with

the purpose of examining the cases where MA-20 is more or less successful and how that compares

to Mach results. MA-20 gets statistically better results than Mach in 27 instances, and similar for
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(a) RMSE distributions (b) RMSE values per instance for MA-20 and Mach.

Figure 4.6: Comparing the performance in terms of RMSE for MA-20 and the algorithms from the
literature, GVNS and Mach.

another 7, leaving just 6 instances where Mach has better results. Those instances belong to the

topologies powers of cycles, cycles and path, which are highly regular topologies with low densities.

MA-20 is instead consistently better on larger graphs. We further explore the differences on topology

difficulty in Chapter 5, but here we can say that the instances such as paths and cycles are a curios

case. An optimal embedding can be constructed very easily by means of a DFS enumeration of guest

vertices, but they result oddly difficult for search algorithms as the SD, ILS and our MA. This is the

reason why Mach can solve that type of instances very quickly, since the first phase of the Mach

heuristic is a DFS with a priority criterion [47]. However, that design approach ends up catering

to specific graphs and causing Mach to have larger performance variations across topologies. In

contrast, MA-20 is a demonstrably more robust algorithm that experiments less performance variation

across graph topologies, even for the instances that are less suitable for it.

4.6 Conclusions

In this chapter we expose the research work on the use of our alternative fitness function on different

search methods, in this case memetic algorithms under different configurations of genetic operators.
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Table 4.6: Comparison analysis of the performance of MA-20 and Mach.
UB/ Mach MA-20 MA-20

Graph |V | |E| d Opt∗ Best Avg Std T Best Avg Std T /Mach

path100 100 99 0.02 99∗ 99 99 0 0 99 105.5 9.75 61.63 −
path200 200 199 0.01 199∗ 199 199 0 0.01 352 404.7 31.34 124.70 −
cycle100 100 100 0.02 100∗ 100 100 0 0 100 140.6 58.69 23.43 −
cycle200 200 200 0.01 200∗ 200 200 0 0.01 362 424.64 85.51 100.06 −
wheel100 100 198 0.04 2600∗ 2600 2600 0 0.01 2600 2635.6 46.57 38.82 −
wheel200 200 398 0.02 10200∗ 10200 10200 0 0.07 10368 10436.4 94.88 155.83 −
cyclePow100-10 100 200 0.04 300∗ 5598 5711.68 67.76 0.04 300 458 159.32 2.74 ?
cyclePow100-2 200 400 0.02 5500∗ 300 302.72 2.31 0 600 997.28 354.87 70.13 −
cyclePow200-10 100 1000 0.202 600∗ 11042 11200.64 76.52 0.11 5500 5500 0.00 30.27 +
cyclePow200-2 200 2000 0.101 11000∗ 600 602.4 2.21 0.01 11000 15767.4 5221.62 3.65 ?
c9c9 81 162 0.05 873 991 1269.22 130.71 0.01 873 965.8 70.31 0.60 +
c9k9 81 405 0.125 7434 1809 1809 0 0.01 1809 1809 0.00 7.11 ?
k9k9 81 648 0.2 8370 9424 9541.1 53.74 0.02 8280 8444.48 242.20 3.45 +
p9c9 81 153 0.047 7434 794 794 0 0 745 751.02 14.21 1.59 +
p9k9 81 396 0.122 7362 1728 1728 0 0.01 1728 1728 0.00 6.37 ?
p9p9 81 144 0.044 720 944 1268.1 162.45 0 516 516 0.00 14.52 +
jgl011 11 49 0.891 4708 142 142 0 0 141 141 0.00 0.00 +
ash85 85 219 0.061 1705 1214 1395.34 126.53 0.14 913 931.92 21.56 12.85 +
curtis54 54 124 0.087 743 448 622.54 86.12 0.03 411 411 0.00 8.40 +
ibm32 32 90 0.181 1841 493 539.72 23.31 0.01 405 406.68 3.20 3.45 +
will57 57 127 0.08 4215 408 433.32 43.86 0.04 335 335 0.00 4.12 +
impcol_b 59 281 0.164 134935 2462 2841.06 214.84 0.07 1822 1822 0.00 0.24 +
impcol_d 425 1267 0.014 6237 23995 35083.34 5557.16 13.46 13011 16567.46 2420.23 143.50 +
nos4 100 247 0.05 218010 1181 1448.04 264.25 0.06 1031 1031 0.00 2.30 +
nos6 675 1290 0.006 72517 35658 48573.8 4660.16 2.12 15600 17396.2 1226.55 194.59 +
494_bus 494 586 0.005 150169 4873 5701.84 410.44 9.95 5160 5600.6 220.86 130.66 ?
662_bus 662 906 0.004 219863 12956 15354.5 1319.83 31.75 11176 12589.84 719.90 200.17 +
685_bus 685 1282 0.005 425 14300 17723.38 2083.32 37.46 15541 16849.06 658.83 182.57 +
can_24 24 68 0.246 20881 216 253.06 15.55 0.01 182 182 0.00 0.12 +
can_144 144 576 0.056 82333 2250 2258.94 6.11 0.02 1776 2516.32 748.99 8.42 ?
can_292 292 1124 0.026 187543 23288 25903.86 1731.32 7.1 15127 15781.26 1082.28 119.26 +
can_445 445 1682 0.017 532525 41259 51235.26 4795.67 18.74 27865 28903.22 498.09 150.33 +
can_715 715 2975 0.012 460 91646 109431.58 10123.94 79.88 67316 70951.26 2001.58 201.39 +
bcspwr01 39 46 0.062 737 101 114.48 8.08 0.01 98 98 0.00 0.72 +
bcspwr02 49 59 0.05 5325 158 179.4 19.47 0.02 148 148 0.00 1.08 +
bcspwr03 118 179 0.026 2156 766 927.02 70.56 0.26 662 664.92 1.19 102.37 +
bcsstk01 48 176 0.156 391532 1147 1336.48 107.99 0.02 936 938.32 3.62 23.50 +
bcsstk06 420 3720 0.042 391532 65017 83263.24 7489.16 30.87 53534 60387.2 5917.65 240.32 +
dwt_503 503 2762 0.022 348012 55067 67128.5 6003.72 32.69 40617 43240.72 3061.27 174.60 +
dwt_592 592 2256 0.013 334452 33659 44864.18 4826.16 44.03 30272 32162.52 1798.42 196.89 +

O-RMSE 0.22% 0.49%
Avg time 7.72% 68.66%

+ 27
− 7
? 6
Overall winner MA-20
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We introduced a complete factorial study on the combination of four types of selection, two crossover

operators, three types of mutation and two survival strategies. The choosing of these operators was

oriented to cover a variety of approaches for inheriting the genes of promising individuals, maintaining

a diverse and fit population, preventing premature convergence and accelerating the computations.

The four selection operators cover the use of directly proportional fitness based preferences, the

absence of said preferences, and a more limited scope for them and how these alternatives combine

with the survival strategies that focus on fitness or disregard it. The crossover alternatives allow

us to generate feasible and easy to evaluate solutions, as well as to address the effect of implicit

mutations. We explored the introduction of fitness considerations within the mutation phase as a

way of smart diversification and paired it with a non intensive local search approach as a mean to

prevent premature convergence by allowing the evolutionary process to explore around local optima

before directly introducing them in the population.

Our main findings were that the combination of survival and selection was the factor that affected

the performance the most. While the (µ+λ) MA versions were on average better, the use of binary

tournament revert this tendency by allowing MA using survival (µ, λ) to achieve better solutions

in less time, specially when cyclic crossover was also present to prevent implicit mutations. These

three operators (binary-tournament selection, cyclic crossover and survival (µ, λ)) were consistently

present in the top five best performing MA, together with insertion and reduced 3-swap mutation.

Regarding the use of function f3 for an alternative fitness scheme, it was observed that it had

a polarizing effect, typically helping MA that were already good under the CBS function to achieve

even better results, but also aggravating the problems of MA that were already poor performing.

Even when the highest average O-RMSE rank reached by an algorithm using function f3 was the

third place, that algorithm (MA-68) was able to provide equal or significant better results than the

first ranked algorithm (MA-19) in most of the instances when considered on an individual basis. We

also identify the fist-improvement strategy in our local search as the potential cause limiting the

helpfulness of function f3.
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While we choose MA-20 as a compromise between O-RMSE evaluation, statistical significance

and execution time, we remark that the top three MA (MA-19, MA-20 and MA-68) had very similar

results and therefore any of them is able to provide better results than the Mach algorithm for

most of the instances. To a lesser extent, the fourth and fifth ranks (MA-67 and MA-43) are also

able to do so. Overall, MA-20 achieved statically better results than Mach for 27 graphs and equal

for another 7, out of the total 40. The 6 remaining cases were identified as particular topologies

inherently easy for Mach, but not for search methods such as SD, ILS or our MA.

Although the full factorial experimental design employed when comparing MA versions was

informative, it demanded high amounts of both time and computing power. Outstanding results

were achieved by a particular set of operators, but as it was discussed in the previous section, the

success of the best MA is less affected by graph topology in comparison with Mach, but it is still not

completely independent. Operators and combination of operators outside the top five ranking, such

as the cumulative swap mutation, can offer particular strengths on different phases of the search, so

it is worth exploring the use of a hyperheuristic approach to automatically vary operators as a way of

improving robustness under varying topologies by combining the advantages of the operators. The

next chapter introduces our implementation of the Dynamic Multi-Armed Bandit [25, 32] approach

to automatize the selection of operators during the execution of the MA.





5
Dynamic Multi-Arm Bandit

5.1 Introduction

One of the challenges often encountered when trying metaheuristic approaches for an optimization

problem is that there is a variety of alternatives for the components of the technique in question.

Some cases to exemplify this are the genetic operators for evolutionary computing, the neighborhood

definitions for local search approaches and the cooling schemes for simulated annealing. The nature

of the problem can help reducing the scope for alternatives, since some techniques are intended for

particular types of problems. For example, approaches focused in numerical optimization problems,

such as PSO, may not be among the first options when dealing with a combinatorial problem. Also,

operators that produce feasible solutions under a particular solution encoding may be preferred.

This was the case for the permutation-based crossover and mutation operators employed in the MA

discussed in Chapter 4. However, even under those cases, it is not always known before hand which

operators are better suited for a particular problem or even a specific type of instance.

87
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As it was observed in our experiments with the different operator configurations for the MA,

the interactions between operators are both complex and determinant for performance, with some

combinations being more successful over different instances or at different stages of the search

process [110, 111]. For example, MA using the cumulative 2-swap are likely to do better at the

beginning of the search, due to the fitness focus of this mutation operator, but it becomes rarer to

come by improving mutations in late stages of the search and that produces stagnation. Something

similar happens with MA using the survival strategy (µ + λ), which at first helps keeping a high

fitness population, but ultimately contributes to slowing down the improvement rate, as happened

with MA-43. It was also observed that, while our best MA is able to provide statistically significant

improvements with respect to Mach and all other MA in the top five MA, there is still some

variation among instances and its RMSE values are not always equal to zero. That indicates that

there is some other algorithm that got a better solution at least once, so there is margin for further

improvement with respect to the performance of MA-20. Besides, there exists the issue with the

alternative evaluation function, which was regularly better than the CBS function for guiding the SD

and ILS algorithms, but that was not always the case for the MA.

Instead of trying another metaheuristic or testing new operators, which would take extra time

in design and development, the approach was to use what had been already developed for the

MA in a new way. The idea was to access the combined strengths of the operators by using

an Adaptive Operator Selecton (AOS) [33] hyperheuristic method for automatically changing the

operator configuration during execution time. Hyperheuristics allow to gain generality regarding

performance variations across instances [17] and even better results, by using low level heuristics

in an adequate sequence, than what could be achieved by any of those low level heuristics if used

independently.

The problem of selecting among the MA configurations during execution was modeled for a

hyperheuristic based on the multi armed bandit (MAB). The MAB original formulation comes from

the game-theory area [3, 65], being described in terms of casino bandit machines. The bandit
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machines have arms, each with an associated probability for yielding an all-or-nothing reward. The

objective is to pick an arm to play, so that the accumulated reward over time can be maximized. In

practice, the rewards are not restricted to all-or-nothing and the distribution of reward probabilities

is unknown, so the MAB approaches [3] use statistical information about the past rewards obtained

by the arms for calculating estimations of reward probabilities, then play the arm more likely to give

the best reward and the actual result becomes feedback for future estimations. One can see how the

MAB relates to the AOS, by equating the bandit arms with the operators or algorithms to select.

The approach we implemented is a MAB dynamic variant that was designed for scenarios where

the reward probabilities change over time, as we considered that this is the case for our MA. The

dynamic multi-armed bandit (DMAB) [25] recognizes those changes and it can adjust the data for

reward estimations accordingly.

This chapter presents the implementation of the DMAB hyperheuristic and the results that were

achieved when using the whole set of operators. To determine the helpfulness of the alternative

evaluation in this scenario, it was also observed what happens if function f3 is removed from

the operator set. The results were compared with those obtained by the best performing MA

configuration, MA-20, and by Mach, over to the same set of instances used in the previous chapter.

The rest of the chapter consists of the explanation of the DMAB functionality in Section 5.2,

where its main components are introduced and its complexity is discussed. Section 5.3 presents the

performance comparison with the best MA and the algorithms from the problem’s literature. Section

5.4 examines how the interactions among operators are different when they are analized within the

DMAB or in the individual MA; and how those differences reflect on their results. Finally, the chapter

is closed in Section 5.5 by summarizing the main findings regarding the use of DMAB to choose

among the available MA configurations.
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5.2 The dynamic multi-armed bandit

MAB approaches rely on confidence estimations, meant to represent a notion of the underlying

reward probabilities for the arms [3]. These estimations are calculated based on empirical reward

evidence gathered from the past occasions where an arm was played. The rewards provide a measure

of how much improvement was gained after playing an arm [27]. If an arm has been able to achieve

high rewards in the past, then the confidence estimations will reflect it and the arm will have more

chances of being played in the future. At the beginning of the process, there is no reward data

available to estimate the confidence on the bandit’s arms, therefore the first step is to collect it by

playing all of them.

An issue with the MAB is that the reward probabilities may change over time and it could take

significant time for the confidence estimations to adjust accordingly [9]. The inclusion of a dynamic

component in the DMAB is a response to that issue, by incorporating a simple PH-Hinkley (PH-

test) statistical test [53] to recognize when the reward obtained by the played arm is atypical. This

is interpreted as a sign that the underlying reward probabilities have shifted, therefore the reward

data from previous iterations is no longer useful for producing accurate confidence estimations. New

reward data is then acquired by playing all the arms, as at the beginning of the DMAB process.

As a result, the DMAB can adjust its confidence estimations faster, making it suitable for dynamic

scenarios.

The DMAB was chosen because it requires little modifications over the existing implementation

of the MA and it has relatively few components and parameters regarding the assignation of rewards,

the strategy for estimating confidence, and the triggering of the PH-test.

For the DMAB implementation the set of K bandit’s arms A represents the different MA by

their configuration of operators, in the form Ai = {s, c,m, ss, f}. It was approached this way in

order to manage alternatives for several MA components of different type. It was also known that

the success of our MA is often more linked to operator interactions ratter than to a single operator.
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Therefore, by equating an arm to an operator configuration, the rewards account for the effect of

the whole MA and not just individual operators.

Population P was defined in the same way than it was done for the MA, employing the same

encoding and initialization (see Section 4.2.1). When playing all arms for their initial rewards at the

beginning of the process or after a PH-test triggering, the operations are carried on over population

P ′, a copy of population P . This allows that the original population P remains unchanged, so that

all arms can begin with the same initial solutions and the rewards are fairly compared.

In the following iterations, the rewards are used for calculating the confidence estimations. The

arm with the best confidence, arm As, is played over population P , now actually affecting it in a

permanent way. The obtained reward is used in the PH-test [53], to detect if there is an abrupt

change with respect to previous rewards for arm As. If that is the case, there is a mechanism for

restarting the process from scratch, setting the rewards, the confidence estimations, and the number

of times the arms have been played to their original zero values.

The DMAB stops when it mets the stop criteria, reporting the best found solution g.

5.2.1 Reward assignation

The rewards capture the improvement that an arm was able to accomplish after been played, in this

case we based the rewards on the CBS actual value for the best individual in population P . This

focuses the evaluation of arms, and the MA they represent, on the true objective of our problem,

which is minimizing the CBS.

This is expressed in Equation 5.1, where rri is the raw reward for arm Ai, and fold and fnew are

the CBS values for the best individual before and after playing the arm.

rri =
fold − fnew

fold
× 100 . (5.1)

We refer to the value rri as a raw reward because it is not used directly, but within a more
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Algorithm 2 DMAB Algorithm
1: P ← initializePopulation(P )
2: g ← Pbest
3: Set confidence and number of times arms have been played to zero
4: for i← 1 to K do
5: P ′ ← P
6: P ′ ← playArm(Ai, P

′)
7: ri ← initial reward for Ai
8: end for
9: repeat
10: Compute confidence for all arms
11: As ← selectArm(r)
12: P ← playArm(As, P )
13: ri ← reward for Ai
14: if PH-test is triggered then
15: Set confidence and number of times arms have been played to zero
16: for i← 1 to K do
17: P ′ ← P
18: P ′ ← playArm(Ai, P

′)
19: ri ← initial reward for Ai
20: end for
21: end if
22: g ← fitter individual among current g and Pbest
23: until stop criteria is met
24: return g

elaborated method for reward assignation. The extreme value-based reward [31] is an assignation

scheme based on a notion of credit. It maintains a record of the raw rewards obtained by an arm

the last WR times it was played, functioning as a memory of how good the arm has performed

historically. Under this scheme, the arms receive the reward ri as a credit equal to the best raw

reward in the record.

ri =
WR
max
j=1
{rrj} . (5.2)

As part of the parameter tuning process, we tested several values for the length record WR,

including WR = 1, which is equivalent to use the raw reward value directly.
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5.2.2 Confidence estimations

The DMAB strategy for selecting an arm is a variant of the upper confidence bound (UCB1) [3].

It consists in assigning a higher confidence to the arms that have performed well, but sometimes

giving preference to arms that have not been used very often. In this way UCB1 manages the

exploitation and exploration of arms [25]. Its calculations are simple, requiring only the empirical

reward, calculated as the average of previously received rewards for arm Ai and the number of times

every arm has been used. The balance between the exploitation of reliable arms and the exploration

of underused arms is adjusted by a parameter C. Equation 5.3 shows the confidence assignation by

UCB1:

confidencei = empRewi + C

√
2 log

∑k
j=1 playsj

playsi
, (5.3)

where empRewi is the empirical reward for arm Ai (i.e., the average reward obtained by it), playsi

is the number of times arm Ai has been played, and C is the parameter regulating the preference of

trusted arms or underused ones.

5.2.3 Page-Hinkely test

The DMAB manages the detection of abrupt changes in the underlying reward probabilities by

incorporating the Page-Hinkely test [25]. The test is employed to determine if the reward assigned

to an arm is significantly different from the previous rewards attained by it. An arm getting an

atypical reward is a sign that the confidence estimations are lacking accuracy. The PH-test examines

how the standard deviation of reward values for arm Ai behaves through time, triggering if at time

t the difference between the maximal standard deviation maxDevi,t and its average avgDevi,t is

beyond a certain threshold. The test has two parameters, δ and λ. The first, δ, has the purpose

of helping to deal with scenarios where the underlying reward probabilities change slowly, by adding
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a small shift on the average standard deviation, as shown in Equation 5.4, where empRewi is the

empirical reward equal to the average of rewards for Ai and ri is the current reward.

avgDevi,t = avgDevi,t−1 + (empRewi − ri + δ) (5.4)

Then, the maximal standard deviation for arm Ai’s rewards at time t is calculated according to

Equation 5.5.

maxDevi,t = max(avgDevi,t,maxDevi,t−1) (5.5)

The second parameter, λ, is the threshold for the test triggering if:

maxDevi,t − avgDevi,t > λ .

5.2.4 DMAB complexity

Updating the confidence estimation for an arm Ai that has just been played requires some information:

the reward ri, the average of the past rewards empRewi, the number of plays playsi for the arm

and the total plays across all arms. All these values can be calculated or read from memory in linear

or constant time as follows. The raw reward rri is calculated in constant time, then the reward

register for the extreme value-based reward is updated in linear time using a queue and the maximal

reward value ri can be determined in WR steps. Then, the average reward for the arm is updated

in constant time as emphiricalRewi = (playsi − 1(emphiricalRewi) + ri)/playsi. Notice that

its initial value is set as emphiricalRewi = 0. The number of plays per arm playsi and the total

number of plays are kept in memory, so those values are also updated and accessed in constant time.

Therefore, the confidence estimation for the last arm played has a linear complexity O(WR) with

respect to the maximum length of the reward history WR.

Determining if the PH-test is triggered is also easily done in constant time, following the

expressions in Equations 5.4 and 5.5, which require as input the current reward ri and the average
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reward empRewi in order to update the average and maximal standard deviation of the rewards for

arm Ai.

As demonstrated, the DMAB itself is very efficient in the operations for reward assignation,

confidence estimation and the PH-test triggering. The complexity will then depend more on how

complex are the algorithms implemented as the arms. It was established that all the MA have in

common the cubic term for the incremental evaluation of edges affected during local search and a

quadratic term for the fitness function (see Section 4.3.7), therefore playing any arm has a worst

case complexity of O(n3 + µn2).

During the initialization, all K arms are played over a copy P ′ of the initial population P and

assigned its first rewards and confidence estimations. The complexity of the arm’s initialization is

the accumulated complexity of all the MA, plus the steps for the first confidence estimation and the

creation of population P ′. Since each arm has only being played once, the reward is assigned in

constant time independently from the length of the reward registryWR, the confidence estimation is

performed in constant time, and the copy process of population P into P ′ is linear, taking µn steps.

Therefore the complexity of playing all K arms would be O(K(n3 +µn2 +µn)) ≈ O(K(n3 +µn2)).

This complexity also applies for the arm restarting process that occurs after the PH-test is triggered.

For the worst case, we could assume that after playing an arm the PH-test triggers, resulting in

a complexity of O(T (K + 1)(n3 + µn2)), where T stands for the total number of iterations.

5.3 Performance of MA alternating operators with

DMAB

The combination of the MA with the DMAB hyperheuristic was named as DMAB+MA. This section

addresses the experiments to measure the performance of this algorithm and compares it with the

previous MA and the algorithms from the CBSP literature [47, 116]. The results cast light on some

of the issues we identified regarding the helpfulness of the alternative evaluation scheme in the MA,
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the role of the other MA operators and the design of DMAB+MA itself. The experiments took place

in the same experimental platform and over the same instance set we employed for the MA, with 50

runs per instance and 600 seconds as stop criterion.

5.3.1 Parameter settings and the extreme value-based reward

The first remarkable results about DMAB+MA concerns the use of the extreme vale-based reward

approach [31]. Under this rewarding system, the reward assigned to an arm is a credit based on

the maximal raw reward value in a record of length WR. In the parameter tuning process for

DMAB+MA, described in Table 5.1, we tested several values for the parameters of the MA and the

DMAB. These included the values {1, 3, 5, 10, 15} for the length of the extreme value-based reward’s

record. As shown in Table 5.1, the best value was WR = 1, which effectively shuts down the special

functionality of the extreme value-based reward.

A large reward record can have an adverse effect on the confidence estimation, by preventing an

arm with a recent good raw reward from being used, favoring instead an arm that was more successful

in a window of WR iterations ago, but perhaps no longer. The extreme value-based reward may

also be preventing the PH-test from recognizing the changes on underlying reward probabilities, since

its reward information would proceed from some past iteration where the success of the arm was

maybe very different. For example, large fitness improvements are more common to occur in the

first iterations, and it is known that some of the operators, such as the cumulative swap mutation

or the (µ + λ) survival strategy are helpful at the beginning of the search process, but they can

cause stagnation later. With the extreme value-based reward the DMAB may be placing too much

confidence on MA that achieved large rewards when doing so was relatively easier.

The DMAB relies on an appropriate placing of the confidence estimations and the evaluation of

reward changes for managing arm usage. In the case of our implementation, keeping reward values

updated seems to be more effective than giving credit to arms for their past good behaviour.



5. Dynamic Multi-Arm Bandit 97

Table 5.1: Parameter settings for the DMAB+MA algorithm, chosen after 5000 tests with the irace
utility [72].

Parameter Tested values Final value Parameter Tested values Final value

Crossover probability probc [0.01, 0.9] 0.812 Length of the reward register WR {1, 3, 5, 10, 15} 1
Mutation probability probm [0.01, 0.9] 0.761 PH-test tolerance δ [0.05, 0.5] 0.299
Inversion probability probi [0.01, 0.9] 0.012 PH-test triggering threshold λ [15, 35] 33.472
Scaling factor C [1, 10] 7.138 Max. running time for DMAB s – 600s

5.3.2 DMAB+MA for improving performance and generality

The main expectation for the use of DMAB with our MA is that, if there is a MA that can get a good

solution for a certain instance at least once, then the DMAB+MA, having all operators available,

should be able to produce comparable or even better solutions in a more consistent fashion. The

examination of results for Mach and MA-20 in Chapter 3 showed that the performance of these

algorithms was influenced by the guest graph topology. Because of their respective designs, the

topologies that result struggling for them differ. Mach uses a depth-first style search, so it solves

paths, cycles an wheels very quickly but then it struggles with the rest of instances. Meanwhile,

MA-20 and the rest of MA, were designed with a general case approach. MA-20 is able to produce

better results for graphs where Mach can not, but it is not as accurate reaching optimal solutions

for paths, cycles and wheels.

The results for MA-20, namely the best and average CBS and the corresponding standard

deviation, shown that the algorithm was able to find good solutions for the path, cycle or wheel

graphs in some executions, but it lacked the consistency to do it more often. For example, for

the path, cycle and wheel of order n = 100, MA-20 occasionally gets optimal cost solutions as

reflected by the average and standard deviation columns in Table 5.3. It is also noticeable that

for the aforementioned topologies, there were other MA with better RMSE rates than MA-20,

such as MA-43. Since the RMSE values for MA-20 are not always zero, there are opportunities for

further improvement of its results. Therefore, the DMAB+MA was proposed as a method combining

strengths from the different MA in order to achieve optimal/best-known solutions more consistently
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and for a broader variety of graph topologies than any of the independent MA.

The evidence from the experiments suggests that incorporating the DMAB to manage the

operator configurations of our MA resulted very effective for reducing the O-RMSE, lowering the

solution cost, and sometimes also decreasing the amount of time required to reach the new best-

known solutions. For example, out of the 30 instances for which some MA got a better solution

than Mach, DMAB+MA achieved 10 further improvements. Moreover, DMAB+MA was able to

produce the new 30 best-found results and the 10 known optimal results more often than any of

the other considered methods. This is demonstrated by the global O-RMSE values in Table 5.2,

with the O-RMSE of DMAB+MA being over 10 times smaller than the one of MA-20 and 24 times

smaller than the one for Mach. Notice that, since the O-RMSE metric is relative to the best-known

results, after DMAB+MA improved those results, the O-RMSE values for GVNS, Mach and MA-20

worsened accordingly.

(a) RMSE distributions. (b) RMSE by instance for the three most relevant
algorithms.

Figure 5.1: Distributions of RMSE for GVNS, Mach, MA-20 and DMAB+MA, and RMSE by
instance for the three best performing algorithms.

The behaviour of Mach, MA-20 and DMAB+MA at the instance level is presented in Figure

5.1, contrasting their corresponding RMSE values sorted with respect to MA-20. Such sorting allows

to examine if DMAB+MA can perform better on the instances where it was identified that MA-
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Table 5.2: Results comparing DMAB+MA with MA-20 and the algorithms form the literature in
terms of solution quality (0-RMSE) and running time.
Algorithm O-RMSE (%) Average execution time (s) Time to best-found sol. (s)

DMAB+MA 0.021 600.0 128.7
MA-20 0.238 193.3 87.1
Mach 0.513 7.7
GVNS 0.775 900.1 612.380

20 had issues, specifically, the paths, cycles and wheel topologies. It was found that in all the

instances where either MA-20 or Mach had the ideal performance regarding solution cost, that

being producing a best-know or optimal cost solution in all executions, DMAB+MA also succeeded.

For most of the instances, MA-20 had already significantly improved Mach’s results, as summarized

in the statistical significance analysis in Table 5.4. DMAB+MA fulfills the purpose of lowering the

O-RMSE values while also achieving the optimal solutions for the instances MA-20 could not. In the

statistical comparison analysis, DMAB+MA defeats both MA-20 and Mach for most instances, the

exceptions being ties mostly for graphs were the optimal had been reached.

While MA-20 was bested by DMAB+MA, it is worth to notice it is still useful as a reference

metaheuristic, since Mach is only a constructive heuristic at an obvious disadvantage against

metaheuristic approaches in terms of providing better solution quality. This is specially relevant

when dealing with larger graphs from topologies such as the Harwell-Boeing, Cartesian products and

random graphs.

5.4 Operator usage

This section discusses in more detail the inner mechanics of the DMAB+MA and how they result

helpful for conducting the search process. It specifically focuses on the interaction among operators,

how this relates to tendencies observed in the independent MA versions, and the role played by the

alternative fitness function.

The average operator usage rate was examined in Figure 5.2. These graphics were created by
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Table 5.3: Detailed performance comparison of Mach, MA-20, and DMAB+MA.
Mach MA-20 (S4_C1_M2_SS1_V0) DMAB+MA

Graph |V | |E| d UB/Opt∗ Best Avg Std T Best Avg Std T Best Avg Std T

path100 100 99 0.02 99∗ 99 99 0 0 99 105.5 9.75 61.631 99 99 0.00 10.1206

path200 200 199 0.01 199∗ 199 199 0 0.01 352 404.7 31.34 124.7024 199 199 0.00 85.356

cycle100 100 100 0.02 100∗ 100 100 0 0 100 140.6 58.69 23.4264 100 100 0.00 14.8906

cycle200 200 200 0.01 200∗ 200 200 0 0.01 362 424.64 85.51 100.0636 200 200 0.00 54.4894

wheel100 100 198 0.04 2600∗ 2600 2600 0 0.01 2600 2635.6 46.57 38.818 2600 2600 0.00 2.5844

wheel200 200 398 0.02 10200∗ 10200 10200 0 0.07 10368 10436.4 94.88 155.8296 10200 10200 0.00 13.4392

cyclePow100-2 100 200 0.04 300∗ 300 302.72 2.31 0 300 458 159.32 2.7418 300 300 0.00 24.8558

cyclePow200-2 200 400 0.02 600∗ 600 602.4 2.21 0.01 600 997.28 354.87 70.1316 600 600 0.00 63.4302

cyclePow100-10 100 1000 0.202 5500∗ 5598 5711.68 67.76 0.04 5500 5500 0.00 30.2684 5500 5500 0.00 0.382

cyclePow200-10 200 2000 0.101 11000∗ 11042 11200.64 76.52 0.11 11000 15767.4 5221.62 3.6536 11000 11000 0.00 6.0316

c9c9 81 162 0.05 873 991 1269.22 130.71 0.01 873 965.8 70.31 0.5998 873 873 0.00 137.9754

c9k9 81 405 0.125 7434 1809 1809 0 0.01 1809 1809 0.00 7.113 1809 1809 0.00 23.4992

k9k9 81 648 0.2 8370 9424 9541.1 53.74 0.02 8280 8444.48 242.20 3.4542 8280 8280 0.00 294.0756

p9c9 81 153 0.047 7434 794 794 0 0 745 751.02 14.21 1.5936 745 745 0.00 302.1566

p9k9 81 396 0.122 7362 1728 1728 0 0.01 1728 1728 0.00 6.3714 1728 1728 0.00 53.2098

p9p9 81 144 0.044 720 944 1268.1 162.45 0 516 516 0.00 14.5194 516 516 0.00 41.559

jgl011 11 49 0.891 147 142 142 0 0 141 141 0.00 0 141 141 0.00 0.0002

ash85 85 219 0.061 4708 1214 1395.34 126.53 0.14 913 931.92 21.56 12.851 913 913 0.00 45.449

curtis54 54 124 0.087 1705 448 622.54 86.12 0.03 411 411 0.00 8.399 411 411 0.00 52.4954

ibm32 32 90 0.181 743 493 539.72 23.31 0.01 405 406.68 3.20 3.4466 405 405 0.00 0.2088

will57 57 127 0.08 1841 408 433.32 43.86 0.04 335 335 0.00 4.116 335 335 0.00 10.6124

impcol_b 59 281 0.164 4215 2462 2841.06 214.84 0.07 1822 1822 0.00 0.237 1822 1822 0.00 0.62

impcol_d 425 1267 0.014 134935 23995 35083.34 5557.16 13.46 13011 16567.46 2420.23 143.5012 12170 12277.52 169.45 330.8104

nos4 100 247 0.05 6237 1181 1448.04 264.25 0.06 1031 1031 0.00 2.2972 1031 1031 0.00 44.6782

nos6 675 1290 0.006 218010 35658 48573.8 4660.16 2.12 15600 17396.2 1226.55 194.5918 11496 12823.08 824.31 324.0696

494_bus 494 586 0.005 72517 4873 5701.84 410.44 9.95 5160 5600.6 220.86 130.6622 4496 4914.16 198.84 326.8424

662_bus 662 906 0.004 150169 12956 15354.5 1319.83 31.75 11176 12589.84 719.90 200.17 9238 10485.3 613.80 295.0838

685_bus 685 1282 0.005 219863 14300 17723.38 2083.32 37.46 15541 16849.06 658.83 182.5688 10254 11814.68 625.54 293.4828

can_24 24 68 0.246 425 216 253.06 15.55 0.01 182 182 0.00 0.1246 182 182 0.00 0.0302

can_144 144 576 0.056 20881 2250 2258.94 6.11 0.02 1776 2516.32 748.99 8.4198 1776 1776 0.00 44.3344

can_292 292 1124 0.026 82333 23288 25903.86 1731.32 7.1 15127 15781.26 1082.28 119.2576 15109 15125.9 7.04 284.8162

can_445 445 1682 0.017 187543 41259 51235.26 4795.67 18.74 27865 28903.22 498.09 150.3298 26634 26767.76 53.35 387.8466

can_715 715 2975 0.012 532525 91646 109431.58 10123.94 79.88 67316 70951.26 2001.58 201.3898 60349 64689.94 1392.98 309.81

bcspwr01 39 46 0.062 460 101 114.48 8.08 0.01 98 98 0.00 0.7214 98 98 0.00 2.6946

bcspwr02 49 59 0.05 737 158 179.4 19.47 0.02 148 148 0.00 1.0796 148 148 0.00 3.5354

bcspwr03 118 179 0.026 5325 766 927.02 70.56 0.26 662 664.92 1.19 102.3684 662 663.26 0.85 295.9958

bcsstk01 48 176 0.156 2156 1147 1336.48 107.99 0.02 936 938.32 3.62 23.4962 936 936 0.00 4.6114

bcsstk06 420 3720 0.042 391532 65017 83263.24 7489.16 30.87 53534 60387.2 5917.65 240.3212 51830 52085.5 152.42 292.7646

dwt_503 503 2762 0.022 348012 55067 67128.5 6003.72 32.69 40617 43240.72 3061.27 174.5952 37448 37703.96 149.62 378.481

dwt_592 592 2256 0.013 334452 33659 44864.18 4826.16 44.03 30272 32162.52 1798.42 196.8884 25076 27678.24 2254.86 294.4532
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Table 5.4: Statistical analysis for comparing the performance Mach, the MA-20 y DMAB+MA.

Instances |V | |E| MA-20/ MA-20/ Mach/
Mach DMAB+MA DMAB+MA

path100 100 99 − − ?
path200 200 199 − − ?
cycle100 100 100 − − ?
cycle200 200 200 − − ?
wheel100 100 198 − − ?
wheel200 200 398 − − ?
cyclePow100-2 100 200 ? − −
cyclePow200-2 200 400 − − −
cyclePow100-10 100 1000 + ? −
cyclePow200-10 200 2000 ? − −
c9c9 81 162 + − −
c9k9 81 405 ? ? ?
k9k9 81 648 + − −
p9c9 81 153 + − −
p9k9 81 396 ? ? ?
p9p9 81 144 + ? −
jgl011 11 49 + ? −
ash85 85 219 + − −
curtis54 54 124 + ? −
ibm32 32 90 + − −
will57 57 127 + ? −
impcol_b 59 281 + ? −
impcol_d 425 1267 + − −
nos4 100 247 + ? −
nos6 675 1290 + − −
494_bus 494 586 ? − −
662_bus 662 906 + − −
685_bus 685 1282 + − −
can_24 24 68 + ? −
can_144 144 576 ? − −
can_292 292 1124 + − −
can_445 445 1682 + − −
can_715 715 2975 + − −
bcspwr01 39 46 + ? −
bcspwr02 49 59 + ? −
bcspwr03 118 179 + − −
bcsstk01 48 176 + − −
bcsstk06 420 3720 + − −
dwt_503 503 2762 + − −
dwt_592 592 2256 + − −
+ 27 0 0
− 7 28 32
? 6 12 8
Overall winner MA-20 DMAB+MA DMAB+MA
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recording which arm was being used at a given iteration and the operators that were involved. Then,

it was calculated an average of the accumulated number of times a MA employing a particular

operator had been used across the first 50,000 iterations for all the runs. The resulting graphics also

allow to visualize the frequency of the arm’s restarts caused by the PH-test being triggered. Recall

that when the PH-test triggers the statistical information about the arms, including the number of

times that they have been played is set back to its initial zero values. Since these plots depict average

values across executions, the restarts are denoted by the drops in the accumulated number of plays.

According to Figure 5.2, the most frequently employed operators are binary tournament selection,

cyclic crossover, cumulative 2-swap mutation and (µ, λ) survival. Meanwhile, the fitness functions

are employed with very similar frequency. The operator preferences observed in DMAB+MA match

several of the tendencies for the most often employed operators among the top five MA configurations.

Binary tournament selection and cyclic crossover were present in all top five MA, while the alternative

evaluation function function was employed by two of them. However, there are also interesting

differences, for which operators not often found in the top five MA are frequently used in the

DMAB+MA.

These correspond to mutation and survival: cumulative swap mutation was not present in the

top five MA, and the (µ + λ) survival strategy was employed only by MA-43, which performed

significantly worse than the rest of the algorithms in the top five MA group. It can be argued

that the new interactions created among the full set of operators available in the DMAB+MA are

responsible for these differences, and ultimately, for the DMAB+MA’s ability to produce better

solution quality than the independent MA.

For the case of mutation, it was previously established that the fitness restrictiveness of the

cumulative 2-swap mutation can help the search in early stages, when it is relatively easier to find

improving mutations; but this becomes harder in later generations. Since non improving mutations

will not be accepted by the cumulative 2-swap mutation, this operator can hinder the algorithm’s

ability to explore new areas and result in a worst performance. The independent MA with lowest
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(a) Selection operators.
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(b) Crossover operators.
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(c) Mutation operators.
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(d) Survival strategies.
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(e) Evaluation functions.

Figure 5.2: Average number of times that arms employing particular operators were played along
50,000 generations.
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O-RMSE that used cumulative 2-swap mutation was MA-69 (O-RMSE = 0.520). It is worth noting

that MA-69 differs from the algorithm in the fourth position of the top five MA, MA-67 (ORMSE=

0.2877), only in the mutation operator, yet MA-69 ranked in the position 21. Therefore, by using

MA-67 as reference, the cumulative 2-swap mutation can be identified as the main cause of MA-69’s

poor performance.

The behaviour of the cumulative 2-swap mutation in MA-69 and DMAB+MA is showcased in

Figure 5.3, comparing the acceptance rate for attempted mutation moves and the percentage change

in CBS caused by affected mutations. Figure 5.3(a) demonstrates that the average acceptance rate

for cumulative 2-swap mutations in MA-69 drops within the first 1000 generations for both algorithms,

specially for MA-69.

The fact that cumulative 2-swap is the preferred mutation operator in the DMAB+MA can

be explained by its combination with the insertion and reduced 3-swap operators. Figure 5.3(b)

compared the percentage change in CBS caused by mutations in MA-69 and the DMAB+MA. For

the later, the three mutation operators are examined separately. The percentage of change in CBS

was calculated as (fnew − fold)/fold, where fold and fnew are the CBS of the individuals before and

after mutation. Negative values indicate a improvements, which reduce the CBS values.

It can be observed that the arms using the cumulative 2-swap operator can produce larger

improvements during mutation in DMAB+MA than in MA-69. These improvements in fitness of

mutated individuals can contribute to arms that use cumulative 2-swap receiving better rewards.

When the acceptance rate for cumulative 2-swap mutation drops, independent MA such as MA-

69, loose part of their ability to explore new areas, preventing them from achieving better results

when compared with MA using the other mutation operators. In contrast, in DMAB+MA, if the

absence of mutation causes the fitness to stop improving, the arm’s reward and confidence would

be adjusted accordingly. Then, by switching arms, the DMAB+MA is capable of using insertion or

reduced 3-swap mutation. In further generations, an arm using cumulative 2-swap can be employed

again, potentially achieving new fitness improvements during mutation and a reward that result in it
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(a) Mutation rate for cumulative swap. (b) Change in CBS quality.

Figure 5.3: Comparison of the acceptance rate and change in CBS after mutation, for cumulative
swap mutation in DMAB+MA and MA-69, which was the MA with smallest O-RMSE employing
this operator, ranking in position 21.

being played again.

Another interesting interaction in the DMAB+MA can be identified for the survival strategy

operators and their interaction with selection. As previously discussed, independent MA using the

(µ, λ) survival strategy are not typical good performers, except when it is combined with binary

tournament selection. These two operators appear together in the first four positions of the top five

MA. The only MA in the top five that used the (µ + λ) survival was proven to have a significantly

worse performance than the rest of MA in the top five group. This was attributed to the (µ + λ)

survival strategy creating too much evolutionary pressure. Meanwhile, in the DMAB+MA, (µ + λ)

survival is employed more often than (µ, λ), while binary tournament is preferred over the other

selection operators, but not by a large margin.

Whether in independent MA or DMAB+MA, the binary tournament operator is more effective

than the other selection operators for choosing a set of individuals with better average fitness respect

to the population, as it is shown in Figure 5.4. For independent MA, this was computed using the

best ranked MA that employs each selection operator.

Figure 5.5 shows the fitness of the best individual in the population and the fitness standard

deviation for MA-19, MA-43 and DMAB+MA. Recall MA-43 is the best independent MA using the
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(a) Change in CBS in independent MA. (b) Change in CBS in DMAB+MA.

Figure 5.4: Change in average fitness of selected individuals with respect to the average fitness of
the population, for independent MA and DMAB+MA. The independent MA correspond to those
with the lowest O-RMSE MA that employ the corresponding selection operator.

(µ+λ) survival strategy and MA-19 has exactly the same operators, besides the survival. Comparing

them to each other, and against DMAB+MA, provides insights on the effects of the approach for

population updating. MA-43 does not allow individuals in the offspring population to survive, unless

they are fitter than current individuals. This can cause the population to become too uniform in

terms of fitness, as denoted by the equal to zero standard deviation of the population’s fitness in

Figure 5.5(a). Meanwhile, the algorithms that use the (µ, λ) survival, including MA-20 and the

rest of the top five MA, can maintain populations of diverse fitness, but they rely on selection for

preserving the genes of the fitter individuals.

Differently from independent MA, when the DMAB+MA changes arms, the effects of the two

survival approaches over the population can combine to maintain a high fitness population and allow

the incorporation of new genetic material.

5.4.1 The role of the alternative evaluation function in DMAB+MA

To close this discussion in the use of operators, we look at the fitness functions. In the MA it was

found that function f3 helps to achieve better results on many occasions, but can also slow down

the local search phase by considering neutral CBS neighbours as the first improvement, as discussed
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(a) Average and best fitness. (b) Standard deviation for population fitness.

Figure 5.5: Fitness across generation for independent MA using each of the survival operators and
the DMAB+MA, where both are available, for instance curtis_54. MA-43 is the MA with smallest
O-RMSE that employs the (µ + λ) survival. MA-19 employs instead the (µ, λ) operator and the
rest of its operator configuration is identical to that of MA-43: binary tournament selection, cyclic
crossover, insertion mutation and the CBS function for fitness evaluation. MA-43 occupies the 1st
ranked position in the top five MA, while MA-43 ranked 5th.

in Section 4.4.1. When it comes to the DMAB+MA, the fitness function is the operator for which

there is the less notorious preference. In order to have more concluding evidence on the helpfulness

of function f3 in the DMAB+MA, an experiment was performed to evaluate the performance of

this algorithm when the alternative evaluation function is absent. All the other operators were still

available, for a reduced total of 48 arms out of the original 96. The stop criteria for this experiment

remained as 600 seconds, as well as the size of the population µ = 20. The rest of the parameters

for this reduced version of DMAB+MA were tuned once more, using the same previously described

methodology. Most of the assigned values, listed in Table 5.5, were similar to those of the original

version, with two exceptions. The first one is a larger size of the reward register for the extreme

value-based reward WR, which changed from WR = 1 to WR = 15. The second is a lower

tolerance for the PH-test triggering threshold λ, from λ = 33.472 to λ = 18.958.

At first glance, it was observed that the DMAB+MA has a worst performance when it is only

guided by the CBS function. The changes in the assignation of parameter values for the DMAB+MA

without function f3 focused on parameters related to the reward calculation and the test for abrupt
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Table 5.5: Parameter settings for the DMAB+MA algorithm without function f3.
Parameter Tested values Final value Parameter Tested values Final value

original without f3 original without f3

Crossover probability probc [0.01, 0.9] 0.812 0.632 Length of the reward register WR {1, 2, 3, 5, 10} 1 15
Mutation probability probm [0.01, 0.9] 0.761 0.738 PH-test tolerance δ [0.05, 0.5] 0.299 0.202
Inversion probability probi [0.01, 0.9] 0.012 0.245 PH-test triggering threshold λ [15, 35] 33.472 18.958
Scaling factor C [1, 10] 7.138 7.686 Max. running time for DMAB s – 600s 600s

change in reward value. Larger sizes for the reward record WR cause the reward values to variate

slower, and a lower threshold for the PH-triggering can recognize variations of smaller magnitude as

abrupt. Therefore, it is interesting to discuss how the reward mechanism in the DMAB+MA can be

influenced by the fitness functions that are available.

Function f3 affects the decisions taken by the selection, mutation, survival and local search

operators, specially when dealing with equal CBS solutions. For example, after playing an arm that

uses function f3, it can occur that the fitness of the best individual has been improved, while the

CBS remains equal. In such cases, the corresponding arm gets a reward equal to zero (recall rewards

are calculated from CBS values because the goal is to choose a MA with an operator configurations

that can actually reduce the CBS). Even if this results in a lower confidence estimation for the arm

in question, the neutral CBS changes that it performed over the population remain, and may help

the DMAB+MA to produce fitter individuals with actual CBS improvements in future generations.

In this way, function f3 fulfills the role for which it was designed, to provide guidance for choosing

among a group of equal cost solutions.

When function f3 is not available, the search is less able to reach better areas by navigating

through neutral areas. With only the CBS function guiding the DMAB+MA, it still performs

better than MA-20, demonstrating how powerful the combined use of the genetic operators can

be. However, it is still not as good as the original DMAB+MA that can also combine function f3

and the CBS function. It can be observed that without function f3, there is larger dispersion of

RMSE values and more outliers, indicating different performance variations among instances.

The time at which the reduced DMAB+MA version stopped improving, presented in Figure
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5.6(b), is shorter when compared to that of the original version. Considering also its worse RMSE,

it seems likely that removing function f3 caused the reduced version to become stagnant in areas of

worse quality.

(a) RMSE distributions. (b) Average time to the best-found solution.

Figure 5.6: Performance regarding solution quality and expended computing time for DMAB+MA
without function f3.

5.5 Conclusions

This chapter presented an hyperheuristic approach to take advantage of the alternative evaluation

function and all the other MA components that were previously developed/implemented, in a new

way that was capable of obtaining better results and more consistently. The problem of alternating

between operator configurations was expressed as a multi-armed bandit, with the arms representing

the different MA versions, and approached it with a DMAB implementation. The DMAB was the

chosen hyperheuristic because it offers the capacity of dealing with dynamic scenarios where some

operators are more or less useful at different moments, as it was determined that happened with the

operators of the independent MA. The DMAB also had the advantage of being easy to integrate

within the previous MA implementation while having few parameters to tune.

Our DMAB implementation employed the extreme value-based reward assignation [31], which

has the purpose of considering how good an arm has performed over a window of itsWR most recent

plays, instead of just on the very last one. The estimation of confidence for the arms was carried out
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by the UCB1 [25] strategy that seeks to balance between exploiting arms with high average rewards

and exploring the use of arms that are not often played.

The experiments with the DMAB+MA were executed over the same set of instances employed

previously with the independent MA versions, comparing its results with them, GVNS [117] and

Mach[47]. The first finding was that the extreme value-based reward was turned off by the parameter

tuning process, which assigned the length of the arm’s reward record as WR = 1, making a case for

basing confidence estimations on up to date raw reward values.

By employing the DMAB, it was expected to solve the issues observed with Mach and the

individual MA. Specifically, the aim was to develop a general approach algorithm, one that could

consistently reach the best-known results, with more independence from the guest graph topology.

DMAB+MA succeeded in all the cases where MA-20 and Mach did it, and more importantly, in

those where they failed. Out of the ten instances with known optimal values in the set, DMAB+MA

found optimal solutions for all of them. The MA had already produced new best-know solutions

for the 30 instances with unknown optimal CBS, but some of them were not reached with enough

frequency. The DMAB+MA matched and surpassed all the individual MA versions in that sense,

producing the new best-found results with close to zero RMSE values, and even further improving

10 of them.

For a closer look on why the DMAB+MA works this well, it was examined the average usage of

the operators within the DMAB, contrasting how their combinations affected the MA performance

and how that changes when operators of the same type can complement each other. The results

hinted that the fitness oriented mutation of the cumulative 2-swap mutation became more useful

when its restrictiveness can be eased by the other mutation operators. Also that the DMAB+MA

does not need to rely as much on the binary tournament selection for keeping the population fit

when the (µ, λ) lets the parent population go. Instead, the (µ + λ) survival strategy, being used in

different moments of the search process, helps to compensate the potential loose of fitness in other

generations. At the same time, the (µ+ λ) search strategy is not employed so often that it creates



5. Dynamic Multi-Arm Bandit 111

the stagnating problem as in the MA. Special attention was set on the role of the fitness function. It

was experimentally determined that with the same time budget and under the same conditions, the

DMAB+MA without the use of the evaluation function f3 has a poor performance, despite having

the advantage of managing fewer arms. This showed that the alternative function is very important

for pointing out the search in worthy directions that will not be explored otherwise, and thus, crucial

for the success of the DMAB+MA.

The next chapter focuses on the fitness landscape analysis of the CBS. In order to better

comprehend the effects that the alternative evaluation function has over it and how MA-20 and

DMAB+MA navigate through it, the fitness landscape is studied using several techniques and

contrasted with algorithm performance and a group of instance features measured by graph metrics.





6
The fitness landscape of the CBSP

This chapter revolves around the fitness landscape analysis of the CBSP, by taking into consideration

three important aspects: the fitness function, certain graph features, and the instance difficulty for

the metaheuristic algorithms proposed in this work. The analysis of the fitness landscape of a

problem is a mean for understanding its search space and the challenges it can present in relation to

the algorithms for solving it. In the fitness landscape analysis literature there is a large, continuously

growing, collection of techniques intended to sample, measure, and visualize its different aspects,

such as the neutrality [100], ruggedness [93], structures near the optimum [52], etc. The techniques

are abundant and sometimes it can exist redundancy among them, to the extent that selecting

uncorrelated fitness landscape metrics can be itself a challenge [127]. Providing a comprehensive

overview of the fitness landscape analysis literature is out of the scope of this work. The reader can

refer to several works that deal with that matter for a more complete perspective [76, 77, 96, 100].

There was three complementary goals behind analyzing the fitness landscape of the CBSP: a)

getting a deeper understanding of the problem and further investigating how the proposed alternative

113
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fitness function may affect it, b) how the fitness landscape’s characteristics are linked to instance

features and the problem’s difficulty for the metaheuristics proposed in this work, and c) to gain

a new perspective on the way these metaheuristics behave, and how their success relates to the

search processes being conducted thought specific search areas. This chapter begins by presenting,

in Section 6.1, various fitness landscape analysis techniques applied to the CBSP fitness landscape,

induced by the traditional CBSP evaluation function and by the alternative evaluation function

proposed in Chapter 3. A subset of uncorrelated fitness landscape features was selected to further

examine its relationship with instance features and their difficulty. Then, a study for the identification

of uncorrelated graph metrics that adequately describe the features of an instance is described in

Section 6.2. Section 6.3 deals with the analysis of the interaction among fitness landscape features,

characteristics of the problem instances, and search performance by applying principal component

analysis (PCA) [43] and exploratory factor analysis (EFA) [41]. Section 6.4 consists of a study of

search trajectory networks (STN) for MA-20 and DMAB+MA (the algorithms introduced in Chapters

4 and 5). The STN method is an analysis tool enabling the study of the algorithm’s dynamics, based

on the visualization and characterization of the search process as a directed weighted graph. Finally,

Section 6.5 summarizes the main findings of this chapter.

6.1 The fitness landscape of the CBSP under the

alternative fitness function

Function f3 for the CBSP was designed to help the search methods to discriminate between equal

cost solutions by introducing a refined definition of what makes a potential solution better than

another one, which assesses a solution not only with the total sum of its cyclic distance, but also by

considering its cyclic distances. This section studies the fitness landscape of the CBSP, the changes

that the alternative fitness function f3 introduces on it, and how this may affect its difficulty. In order

to determine if the alternative function f3 significantly changes some fitness landscape features, and
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which is the nature of these changes a series of specialized analysis were conducted. These include

measuring the neutrality [133], determining the variation on the number and cost of global and local

optima, autocorrelation analysis [135], fitness distance autocorrelation [60], fitness clouds [134] and

negative slope coefficient [132]. The instance set for the experiments presented consists of 90 graphs

covering all the topologies listed in Section A.1 for a variety of orders and sizes. It includes a subset

of 38 small instances with order n = {10, 11, 12} and size 8 ≤ e ≤ 43 and 52 larger instances. A

list of these 90 instances can be found in Appendix B. Fitness landscape analysis techniques that

require a piori knowledge of the global optima 1 were exclusively conducted over the subset of the

38 smaller graphs. The techniques for which the global optima are not required were applied to the

whole set.

6.1.1 Neutrality

The motivation for proposing an alternative evaluation function was to improve the results of

algorithms by reducing the number of solutions that have the same cost. Function f3 was determined

to achieve this goal, while maintaining consistency with the problem’s objective. The assessment of

the potential of discrimination for function f3 (see Section 3.4.1) resulted in the ideal relative entropy

value (RE = 1) for all the instances considered, meaning that in the sampled set of solutions there

was none of them with the same fitness evaluation value. Since fitness plateaus consist of connected

equal cost solutions, it was conjectured that a reduction in the amount of solutions sharing fitness

values was already an indicator of a potential reduction in neutrality. The matter is further addressed

here by examining how neutral is the neighborhood of a solution with respect to its fitness, under both

the conventional CBS function and the function f3. This is particularly interesting for high quality

solutions, such as the local optima, since reducing the neutrality around them has the potential of

opening new routes out of areas where the search process could get trapped otherwise.

The numbers of better, worse and equal fitness neighbor solutions, under the CBS function and

1Collected using exhaustive search
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function f3, were recorded for a sample of 100,000 potential solutions visited during 50 runs of a

CBS guided ILS, with each run ending after visiting 20,000 solutions. This was repeated over the 90

instances in the set. As expected, under function f3 the sampled solutions presented fewer neutral

neighbors, with most of the equal CBS solutions changing into worsening or improving. However,

neutrality is not completely absent, as it can be seen that a reduced percentage of neutral neighbors

is still present. Figure 6.1 illustrates changes in the neutrality ratio [133], the percentages of equal

fitness neighbors of a solution, with respect to the CBS cost. Under function f3, the neutrality is

significantly reduced, with less variation, and only slightly more often found in the neighborhood

of fitter solutions rather than in that of the poorer ones. Recall that under function f3 the equal

CBS value solutions share the same integer part of the cost, which is their CBS and differ only in

the floating point part, calculated based on their cyclic distances distribution. Therefore, as the

CBS value lowers, there are naturally fewer distinct cyclic distances distributions. Having the same

cyclic distance distribution means having as well the same evaluation under function f3, therefore

neutrality can be slightly higher around the fitter solutions. Yet, the neutrality ratio for function f3 is

still generally smaller than it was originally under the conventinal CBS function. This holds even for

graph topologies like the Cartesian products involving complete graphs, as it is exemplified in Figure

6.1(a), where lower cost solutions had originally more neutrality.

It is also relevant to observe how function f3 rearranges the equal CBS relationships, particularly

around the local optima. For this, we look at the average neutral percentage of the neighborhood of

the the local optima that were visited during the ILS. Figure 6.2 represents how the percentages of

non deteriorating transitions on the neighborhood of CBS local optima change when the alternative

evaluation is in place. First, it was found that in average, around 2.5% of the neighbors of local optima

are neutral under the CBS function. Then, when evaluated by function f3 most of the neighbors

became either improving or worsening, and the neutrality within the neighborhood was reduced to

approximately 0.5%. This demonstrates that function f3 significantly reduces the neutrality and it

has, in effect, created new non neutral transitions among solutions that used to be part of a plateau
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(a) p9k9. (b) path200

(c) bcpwr03. (d) rand100p7

Figure 6.1: Neutrality ratio in relation to fitness values for both evaluation functions across several
instances. Overall, the neutrality ratio was found to be significantly reduced by function f3 (p-value
= 6.8862e-17), while correlated to the CBS values (corr=0.61).

of local optima.

Figure 6.3 shows how the new transitions affect the local optima and the structure of the

landscape around them. Under function f3, the average distance walked to find a local optima,

referred as the descent distance, became larger and the cost of local optima also exhibit less variability.

While the difference were not determined statistically significant with respect to the CBS function,

these small changes can be exploited to benefit the search. For example, consider a CBS local

optimum lo and two of its neutral neighbors lob and low that became respectively better and worse
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Figure 6.2: Average change in the percentages of non deteriorating transitions from CBS local optima
after being evaluated by the alternative function.

when function f3 is employed. Not only a new improving transition from lo to lob has been created,

there is also another one from low to lo. Where a local search process guided by the CBS function

could have stooped in solution low, the alternative evaluation scheme will allow it to reach lo, then

lob and eventually the potentially improving neighbors of lob.

6.1.2 Global and local optima

For understanding how the alternative function f3 affects the fitness landscape it was consider relevant

to examine the sets of global and local optima. From the results discussed in the previous section, it

can be inferred that the number of local optima must be reduced by function f3, since it was shown

that some of the neutral neighbors of local optima became worsening solutions. A lower number of

local optima is a good sign that function f3 helps to produce better results, since a high number

of them is a common indicator of a problem instance difficulty [50]. It was of particular interest

to determine if the alternative evaluation scheme creates cases where CBS global optima solutions

become suboptimal. It can be assured that if two global optimal solutions have the same distribution
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Figure 6.3: Average length of the steepest descents during the ILS and variance of the fitness of the
local optima.

of cyclic distances, then they will have the same evaluation value assigned to them by function f3.

Then, it arises the question of how likely are the global optima to have the same cyclic distances

frequencies. Again, in order for this to happen, the solutions not necessarily have the same cyclic

distances for the same edges, but rather the same number of occurrences of each of those cyclic

distances of magnitude k.

Quantifying changes that affect the global optima presents similar challenges to the ones

associated to producing optimal solutions in the first place. Determining which is the optimal value

and in how many different ways it can be achieved is a demanding task only practicable for small

instances. In order to provide at least an idea of how function f3 affects global and local optima,

an exhaustive sampling was performed for obtaining all the possible embeddings for the 38 smaller

graphs in the instance set. While these results are limited to graphs of order n ≤ 12, they provide

evidence that the number of local optima is reduced, as well as information on how much the number

of global optima can change. Table 6.1 lists information regarding the global and local optima in

the fitness landscape induced by both evaluation functions, including the optimal values (Opt∗), the

absolute numbers of unique global and local optima and the percentages of those that function f3
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Table 6.1: Analysis of the effects of function f3 in the number of global and local optima, with
respect to the CBS function, for exhaustively solved instances of order n ≤ 12. The comparison
includes the optimal value (Opt∗), the number of global (ngo) and local optima (nlo) per function
and the percentage of them that was preserved by function f3.
Instance |V | |E| Opt∗ ngo nlo

CBS f3 CBS f3 % CBS f3 %

path10 10 9 9 9.45 10 10 100.00 900 130 14.44
path11 11 10 10 10.46 2 2 100.00 448 48 10.71
path12 12 11 11 11.46 2 2 100.00 1740 86 4.94
cycle10 10 10 10 10.50 10 10 100.00 6430 510 7.93
cycle11 11 11 11 11.50 2 2 100.00 2886 202 7.00
cycle12 12 12 12 12.50 2 2 100.00 10266 326 3.18
wheel10 10 18 35 35.62 90 90 100.00 5490 420 7.65
wheel11 11 20 41 41.61 20 20 100.00 3160 212 6.71
wheel12 12 22 48 48.60 22 22 100.00 20240 210 1.04
cPow10-2 10 20 30 30.75 10 10 100.00 60 10 16.67
cPow11-2 11 22 33 33.75 2 2 100.00 2 2 100.00
cPow12-2 12 24 36 36.75 2 2 100.00 122 26 21.31
p3p3 9 12 19 19.52 72 72 100.00 144 99 68.75
p4p3 12 17 29 29.52 16 12 75.00 564 26 4.61
p3c4 12 20 40 40.53 128 72 56.25 1476 174 11.79
p3k4 12 26 58 58.60 1728 48 2.78 2928 72 2.46
c4k3 12 24 52 52.54 2592 12 0.46 10944 154 1.41
c3k4 12 30 72 72.65 384 96 25.00 11688 240 2.05
caterpillar3 9 8 12 12.35 108 108 100.00 324 216 66.67
triTriangle6 6 9 12 12.63 6 6 100.00 6 6 100
triTriangle10 10 18 32 32.61 120 30 25.00 330 140 42.42
mobiusLadder10 10 15 25 25.51 320 100 31.25 2800 190 6.79
mobiusLadder12 12 18 30 30.51 128 24 18.75 3274 80 2.44
rand10-5 10 20 41 41.60 60 10 16.67 590 140 23.73
rand10-7 10 27 56 56.78 20 10 50.00 320 70 21.88
rand11-5 11 25 55 55.66 8 4 50.00 260 30 11.54
rand11-7 11 43 108 108.93 2 2 100.00 58 14 24.14
rand12-5 12 37 93 93.75 2 2 100.00 486 30 6.17
rand12-7 12 43 116 116.80 8 2 25.00 1188 210 17.68
randba10-2 10 16 33 33.49 40 40 100.00 1620 160 9.88
randba11-2 11 18 37 37.48 24 4 16.67 136 26 19.12
randba12-2 12 20 41 41.52 8 2 25.00 492 48 9.76
randnws10-5-2 10 15 26 26.52 30 10 33.33 340 140 41.18
randnws11-5-2 11 20 38 38.58 8 2 25.00 140 22 15.71
randnws12-5-2 12 16 28 28.48 8 2 25.00 1112 52 4.68
randnws10-7-2 10 19 35 35.61 20 10 50.00 1010 130 12.87
randnws11-7-2 11 20 38 38.60 4 2 50.00 134 26 19.40
randnws12-7-2 12 19 35 35.50 16 2 12.50 330 32 9.70
p-value 0.025 6.89e-12
correlation 0.1577 0.1988

preserves. The last rows present the statistical significance and the coefficient of correlation between

the measurements. In general terms, there was almost no evidence of correlation between the original

numbers of local and global optima and those preserved by function f3. It can also be concluded
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(a) Global and local optima percentages, respect to the search space size.

(b) Change on the average cost of the local optima.

Figure 6.4: Changes in the number of local optima and their fitness produced by the alternative
evaluation scheme on several small instances.

from the p-values that the global optima are not significantly affected by function f3, while the local

optima indeed are significantly fewer. Figure 6.1 illustrates the changes in the size and CBS quality of

the sets of local optima for both functions. Since function f3 creates smaller and, overall, fitter sets

of local optima when their actual CBS is considered, it is justifiable to say that the new improving

transitions created by the alternative evaluation can indeed make the landscape easier to search.
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6.1.3 Fitness distance correlation

The fitness distance correlation (FDC) studies the relationship between the fitness of the solutions

and their distance to the nearest global optimum [56, 96]. The result is a single number between -1

and 1 that encapsulates the problem’s difficulty based on the global structure of its fitness landscape.

For problems considered as easy, the closer a solution is to the global optimum, the better its fitness

should be. One considerable disadvantage of the FDC technique is that it requires knowledge of

the global optima, which often are not attainable for all problem instances. For this reason, it was

only evaluated for the 38 smaller instances in the set. For each of the instances, all the global

optima under the original CBS function and function f3 were obtained in an exhaustive listing of the

permutations in lexicographical order. The interchange distance [21] was employed for measuring

the distance from the solutions to their nearest global optimum.

Let si ∈ S be a set of solutions, while f and d are, respectively, their fitness values and their

distance to the nearest global optimum. The correlation value r for all solutions si ∈ S was calculated

as:

fdc =
cov(f, d)

fσdσ
, (6.1)

where cov(f, d) = 1
|S|
∑|S|

i=1(f(si) − f)(d(si) − d) is the covariance between the fitness values

and distance values, f and d are the averages for fitness and distance, and fσ and dσ are their

corresponding standard deviations.

In the case of minimization problems, like the CBSP, a value of fdc = 1 represents the ideal case

where solutions with smaller cost values have smaller distances to the optimum. The fdc value is

employed to classify problems into three classes [56, 60], depending on a threshold between -0.15

and 0.15:

• fdc ≤ −0.15: the problem is misleading, fitter solutions are not closer to the global optimum,

• −0.15 < fdc < 0.15: the problem is difficult, almost no correlation exists between fitness and



6. The fitness landscape of the CBSP 123

distance to the optimum,

• fdc ≥ 0.15: the problem is straightforward, the fitter solutions are closer to the global optimum.

Table 6.2 presents the FDC values and the average distance to the optimum for each of the

considered instances. It also reports the statistical significance and correlation between these values.

For the instances where the fitness landscape for function f3 has a reduced set of global optima, it

can be observed that the average distance to the nearest optimum became larger. On the one hand,

the new distances are highly correlated with the values measured for the original set of global optima

and there was no evidence that they are significantly different. On the other hand, that changes

in distance and fitness were enough to alter the FDC values in a significant way. This seems to

suggest that the FDC is very sensible to small variations. For almost all the instances, the results

for the original fitness landscape had values fdc ≥ 0.15, which correspond to straightforward or easy

problems, while for the fitness landscape under the alternative evaluation function the fdc values

lowered. This is interpreted as the problem becoming slightly more deceptive, in the sense that high

fitness solutions have smaller correlations to the reduced set of global optima preserved by function

f3.

6.1.4 Autocorrelation

The correlation structure of the fitness landscape is an indicator of its ruggedness by reflecting of the

degree on which the fitness of a solution varies in regard to the fitness of other nearby solutions with

a certain step distance [126, 135]. Fitness landscapes with strongly correlated solutions are thought

to be smoother, and thus easier for search algorithms.

The autocorrelation [135] is typically studied through a time series based analysis. Let y be a

time series of the fitness values of solutions within a random walk of length K. The estimation of

the correlation ρi between the fitness values yk and yk+i of two solutions separated by i steps within

the random walk is:
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Table 6.2: Comparison of fitness distance correlation values (fdc) and average distance to the nearest
optimum (ado), for functions CBS and f3, in exhaustively solved instances of order n ≤ 12. The last
four rows show the results of the statistical significance analysis (p-value) and correlation coefficient
for the fdc and ado measures between both evaluation functions.

CBS f3
Instance |V | |E| fdc ado fdc ado
path10 10 9 0.240 5.05 0.239 5.05
path11 11 10 0.139 6.34 0.138 6.34
path12 12 11 0.114 7.25 0.113 7.25
cycle10 10 10 0.258 5.05 0.257 5.05
cycle11 11 11 0.183 6.34 0.182 6.34
cycle12 12 12 0.151 7.25 0.150 7.25
wheel10 10 18 0.319 4.03 0.318 4.03
wheel11 11 20 0.289 4.78 0.288 4.78
wheel12 12 22 0.245 5.46 0.244 5.46
cyclePow10-2 10 20 0.306 5.05 0.306 5.05
cyclePow11-2 11 22 0.223 6.34 0.223 6.34
cyclePow12-2 12 24 0.189 7.25 0.189 7.25
c3k4 12 30 0.337 4.34 0.304 4.84
c4k3 12 24 0.325 3.73 0.199 6.08
p3c4 12 20 0.266 4.92 0.251 5.17
p3k4 12 26 0.418 3.77 0.263 5.32
p3p3 9 12 0.343 3.30 0.342 3.30
p4p3 12 17 0.234 5.99 0.219 6.16
caterpillar3 9 8 0.394 3.06 0.393 3.06
triTriangle6 6 9 0.802 2.05 0.802 2.05
triTriangle10 10 18 0.388 3.83 0.351 4.41
mobiusLadder10 10 15 0.365 3.44 0.311 3.94
mobiusLadder12 12 18 0.238 5.03 0.206 5.78
rand10-5 10 20 0.295 4.10 0.193 5.04
rand10-7 10 27 0.268 4.70 0.241 5.05
rand11-5 11 25 0.151 5.61 0.113 6.01
rand11-7 11 43 0.208 6.34 0.209 6.34
rand12-5 12 37 0.153 7.25 0.153 7.25
rand12-7 12 43 0.161 6.45 0.125 7.25
randba10-2 10 16 0.223 4.39 0.223 4.39
randba11-2 11 18 0.179 4.89 0.129 5.87
randba12-2 12 20 0.173 6.48 0.159 7.25
randnws10-7-2 10 19 0.251 4.71 0.232 5.05
randnws11-7-2 11 20 0.226 5.81 0.177 6.34
randnws12-7-2 12 19 0.219 5.95 0.159 7.25
randnws10-5-2 10 15 0.279 4.45 0.213 5.05
randnws11-5-2 11 20 0.195 5.64 0.174 6.34
randnws12-5-2 12 16 0.157 6.48 0.137 7.25
p-value fdc 1.8344e-11
p-value ado 0.2043
correlation fdc 0.7352
correlation ado 0.9168

ρi =

∑K−i
k=1 (yk − y)(yk+i − y)∑K

k=1(yk − y)2
(6.2)
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where y is the mean of the fitness values.

The autocorrelation length is the number of steps between two solutions within the random walk

before their fitness values become uncorrelated. It is defined as the largest integer l such ρl is still

different from zero. It assumed that the correlation decreases exponentially in function of the number

steps, so the significant margin is bounded as |ρl| < 2/
√
K following [55].

Experiments for measuring the autocorrelation and correlation length for the CBSP were

performed using random walks of length K = 10n. A new random solution was obtained by

employing the 2-swap operator that exchanges the labels of two random vertices. For each of the

walks the autocorrelation ri was calculated according to Equation 6.2. The overall autocorrelation

at step i was calculated as the average correlation among all the walks at step i. The correlation

length is then calculated with respect to the overall autocorrelation.

The autocorrelation coefficient is a derived metric to measure how fast the autocorrelation decays

after one step. It is calculated as:

ξ =
1

1− ρ(1)
, (6.3)

with values closer to one indicating less ruggedness.

Figure 6.5 shows that the autocorrelation coefficient and the autocorrelation length are have

almost identical values regardless of the evaluation function. The results of the the statistical

significance test and the correlation for these metrics supports the idea that their values remain very

similar. This further demonstrates that function f3 is effective in reducing neutrality, while the global

structure of the landscape, as far as the autocorrelation analysis can capture it, is not significantly

disrupted by the use of function f3 Figure 6.6 presents the autocorrelation for eighth instances of

order n = 100. Since the results do not differ between functions, only those corresponding to the

original evaluation function are presented. In general, it seems that the autocorrelation becomes

insignificant after around n/2 steps. .
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(a) Autocorrelation coefficient (p-value = 0.9771 and
corr = 1).
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(b) Autocorrelation length (p-value = 1 and corr =
1).

Figure 6.5: Comparison of autocorrelation coefficient and autocorrelation length for the CBS function
and function f3. Since very similar values were obtained for both functions, they overlap.
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Figure 6.6: Autocorrelation for several instances of order n = 100, for the CBS function. Results for
function f3 are omitted, since they were similar.
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6.1.5 Fitness clouds and negative slope coefficient

A fitness cloud [134] is a scatter plot for observing the relationship between the fitness values of a

group of solutions and the fitness of the new solutions that resulted after applying a neighborhood

operator to them. The fitness cloud consists in a group of points were the abscissa values correspond

to the fitness of parent solutions and the ordinate values are fitness of the offspring solutions.

The purpose of this method is to reflect the ability of a particular operator to produce fitness

improvements, i.e., its evolvability, as it allows to identify if fitter solutions are more likely to produce

fitter offspring, thus implying the problem may be easy for solving it with the use of evolutionary

algorithms.

Figure 6.7 shows the fitness clouds of the CBS function and function f3 for the 2-swap operator.

Two samples per instance were created, one for the CBS function guiding the sampling and another

for the alternative fitness function f3. Each sample contains 250,000 pairs of solutions created

by 50 runs with 5,000 pairs per run. Parent solutions, whose fitness corresponds to the abscissa

values were generated by Metropolis-Hastings sampling. The ordinate axis shows the fitness values

of their offspring solutions, which are their best neighbor obtained by the 2-swap operator. While the

previous experiments with steepest descent and ILS (in Chapter 3) showed that the alternative fitness

function f3 causes the steepest descent to have longer descent distance and reach better solutions,

it can be easily seen that the general shape of the fitness clouds for both evaluation functions is

very similar. This can be attributed to the differences in sampling for the fitness cloud, where the

offspring solutions are the best-neighbor after only one step.

The negative slope coefficient (NSC) [131, 132], is a metric that derives from the fitness cloud

analysis. It is a method to quantify the results of fitness clouds into a single numerical value that can

be more directly interpreted. It is calculated by partitioning the fitness cloud into m slices according

to m equal length intervals defined over the abscissa axis. A slice consists of all the points whose

abscissa value is between the predefined interval. Then, for each slice the average of the abscissa
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Figure 6.7: Comparing the fitness cloud obtained by the 2-swap operator and both studied fitness
functions.

xi and ordinate values yi are calculated, with 0 ≤ i ≤ m. The resulting values correspond to the

average of fitness values before and after applying the operator. The slope for a slice is calculated

as follows.

zi =
yi+1 − yi
xi+1 − xi

, 0 ≤ i ≤ m− 1 . (6.4)
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The negative slope coefficient is equal to the sum of the slopes with negative values.

nsc =
m−1∑
i=1

min(zi, 0) . (6.5)

The magnitude of the nsc value is an indicator of problem difficulty in terms of evolvability, where

smaller values indicate it is harder to produce improving solutions, and the maximum possible value,

nsc = 0, corresponds to an easy problem.

Figure 6.8 presents the NSC results for the instance set. The values are very similar and highly

correlated between both functions. The previously changes introduced by function f3 (reduced

neutrality, lowered cost of local optima and decrease in their number) do not seem to significantly

affect the NSC results. However, they were observed to help produce significantly better results.

Furthermore, the NSC had values linked to better evolvability for 24 out of the 90 instances.

6.1.6 Selection of fitness landscape features

The previous sections presented a study of how the fitness landscape features were affected by the

alternative fitness function. These results were analyzed to determine which features were able
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Figure 6.8: Negative slope coefficient among the instance set, evaluated for both functions (p-
value=0.9520, corr = 1).
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to capture changes in the fitness landscape between both evaluation functions, and therefore can

be considered as more relevant for further study. Three criteria were defined in order to select

fitness landscape features and deciding if their values for both functions are necessary or generally

redundant. The first criteria for reducing the feature set was that, if a feature shows not a significant

difference between its values for the CBS function and for function f3, and these values are highly

correlated, then there is no that much relevant new information to obtain from having both set of

values participating. Therefore, it was assumed that the feature could be represented good enough

solely by its measurements for the CBS function. The second criteria was to eliminate features that

are not practical in the general case, since they require a priori knowledge of the global and local

optima set. It was only possible to obtain it by exhaustive enumeration, for the fraction of the

instance set with order n ≤ 12, so further analysis including that type of features would exclude

most of the instances. The first two criteria were used to remove most of the results for the fitness

landscape features for function f3. Finally, the third criteria was based in a correlation study between

the remaining features, in order to identify a subset of uncorrelated features that can represent the

fitness landscape.

Table 4.1 summarizes the results for the statistical significance analysis of the measured features

and their correlation, specifying which features were selected, based on the first two criteria. Among

the fitness landscape features, only the neutrality ratio (neu), the number of local optima (nlo), and

fitness distance correlation (fdc) values are significantly affected when the alternative fitness function

is implemented. The number of local optima (nlo) and fitness distance correlation (fdc), however,

were eliminated by the second criteria, since they require knowledge about the global and local

optima. Features like the autocorrelation (ac1 and ac10), autocorrelation length (al), autocorrelation

coefficient (acf) and the negative slope coefficient maintained almost identical values regardless of

the function. The values of these features were judged to be represented adequately enough by the

values measured for the CBS function only. The descent distance (dd), the variance on the fitness

of local optima (lofv), the number of global optima (ngo) and the average distance to the optimum
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Table 6.3: Selection of the measurements of the fitness landscape features for the CBS function and
function f3, based on the first two criteria.

Feature sampling p-value stat. significant correlation selected
neu - neutrality ratio ILS 6.8862e-17 yes 0.61 CBS and f3
dd - descent distance ILS 0.0171 no 0.73 CBS
lofv - local optima fitness variance ILS 0.9452 no 0.99 CBS
ngo - number of global optima exhaustive 0.0253 no 0.15 none
nlo - number of local optima exhaustive 6.8977e-12 yes 0.19 none
fdc - fitness distance correlation exhaustive 1.8344e-11 yes 0.73 none
ado - average distance to optimum exhaustive 0.2043 no 0.91 none
ac1 - autocorrelation at step 1 random walk 0.9771 no 1 CBS
ac10 - autocorrelation at step 10 random walk 0.9795 no 1 CBS
al - autocorrelation length random walk 1 no 1 CBS
acf - autocorrelation coefficient random walk 0.9771 no 1 CBS
nsc - negative slope coefficient Metropolis-Hastings 0.9520 no 0.83 CBS

(ado) were observed to vary between functions, yet, these variations were not larger enough to pass

the significance threshold. Furthermore, in most cases they have some correlation to results for the

CBS function. The number of global optima (ngo) and average distance to the nearest optimum

(ado) also fall under the criteria excluding features that require to have a priory knowledge of the

global and local optima. Therefore, they were removed.

Figure 6.9 shows the correlation matrix for the selected fitness landscape features, listed in Table

6.3. The asterisks in a cell indicate the significance level, with no asterisks meaning the correlation

is not considered significant and three asterisks meaning the correlation is considered extremely

significant. Since the correlation matrix is symmetrical, only the cells below the main diagonal

are presented. There were high correlations for the autocorrelation based features: autocorrelation

at step 1 (ac1), autocorrelation at step 10 (ac10), autocorrelation length (al) and autocorrelation

coefficient (acf). The local optima fitness variance (lofv) is also positively correlated with all the

autocorrelation features. The autocorrelation group of features has negative correlations with the

negative slope (nsc) and the neutrality (neu), to a lesser extent with neutrality for the alternative

function (neuf3). Meanwhile, the descent distance (dd) has in general low correlation with the rest

of the features.

For the selection of fitness landscape features, two features were considered as highly correlated

if the correlation value was greater than 0.80. The neutrality for both functions (neu and neuf3),
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Figure 6.9: Pairwise correlation among the reduced set of fitness landscape features

descent distance and negative slope coefficient were selected because they have no correlation grater

than 0.80 with any other feature. From the autocorrelation features, only the autocorrelation

coefficient was selected.

6.2 Instance features

In order to investigate the links between features of the problem instances, their fitness landscape

and the difficulty that such instances can present for our algorithms, it was necessary to establish

a framework for instance description. Since the CBSP instances consist of graphs, a set of graph

metric was chosen from the complex network analysis literature. These metrics include different

aspects of the graphs, like their size, order, connectivity patterns and spectral metrics. The following

metrics were measured over the set of graphs, employing the built-in resources of the NetworkX [45]

library for Python. For multivalued metrics, the average and variance were included.
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• order (n): The number of vertices of the graph.

• size (e): The number of edges of the graph.

• density (den): The density of the graph, measuring how close the number of edges of the

graph is to the maximum number of possible edges for its order.

• node degree (deg and degv): Average and variance of the number of edges for each vertex.

It was normalized by the number of vertices.

• maximal degree (degm): Maximum degree of any vertex, normalized by the number of

vertices.

• endpoints (enp): Number of the edges with degree equal to 1, normalized by the total

number of edges.

• average neighbor degree (avnd and avndv): Average and variance for the degree of the

neighbors of each vertex, normalized as a percentage of n− 1.

• degree centrality (dcen and dcenv): Average and variance of the fraction of vertices

connected to a vertex. Normalized by the maximum possible degree in a simple graph, n− 1,

where n is the number of nodes.

• eccentricity (ecc and eccv): Average and variance of the maximum distance from each

vertex to any other vertex. Normalized by e− 1.

• radius (rad): Minimum eccentricity. Normalized by e− 1.

• diameter (dia): Maximum eccentricity. Normalized by e− 1.

• central vertices (cen): Number of nodes in the center of the graph, which consists of the

nodes with eccentricity equal to the radius. Normalized by the number of vertices n.
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• periphery nodes (pern): Number of nodes in the periphery of the graph, which consists of

the nodes with eccentricity equal to the diameter. Normalized by the number of vertices n.

• node connectivity (ncon): The number of nodes that, if removed, would cause the graph

to become unconnected or trivial. It is equal to the number of disjointed paths in the graph.

The Networkx library [45] calculates this in an approximated way [136].

• clustering coefficient (clc): The average of the clustering coefficients for each vertex. The

clustering coefficient for a vertex is the fraction of possible cycles of length equal to three that

involve that vertex.

• closeness centrality (ccen and ccenv): The clossenes centrality is the reciprocal of the

average shortest distance from a vertex to the rest. The vertices that have a small average

distance to the other vertices are then considered more central. Since it is multivalued, its

average and variance across vertices are included. It is normalized by (n− 1)/(|G| − 1).

• between centrality (bcen and bcenv): For each vertex, it is the fraction of all the shortest

paths among two vertices that pass through it. Average and variance are included. The values

were normalized by 2/((n− 1)(n− 2)).

• spectral radius (srad): Largest magnitude eigenvalue of the normalized Laplacian matrix of

the graph. The Networkx library [45] normalizes the Laplacian matrix as

N = D−1/2(L(D−1/2)) ,

where L is the Laplacian matrix and D is the degree matrix.

• second largest eigenvalue (slev): The second largest magnitude eigenvalue.

• energy (ene): Square sum of the eigenvalues.
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6.2.1 Selection of graph features

For the graph metric selection, it was observed how the features relate to each other in terms of

correlation, similarly to the correlation-based elimination process that was implemented for the fitness

landscape features. Figure 6.10 shows the pairwise correlations between the graph features. Graph

features were considered as highly correlated if the correlation coefficient was over 0.80.
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Figure 6.10: Correlation matrix among the graph metrics.

It was observed that several features focused on connectivity, such as density (den), degree

(deg), maximal degree (mdeg), average neighbor degree (avnd), degree centrality (dcen), closeness
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Table 6.4: Selected graph features and the features correlated to them that were eliminated.
selected feature correlated features selected feature correlated features
n - order e - edges enp - number of endpoints none

ene - energy ecc - eccentricity none
den - density deg - node degree bcen - betweeness centrality

avnd - average neighbor degree bcenv - betweeness centrality
variance

dcen - degree centrality eccv - eccentricity variance none
ncon - node connectivity rad - radius dia - diameter
ccen - closeness centrality cen - central vertices pern - periphery nodes

degv - degree
variance

dcenv - degree centrality variance srad - sprectral radius slev - second largest eigenvalue

ccenv - closeness centrality variance clc - clustering clustering none

centrality (ccen), node connectivity (ncon) are strongly correlated to each other. Among these

features, density (den) was selected because it is the easiest one to calculate. Several features

inherently related were shown to be correlated. For example, the radius (rad) and the diameter

(dia), which are the minimum and maximum eccentricity values. Another example was found in the

number of central nodes (cenn) and periphery nodes (pern), which are the number of nodes with

degree equal to the radius and the diameter, respectively.

Table 6.4 presents a list of selected features altogether with the discarded features that were

correlated to them. In total, ten graph features remained to describe the instance set.

6.3 Analyzing instance features, fitness landscape and

problem difficulty

A challenge that arises when studying the interplay between a group of features is that it results

difficult to obtain, identify and interpret useful information from the raw data, specially if there is a

high number of dimensions. In this work, principal components analysis (PCA) [43] and exploratory

factor analysis (EFA) [41] were employed as methods to extract information from the set of features

previously introduced for fitness landscape, instance characteristics and algorithmic performance.

These techniques help to deal with the high dimensionality issue, by reframing the raw data in
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a new way that expresses the combined variation among features. PCA works by extracting the

eigenvectors of the covariance matrix. The eigenvectors are orthogonal to each other and they are

built to maximize the covered variance across the original dimensions of the data. The importance

of an eigenvector is given by its respective eigenvalue, which represents the amount of total variance

in the data that the eigenvector explains. PCA’s components are the eigenvectors sorted by their

amount of explained variance, with the first being the most important. The first i-th components

covering most of the variance can be employed to reduce the number of considered dimensions

for applications like clustering, classification or data visualization. They are also useful to assist in

defining the number of factors to extract in the exploratory factor analysis, which was its purpose in

this work.

EFA, unlike PCA, distinguishes between the variance specific to a particular feature and the

common variance. In EFA, the specific variances are discarded, considering the common variance

shared across features as the one that is truly descriptive of their underlying relationships. These

underlying relationships are meant to be captured by the extracted factors and their loadings. The

factors can be understood as constructs or synthetic variables capturing latent internal attributes of

the data that explain its variability and structure. The loadings are the correlation values between a

factor and the original data features. These help in identifying which features of the data influenced a

factor, in order to determine which features were involved in these latent internal attributes and their

relationships. EFA can apply rotations in order to analyze the data from a different perspective that

is deemed more suitable and helps to produce simpler results. The simplicity of the results means

that, ideally, factors should have only a few unique significant loadings with the features and mostly

close to zero loadings with the rest of features [64, 129]. Rotations can be orthogonal, suitable for

cases where the factors are likely to be uncorrelated, or oblique, if the factors may be correlated [41].

The data set to analyze consisted of the four fitness landscape features and the ten graph features

that were previously discussed, with 90 observations. The z-score normalization was applied, fitting

the values into the range -1 to 1, with mean equal to zero. This normalization had the purpose of
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(a) Loadings for three main components.
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Figure 6.11: Feature loadings for the three main components and percentage of the variance covered
by each component. Together, the three main components explain 68.34% of the total variance.

adjusting the different magnitudes of the feature vectors into the same scale.

PCA was conducted separately for the traditional evaluation function and the alternative one,

obtaining similar results, since the features only differed in the neutrality values (neu and neuf3).

Figure 6.11 presents the first three principal components obtained from applying PCA to the feature

matrix. It includes the loadings of features over these components, which are the weights representing

how much a feature influences an eigenvector. The two subgroups of instances correspond to the

graphs of size n ≤ 12 that were solved exhaustively, and the larger graphs. In the plot, is possible

to clearly identify the two distinct subgroups occupying differentiated regions. The loadings provide

additional information about the features in regards to their correlation: loading vectors forming

angles of less than 90° can indicate positive correlation, angles closer to 180° denote negative

correlation and angles of around 90° would mean the metrics are uncorrelated.The amount of variance

explained for each component is shown in Figure 6.11(b). Combined, the three principal components
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in Figure 6.11(a) explain 68.34% of the data variance. It was found that with half of the components,

the first seven out of 14, the percentage of explained variance can be raised to 92.52%. From this

result it was decided to extract seven factors in the exploratory factor analysis.

The results of EFA, extracting seven factors are presented in Table 6.5. These results were

achieved using an oblique rotation, not granting that the factors would be uncorrelated. Therefore,

the loadings represent regression coefficients instead of linear correlations. As shown in Table 6.5,

EFA produced similar loadings for the original evaluation function and the alternative one. As for

PCA results, their similarity is due to their respective data matrices differing only in the values of

the neutrality ratio (neu) feature, which were significantly lower for function f3, while correlated to

their counterparts for the CBS function.

Factor F1 is linked to the order of the graph (n) and two fitness landscape features:

autocorrelation coefficient (acf) and negative slope (nsc). Both of the fitness landscape features

capture related aspects to the variation of fitness around a solution after the application of one

operator. Higher values of autocorrelation and negative slope coefficient are related, respectively to

larger gradients and better evolvability. Factor F1 shows that fitness landscape of larger instances

has larger gradients and fitness values that improve gradually, in relation to a particular number of

steps. This suggests that factor F1 may be an indicator of the presence of large attraction basins, the

valleys at the fitness landscapes where the fitness improves towards a local optimum in the bottom of

the valley. The correlation of factor F1 with the RMSE of DMAB+MA can then be an indicator that

such basins can require more effort to escape due to their size and its relationship with the order of

the graph. Therefore, the DMAB+MA may improve its performance if some of its operators, such as

the local search phase o mutation, increased their number of operations over a solution in function

of the graph’s order. It is also relevant to remark that DMAB+MA has better O-RMSE values

than MA-20 (0.015 and 0.1262 respectively), so the comparatively smaller correlation of MA-20 with

factor F1 does not indicate better performance.

Factor F2 is influenced by the spectral radius and the clustering coefficient of the graph. However,
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Table 6.5: Factor loadings with features, the cumulative proportion of variance (cv) explained by
each factor and their correlation with solution quality (RMSE), for MA-20 and DMAB+MA.

CBS f3
feature F1 F2 F3 F4 F5 F6 F7 F1 F2 F3 F4 F5 F6 F7
n 0.99 0.00 0.02 -0.02 -0.01 0.00 0.05 0.99 0.00 0.02 -0.02 -0.01 0.00 0.05
den 0.13 -0.03 -0.13 0.14 0.66 0.60 -0.30 0.13 -0.03 -0.13 0.14 0.66 0.60 -0.30
degv -0.04 0.09 0.16 -0.10 -0.14 0.73 -0.02 -0.04 0.09 0.16 -0.10 -0.14 0.73 -0.02
enp 0.06 -0.07 0.61 0.21 -0.20 -0.10 -0.09 0.06 -0.07 0.61 0.21 -0.20 -0.10 -0.09
ecc -0.14 -0.19 0.02 0.49 0.18 0.16 0.46 -0.14 -0.19 0.02 0.49 0.18 0.16 0.46
eccv -0.01 0.14 -0.06 1.06 -0.15 -0.07 0.04 -0.01 0.14 -0.06 1.06 -0.15 -0.07 0.04
rad 0.19 0.03 0.03 0.09 0.05 -0.16 0.63 0.19 0.03 0.03 0.09 0.05 -0.16 0.63
cenn -0.08 0.13 0.09 -0.20 0.77 -0.14 0.19 -0.08 0.13 0.09 -0.20 0.77 -0.14 0.19
srad 0.01 -0.97 -0.06 -0.13 -0.22 0.18 0.12 0.01 -0.97 -0.06 -0.13 -0.22 0.18 0.12
clc -0.01 0.94 -0.02 -0.02 -0.10 0.38 0.12 -0.01 0.94 -0.02 -0.02 -0.10 0.38 0.12
neu -0.08 -0.03 0.48 -0.03 0.25 0.21 -0.05 -0.08 -0.03 0.48 -0.03 0.25 0.21 -0.05
dd 0.03 0.04 1.01 -0.08 0.03 0.07 0.06 0.03 0.04 1.01 -0.08 0.03 0.07 0.06
acf 1.01 -0.01 0.01 0.00 0.02 0.03 0.04 1.01 -0.01 0.01 0.00 0.02 0.03 0.04
nsc 0.99 0.00 0.02 -0.02 -0.01 0.00 0.05 0.99 0.00 0.02 -0.02 -0.01 0.00 0.05
cv 0.22 0.35 0.47 0.58 0.67 0.76 0.81 0.22 0.35 0.47 0.58 0.67 0.76 0.81
MA-20 0.35 -0.07 -0.15 0.07 -0.09 -0.32 0.65 0.35 -0.07 -0.15 0.07 -0.09 -0.32 0.65
DMAB+MA 0.73 -0.06 -0.10 -0.16 -0.33 -0.27 0.00 0.73 -0.06 -0.10 -0.16 -0.33 -0.27 0.00

it is not affected by fitness landscape features and it does not correlate to the algorithm’s performance.

Because of this, it can be regarded as a problem independent relationship between graph features,

with no evidence of it having a significant role in problem difficulty.

Factor F3 is influenced by the number of endpoints (enp), the neutrality ratio (neu and neuf3)

and the descent distance (dd). The loadings are similar, regardless of the fitness function, showing

that it relates to the rest of features in the same way. Endpoint vertices have the smallest worst case

contribution to CBS, even if they are placed the farthest from their neighbors, they can contribute

only with a cyclic distance of value n/2. This may result in fewer cases where applying the 2-swap

operator causes larger, more abrupt fitness variations, perhaps even neutral ones. Factor F3 seems

to indicate that instances presenting a larger number of vertices with degree equal to 1 may be a

little easier for MA-20, while the intermittent local search may be suitable to jump ahead in the

search, if the descent distance is large. Observing also the relationship of factor F1 with the descent

distance and neutrality, it could be interpreted as an indicator of the size of plateaus. If this was the

case, it would explain the smaller correlation of DMAB+MA performance with factor F3, since this

algorithm has the alternative fitness function available, being better equipped to deal with neutrality.
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However, an actual estimation of the size of plateaus would be necessary to confirm this.

Similarly to factor F2, factors F4 and F5 also reflect mostly relationships between graph features.

Factor F4 captures the average eccentricity and its variance, implying it is more likely that the

eccentricity across vertices varies more when the average is larger. Factor F5 is influenced by

the graph density and closeness centrality, which suggest denser graphs have more vertices with

eccentricity equal to the radius (minimum eccentricity), which makes sense, since a higher density

would mean the graph has more edges and therefore, more paths available among vertices. Factor

F6 is linked to the density and the variation on the degree of vertices. The correlation with MA-20

and DMAB+MA indicates that instances with these characteristics may make an instance easier.

The average eccentricity (ecc) and radius (rad) are the features influencing factor F7. These

features are linked: the radius is the minimum eccentricity value for any vertex. The factor

seems to capture the occurrence of high eccentricity, and according to its correlation with MA-

20’s performance, this algorithm has more difficulties dealing with problem instances with this

characteristic. Meanwhile, the DMAB+MA shows zero correlation with factor F7, supporting the

claim that is indeed less susceptible than MA-20 to characteristics of the graph, beyond the order.

6.4 MA-20 and DMAB+MA analysis through search

trajectory networks

The search trajectory networks (STN) [89] are models for analyzing and comparing the behavior of

metaheuristic algorithms over the fitness landscape of a problem. These models were employed in

the CBSP research to further examine the differences in behavior between MA-20 and DMAB+MA

and how face the challenges presented by the problem itself.

The STN models provide a framework for the visualization and comparative analysis of the search

dynamics present in metaheuristic algorithms. The main idea behind this is to create a map of the

journey of a metaheuristic algorithm through the explored regions in the search space. Such a map
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is built from recording the solutions that were the best-found at a given iteration, which provide

a snapshot of how the search was being conducted, hence they are called representative solutions.

When creating a STN model, the search space is divided into locations, each of them containing at

least one representative solution. The search trajectories are the sequence of transitions performed

by the algorithm between these locations. An STN is a representation of the search trajectories as

a directed weighted graph, that is then analyzed, by employing network metrics, in order to extract

relevant information about the underlying structure of a fitness landscape and how the algorithms

navigate through it.

The STN derive from the local optima networks (LON) [90], a related fitness landscape analysis

technique focused in the study of the transitions among local optima. While LON are usually built

from samples of local optima obtained by local search algorithms, such as ILS, the STN do not

require the representative solutions to be locally optimal. Hence, the STN are suitable for analyzing

the behavior of a wider variety of metaheuristic algorithms.

Formally, given a metaheuristic algorithm M , an STN is built as a weighed, directed graph

STNM(VM , EM) where:

• VM is the set of locations visited by the algorithm.

• EM is the set of directed edges, such that two nodes a, b ∈ VM are adjacent if the algorithm

M performed a transition between solutions in the respective locations. The weight of the

edge represents the number of times the transition from a to b occurred.

Similarly to LON [13], the STN models for the same problem instance can be merged in order

to compare the search dynamics of two metaheuristics. The merged STN for two metaheuristic

algorithms Mi and Mj is the union of the STN graphs STNMi
and STNMj

as STNMi,Mj
=

(VMi

⋃
VMj

, EMi

⋃
EMj

).

The search trajectories of an algorithm are sampled by recording the representative solutions

visited by an algorithm during several independent executions for a problem instance. The frequency
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of the recording is controlled by a parameter.

6.4.1 Search space partitioning into locations

An important step for modeling the search trajectory samples into a network of locations that mets the

definitions of nodes, edges and weights of the STN, is to have a mapping between single solutions

in the sample and locations. While unique solutions can easily be mapped to unique locations,

partitioning the search space in locations of larger size has several advantages. It improves the

readability of the STN visualization, it allows to identify search regions with common characteristics

and global tendencies in the search dynamics. The partitioning aspect of the STN modeling process

implies that if an algorithm visits one location, it is likely to be able to reach the best solution

in the location. Therefore, the partitioning definition must employ a notion of closeness between

solutions. For example, for continuous optimization problems, a partitioning of the search space into

hypercubes of regular size was induced by adjusting the precision of the solution encoding [89].

To apply the STN modeling for the CBSP, which has a combinatorial search space, we proposed

the use of multidimensional scaling as the partitioning method that would define which solutions

can be grouped into the same location. The multidimensional scaling is a dimensionality reduction

technique that has been employed by several authors to visualize the distribution of solutions and

to analyze the cartography of search spaces [66, 98]. In these works, the multidimensional scaling

was employed to transform groups of solutions from their original n-dimensional representation to

the Euclidean space. Within the transformation process, the distortion of pairwise distances among

solutions is minimized, preserving the notion of which solutions are close to each other. Classical

multidimensional scaling was applied to merged samples of solutions, which contain the solutions

visited by the two algorithms along all runs for the same instance. This ensures that a solution that

was visited by different algorithms, or in different runs, gets assigned the same three values in the

reduced dimensions and can then be identify as the same solution during the creation of the STN.

The pairwise distances were evaluated by employing once again, the interchange distance.
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The location mapping definition for the STN was that two solutions belong to the same location

if, after the multidimensional scaling, the integer parts of their three dimensions are equal. The

distance preservation happening within the classical multidimensional scaling process ensures that

solutions in a location are close to each other.

(a) can144. (b) path200.

Figure 6.12: Sampled solutions mapped to the Euclidean 3D space by applying multidimensional
scaling. Better fitness values (smaller CBS) are colored in dark violet.

Figure 6.12 exemplifies the results obtained by the modeling and partitioning steps, based on

multidimensional scaling, for two instances, can144 and path200. The fitness of each point in

these plots corresponds to the average of the fitness values for all the solutions that share the same

Euclidean position. A color map is used to represent with dark violet, solutions with small (better)

fitness values, and with light yellow tones those having large fitness costs. This kind of visualization,

previously used in [66, 98], is useful to reveal the fitness variations around specific known solutions,

such as the best-found. However, they lack the trajectory component to reveal how the transitions

among solutions occurred through the search process.

For instance, in Figure 6.12(b) there is clearly different zones of the search space which

concentrate reduced groups of solutions with small fitness values (dark violet points, at the right),

while there is a cluster of yellow points (i.e., large fitness cost points, at the left) surrounded by
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medium fitness cost points. The former represent a zone of the search space less frequently visited

by the algorithm, while the latter one seems to be a more accessible region for the algorithms.

From these plots, nonetheless, it is not possible to identify if the analyzed algorithm has followed

a particular search trajectory connecting these two distant zones of the space. As we will see the

STNs, presented next, represent a better alternative visualization that overcomes this drawback.

6.4.2 Metrics for analyzing search trajectory networks

As previously mentioned, in addition to the visual representation of the resulting STN model, its

characteristics are quantified by examining it with a series of network metrics that help to summarize

the main aspects of its structure, as well as to compare the portions of merged STN belonging to

different metaheuristics. The network metrics employed in the STN analysis are the following.

• nodes: Number of nodes

• edges: Number of edges

• end nodes: Number of unique nodes without any edge going out from them. They represent

the end of a search trajectory.

• best nodes: Number of unique nodes with a fitness equal to the best-found during the search

trajectory.

• in-strength: Ratio between the sum of weighted incoming degree for best nodes and the sum

of weighted incoming degrees for all end nodes.

• shared nodes: Number of nodes visited by more than one algorithm.

• visited nodes (v. nodes): Number of nodes visited by algorithm Ai.

• shortest path length (s. path): Length of the shortest path to the best node visited by

algorithm Ai.
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• number of shortest paths (n. paths): Number of shortest paths to the closest best node

visited by algorithm Ai.

The STN were plotted in R by employing the igraph package [24] and the force-directed layout

algorithms Kamada-Kawai [63] and Fruchterman-Reinold [36]. Both layout algorithms try to create

displays of the network that have:

• a roughly even distribution of vertices

• minimized crossings of edges

• approximately uniform length edges

• preservation of inherent symmetries, in such a way that similar subnetworks are depicted

similarly as well.

6.4.3 Search trajectory networks results

The STN presented in this section were created by recording the best-found solution at a given

iteration of the DMAB+MA and MA-20 algorithms, with a sample frequency of 5n. The algorithms

were run by 50,000 generations, with 10 runs per instance, which is a commonly standard number of

runs for this type of technique [89, 91]. Previously generated information about the best CBS value

that each algorithm was able to produce for each instance was employed to end their execution at

the point where that cost is reached for the first time. Since the size of the graphs was a challenge

for the partitioning method, the instances were 24 graphs of various topologies, with order 24 ≤ 200

and edges 68 ≤ e ≤ 2000. This challenge is further discussed ahead.

Table 6.6 shows algorithm specific results of the STN analysis for the reduced group of instances.

It presents the instance name, its order, size and the value of the optimum/best-known solution.

The rest of the columns describe the portion of the merged STN belonging to each of the algorithms

using the STN metrics previously described: the number of nodes, length of the shortest path to



6. The fitness landscape of the CBSP 147

Table 6.6: STN metrics produced by MA-20 and DMAB+MA algorithms over the complete set of
selected instances.

Problem instance DMAB+MA MA-20
name |V | |E| opt/b-k v. nodes s. path n. paths v. nodes s. path n. paths
path100 100 99 99 304 11 9 376 6 9
path200 200 199 199 378 19 10 214 11 8
cycle100 100 100 100 343 3 10 363 15 10
cycle200 200 200 200 260 8 10 218 8 8
wheel100 100 198 2600 60 2 31 383 1 24
wheel200 200 398 10200 101 5 21 223 2 11
p9p9 81 144 516 89 0 88 263 1 88
c9c9 81 162 873 231 1 110 291 1 110
k9k9 81 648 8280 135 0 104 179 2 82
p9c9 81 153 745 82 1 112 223 0 80
p9k9 81 396 1728 561 3 101 141 2 91
c9k9 81 405 1809 252 1 126 117 0 109
cyclePow100-2 100 200 300 266 2 10 303 2 10
cyclePow100-10 100 1000 5500 32 2 9 103 0 8
cyclePow200-2 200 400 600 239 1 10 226 1 9
cyclePow200-10 200 2000 11000 34 2 9 114 1 9
can24 24 68 182 37 3 18 57 0 12
ibm32 32 90 405 78 1 82 217 0 73
curtis54 54 124 411 535 2 80 256 1 80
will57 57 127 335 393 0 90 222 2 90
ash85 85 219 913 280 2 54 304 1 54
nos4 100 247 1031 56 0 30 69 0 24
can144 144 576 1776 332 3 92 214 4 42
average 220.78 3.13 52.87 220.70 2.65 45.26

Table 6.7: Structural metrics for merged STN produced over the complete set of selected instances.
Instance nodes edges shared nodes (%) best nodes end nodes in-strength best in-strength end
path100 654 706 26 (3.98) 1 9 0.524 0.476
path200 571 606 21 (3.68) 1 13 0.318 0.682
cycle100 683 739 23 (3.37) 1 9 0.550 0.450
cycle200 456 483 22 (4.82) 1 13 0.350 0.650
wheel100 429 432 14 (3.26) 11 9 0.550 0.450
wheel200 308 314 16 (5.19) 7 11 0.429 0.571
cyclePow100-2 551 578 18 (3.27) 1 10 0.476 0.524
cyclePow100-10 124 135 11 (8.87) 1 3 0.850 0.150
cyclePow200-2 448 461 17 (3.79) 1 12 0.400 0.600
cyclePow200-10 137 142 11 (8.03) 1 6 0.700 0.300
p9p9 303 450 49 (16.17) 11 9 0.588 0.412
c9c9 466 589 56 (12.02) 11 9 0.556 0.444
k9k9 295 315 19 (6.44) 14 6 0.704 0.296
p9c9 280 322 25 (8.93) 13 6 0.679 0.321
p9k9 653 851 49 (7.50) 11 9 0.351 0.649
c9k9 338 392 31 (9.17) 15 3 0.828 0.172
can24 83 80 11 (13.25) 15 2 0.900 0.100
ibm32 269 496 26 (9.67) 10 9 0.404 0.596
curtis54 646 1708 145 (22.45) 8 12 0.159 0.841
will57 529 1049 86 (16.26) 9 10 0.294 0.706
ash85 493 974 91 (18.46) 6 13 0.395 0.605
nos4 114 109 11 (9.65) 18 2 0.905 0.095
can144 520 551 26 (5.00) 11 9 0.500 0.500
average 406.52 542.70 34.96 (8.60) 7.74 8.43 0.540 0.460
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the closest end node (s. path) and the number of paths of such length (n. paths). Shortest paths

of length zero correspond to cases where the initial solution and the final one solution were close

enough to be mapped into the same location by the search space partitioning method. These type

of transitions would be represented as loops, however, for the sake of a clearer STN visualization,

loop edges are excluded.

The structural metrics for the merged STN are introduced in Table 6.7. It includes the number

of nodes and edges of the STN, the number of shared nodes, best nodes and end nodes. The

strength for end nodes is marked in bold when it is equal or larger than the in-strength for best

nodes. This can be considered as a difficulty indicator, since it implies that the search trajectories

could be diverted to locations of inferior quality.

Figures 6.13 and 6.14 present a comparison of the merged STN before and after applying the

partitioning method, for instances p9p9, path200, can144 and ibm32. Before the partitioning, the

STN locations contain only one single solution each. In most of the occasions, the absence of a search

space partitioning method results in disjointed search trajectories that do not revisit locations. After

using the multidimensional scaling to partition the search space, solutions close to each other were

mapped into the same location, allowing to reveal the distinct patterns of visit of both algorithms

around certain regions. Often, the DMAB+MA can be observed to avoid areas where MA-20 revisited

constantly, as in Figures 6.13(b) and 6.14(d).

The STN of Figure 6.13(b) has three densely connected subgraphs that contain the largest

nodes of the network, denoting locations that were visited several times by MA-20. There is only

one path going out of each of these subgraphs, suggesting it is very difficult for MA-20 to abandon

the locations in those regions of the search space, probably due to the presence of local optima

with large attraction basins. The STN has shared nodes, visited by both algorithms, that are part

of incoming paths towards those subrgaphs, but when DMAB+MA visited them, it took a different

path than MA-20, which eventually lead to best nodes. In the central area of the STN there are

best nodes with outgoing edges towards other nodes, meaning that the algorithm visited a location
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Start End Global DMAB+MA MA Shared

(a) STN for instance ibm32, without
partitioning.

(b) STN for instance ibm32, after
partitioning.

(c) STN for instance can144, without
partitioning.

(d) STN for instance can144, after
partitioning.

Figure 6.13: STN before and after applying partitioning for two representative instances: ibm32 and
can144.
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Start End Global DMAB+MA MA Shared

(a) STN for instance p9c9, without
partitioning.

(b) STN for instance p9c9, after partitioning.

(c) STN for instance path200, without
partitioning.

(d) STN for instance path200, after
partitioning.

Figure 6.14: STN before and after applying partitioning for two representative instances: p9c9 and
path200.
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that contains a solutions with the best-known cost. However, despite being close to that solution,

it did not found it. Most of this cases, also observed in the STN in Figure 6.14(b), correspond to

MA-20, while in cases corresponding to DMAB+MA, the paths it took eventually lead to a different

best node.

In the STN for instance can144, shown in Figure 6.13(d) there are some shared nodes, but the

two algorithms take distinct paths out of these nodes, with only DMAB+MA eventually reaching best

nodes. The STN subgraph for MA-20 has fewer nodes and its search trajectories are shorter, rarely

ending in best nodes, showing that the best-found solution was visited early in the search. Another

relevant observation is that the end nodes and best nodes seem to be distributed in different search

space regions and that does not seem to be close to each other.

For instance path200, the STN contains only one best node, even before the partitioning process,

corresponding to the location of a known optimum. Only seven of the DMAB+MA executions were

able to converge towards this optimum. The post-partitioning STN shows that the trajectories of

MA-20 and one of the DMAB-MA trajectories that did not reached the optimum have several cycles,

suggesting hard to escape regions.

The STN analysis revealed that the search space for most of the CBSP considered instances

contains multiple optimal/best-known solutions that are sparsely distributed across the fitness

landscape. It also helped to identify that certain regions traversed by both studied algorithms

are close to high quality areas, but it is usual that only the DMAB+MA has the ability to reach

them, while the MA instead gets to worse quality end nodes. The evidence from this study helps to

demonstrate that DMAB+MA is more efficient for conducting the search process, as observed in its

shorter trajectories, avoidance of areas where MA-20 gets trapped, shorter, often more numerous,

paths to the optimal/best-known and number of hits.

From the STN analysis, it is possible to infer information about the fitness landscape of the

different instance topologies and their difficult. Instances from the path, cycle and power of cycle

topologies had STN with single best nodes. Since the optimum is known for these topologies,
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those nodes are known to be locations containing optimal solutions. The in-strength metric for the

best nodes can be an indicator of how hard is to reach the best solutions. For the path and cycle

topologies, the in-strength for the best nodes becomes smaller for the larger instances. This suggest

that the fitness landscape for those topologies has very few optimums. Meanwhile, for the power

of cycle graphs, the in-strengh of best nodes is higher than that of the end nodes, and it increases

for instances with more edges. For this reason, the path and cycle topologies could be considered

harder. Something similar was observed for the wheel topology, showing higher in-strength of the

best nodes as the number of edges grew, as well as a larger number of best nodes and more paths

towards them.

Table 6.7 shows that several Cartesian product graphs (p9p9, c9c9, k9k9, p9c9, p9k9, and c9k9)

have a higher percentage of shared nodes, which could hint at the presence of fitness landscape

structures that conduct to high quality areas. The Cartesian products also had some of the highest

numbers of best nodes, which were easier to reach by many paths leading to them, and consequently

fewer end nodes. Something similar was observed on some of the Harwell-Boeing graphs, such as

can24 and nos4. However, this subset is more heterogeneous, consisting of disperse matrices from

problems in diverse engineering areas. Because of this reason, they vary more, with instances like

curtis54 and will57 with very small in-strength for best nodes, or can144, with equal in-strength for

best nodes and end nodes.

6.5 Conclusions

This chapter explored three main aspects: the impact of the proposed alternative evaluation function

on the fitness landscape of the problem, the relationship of fitness landscape features with instance

characteristics and problem difficulty, and the search dynamics of MA-20 and DMAB+MA and what

can they reveal about the challenges of the problem. For the first aspect, the fitness landscape was

analyzed for both functions. The second aspect was addressed by studying the interplay between a
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group of selected fitness landscape features, graph metrics and the O-RMSE values with exploratory

factor analysis. Finally, the third aspect consisted in modeling the search patterns of the algorithms

as search trajectory networks to examine and compare them.

The results of the fitness landscape analysis shown that the alternative evaluation function

significantly reduces the neutrality and the number of local optima, leading to larger descent distances

in the ILS algorithm that ended in lower cost solutions. The overall cost of the local optima was

also improved. While the number of global optima was reduced as well for several of the considered

instances, this reduction was not proven significant. Meanwhile, the autocorrelation analysis did not

demonstrate a significant variation between the decay in the correlation for solutions along random

walks for the functions. The correlation between distance to the nearest global optimum, however,

showed FDC values theoretically associated with more deceptiveness for function f3. This was

attributed to the reduced set of global optima causing the distances to the nearest one to become

larger. The evolvability was analyzed with fitness clouds and the negative slope coefficient calculated

from them. The results did not showed significant differences between the two functions. It was

therefore concluded that, besides the neutrality reduction, and the marginal increase in the descent

distances, most of the other aspects of the fitness landscape remain, overall, undisturbed by the

alternative evaluation function.

Before the application of the exploratory factor analysis, the set of fitness landscape features,

initially consisting of observations for both functions, was reduced with base in three criteria: their

significant difference, correlation and practicability. Fitness landscape features that were not proven

to have different values for function f3 were represented only with their values for the original

evaluation function, which can be assumed to be representative enough for both. The fitness

landscape features that required a priory knowledge of the set of global optima were discarded.

A correlation analysis between the remaining fitness landscape features showed that they relate to

each other in the same way for both evaluation functions. After identifying highly correlated features,

four fitness landscape features were selected: neutrality ratio (for both functions), autocorrelation
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coefficient, descent distance and negative slope coefficient. The graph metrics were also subject

to an elimination process based on correlation, keeping 10 out of the initial 26. Together with the

fitness landscape features, this resulted in 14 features.

Principal component analysis was employed for assessing the number of factors to extract with

exploratory factor analysis. The number of factors was set to seven. The factors that resulted

the most interesting, given their correlation with problem difficulty, were factors F1, F3 and F7.

Factor F1 had large loadings for the order of the graph, the autocorrelation coefficient and descent

distance. It was also the one that correlated the most with problem difficulty, expressed as the

algorithm performance of MA-20 ad DMAB+MA in terms of RMSE values. Since it suggested large

gradients that improve steadily, it was conjectured that it may be associated with the size of the

attraction basins, which would be larger and harder to escape, for larger instances. The correlation

with algorithms seems to support this. Factor F3 was influenced by neutrality ratio and number

of endpoints. It had small correlation with the performance of algorithms, specially in the case of

DMAB+MA. If this factor expresses the size of plateaus, this would explain its smaller correlation with

DMAB+MA performance, since this algorithm has function f3 available. Factor F7 seems to suggest

that graphs with higher eccentricity result more difficult to MA-20, while DMAB+MA performance

appeared uncorrelated to this factor. The remaining factors, F2, F4, F5 and F6 were observed

to reflect relationships between graph metrics, with few relation to the algorithm’s performance or

fitness landscape features.

The final part of the chapter focused on modeling and analyzing search trajectory networks for

DMAB+MA and MA-20. A new search space partitioning technique, based in multidimensional

scaling, was developed in order to create better STN models that reveal more information about

the search space regions each algorithm visited. The STN analysis created a visual representation

of search dynamics, where it was possible to observe how DMAB+MA avoids areas where MA-20

is trapped. Such areas are likely to contain multiple local optima with large attraction basins. The

STN provided a visual way to determine if best-known solutions/optimums are grouped together
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or disperse, finding this depends on the instance. The strength of the best nodes served as an

indicator of instance difficulty, On average, the DMAB+MA had trajectories that ended more often

in the best-known/optimal solutions and more paths conducting towards them. The proposal of

the multidimensional scaling as a method to grouping several solution into locations is also a

contribution to the development of the STN technique and its application for problems with discrete

and combinatorial search spaces.

The next chapter presents an exact approach for solving the CBSP in relatively small instances,

by modeling it as a constraint programming problem. The initial model was iteratively refined by

employing information about the value of the optimum for the different instance topologies and the

introduction of suitable priorities for the exploration. The final refined model is then compared with

a branch and bound algorithm that was developed specially for the CBSP, as part of this work.
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A constraint programming model for the CBSP

There are several factors that influence the election between exact and approximated methods as

the chosen alternative to deal with an optimization problem. Additionally to the problem itself,

these factors can include the instance size, the resources available, such as time and computational

processing power, and even the purpose of a given application. The approximated methods, among

which figure the heuristics, metaheuristics and hyperheuristics, represent a compromise between the

amount of resources invested and the quality of the solution. While the solutions produced by

approximated methods can not be guaranteed as optimal, they are often considered as good enough

solutions, making the use of approximated methods a very practical approach, particularly for large

instances of a problem and non critical applications. The exact methods, instead, can guarantee that

the solution produced is optimal, but the resources they require to verify this are considerable more

demanding than the ones of an approximated method, because they rely on the implicit enumeration

of the search space. For this reason, in general, they are not practicable for problem instances of

any size. In the adequate conditions, however, the exact methods can result in effective approaches

157
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to produce optimal results. In this work, the development of an exact method was explored with

purposes that include obtaining the optimal solutions themselves, but also extend further beyond.

An assessment of how the exact methods perform and which sizes and types of instances can be

managed within a certain time budget is another step in the study of the CBSP difficulty in relation

with solution approaches. The values of the optimal solutions also serve as a reference to compare

with theoretical bounds and estimate how wide the gap between these values can be. This chapter

presents a study on the use of constraint programming [94] on relatively small instances of the

problem, with n ≤ 40.

Section 7.1 presents an brief overview of the constraint programming approach. An initial model

and its refinements are described in Section 7.2. The B&B implementation and the comparison of

its performance with the final CP model are presented in Section 7.4. Finally, Section ?? summarizes

the conclusions and further work.

7.1 Constraint programming

The constraint programming (CP) paradigm is an effective alternative to solve satisfiability and

optimization problems, particularly combinatorial ones. It is based on a declarative approach, where

the features of a problem and the conditions it solutions must met are described, as opposed to

specifying the steps for creating the solutions. This descriptive stating of the problem is refereed as

a CP model, consisting of the decision variables involved, their domains and the constraints among

them. A CP solver program produces solutions that met the specifications of the model by selectively

exploring the search space, i.e., all the different ways the decision variables can be assigned. Solvers

are usually part of a larger software suite that provides also other tools for CP implementation,

including modeling languages, compilers and profilers. Internally, a solver explores the search space

by using search trees, constraint propagation and backtracking with aid from techniques of areas like

artificial intelligence, mathematical programming, and operational research.
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The constraint propagation is the distinctive key process in constraint programming. Through

constraint propagation, the values whose assignation to a variable would break a constraint are

eliminated from its domain and this information is employed to try eliminating values from the

domains of the other variables involved in the same constraint [130]. The recursive process of

constraint propagation has been abstractedly described as a network [94], where nodes represent

decision variables. The nodes are labeled with the variable’s domain values and variables involved

in the same constraint have their nodes connected by an hyperedge. If the assignation of a value

to a variable breaks a constraint, the solver’s internal CP algorithm removes that value from the

domain, which would modify the label of the node corresponding to that variable. The modification

triggers a process where other hyperedges incident to the node are inspected, in order to determine

how the change in a variable’s domain may have affected the other constraints involving it. This can

cause further modifications in the labels of other nodes, and it ends if all modifications have been

processed or an empty label has been obtained.

7.2 Modeling the CBSP

A relevant aspect of the modeling process is to determine how the characteristic’s of the problem

in question are translated into constraints. There are different ways on which a constraint can be

expressed, and these variations can affect how the model performs. For this reason, the modeling is

often an iterative process, where additional constraints can be added or modified. Another way for

trying to improve a model’s performance through refinement is to vary the search strategy, which

defines the order for assigning variables and exploring their domains. Along this section, an initial

CP model for the CBSP is described and iteratively refined by adding new constraints based on the

instance topologies, and the cost relationship between the CBS the bandwidth sum (BS).
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7.2.1 An initial CBSP model

The initial model is quite simple. It states that the solutions must be bijective mapings between

guest nodes and host nodes, how cyclic distances are measured and the problem’s objective function.

In the initial model and its subsequent refinements, only the CBSP traditional evaluation function

was employed.

7.2.1.1 Data representation

The required input data consisted of finite, simple, undirected graphs. Each graph is represented in

a standard format, with the .dzn extension for input files in Minizinc [86]. The input data specifies:

• the number of vertices n

• the number of edges e

• a 2-D array E(1..e, 1..2) symbolizing the list of edges, where E(i, 1) and E(i, 2) are the

endpoints of the i-th edge.

Further refined versions of the model require some additional data that is introduced in the

corresponding sections.

7.2.1.2 Variables

The decision variables of the model are the labels assigned to each vertex, which represent an

embedding as the series of associations between guest vertices V and host vertices V ′.

• g(1..n) is an array of the labels assigned to vertices, where g(i)′ is the label mapping guest

vertex i ∈ V to host vertex g(i) ∈ V ′.
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7.2.1.3 Constraints

In the CBSP, the embeddings are bijective mappings between guest and host vertex sets. In order to

capture this relationship, it is necessary to express that there must be a unique host vertex for each

guest vertex, and vice versa.

• To each unique guest vertex corresponds one unique host vertex as label.

∀i, j ∈ [1..n] |i < j g(i) 6= g(j) (7.1)

This constraint would be equal to a series of pairwise conjunctions stating that no pair of

vertices can have the same label, in the form g(1) 6= g(2) ∧ g(1) 6= g(3) ∧ · · · ∧ g(1) 6=

g(n) ∧ · · · ∧ g(n− 1) 6= g(n).

Large conjunctions like this can be costly to compute and the process of implementing them in

an efficient way can be demanding. Moreover, the efficiency of a particular implementation can

be tied to a specific solver. For these reasons, modern modeling languages and solvers usually

implement instead global constraints as customized efficient algorithms based on inferences.

Global constraints are concise ways to express relationships among several variables, such

as constraint (7.1), thus improving performance and simplifying the modeling process. In

terms of representation, despite the semantic redundancy they add to models (as they can be

decomposed into simpler constraints), they provide a higher level of abstraction, facilitating

modeling. In terms of reasoning, global constraints provide a better structure to the problem,

allowing the filtering algorithms to be much more specialized and efficient [Beldiceanu].

In all the models, the well-known global constraint alldifferent, stating that all elements in

an array must be pairwise distinct, is used instead of constraint (7.1).

alldifferent(g) (7.2)
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7.2.1.4 Objective function

The cost of a solution is given by the sum of cyclic distances.

cbs =
e∑
i=1

distance(i) (7.3)

where distance(1..e) is an array of cyclic distances; and distance(i) represents the cyclic distance

associated to edge i. Each cyclic distance can have a value between 1 and dmax = bn/2c.

Cyclic distances for each edge of G are equal to the length of the shortest path between two

adjacent vertices of the guest graph embedded in the host graph.

∀i ∈ [1..e] distance(i) = min [n− g(E(i, 1)), |n− g(E(i, 2))|] (7.4)

The goal of the CBSP is to find the lowest cost embedding, therefore the objective function for

the model is:

• minimize the sum of cyclic distances

minimize(cbs) (7.5)

The first CBSP model, called M0, is defined by the previously described variables, as well as the

conjunction of the constraints and the objective function.

M0 = (7.2) ∧ (7.5)

7.2.2 Breaking cyclic symmetries

Since the problem consists in embedding a graph into a cyclic topology, there are label assignations

that result in isomorphic embeddings under rotation and mirror symmetries. In order to remove
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those solutions from the search space, two additional constraints were added to the basic model M0.

These new constraints ensure that only the first apparition in lexicographical order of the isomorphic

embeddings is computed.

• The first vertex must be associated to the first label, thus eliminating the rotation symmetry.

g(1) = 1 (7.6)

• The label of the second vertex must be lower than the label of the last, thus eliminating the

mirror symmetry.

g(2) < g(n) (7.7)

The first refined model, M1, results from adding the symmetry breaking constraints to the initial

model, thus: M1 = M0 ∧ (7.6) ∧ (7.7).

7.2.3 Adding upper and lower bounds

When solving optimization problems using CP, the inclusion of cost bounds can improve the

performance by helping to discard suboptimal solutions with cost outside the bounds. Previous

results from the CBSP literature, presented in Section 2.3.1, include formulas for obtaining the exact

value of the optimum or bounding it in function of the graph topology. These results were employed

to implement new constraints for the cost of solutions. The data representation previously introduced

was modified to include two new input variables:

• ub, the value of the CBS upper bound

• lb, the value of the CBS lower bound

In the case of graph topologies for which there are exact formulas to calculate the value of the

optimum, both ub and lb got assigned that value. This includes the path, cycle, wheel and power
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of cycle topologies. If the value of the optimum can not be calculated in an exact way, the value

of ub was calculated according to topology specific upper bound formulas, in the case where those

exist, or the topology independent upper bound formula, otherwise. The first case corresponds to

the Cartesian product topologies, while the later applies to the rest of the graphs: Harwell-Boeing,

random graphs, Möbius ladder and triangulated meshes. Meanwhile, the value of lb was set as e+ 1

for all topologies.

The following are the constraints related to the lower and upper bounds. Notice that in the case

where the exact value of the optimum is known, then ub = lb and the constraints still hold.

cbs ≥ lb (7.8)

cbs ≤ ub (7.9)

Model M2 results from adding the upper and lower bound constraints to model M1, therefore

M2 = M1 ∧ (7.8) ∧ (7.9).

A constraint related to a lower bound for the CBS in relation to the BS was added in a further

refined model. Recall the BSP [115] is a GEP similar to the CBSP, with the difference that the

topology of the host graph is a path instead of a cycle. There is a bounded relationship between the

value of the optimum of both problems [18], given by the expression:

BS

2
≤ CBS ≤ BS (7.10)

Equation 7.11 is a topology independent lower bound for the BS [6].

BS ≥ (a+ 1)e− a2(2n− a− 1)

2
(7.11)

where a = 1/3(2n− 1−
√

(2n− 1)2 − 6e).
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Based on equation 7.11, the following lower bound constraint was added to the model, resulting

in model M3 = M2 ∧ (7.12)

cbs ≥
(
(a+ 1)e− a2(2n−a−1)

2

)
2

(7.12)

7.3 Experimental results

The first assessment of the models compares the initial model M0 and the incremental refinements

to introduce symmetry breaking constraints in model M1, lower and upper bounds in model M2 and

the additional lower bound related to the BSP in modelM3. For these experiments, the models were

compiled with Minizinc 2.4.3 [86] and solved using integer search with the default built-in solver

Gecode 6.1.1 [119]. For each execution, the time limit was 1 hour (3,600 seconds). The default

strategy to assign values to decision variables was to choose the variable with the smallest domain

size (first_fail), and then try to assign first the minimum value in the domain (indomain-min).

The instance set for the experiments in this chapter includes topology diverse graphs that have

n ≤ 40 vertices. The graphs are divided into the following subgroups, accordingly to the available

knowledge about the value of the optimum.

• topology-specific optimum. It includes graphs for which the optimal value can be

easily calculated (see Section 2.3.1.2). The topologies are paths, cycles, wheels, complete

bipartites and k-th powers of cycle. For each topology, there are graphs of order n ∈

{10, 15, 20, 25, 30, 40}. In the case of the complete bipartite graphs, the vertices were

distributed in two subsets of bn/2c and dn/2e vertices each. The graphs from the power

of cycle topology were built with powers k ∈ {2, 3}.

• topology-specific upper bound. This group contains the Cartesian products of two graphs

that belong to the path, cycle or complete topologies. While the value of the optimum is

unknown, there are upper bounds reported for each of the resulting Cartesian products (see
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Section 2.3.1.3). The experiments considered the Cartesian product of graphs Gn1×Gn2, with

3 ≤ n1, n2 ≤ 8, n1 ≥ n2 and n1(n2) = n ≤ 40.

• topology-independent upper bound. This is the most heterogeneous of the subgroups.

For these graphs, the CBS topology-independent upper bound formula was employed as

reference. The topologies included in this subgroup are Möbius ladder, triangulated

triangles, random graphs, and Harwell-Boeing. The Mobious ladder graphs had order

n ∈ {12, 14, 16, 20, 24, 30, 40}. All the triangulated triangles with 3 ≤ n ≤ 40 vertices

were included, resulting in graphs of order n ∈ {10, 15, 21, 28, 36}. The random graphs

had order n ∈ {10, 15, 20, 25, 30, 40}, with a probability of connection between vertices of

p ∈ {0.5, 0.7, 0.9}. There are few graphs in the Harwell-Boeing collection that met the criterion

of having n ≤ 40 vertices. Because of this, the HB graphs in the experiments were only jgl009,

can24, pores1, ibm32 and bcspwr01 with 9, 24, 30, 32 and 39 vertices, respectively.

7.3.1 Comparison for the initial model and the refined versions

This section presents a topology based analysis of the largest graphs that the models were able to

solve within the time budget. This is an indicator of how challenging the different topologies can

result for the models. In this analysis, the theoretical upper and lower bounds were used to evaluate

the ability of the model to achieve solutions within these bounds and to finish the execution before

the set time budget was spent. Otherwise, even if the reported solution was indeed optimal, it could

not be recognized as such and the graph was not considered as properly solved by the model.

Tables 7.1 and 7.2 show the results for the initial model and the three incrementally refined

versions of it. The instances in Table 7.1 belong to the first of the subgroups of instances previously

introduced, the graphs for which the value of the optimum is calculated by topology-specific formulas.

The other two subgroups, for which this is not the case, are presented in Table 7.2. For briefness, only

the instances that were actually solved by at least one of the models are included in this comparison.
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For each instance, their order n, size e, density (den), optimal value or lower and upper bounds are

listed. The metrics for the performance of the models consider the best solution cost reported and

their execution time.

Regarding the topologies with known optimal value, the initial model M0 was able to solve all

the graphs in the path and cycle typologies, but it failed to solve the wheel graphs over 10 vertices

and the powers of cycle over 25 vertices and 50 edges. As for the rest of graphs, the initial model

also failed to solve several of the Cartesian products, like those of more than 15 vertices and 25

edges, the Möbius ladder graphs with more than 16 vertices, triangulated triangles of more than 15

vertices, the random graphs of more than 10 vertices and it only solved the smallest Harwell-Boeing

graph, with 11 nodes.

The incrementally refinements over the initial model M0 helped the models M1, M2 and M3 to

solve increasingly larger problem sizes, while also reducing the execution time, specially for instances

where the running time was closer to exceeding the predefined one hour budget. The removal of

isomorphic solutions by the constraints to break mirror and rotation symmetries in model M1 seems

to have been effective in reducing the search scope. This helped model M1 to solve all the graphs

that model M0 did, plus eighth larger ones, in the wheel, Cartesian products and Möbius ladder

topologies. Model M2, which added the upper and lower bounds constraints, solved nine more

graphs when compared to model M1, for a total of 57 solved graphs. These nine graphs were the

largest graphs in the wheel and power of cycle topologies, previously unsolved by both models M0

and M1. In terms of solved instances, model M3 only solved one additional larger instance with

respect to model M2, the Cartesian product graph c5c3. However, model M3 reduced considerably

the execution time, for example, by over 1,000 seconds for instance p4c4.

Table 7.3 summarizes the performance of the models in terms of the largest graphs that they were

able to solve with respect to the largest graph in that topology. The path, cycle, wheel and power of

cycle topologies were the only ones for which all the considered graphs were solved, by models M2

and M3. Regardless of model, only the smallest of the complete bipartite graphs, bip5-5, could be
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Table 7.1: Performance comparison of the original CP model M0 and the refined versions M1, M2,
M3 for instances with known optimum.

M0 M1 M2 M3

Graph |V | |E| den Op∗ Best T Best T Best T Best T

path10 10 9 0.20 9 9 0.37 9 0.65 9 1.04 9 2.56

path15 15 14 0.13 14 14 0.39 14 0.49 14 0.38 14 0.27

path20 20 19 0.10 19 19 0.38 19 0.53 19 0.35 19 0.25

path25 25 24 0.08 24 24 0.38 24 0.5 24 0.41 24 0.25

path30 30 29 0.07 29 29 0.41 29 0.51 29 0.39 29 0.25

path40 40 39 0.05 39 39 0.45 39 0.55 39 0.37 39 0.27

cycle10 10 10 0.22 10 10 0.36 10 0.66 10 0.79 10 0.34

cycle15 15 15 0.14 15 15 0.3 15 0.62 15 0.46 15 0.26

cycle20 20 20 0.11 20 20 0.35 20 0.65 20 0.41 20 0.31

cycle25 25 25 0.08 25 25 0.35 25 0.61 25 0.43 25 0.32

cycle30 30 30 0.07 30 30 0.31 30 0.69 30 0.41 30 0.25

cycle40 40 40 0.05 40 40 0.41 40 1.81 40 0.45 40 0.26

wheel10 10 18 0.40 35 35 4.1 35 0.62 35 0.67 35 0.33

wheel15 15 28 0.27 71 71 1hr 71 332.61 71 0.4 71 0.23

wheel20 20 38 0.20 120 120 1hr 120 1hr 120 0.41 120 0.37

wheel25 25 48 0.16 181 181 1hr 181 1hr 181 0.39 181 0.28

wheel30 30 58 0.13 255 255 1hr 255 1hr 255 0.4 255 0.28

wheel40 40 78 0.10 440 440 1hr 440 1hr 440 0.44 440 0.25

bip5-5 10 25 0.56 65 65 47.58 65 2.39 65 1 65 0.85

cycleP10-2 10 20 0.44 30 30 0.39 30 1.44 30 0.5 30 0.49

cycleP10-3 10 30 0.67 60 60 9.75 60 0.8 60 0.34 60 0.33

cycleP15-2 15 30 0.29 45 45 2.91 45 0.69 45 0.43 45 0.39

cycleP15-3 15 45 0.43 90 90 1051.73 90 30.62 90 0.29 90 0.30

cycleP20-2 20 40 0.21 60 60 117.87 60 1.84 60 0.43 60 0.35

cycleP20-3 20 60 0.32 120 120 1hr 120 926.67 120 0.27 120 0.34

cycleP25-2 25 50 0.17 75 75 819.8 75 15.36 75 0.43 75 0.34

cycleP25-3 25 75 0.25 150 150 1hr 150 1hr 150 0.36 150 0.29

cycleP30-2 30 60 0.14 90 90 1hr 90 231.94 90 0.48 90 0.4

cycleP30-3 30 90 0.21 180 180 1hr 180 1hr 180 0.33 180 0.48

cycleP40-2 40 80 0.10 120 120 1hr 120 1hr 120 0.51 120 0.44

cycleP40-3 40 120 0.15 240 240 - 240 1hr 240 0.3 240 0.53

solved. Among the Cartesian products, the graphs with lower densities seem to be easier to solve, as

demonstrated by the products P ×P (two path graphs) and P ×C (a path graph and a cycle graph)

which were solved by modelM3 for larger order and size than the rest of the Cartesian products. The

graphs in the Möbius ladder, triangulated meshes, random graphs, and Harwell-Boeing graphs were

solved partially, for orders 24, 15, 10 and 9 respectively, by all the models. While the refined model

M3 did not solve more instances in these topologies than the initial model, it managed to achieve

the optimum faster. For this reason, and the multiple cases among the wheel, power of cycle and
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Table 7.2: Performance comparison of the original CP model M0 and the refined versions M1, M2,
M3 for instances without formula for value of the optimum.

M0 M1 M2 M3

Graph |V | |E| den lb ub Best T Best T Best T Best T

c3c3 9 18 0.50 19 39 36 2.01 36 0.84 36 1.07 36 0.57

c4c3 12 24 0.36 25 52 52 298.18 52 15.08 52 24.31 52 12.72

c5c3 15 30 0.29 31 65 65 1hr 65 1hr 65 1hr 65 2532.77

p3p3 9 12 0.33 13 24 19 0.91 19 0.86 19 0.46 19 0.38

p4p3 12 17 0.26 18 36 29 5.94 29 1.14 29 0.9 29 0.69

p4p4 16 24 0.20 25 60 44 876.02 44 70.92 44 51.85 44 52.38

p5p3 15 22 0.21 23 48 42 267 42 31.89 42 29.24 42 28.15

p6p3 18 27 0.18 28 60 55 1hr 55 3369.98 55 1 560.77 55 981.07

p6c3 18 33 0.22 34 123 69 1hr 69 2148.73 69 2 180.7 69 1 326.27

p3c3 9 15 0.42 16 33 27 0.83 27 0.82 27 2.07 27 0.42

p3c4 12 20 0.30 21 44 40 54.55 40 5.89 40 2.95 40 2.65

p3c5 15 25 0.24 26 55 55 1hr 55 936.39 55 577.85 55 487.35

p4c3 12 21 0.32 22 57 43 65.34 43 5 43 4.02 43 2.61

p4c4 16 28 0.23 29 76 64 1hr 64 2458.22 64 2 558.77 64 1 494.42

p5c3 15 27 0.26 28 87 56 1 900.63 56 156.42 56 101.53 56 76.52

c3k4 12 30 0.45 31 88 72 1 58.78 72 76.63 72 42.17 72 25.3

p3k4 12 26 0.39 27 80 58 243.11 58 18.12 58 16.18 58 9.14

mobLad12 12 18 0.27 19 58 30 13.75 30 1.16 30 0.97 30 0.63

mobLad14 14 21 0.23 22 79 35 159.19 35 5.1 35 4.96 35 2.54

mobLad16 16 24 0.20 25 102 40 1 347.07 40 35.56 40 29.46 40 17.9

mobLad20 20 30 0.16 31 157 50 1hr 50 1922.61 50 1 719.82 50 1 132.18

triTriangle10 10 18 0.40 19 50 32 2.18 32 0.68 32 0.39 32 0.32

triTriangle15 15 30 0.29 31 120 62 1 777.99 62 189.49 62 168.94 62 122.06

rand10-5 10 24 0.53 25 66 51 34.03 51 1.65 51 2.95 51 0.94

rand10-7 10 32 0.71 33 88 77 19.81 77 1.37 77 2.61 77 1.21

rand10-9 10 41 0.91 42 113 106 78.99 106 3.54 106 4.88 106 2.04

jgl009 9 32 0.89 33 80 75 10.08 75 0.91 75 1 75 0.49

Cartesian product topologies, where it solved bigger instances than models M0, M1 and M2, model

M3 was considered the best.

7.3.2 Comparing search strategies

Search strategies determine how the solver proceeds in regard to the search space exploration,

involving the type of search, the variable choice strategy that determines the order of assignation

for the decision variables and constraints over the domain assignation that control the exploration of

valid values. An example of a specific search strategy to solve a model is instantiating unassigned
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Table 7.3: Largest solved instances per model, ∗ indicates the model solved the largest instance
Largest graph (∗) M0 M1 M2 M3

Topology G |V | |E| G |V | |E| G |V | |E| G |V | |E| G |V | |E|

path path40 40 39 ∗ ∗ ∗ ∗
cycle cycle40 40 40 ∗ ∗ ∗ ∗
wheel wheel40 40 78 wheel10 10 18 wheel15 15 28 ∗ ∗
bip. complete bip20-20 40 400 bip5-5 10 25 bip5-5 bip5-5 bip5-5

power of cycle cycleP40-3 40 120 cycleP25-2 25 50 cycleP30-2 30 60 ∗ ∗
C. product C × C c8c5 40 80 c4c3 12 24 c4c3 c4c3 c5c3 15 36

C. product P × P p8p5 40 67 p5p3 15 22 p6p3 18 27 p6p3 p6p3

C. product P × C p8c5 40 75 p5c3 15 27 p6c3 18 33 p6c3 p6c3

C. product C ×K c8k5 40 120 c3k4 12 30 c3k4 c3k4 c3k4

C. product P ×K p8k3 40 115 p3k4 12 26 p3k4 p3k4 p3k4

Möbius ladder mobLad40 40 60 mobLad16 16 24 mobLad20 20 30 mobLad20 mobLad20

tri triangle triTriangle40 36 84 triT15 15 30 triT15 triT15 triT15

random rand40-9 40 705 rand10-9 10 41 rand10-9 rand10-9 rand10-9

HB bcspwr01 39 42 jgl009 9 32 jgl009 jgl009 jgl009

total solved 40 48 57 58

variables according to input order and then try first the lowest value in its domain.

Minizinc [86] allows to communicate search strategies to the solver within the model’s code by

using special instructions called search annotations. In a strict sense, the annotations specifying

search strategies are not part of the model, but the modifications they introduce on how the solver

searches can affect the performance. Therefore, testing them was considered relevant.

The tested strategies for variable choice were: first-fail, smallest, dom-w-deg and input-order.

For each, the constraints over domain assignation indomain-min and indomain-random were also

tested. Table 7.4 presents a description of the search priorities introduced by these search strategies.

Table 7.4: Search strategies for the choosing of variables and domain assignation that were tested.
Variable choice strategy Priority
first-fail (default) variable with the smallest domain size
input-order order of apparition
smallest variable with the smallest domain value
dom-w-deg variable with the smallest domain size divided by weighted degree, i.e., the number of times it

has been in a broken constraint.
Constraint over domain assignation Priority
indomain-first (default) domain values in ascending order
indomain-random domain values in random order

In order to evaluate the use of the different search strategies introduced in Table 7.4, model M3

was tested using each of them, under otherwise similar conditions than the previous experiments.
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Table 7.5 shows that the number of solved instances varies considerably depending on the search

strategy being utilized. The default pairing of first-fail and indomain-min resulted among the best

ones, solving the third highest number of instances. Across all the variable choice strategies, the

random domain exploration (indomain-rand) seems to produce the worst performance. It resulted in

a smaller number of solved instances when compared to the domain exploration in ascending order

(indomain-min), as few as just 41 solved graphs, which is no better than the initial model M0.

Meanwhile, model M3 was able to solve the highest number instances by trying to assign first the

variable with the smallest value in the domain (smallest) instead of the one with smallest domain

size (first-fail). This results in the smallest host vertices being assigned to guest vertices first, which

could be seen as visiting the host vertices in clockwise order to determine which guest vertex fits

appropriately in each of them. This relatively simple change allowed to solve six instances more

from the Cartesian and Möbius ladder topologies: c6c3, p5p4, p3c6, p3k5, p4k4, and mobLad24.

The results for these instances are presented in detail in the following section, which compares the

performance of the final model when employing the best search strategy to the model with the

default search strategies as well as to an ad hoc branch and bound algorithm.

Table 7.5: Performance summary for M3 testing alternative search strategies to the first-fail search
strategy and indomain-min domain assignation.

Search strategy optimal feasible avg. time (opt) avg. time
first-fail (default) indomain-min (default) 58 104 230.53 2584.81

indomain-random 47 78 181.70 2750.69
input-order indomain-min 59 103 147.21 3316.51

indomain-random 48 74 139.04 2721.45
smallest indomain-min 64 100 227.16 2458.26

indomain-random 41 72 269.42 2877.94
dom-w-deg indomain-min 54 95 111.16 2603.62

indomain-random 41 80 82.80 2837.48

7.4 Comparing exact approaches: branch and bound

To the best of our knowledge, currently there is no report of other exact approaches to solve the

CBSP. In order to provide a reference method for comparison with the refined CP model, this work
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proposed an ad hoc B&B algorithm for the CBSP. The main idea behind the B&B methodology is to

use a tree structure to implicitly explore the whole search space of the problem by creating partitions

of smaller subproblems. The nodes of the search tree contain partially defined solutions to such

subproblems. The exploration begins from the root of the tree, and it is conducted by branching

promising nodes into new nodes containing partial solutions of higher order and pruning branches

that can not lead to the optimum. This process narrows the search, discarding regions of the search

space where the optimal solution can not be located.

Algorithm 3 depicts the basic steps of the proposed B&B. The process begins by creating a

solution which cost will be used as an initial upper bound during the search. The method for

creating this solution is a depth-first-search visit order of the vertices of G, starting in a random

vertex x. In the B&B algorithm, the root of the tree is a partially defined solution with the first label

assigned to the first vertex. The order of this solution is one, since it has only one assigned vertex.

The root solution is inserted into a priority queue that is used to keep track of the exploration.

Next, an iterative process of exploring, branching and pruning begins and will stop when the queue

is empty, meaning the implicit exploration of the search space has concluded.

When a partial solution b is extracted from the queue, the branching process creates new candidate

nodes by assigning each one of the unused labels to the first unlabeled vertex in b. This produces

n− o(b) new partially defined solutions, where n is the number of vertices and o(b) is the order of b.

In order to decide if each of these new solutions is going to be explored further or discarded, they

have to be evaluated. Since the solutions are only defined partially, this evaluation is composed of a

partial CBS calculation, given by the defined part of the solution, and a potential CBS cost, given by

the undefined one. The partial CBS is the sum of cyclic distances calculated only for assigned edges,

i.e., edges that have labels assigned to both endpoints. For the remaining edges, a simple best-case

estimation fe(b′) is calculated. The best-case estimation is equal to the number of unassigned edges,

because, in the best case, each unassigned edge could have a cyclic distance equal to one.

Partial solution b is discarded if the sum of partial CBS fp(b′) and the best-case estimation fe(b′)
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Algorithm 3 Branch and Bound algorithm
1: x← a random vertex from G
2: up← dfs(G, x)
3: Q← empty priority queue
4: Create root solution a by assigning a(1)← 1
5: Insert a into Q
6: while Q is not empty do
7: b← Q.pop()
8: i← first unassigned node in b
9: for j ∈ {unassigned labels in b} do
10: b′ ← b
11: b′(i)← j
12: Evaluate partial cost fp(b′) for assigned edges
13: Estimate potential cost fe(b) for unassigned edges
14: if fp(b

′) + fe(b
′) < f(up) then

15: if all vertices in b′ are assigned then
16: up← b′

17: else
18: Insert b′ into Q
19: end if
20: else
21: Discard b′

22: end if
23: end for
24: end while
25: g ← up
26: return g

is greater than the cost of the current upper bound solution up. In case the sum is instead lower,

and also the order of the solution is equal to the number of vertices of the host graph, b′ is a

completed solution actually better than the current upper bound solution up, therefore b′ replaces

up. Otherwise, b′ is not a complete solution, but can not be discarded, so it enters the queue.

The priority criterion of the queue defines the exploration order by employing a combination of

the order of partial solutions, their partial cost and a more elaborated estimation for the cost of

the unassigned edges. Partial solutions of equal order are untied by the sum of their partial CBS

and estimation fb(b′). This second form of estimation is heuristic. It calculates the potential cost
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of assigning the most suitable available label to one of the endpoints of the first found edge that

already has the other endpoint labeled.

The idea behind prioritizing order before potential cost is to reach higher order partial solutions

and produce completed solutions as soon as possible. Since the CBS is a sum, it is difficult to discard

solutions by considering only a few labeled edges, because such solutions are likely to have lower

partial costs than the cost of up. If the number of edges with unlabeled endpoints is high, calculating

an estimation of the cost for the unlabeled edges is also harder and more likely to be too optimistic.

Therefore, by giving priority to higher order partial solutions, the algorithm can reach sections of the

search tree that are easier to discard or produce a complete solution that lowers the current upper

bound solution up, which would allow to further discard new partial solutions.

7.4.1 Constraint programming against branch and bound results

The B&B algorithm was executed under similar criteria than the CP models, with a time budget of 1

hour (3,600 seconds). Tables 7.6 and 7.7 present a comparison of the results for the B&B algorithm,

model M3 and M4, which corresponds to the change in search strategy. As previously, the results

list only the instances that were solved by at least one of the compared methods.

The B&B algorithm was able to solve most of the graphs with known value of the optimum,

except by those in the wheel topology with over 15 vertices and the power of cycle graphs with

more than 20 vertices and k = 3. For graphs with unknown optimal value, it solved fewer Cartesian

product and Möbius ladder graphs. Notoriously, there are a few graphs that were not solved by

model M3, with the default search strategy, but that were solved by the B&B algorithm, such as

p5p4, p3k5 and p4k4. However, when using a more suitable search strategy, model M4 was also

able to solve these graphs, often with a smaller execution time than the B&B algorithm.

Table 7.8 presents a summary of the largest instances per topology solved by the B&B algorithm,

model M3 and the version of the model with the best search strategy.

Model M4 added solved six more graphs than model M3. These graphs are Cartesian products
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Table 7.6: Performance comparison of model M3, M4 and B&B.
B&B M3 M4

Graph |V | |E| den Op∗ Best T Best T Best T

path10 10 9 0.20 9 9 0.01 9 2.56 9 0.78

path15 15 14 0.13 14 14 0.01 14 0.27 14 0.42

path20 20 19 0.10 19 19 0.01 19 0.25 19 0.44

path25 25 24 0.08 24 24 0.01 24 0.25 24 0.42

path30 30 29 0.07 29 29 0.01 29 0.25 29 0.44

path40 40 39 0.05 39 39 0.01 39 0.27 39 0.44

cycle10 10 10 0.22 10 10 0.01 10 0.34 10 0.58

cycle15 15 15 0.14 15 15 0.01 15 0.26 15 0.4

cycle20 20 20 0.11 20 20 0.01 20 0.31 20 0.42

cycle25 25 25 0.08 25 25 0.01 25 0.32 25 0.4

cycle30 30 30 0.07 30 30 0.01 30 0.25 30 0.4

cycle40 40 40 0.05 40 40 0.01 40 0.26 40 0.45

wheel10 10 18 0.40 35 35 0.09 35 0.33 35 0.75

wheel15 15 28 0.27 71 71 915.25 71 0.23 71 0.22

wheel20 20 38 0.20 120 - 1hr 120 0.37 120 0.23

wheel25 25 48 0.16 181 - 1hr 181 0.28 181 0.23

wheel30 30 58 0.13 255 - 1hr 255 0.28 255 0.24

wheel40 40 78 0.10 440 - 1hr 440 0.25 440 0.3

bip5-5 10 25 0.56 65 65 2.17 65 0.85 65 0.42

cycleP10-2 10 20 0.44 30 30 0 30 0.49 30 0.3

cycleP10-3 10 30 0.67 60 60 0.28 60 0.33 60 1.04

cycleP15-2 15 30 0.29 45 45 0.11 45 0.39 45 0.28

cycleP15-3 15 45 0.43 90 90 27.91 90 0.3 90 0.63

cycleP20-2 20 40 0.21 60 60 1.8 60 0.35 60 0.25

cycleP20-3 20 60 0.32 120 120 1012.22 120 0.34 120 0.58

cycleP25-2 25 50 0.17 75 75 27.63 75 0.34 75 0.25

cycleP25-3 25 75 0.25 150 150 1hr 150 0.29 150 0.57

cycleP30-2 30 60 0.14 90 90 423.72 90 0.4 90 0.26

cycleP30-3 30 90 0.21 180 180 1hr 180 0.48 180 0.58

cycleP40-2 40 80 0.10 120 1hr 1hr 120 0.44 120 0.25

cycleP40-3 40 120 0.15 240 240 1hr 240 0.53 240 0.6

of two cycles C × C, two paths P × P and a path with a complete graph P × K, as well as the

Möbius ladder graph of order 24. The initial objective of the exact algorithm approach aspect in this

research work was to solve graphs of order n ≤ 40. While the best performing of the models is able

to find optimal solutions within the time budget for graphs of that order, this is limited to specific

topologies. These topologies include paths, cycles, wheels and power of cycles. The largest solved

Cartesian products had 20 vertices, only half of the 40 that were set as objective, and the Möbius

ladder, triangulated triangles, random and HB solved graphs have even smaller order. Because of
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Table 7.7: Performance comparison of model M3, M7 and B&B (unknown opts).
B&B M3 M4

Graph |V | |E| den lb ub Best T Best T Best T

c3c3 9 18 0.50 19 39 36 0.09 36 0.57 36 0.52

c4c3 12 24 0.36 25 52 52 9.33 52 12.72 52 4.22

c5c3 15 30 0.29 31 65 65 257.13 65 2532.77 65 106.08

c6c3 18 36 0.24 37 78 - 1hr - 1hr 78 1854.78

p3p3 9 12 0.33 13 24 19 0 19 0.38 19 0.62

p4p3 12 17 0.26 18 36 29 0.13 29 0.69 29 0.65

p4p4 16 24 0.20 25 60 44 17.73 44 52.38 44 14.16

p5p3 15 22 0.21 23 48 42 9.88 42 28.15 42 9.87

p5p4 20 31 0.16 32 80 63 3133.41 63 1hr 63 2907.63

p6p3 18 27 0.18 28 60 55 426.58 55 981.07 55 478.88

p6c3 18 33 0.22 34 123 69 504.16 69 1326.27 69 808.89

p3c3 9 15 0.42 16 33 27 0.03 27 0.42 27 0.82

p3c4 12 20 0.30 21 44 40 1.67 40 2.65 40 0.96

p3c5 15 25 0.24 26 55 55 287.31 55 487.35 55 65.19

p3c6 18 30 0.20 31 66 - 1hr 66 1hr 66 2228.7

p4c3 12 21 0.32 22 57 43 2.08 43 2.61 43 1.55

p4c4 16 28 0.23 29 76 64 881.27 64 1494.423 64 504.98

p5c3 15 27 0.26 28 87 56 35.63 56 76.518 56 39.07

c3k4 12 30 0.45 31 88 72 29.69 72 25.296 72 11.28

p3k4 12 26 0.39 27 80 58 6.19 58 9.138 58 4.83

p3k5 15 40 0.38 41 145 104 2823.67 104 1hr 104 2077.73

p4k4 16 36 0.30 37 140 88 2671.72 88 1hr 88 2259.57

mobLad12 12 18 0.27 19 58 30 0.63 30 0.627 30 0.56

mobLad14 14 21 0.23 22 79 35 5.55 35 2.544 35 1.11

mobLad16 16 24 0.20 25 102 40 62.11 40 17.9 40 3.67

mobLad20 20 30 0.16 31 157 - 1hr 50 1132.18 50 63.14

mobLad24 24 36 0.13 37 225 - 1hr 76 1hr 60 1052.18

triTriangle10 10 18 0.40 19 50 32 0.03 32 0.32 32 0.31

triTriangle15 15 30 0.29 31 120 62 41.61 62 122.06 62 38.81

rand10-5 10 24 0.53 25 66 51 0.55 51 0.94 51 1.56

rand10-7 10 32 0.71 33 88 77 1.39 77 1.21 77 1.63

rand10-9 10 41 0.91 42 113 106 1.7 106 2.04 106 3.02

jgl009 9 32 0.89 33 80 75 0.17 75 0.49 75 0.9

this reason, the objective of solving the CBSP in an exact way for graphs of order n ≤ 40 can be

considered as partially achieved. As for why some of the topologies seem to be comparatively much

harder for the CP models, this is probably related to how the edges are distributed. If the vertices

have a larger number of edges, whenever a label is modified that could affect the cyclic distance

of a larger number of edges. Therefore, in the constraint propagation phase there would be more

variables involved in common constraints, potentially causing this phase to consume more time. The
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Table 7.8: Largest solved instances per model, ∗ indicates the model solved the largest instance
Largest graph (∗) B&B M3 M4

Topology G |V | |E| G |V | |E| G |V | |E| G |V | |E|

path path40 40 39 ∗ ∗ ∗
cycle cycle40 40 40 ∗ ∗ ∗
wheel wheel40 40 78 wheel15 15 28 ∗ ∗
bip. complete bip20-20 40 400 bip5-5 10 25 bip5-5 bip5-5

power of cycle cycleP40-19 40 760 cycleP30-2 30 60 ∗ ∗
C. product C × C c8c5 40 80 c5c3 15 30 c5c3 c6c3 18 36

C. product P × P p8p5 40 67 p5p4 20 31 p6p3 18 27 p5p4

C. product P × C p8c5 40 75 p6c3 18 33 p6c3 p6c3

C. product C ×K c8k5 40 120 c3k4 12 30 c3k4 c3k4

C. product P ×K p8k3 40 115 p4k4 16 32 p3k4 12 26 p4k4

Möbius ladder mobLad40 40 60 mobLad16 16 24 mobLad20 20 30 mobLad24 24 36

tri triangle triTriangle40 36 84 triT15 15 30 triT15 triT15

random rand40-9 40 705 rand10-9 10 41 rand10-9 rand10-9

HB bcspwr01 39 42 jgl009 9 32 jgl009 jgl009

refinements for discarding solutions based on estimations of the upper and lower bounds of the CBS

were proven helpful, reducing the execution time and allowing to solve some larger graphs. However,

given the nature of the problem, it is likely that when there are few assigned labels, the cost of the

solutions do not break any constraint. Furthermore, as previously discussed while introducing the

design of the B&B algorithm, the potential cost for a partially defined solution can have a wide range.

In order to improve the results of the CP models, it could be helpful to find a common characteristic

for optimal solutions, perhaps based on individuals values of cyclic distances or their distributions.

7.5 Conjectures on optimal values for the Möbius ladder

and triangulated triangle topologies

Several of the instances involved in this work belong to topologies for which there is not previous

reports in the CBSP literature for formulas to estimate the value of the optimum. The optimal values

reported by the CP method for instances of these type can be employed as a reference to at least

conjecture the optimal value in function of the topology. This section presents topology specific

conjectures about the CBS of the Möbius ladder graph.
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topologies

Möbius ladder: The optimal value for all the solved Möbius ladder graphs was equal to the

sum of the number of vertices and edges n+ e. Figure 7.1(a) exemplifies this for the Möbius ladder

graph of order twelve. Since the number of edges in the Möbius ladder graph is e = n + n/2, the

conjecture is that the CBS of the Möbius ladder graph is likely to be the following.

CBS(Ln, ϕ
∗) = 2n+

n

2
(7.13)
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(b) Optimal labeling for L12.

Figure 7.1: Möbius ladder graph L10 and its optimal labeling. Labels and cyclic distances are shown
in red and blue, respectively.

Triangulated triangles: Figure 7.2 presents an example of the triangulated triangle topology

and its optimal solution. Every vertex in this type of graph is part of at least one cycle of length

three along with two other vertices. The number of these groups of three unique vertices is referred

here as triangles. Visually, the vertices can be grouped into horizontal levels connected by a row

of triangles, with the graph T10 in the example having four levels. Each level contains one vertex

more than the previous one and the row of triangles connecting them has two more triangles than

the previous row, except for the first row.

Supposing the vertices in each individual triangle were to be embedded in such a way that the

cyclic distance for its edges was maximal, these three cyclic distances could at most sum n. If each
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(b) Optimal labeling for T10.

Figure 7.2: Triangulated triangle graph T10 and its optimal labeling. Labels and cyclic distances are
shown in red and blue, respectively. The edges marked in dashed lines exemplify a triangle. In total,
the graph has nine triangles and four levels.

triangle contributed with the worst cost of n to the CBS, then

CBS(Tn, ϕ
∗) < n(triangles) , (7.14)

where triangles is the number of triangles within the graph.

This calculation does not take into account that many of the triangles in the Tn graph have

edges in common, so while it holds, it is likely to be an overestimation that can be improved.

7.6 Conclusions

This chapter introduced the use of constraint programming as an exact method approach to solve

the CBSP for relatively small graphs, of order n ≤ 40. An initial CP model was proposed, consisting

of constraints that ensure the feasibility of the solutions and the minimization of the CBS cost. In

incrementally refined versions of the model new constraints were added. These constraints eliminated

isomorphic solutions under mirrors and rotations (model M1), included lower and upper bounds for

the cost of the optimum based on the graph topology (model M2) and the relationship between
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the CBSP and the BSP (model M3). The models were tested over a set of topologically diverse

graphs of order n ≤ 40, founding model M3 as the best performing one in terms of solved number

of instances, their order and the execution time required.

Further tests with model M3 included the use of search strategies, which help the solver in

determining search priorities in the assignation of variables and the exploration of their domains.

The default search strategy, employed in the previous tests, was to assign first the variable with

the smallest domain size (first-fail) and explore its domain in ascending order (indomain-min). This

default search strategy performed above average, ranking in third place in number of solved instances.

However, the best performing search strategy was to prioritize the assignation of the variable with

the smallest domain value (smallest), as before, exploring its domain in ascending order (indomain-

min). This allowed model M3 to solve six more instances than when the default search strategy

was employed. The experiments with search strategies also showed that the random exploration

of domains was unsuitable for the proposed model, since in all cases caused a worst performance

than its ascending order counterpart, which was similar to that of the initial model M0 before the

incremental refinements.

In order to provide a comparison of the proposed CP approach with at least other exact method,

an ad hoc B&B algorithm were proposed. This algorithm prioritizes the order of partial solutions and

it employs an estimation of their potential CBS, based on the cyclic distance of assigned edges and

the unassigned labels, to guide the exploration of the branches. While the results showed that the

B&B algorithm was competitive with the initial CP model, the refined model and the use of search

strategies were proven more reliable, solving a higher number of larger instances. Furthermore, when

model M3 employs the best search strategy its execution time is also smaller.

The objective of solving graphs of order n ≤ 40 is considered partially archived, since it was not

possible for all the included topologies. Particularly, the results for the complete bipartite, Cartesian

products, Möbius ladder, triangulated triangles, random and Harwell-Boeing graphs variate in terms

of the maximum order solved, reaching n = 20 in the best case. Further study of the topological
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influences is required, but density, regularity and the scope of the upper and lower bounds seem to

play relevant roles. Finally, based on the observation of the optimal values produced, two conjectures

for the optimal value of the Möbius ladder graph topology was proposed. Future research on the

proposed CP model could explore the inclusion of constraints on the values of individual cyclic

distances and studying the use of warm starts, which is a mechanism to provide the model with an

initial known solution.

The next chapter closes this work by presenting a summary of the main findings and contributions

that were produced, as well as a general outline of some possible way forward for future work and

related research paths.





8
Conclusions

The research reported in this work focused in the study of the cyclic bandwidth sum problem from

different complementary perspectives. These included the nature of the problem influenced by its

objective function, instance features, factors contributing to the difficulty of its fitness landscape and

the proposal of diverse solving approaches. This chapter closes the work by presenting a summary of

the resulting conclusions and contributions, as well as a general outline for future work in the study

of the CBSP.

8.1 Reducing neutrality through the fitness function

In Chapter 3, a study of three alternative fitness functions for the CBSP was presented. This had

the objective of reducing the neutrality of the problem in order to help search algorithms to perform

better. The design of the candidate alternative functions was based on the assignation of weights

to cyclic distances of cost k and different definitions of which cyclic distances may contribute more

to the total solution cost. The methodology developed by Garza-Fabre et al. [38] was employed

183
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to evaluate the candidate functions by considering three main aspects: improved discrimination

capability, consistency with the problem objective, and demonstrable success guiding basic local

search based algorithms to better results. It was found that the alternative fitness function f3

met all these criteria, reducing the number of solutions that have equal cost, while maintaining

consistency with the objective of the problem, and helping the steepest descent and iterated local

search algorithms to significantly improve their performance.

Examining the occurrences of search cycles within the ILS algorithm under each of the evaluated

functions showed that the they are linked to worse performance and more often present if the fitness

function has poor discrimination ability. However, the absence of search cycles is not a guarantee of

better results without being also paired with CBS-compatibility.

8.2 Metaheuristic and hyperheuristic solution approaches

The focus of Chapter 4 was the use of memetic algorithms to solve the CBSP, considering different

configurations of genetic operators for selection, crossover, mutation and survival strategy. The

main features of the proposed memetic algorithm (MA) framework were one offspring crossover,

an intermittent approach to the local search and the use of the insertion operator as a secondary

mutation. This study also considered the use of the alternative evaluation function f3.

It was found that the selection pressure balance, managed by the selection and survival strategies,

is a crucial factor for the performance of the MA on the CBSP, with the combination of binary-

tournament selection and (µ, λ) survival strategy being the most successful one. The cyclic crossover,

insertion and reduced 3-swap mutation operators were also present in the best performing MA, but

the results suggest that they have a less determinant influence over performance in comparison

to the other operators. Another relevant result is that the effectiveness of the operators can vary

on different phases of the search and this could be taken advantage of by varying the operator

configuration during execution. It was observed that fist-improvement strategy in the local search
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phase was likely to limit the helpfulness of function f3 by accepting very small fitness improvements

immediately when they are available.

The best performing MA was MA-20, which achieved significantly improved results when

compared to the algorithms in the CBSP literature it was compared to, though it still exhibited

some susceptibility to variations on instance topologies.

Chapter 5 presented the implementation of a dynamic multi-armed bandit as a hyperheuristic

approach in order to automatize the selection of operators within the memetic algorithm, adapting

between operator configurations based on a reward strategy that considered past good performance

and usage frequency. The resulting hyperheuristic algorithm, DMAB+MA, significantly improved

the results previously obtained by MA-20, producing new best-known results and reaching the

objective of consistently produce the best-known results with more independence from the guest

graph topology. Beyond the performance analysis of DMAB+MA, a study of how the operator

and their combinations through the execution affect the fitness showed that operators of the same

type can be very successful in complementing each other in different moments of the search. This

was particularly observed in the analysis of mutation, selection and survival. Finally, in experiments

removing the alternative evaluation scheme f3 from the DMAB+MA a worsening of performance was

observed, further demonstrating the importance of increasing discrimination in the fitness function

to reduce neutrality and difficulty.

8.3 Fitness landscape and instance difficulty

In order to further understand the challenges of the problem for particular algorithms and the

impact of the proposed alternative evaluation scheme, Chapter 6 analyzed the interplay of instance

features, fitness landscape characteristics and algorithm’s performance. To the best of the author

knowledge, the first fitness landscape analysis of the CBSP problem was conducted. This analysis

found that the alternative fitness function significantly reduces neutrality and the number of local
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optima while maintaining most of the studied structural features of the fitness landscape. The study

comprehending the fitness landscape features with graph metrics and algorithms performance found

relationships between the order of the graph, the autocorrelation coefficient, descent distance and

difficulty for the DMAB+MA, likely associating the increase in graph order with larger, harder to

escape attraction basins. High neutrality, the graph’s eccentricity and its endpoint percentage were

identified as factors affecting difficulty, specially for MA-20. DMAB+MA design, in particular the

alternative fitness function f3 allowed it to be less affected by these factors.

The inner mechanics of DMAB+MA and MA-20 were further studied by the analysis of their

search trajectory networks, producing a visual representation and metrics for the search space

exploration and its underlying structure. This provided additional insight on how they operate as well

as the structure of the search space varying across graph topologies, and it demonstrated DMAB+MA

ability to reach better areas of the landscape and to avoid regions where MA-20 can get trapped.

8.4 Exact solution approaches

Chapter 7 dealt with solving the CBSP in an exact way for relatively small graphs, of order n ≤ 40. A

constraint programming model for the CBSP was proposed and incrementally refined, improving its

performance in terms of solved graphs and execution time. This was achieved by removing isomorphic

solutions, using knowledge about lower and upper bounds under specific graph topologies, and cost

relationships between the CBSP and BSP. Customized ways to conduct the search, defined by search

strategies, were also explored, finding that the best performance was achieved by the prioritized

assignation of variables with the smallest domain value and the exploration of domains in ascending

order. Since, to the best of the author’s knowledge, there are no other exact methods reported in

the CBSP literature, an ad hoc B&B algorithm for the CBSP was developed in order to provide a

comparison against the proposed CP models. The final refined model using the best search strategy

outperformed the B&B algorithm and all the other version of the CP model. The results achieved
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by the proposed CP model allowed to draw conjectures on the value of the optimum for the Mobius

ladder and triangulate triangles topologies, for which there are no topology specific upper or lower

bounds reported. The objective of solving the CBSP in an exact way for instances of order n ≤ 40

was partially achieved, since this was not possible for all the considered graph topologies.

8.5 Contributions summary

The following are the main contributions achieved by this research:

• A CBS-compatible alternative fitness function, with increased discrimination ability, that was

able to significantly reduce the neutrality of the problem and the number of local optima, while

maintaining the rest of the fitness landscape structure. The function was rigorously tested on

several algorithms, finding it can significantly improve their performance.

• Several solution approaches that explored a variety of techniques and operators, and

outperformed the ones previously reported in the literature, producing new optimal and best-

found solutions. These included:

– The steepest descent and iterated local search, used for the assessment of alternative

fitness functions and sampling for local optima related measures in the fitness landscape

analysis.

– MA-20, a memetic algorithm that significantly improved the results from previously

reported methods.

– DMAB+MA, a hyperheuristic algorithm able to automatize the operator and the fitness

function selection to perform consistently over different instance topologies. DMAB+MA

further improved the results obtained by MA-20, achieving and updating the best-

known solution costs. It was, to the best of this author knowledge, the first DMAB
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implementation that adapts several types of genetic operators and the fitness function

simultaneously.

– The first exact approaches to solve this problem, particularly the final CP model and the

B&B algorithm, which both incorporated in their design relevant information about the

problem characteristics.

– The performance assessment of Mach and GVNS on numerous graphs beyond the ones

reported originally in the literature can be considered a by-product contribution.

• Optimal and improved best-known solutions for a wide variety of graph topologies and increased

instance sizes trated compared to the literature.

• A thoroughly study of genetic operators and their interaction with the alternative evaluation

function in memetic algorithms and their automatized selection within the dynamic multi-armed

bandit hyperheuristic.

• The first fitness landscape analysis of the CBSP, focused in the impact of the alternative

evaluation scheme over neutrality, local and global optima, autocorrelation and negative slope

coefficient.

• A study of the inner mechanics of DMAB+MA and MA-20 based on search trajectory networks,

that allow to visualize, measure and compare how they conduct the search through specific

areas of the search space and provides a new complementary perspective of the fitness landscape

of the problem.

– As by-product of this analysis, a contribution was made to the search trajectory network

literature in the form of a novel method to group solutions into locations. While it was

created with combinatorial problems in mind, it can be applied to any problem for which

a notion of distance between solutions can be defined.
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• A comprehensive study of the characteristics of the CBSP, its difficulty and how to solve it.

This study linked together key aspects of the problem such as graph features, fitness landscape

metrics and the performance of algorithms.

8.6 Future work

The following are possible interest areas for further research.

• Future research on the proposed CP model could explore the inclusion of constraints on the

values of individual cyclic distances and studying the use of warm starts, which are a mechanism

to provide the model with an initial known solution. Using the alternative fitness function in

the CP model is also a relevant topic to be considered.

• The formal mathematical proof of the conjectures on the CBS calculation for the Mobius ladder

and triangulated triangle topologies.

• The analysis of graph metrics, fitness landscape features and algorithms performance reported

in Chapter 6 considered only MA-20 and DMAB+MA. It would be desirable to extend it to

include more solution approaches, particularly the proposed exact algorithms.

• It was speculated that the results of the fitness landscape and STN based analysis suggested

that more complex structures, such as attraction basins and fitness plateaus play a relevant

role on the instance difficulty. Information about these structures was inferred from metrics

such as descent distance and the neutrality ratio, but it may be worth assessing them more

directly.

• The methodology reported in Chapter 6 can provide a very complete assessment of the

characteristic of a problem, and could be possible to apply it to other graph embedding

problems. Furthermore, the combined information about instance metrics, fitness landscape
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features and algorithm performance has been employed for instance difficulty classification and

algorithm selection based on machine learning predictions of success [124]. Exploring this type

of powerful techniques would be an interesting natural extension of this work.



A
Experimental settings

This appendix describes the conditions for the experiments reported in Chapters 3, 4, 5, 6 and 7 of this

work. It addresses the benchmark instances and criteria that were employed for comparing algorithms

for the CBSP, such as the definition our the criterion for solution quality and the methodology for

assessing statistical significance. It describes, as well, the experimental platform and the tools,

libraries, languages and technologies employed for algorithm implementation and evaluation.

A.1 Instance benchmark set

This section provides details about the 642 instances involved in the diverse experiments reported

along this work, their sizes, representation and graph topologies. In order to reduce the demand for

computing power, the time employed in executing algorithms and processing their data, most of the

experiments employed reduced instance subsets.

The instances were represented as plain text files with an standardized structure. The first line

of an instance file is a comment that can include the name of the instance. The next line is the

191
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Figure A.1: Graph P20 represented in the instance format.

number of vertices n (twice) and the number of edges e. The following e lines are space-separated

pairs of vertices representing the edge set. Each edge is represented only once.

A.1.1 Standard topologies

The set of instances named standard includes 142 graphs with the following graph topologies: path,

cycle, wheel, power of cycle, star, tree, complete bipartite, caterpillar, Möbius ladder, triangulated

triangle and meshes. For most of these topologies there were exact formulas for the value of the

optimum, shown in Section 2.3.1.2. For each topology (excluding tree, star, mesh and caterpillar)

there were ten graphs with order n = {100, 120, 140, 160, 180, 200, 400, 600, 800, 1000}. The powers

of cycles were generated for k = {2, 10}.
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A.1.2 Cartesian products

This set includes 231 graphs resulting of the Cartesian product of paths Pn, cycles Cn and complete

graphs Kn. The subsets of graphs are: Pn × Pm, Pn × Cm, Pn × Km, Cn × Cm, Cn × Km and

Kn×Km. Subsets where the input graphs have the same topology (Pn×Pm, Cn×Cm andKn×Km)

have 28 instances each, the rest of the subsets have 49 instances each.

All graphs in the Cartesian product set were generated in Python, employing the NetworkX library.

The corresponding input graphs Gn and Hm had order 3 ≤ n,m ≤ 9. The resulting graphs have

order 9 ≤ n ≤ 81 and their size is 81 ≤ e ≤ 405. The upper bounds for graphs within this set were

presented in Section 2.3.1.3.

A.1.3 Random graphs

The set of random graphs includes graphs created by the Erdös-Rényi method, which creates

an edge between each pair of vertices according to a given probability. The probabilities were

p = {0.1, 0.3, 0.5, 0.7, 0.9} with n = {10, 11, 12, 15, 20, 30, 40, 100} vertices. There are a variable

number of graphs for every combination of order and probability, ranging from one to ten, for 118

graphs in total.

There was also random graphs created with the Newman–Watts–Strogatz [87] and

Barabási–Albert [7] models with n = {10, 11, 12, 100} vertices. Newman–Watts–Strogatz graphs

model are small-world networks. Vertices in the graph are adjacent to their k nearest neighbors with

respect to a ring topology. Vertices are also adjacent to random vertex with probability p. The twelve

graphs of this type were generated with p = {0.3, 0.5, 0.7} and k = {2, 3, 5}. The Barabási–Albert

method models the growth of networks by adding a new vertex and attaching it to a fixed number

of other existing vertices ba. Twelve graphs were generated with ba = {2, 3, 5}.
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A.1.4 Harwell-Boeing sparse matrices

The benchmark includes a set of 131 graphs derived from Harwell-Boeing sparse matrices,1 related

to real-world problems arising in several areas, from structural engineering to economics. The set

contains 15 subsets from different domains, with graphs having order 9 ≤ n ≤ 5300 and size

32 ≤ e ≤ 8271.

A.1.5 Instances for fitness landscape analysis

Table A.1 lists the 90 instances involved in the fitness landscape analysis from Chapter 6.

A.2 Relative Root Mean Square Error

The relative root mean square error (RMSE) is a metric utilized for comparing algorithm’s

performance in terms of solution quality. For each instance being solved by a particular algorithm,

the RMSE is computed for R independent executions. The RMSE metric for a certain test instance

t is defined as:

RMSE(t) = 100%

√√√√√ R∑
r=1

(
CBSr(t)−CBS∗(t)

CBS∗(t)

)2

R
, (A.1)

where CBSr(t) is the best solution quality achieved by the algorithm at execution r, R is the total

number of executions, and CBS∗(t) is the best-know quality solution for instance t. An RMSE

equal to 0% means the algorithm achieved the best-known solution quality in all R executions, and

therefore it is the preferred value.

For comparing the algorithm performance among the complete instance set T , the overall root

mean square error (O-RMSE) is computed as the average RMSE value for the number of instances

1Harwell-Boeing sparce matrices collection can be found in https://math.nist.gov/MatrixMarket/data/
Harwell-Boeing/
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Table A.1: Graphs employed in the fitness landscape analysis.
G |V | |E| G |V | |E| G |V | |E|

path10 10 9 c9k9 81 405 nos6 675 1290

path100 100 99 k9k9 81 648 will57 57 127

path11 11 10 p3c4 12 20 randba10_2 10 16

path12 12 11 p3k4 12 26 randba100_3 100 291

path200 200 199 p3p3 9 12 randba100_3 100 291

cycle10 10 10 p4p3 12 17 randba100_3 100 291

cycle100 100 100 p9c9 81 153 randba100_5 100 475

cycle11 11 11 p9k9 81 396 randba11_2 11 18

cycle12 12 12 p9p9 81 144 randba12_2 12 20

cycle200 200 200 ash85 85 219 randnws_3_100_3 100 132

cyclePow10-2 10 20 494_bus 494 586 randnws_3_100_5 100 264

cyclePow100-10 100 1000 662_bus 662 906 randnws_5_10_2 10 15

cyclePow100-2 100 200 685_bus 685 1282 randnws_5_100_3 100 147

cyclePow11-2 11 22 bcspwr01 39 46 randnws_5_100_5 100 297

cyclePow12-2 12 24 bcspwr02 49 59 randnws_5_11_2 11 20

cyclePow200-10 200 2000 bcspwr03 118 179 randnws_5_12_2 12 16

cyclePow200-2 200 400 bcsstk01 48 176 randnws_7_10_2 10 19

wheel10 10 18 bcsstk06 420 3720 randnws_7_100_3 100 170

wheel100 100 198 can_24 24 68 randnws_7_100_5 100 334

wheel11 11 20 can44 144 576 randnws_7_11_2 11 20

wheel12 12 22 can_292 292 1124 randnws_7_12_2 12 19

wheel200 200 398 can_445 445 1682 rand3_100 100 1422

caterpillar3 9 8 can_715 715 2975 rand5_10 10 20

mobiusLadder10 10 15 curtis54 54 124 rand5_100 100 2399

mobiusLadder12 12 18 dwt_503 503 2762 rand5_11 11 25

triTriangle10 10 18 dwt_592 592 2256 rand5_12 12 37

triTriangle6 6 9 ibm32 32 90 rand7_10 10 27

c3k4 12 30 impcol_b 59 281 rand7_100 100 3426

c4k3 12 24 impcol_d 425 1267 rand7_11 11 43

c9c9 81 162 nos4 100 247 rand7_12 12 43

|T |.

O-RMSE =
1

|T |
∑
t∈T

RMSE(t) . (A.2)

A.3 Statistical significance

The following methodology is employed to asses the statistical significance of algorithm’s results.

Normality of data distributions was evaluated by the Shapiro-Wilk test. Bartlett’s test was
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implemented to determine whether the variances of the normally distributed data were homogeneous

or not. ANOVA test was used in the cases where variance homogeneity was present and Welch’s t

parametric tests on the contrary. Meanwhile, Kruskal-Wallis test was implemented for non-normal

data. In all cases the significance level considered was 0.05.

A.4 Experimental platform and coding tools

Python and the NetwokX [45] library were employed for instance generation and validation. Most of

the algorithms included in this work were implemented in C/C++ and compiled with gcc/g++ using

the optimization flag -03. MiniZinc [86] was used for coding and solving constraint programming and

mixed-integer linear programming models of the CBSP. The parameters of algorithms were tuned

employing R and the irace package [72] for automatized tuning. Statistical significance assessment,

results processing and generation of charts and plots were ran in Matlab and R. Experiments were

executed sequentially on the Neptuno cluster at Cinvestav Tamaulipas, which has 104 Intel(R) Xeon

X5550 2.6 Hz processor nodes and 16 GB in RAM.
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Detailed results

This appendix presents a comprehensive benchmark for MA-20 and DMAB+MA, as well as algorithms

from the CBSP literature, including Mach [47], MA [85] and BVNS [85]. The BVNS and

MA algorithms were executed with 50,000,000 iterations, while the MA was afforded 10,000,000

generations, employing the parameters reported in [85]. Figure B.1 shows the performance of the

algorithms in terms of solution quality (RMSE) and the average time (in seconds) they required to

produce the results. Figure B.2 summarizes the results of the pair-wise statistical significance analysis

comparing the solution quality of MA-20 and DMAB+MA with that of the previously mentioned

algorithms from the literature. DMAB+MA was the algorithm that most consistently achieved the

best results in terms of solution quality, producing the smallest RMSE values and the largest amount

of wins in the statistical significance comparison.

The following tables present detailed results for instances grouped into in four subsets: Cartesian

products, Standard graphs, Harwell-Boeing graphs and Random graphs (see Appendix A.1). The

results list the name, order and size of every graph, followed by the best cost (Best) produced by
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Figure B.1: RMSE values and average time to the best-found solution for MA-20, DMAB+MA and
algorithms from the literature.

each algorithm, the average cost (Avg), its standard deviation (Std) and average time for producing

the best cost solution. Blank cells in the columns corresponding to Mach indicate cases where this

constructive heuristic did not report any solution after running for four hours.
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Figure B.2: Statistical significance summary for MA-20 and DMAB+MA compared to algorithms
from the literature, in terms of wins, losses and ties. Wins favor either MA-20 in Figure B.2(a), or
DMAB+MA in Figure B.2(b).
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Table B.1: Detailed results of Mach, MA, BVNS, MA-20, and DMAB+MA for Cartesian products (part one)
Mach MA BVNS MA-20 DMAB+MA

Graph |V | |E| Best Avg Std T Best Avg Std T Best Avg Std T Best Avg Std T Best Avg Std T

c3c3 9 18 36.00 37.08 0.75 0.01 36 36.00 0.00 0.01 36 36.00 0.00 0.01 36 36.00 0.00 0.01 36 36.00 0.00 0.01

c4c3 12 24 52.00 52.00 0.00 0.01 52 52.00 0.00 0.01 52 52.00 0.00 0.01 52 52.00 0.00 0.01 52 52.00 0.00 0.01

c4c4 16 32 88.00 91.88 4.70 0.01 88 88.00 0.00 0.01 88 88.00 0.00 0.01 88 88.00 0.00 0.01 88 88.00 0.00 0.02

c5c3 15 30 65.00 65.00 0.00 0.01 65 65.00 0.00 0.01 65 65.00 0.00 0.01 65 65.00 0.00 0.01 65 65.00 0.00 0.01

c5c4 20 40 110.00 130.36 9.44 0.01 110 110.00 0.00 0.04 110 110.00 0.00 0.01 110 110.00 0.00 0.03 110 110.00 0.00 0.02

c5c5 25 50 165.00 194.78 10.05 0.01 165 166.10 2.64 6.68 165 165.00 0.00 0.01 165 165.72 2.47 2.49 165 165.00 0.00 0.41

c6c3 18 36 78.00 78.00 0.00 0.01 78 78.00 0.00 0.01 78 78.00 0.00 0.01 78 78.00 0.00 0.01 78 78.00 0.00 0.01

c6c4 24 48 132.00 159.88 16.46 0.01 132 132.00 0.00 0.01 132 132.00 0.00 0.01 132 132.00 0.00 0.01 132 132.00 0.00 0.03

c6c5 30 60 216.00 251.20 21.14 0.01 198 198.00 0.00 1.93 198 198.00 0.00 0.01 198 198.64 4.53 0.15 198 198.00 0.00 1.04

c6c6 36 72 276.00 340.00 26.07 0.01 276 277.12 5.54 8.08 276 276.00 0.00 0.02 276 292.80 13.86 0.38 276 276.00 0.00 5.96

c7c3 21 42 91.00 91.00 0.00 0.01 91 91.00 0.00 0.01 91 91.00 0.00 0.01 91 91.00 0.00 0.01 91 91.00 0.00 0.02

c7c4 28 56 166.00 195.00 21.64 0.01 154 154.00 0.00 0.01 154 154.00 0.00 0.01 154 154.00 0.00 0.02 154 154.00 0.00 0.08

c7c5 35 70 231.00 307.70 37.85 0.01 231 231.00 0.00 0.80 231 231.00 0.00 0.01 231 238.40 22.43 0.01 231 231.00 0.00 6.54

c7c6 42 84 342.00 434.60 40.43 0.01 322 324.08 10.42 6.42 322 322.00 0.00 0.01 322 325.84 13.30 3.43 322 322.00 0.00 33.78

c7c7 49 98 463.00 547.10 50.88 0.01 427 443.96 24.97 18.34 427 427.00 0.00 0.03 427 460.92 25.70 0.04 427 427.00 0.00 77.91

c8c3 24 48 104.00 104.00 0.00 0.01 104 104.00 0.00 0.01 104 104.00 0.00 0.01 104 104.00 0.00 0.01 104 104.00 0.00 0.02

c8c4 32 64 176.00 222.60 33.39 0.01 176 176.00 0.00 0.01 176 176.00 0.00 0.01 176 176.00 0.00 0.01 176 176.00 0.00 0.28

c8c5 40 80 278.00 360.04 53.26 0.01 264 264.00 0.00 0.29 264 264.00 0.00 0.01 264 266.52 17.82 0.02 264 264.00 0.00 38.98

c8c6 48 96 368.00 489.60 74.87 0.01 368 368.00 0.00 3.93 368 368.00 0.00 0.01 368 370.00 14.14 0.69 368 368.00 0.00 185.07

c8c7 56 112 516.00 683.40 85.69 0.01 488 494.32 22.47 18.20 488 488.00 0.00 0.05 488 519.48 45.30 6.91 488 488.00 0.00 156.42

c8c8 64 128 686.00 856.56 87.72 0.01 624 639.36 35.55 16.08 624 624.00 0.00 0.08 624 685.44 46.55 0.19 624 624.00 0.00 194.49

c9c3 27 54 117.00 117.00 0.00 0.01 117 117.00 0.00 0.02 117 117.00 0.00 0.01 117 117.00 0.00 0.01 117 117.00 0.00 0.01

c9c4 36 72 198.00 240.60 31.62 0.01 198 198.00 0.00 0.02 198 198.00 0.00 0.01 198 198.00 0.00 0.01 198 198.00 0.00 0.47

c9c5 45 90 297.00 397.20 74.01 0.01 297 297.00 0.00 0.35 297 297.00 0.00 0.01 297 297.00 0.00 0.01 297 297.00 0.00 170.78

c9c6 54 108 414.00 576.00 98.39 0.01 414 417.36 23.76 0.63 414 414.00 0.00 0.02 414 417.36 23.76 0.67 414 414.00 0.00 134.67

c9c7 63 126 577.00 786.94 105.57 0.01 549 555.04 29.89 4.81 549 549.00 0.00 0.05 549 551.60 18.38 6.05 549 549.00 0.00 106.83

c9c8 72 144 758.00 1047.04 116.18 0.02 702 717.28 43.83 21.07 702 702.00 0.00 0.16 702 797.00 68.94 0.45 702 702.00 0.00 200.15

c9c9 81 162 945.00 1210.02 137.45 0.02 873 904.90 60.68 16.84 873 873.00 0.00 0.26 873 965.80 70.31 0.58 873 873.00 0.00 138.15

c3k3 9 18 36.00 36.98 0.68 0.01 36 36.00 0.00 0.01 36 36.00 0.00 0.01 36 36.00 0.00 0.01 36 36.00 0.00 0.01

c3k4 12 30 76.00 76.68 1.11 0.01 72 72.00 0.00 0.01 72 72.00 0.00 0.01 72 72.00 0.00 0.01 72 72.00 0.00 0.01

c3k5 15 45 134.00 135.38 1.58 0.01 126 126.00 0.00 0.01 126 126.00 0.00 0.01 126 126.00 0.00 0.01 126 126.00 0.00 0.01

c3k6 18 63 207.00 217.68 3.95 0.01 201 201.00 0.00 0.01 201 201.00 0.00 0.01 201 201.00 0.00 0.01 201 201.00 0.00 0.02

c3k7 21 84 304.00 309.02 2.38 0.01 297 297.00 0.00 0.01 297 297.00 0.00 0.01 297 297.00 0.00 0.01 297 297.00 0.00 0.01

c3k8 24 108 430.00 436.00 3.38 0.01 420 420.00 0.00 0.01 420 420.00 0.00 0.01 420 420.00 0.00 0.01 420 420.00 0.00 0.01

c3k9 27 135 582.00 592.16 4.06 0.01 573 573.00 0.00 0.01 573 573.00 0.00 0.01 573 573.00 0.00 0.01 573 573.00 0.00 0.01

c4k3 12 24 52.00 52.00 0.00 0.01 52 52.00 0.00 0.01 52 52.00 0.00 0.01 52 52.00 0.00 0.01 52 52.00 0.00 0.01

c4k4 16 40 104.00 104.00 0.00 0.01 104 104.00 0.00 0.01 104 104.00 0.00 0.01 104 104.00 0.00 0.01 104 104.00 0.00 0.01

c4k5 20 60 180.00 180.00 0.00 0.01 180 180.00 0.00 0.01 180 180.00 0.00 0.01 180 180.00 0.00 0.01 180 180.00 0.00 0.02
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Table B.2: Detailed results of Mach, MA, BVNS, MA-20, and DMAB+MA for Cartesian products (part two)

Mach MA BVNS MA-20 DMAB+MA

Graph |V | |E| Best Avg Std T Best Avg Std T Best Avg Std T Best Avg Std T Best Avg Std T

c4k6 24 84 284.00 284.00 0.00 0.01 284 284.00 0.00 0.01 284 284.00 0.00 0.01 284 284.00 0.00 0.01 284 284.00 0.00 0.01

c4k7 28 112 420.00 420.00 0.00 0.01 420 420.00 0.00 0.02 420 420.00 0.00 0.01 420 420.00 0.00 0.01 420 420.00 0.00 0.04

c4k8 32 144 592.00 592.00 0.00 0.01 592 592.00 0.00 0.26 592 592.00 0.00 0.01 592 592.00 0.00 0.01 592 592.00 0.00 0.12

c4k9 36 180 804.00 804.00 0.00 0.01 804 804.00 0.00 0.21 804 804.00 0.00 0.02 804 804.00 0.00 0.01 804 804.00 0.00 0.32

c5k3 15 30 65.00 65.00 0.00 0.01 65 65.00 0.00 0.01 65 65.00 0.00 0.01 65 65.00 0.00 0.01 65 65.00 0.00 0.01

c5k4 20 50 130.00 130.00 0.00 0.01 130 130.00 0.00 0.01 130 130.00 0.00 0.01 130 130.00 0.00 0.01 130 130.00 0.00 0.02

c5k5 25 75 225.00 225.00 0.00 0.01 225 225.00 0.00 0.01 225 225.00 0.00 0.01 225 225.00 0.00 0.01 225 225.00 0.00 0.01

c5k6 30 105 355.00 355.00 0.00 0.01 355 355.00 0.00 0.02 355 355.00 0.00 0.01 355 355.00 0.00 0.01 355 355.00 0.00 0.02

c5k7 35 140 525.00 525.00 0.00 0.01 525 525.00 0.00 0.05 525 525.00 0.00 0.01 525 525.00 0.00 0.01 525 525.00 0.00 0.13

c5k8 40 180 740.00 740.00 0.00 0.01 740 740.00 0.00 0.11 740 740.00 0.00 0.02 740 740.00 0.00 0.02 740 740.00 0.00 0.39

c5k9 45 225 1005.00 1005.00 0.00 0.01 1005 1005.00 0.00 0.16 1005 1005.00 0.00 0.03 1005 1005.00 0.00 0.03 1005 1005.00 0.00 0.88

c6k3 18 36 78.00 78.00 0.00 0.01 78 78.00 0.00 0.01 78 78.00 0.00 0.01 78 78.00 0.00 0.01 78 78.00 0.00 0.01

c6k4 24 60 156.00 156.00 0.00 0.01 156 156.00 0.00 0.01 156 156.00 0.00 0.01 156 156.00 0.00 0.01 156 156.00 0.00 0.01

c6k5 30 90 270.00 270.00 0.00 0.01 270 270.00 0.00 0.06 270 270.00 0.00 0.01 270 270.00 0.00 0.01 270 270.00 0.00 0.02

c6k6 36 126 426.00 426.00 0.00 0.01 426 426.00 0.00 0.11 426 426.00 0.00 0.01 426 426.00 0.00 0.02 426 426.00 0.00 0.06

c6k7 42 168 630.00 630.00 0.00 0.01 630 630.00 0.00 0.14 630 630.00 0.00 0.01 630 630.00 0.00 0.03 630 630.00 0.00 0.31

c6k8 48 216 888.00 888.00 0.00 0.01 888 888.00 0.00 0.28 888 888.00 0.00 0.03 888 888.00 0.00 0.07 888 888.00 0.00 0.73

c6k9 54 270 1206.00 1206.00 0.00 0.02 1206 1206.00 0.00 0.22 1206 1206.00 0.00 0.06 1206 1206.00 0.00 0.14 1206 1206.00 0.00 2.19

c7k3 21 42 91.00 91.00 0.00 0.01 91 91.00 0.00 0.01 91 91.00 0.00 0.01 91 91.00 0.00 0.01 91 91.00 0.00 0.02

c7k4 28 70 182.00 182.00 0.00 0.01 182 182.00 0.00 0.01 182 182.00 0.00 0.01 182 182.00 0.00 0.01 182 182.00 0.00 0.02

c7k5 35 105 315.00 315.00 0.00 0.01 315 315.00 0.00 0.03 315 315.00 0.00 0.01 315 315.00 0.00 0.02 315 315.00 0.00 0.10

c7k6 42 147 497.00 497.00 0.00 0.01 497 497.00 0.00 0.09 497 497.00 0.00 0.01 497 497.00 0.00 0.02 497 497.00 0.00 0.26

c7k7 49 196 735.00 735.00 0.00 0.01 735 735.00 0.00 0.21 735 735.00 0.00 0.04 735 735.00 0.00 0.09 735 735.00 0.00 1.12

c7k8 56 252 1036.00 1036.00 0.00 0.02 1036 1036.00 0.00 0.24 1036 1036.00 0.00 0.08 1036 1036.00 0.00 0.24 1036 1036.00 0.00 2.56

c7k9 63 315 1407.00 1407.00 0.00 0.02 1407 1407.00 0.00 0.44 1407 1407.00 0.00 0.16 1407 1407.00 0.00 0.61 1407 1407.00 0.00 6.10

c8k3 24 48 104.00 104.00 0.00 0.01 104 104.00 0.00 0.01 104 104.00 0.00 0.01 104 104.00 0.00 0.01 104 104.00 0.00 0.02

c8k4 32 80 208.00 208.00 0.00 0.01 208 208.00 0.00 0.07 208 208.00 0.00 0.01 208 208.00 0.00 0.01 208 208.00 0.00 0.06

c8k5 40 120 360.00 360.00 0.00 0.01 360 360.00 0.00 0.08 360 360.00 0.00 0.02 360 360.00 0.00 0.02 360 360.00 0.00 0.14

c8k6 48 168 568.00 568.00 0.00 0.01 568 568.00 0.00 0.24 568 568.00 0.00 0.02 568 568.00 0.00 0.11 568 568.00 0.00 0.51

c8k7 56 224 840.00 840.00 0.00 0.01 840 840.00 0.00 0.20 840 840.00 0.00 0.07 840 840.00 0.00 0.45 840 840.00 0.00 2.33

c8k8 64 288 1184.00 1184.00 0.00 0.02 1184 1184.00 0.00 0.49 1184 1184.00 0.00 0.15 1184 1184.00 0.00 1.21 1184 1184.00 0.00 8.87

c8k9 72 360 1608.00 1608.00 0.00 0.02 1608 1608.00 0.00 0.64 1608 1608.00 0.00 0.26 1608 1608.00 0.00 1.59 1608 1608.00 0.00 9.48

c9k3 27 54 117.00 117.00 0.00 0.01 117 117.00 0.00 0.01 117 117.00 0.00 0.01 117 117.00 0.00 0.01 117 117.00 0.00 0.01

c9k4 36 90 234.00 234.00 0.00 0.01 234 234.00 0.00 0.07 234 234.00 0.00 0.01 234 234.00 0.00 0.02 234 234.00 0.00 0.09

c9k5 45 135 405.00 405.00 0.00 0.01 405 405.00 0.00 0.17 405 405.00 0.00 0.02 405 405.00 0.00 0.09 405 405.00 0.00 0.62

c9k6 54 189 639.00 639.00 0.00 0.01 639 639.00 0.00 0.28 639 639.00 0.00 0.06 639 639.00 0.00 0.28 639 639.00 0.00 1.56

c9k7 63 252 945.00 945.00 0.00 0.02 945 945.00 0.00 0.67 945 945.00 0.00 0.15 945 945.00 0.00 0.96 945 945.00 0.00 5.06

c9k8 72 324 1332.00 1332.00 0.00 0.02 1332 1332.00 0.00 0.71 1332 1332.00 0.00 0.49 1332 1332.00 0.00 2.29 1332 1332.00 0.00 11.75
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Table B.3: Detailed results of Mach, MA, BVNS, MA-20, and DMAB+MA for Cartesian products (part three)
Mach MA BVNS MA-20 DMAB+MA

Graph |V | |E| Best Avg Std T Best Avg Std T Best Avg Std T Best Avg Std T Best Avg Std T

c9k9 81 405 1809.00 1809.00 0.00 0.02 1809 1809.00 0.00 1.26 1809 1809.00 0.00 0.49 1809 1809.00 0.00 6.48 1809 1809.00 0.00 24.66

k3k3 9 18 36.00 37.04 0.73 0.01 36 36.00 0.00 0.01 36 36.00 0.00 0.01 36 36.00 0.00 0.01 36 36.00 0.00 0.01

k4k3 12 30 76.00 76.84 1.35 0.01 72 72.00 0.00 0.01 72 72.00 0.00 0.01 72 72.00 0.00 0.01 72 72.00 0.00 0.01

k4k4 16 48 160.00 165.08 3.39 0.01 152 152.00 0.00 0.01 152 152.00 0.00 0.01 152 152.00 0.00 0.01 152 152.00 0.00 0.02

k5k3 15 45 134.00 136.00 1.37 0.01 126 126.00 0.00 0.01 126 126.00 0.00 0.01 126 126.00 0.00 0.01 126 126.00 0.00 0.01

k5k4 20 70 278.00 282.56 2.59 0.01 256 256.00 0.00 0.02 256 256.00 0.00 0.01 256 256.00 0.00 0.01 256 256.00 0.00 0.01

k5k5 25 100 488.00 504.36 7.96 0.01 460 460.00 0.00 1.39 460 460.00 0.00 0.01 460 460.00 0.00 0.88 460 460.00 0.00 0.08

k6k3 18 63 211.00 217.88 2.62 0.01 201 201.00 0.00 0.01 201 201.00 0.00 0.01 201 201.00 0.00 0.01 201 201.00 0.00 0.02

k6k4 24 96 434.00 442.92 3.71 0.01 392 392.00 0.00 0.01 392 392.00 0.00 0.01 392 392.00 0.00 0.01 392 392.00 0.00 0.01

k6k5 30 135 765.00 786.16 8.97 0.01 695 695.00 0.00 0.02 695 695.00 0.00 0.01 695 695.00 0.00 0.40 695 695.00 0.00 0.07

k6k6 36 180 1232.00 1265.36 14.93 0.01 1128 1128.00 0.00 1.56 1128 1128.00 0.00 0.01 1128 1141.68 17.65 2.20 1128 1128.00 0.00 0.76

k7k3 21 84 303.00 308.50 2.19 0.01 297 297.00 0.00 0.01 297 297.00 0.00 0.01 297 297.00 0.00 0.01 297 297.00 0.00 0.01

k7k4 28 126 636.00 648.20 5.29 0.01 568 568.00 0.00 0.01 568 568.00 0.00 0.01 568 568.00 0.00 0.01 568 568.00 0.00 0.02

k7k5 35 175 1122.00 1144.26 11.72 0.01 985 985.00 0.00 0.01 985 985.00 0.00 0.01 985 985.00 0.00 0.01 985 985.00 0.00 0.12

k7k6 42 231 1795.00 1831.08 15.71 0.02 1587 1587.00 0.00 0.14 1587 1587.00 0.00 0.02 1587 1587.00 0.00 0.83 1587 1587.00 0.00 0.12

k7k7 49 294 2668.00 2724.88 23.34 0.02 2408 2408.00 0.00 1.01 2408 2408.00 0.00 0.03 2408 2451.20 53.45 3.62 2408 2408.00 0.00 4.57

k8k3 24 108 430.00 436.64 3.67 0.01 420 420.00 0.00 0.01 420 420.00 0.00 0.01 420 420.00 0.00 0.01 420 420.00 0.00 0.01

k8k4 32 160 836.00 849.64 8.23 0.01 784 784.00 0.00 0.01 784 784.00 0.00 0.01 784 784.00 0.00 0.01 784 784.00 0.00 0.03

k8k5 40 220 1554.00 1584.32 14.80 0.02 1340 1340.00 0.00 0.01 1340 1340.00 0.00 0.01 1340 1340.00 0.00 0.01 1340 1340.00 0.00 0.41

k8k6 48 288 2478.00 2527.44 20.34 0.02 2136 2136.00 0.00 0.01 2136 2136.00 0.00 0.01 2136 2143.52 53.17 0.02 2136 2136.00 0.00 0.22

k8k7 56 364 3714.00 3764.88 23.19 0.02 3220 3220.00 0.00 0.10 3220 3220.00 0.00 0.03 3220 3225.36 37.90 16.81 3220 3220.00 0.00 3.20

k8k8 64 448 5192.00 5300.68 41.59 0.01 4640 4640.00 0.00 1.37 4640 4640.00 0.00 0.11 4640 4747.52 127.63 0.43 4640 4640.00 0.00 13.89

k9k3 27 135 585.00 592.54 3.46 0.01 573 573.00 0.00 0.01 573 573.00 0.00 0.01 573 573.00 0.00 0.01 573 573.00 0.00 0.01

k9k4 36 198 1110.00 1131.44 10.53 0.01 1048 1048.00 0.00 0.01 1048 1048.00 0.00 0.01 1048 1048.00 0.00 0.01 1048 1048.00 0.00 0.03

k9k5 45 270 1953.00 1995.68 15.05 0.02 1765 1765.00 0.00 0.02 1765 1765.00 0.00 0.01 1765 1765.00 0.00 0.01 1765 1765.00 0.00 2.42

k9k6 54 351 3305.00 3356.48 24.47 0.02 2787 2787.00 0.00 0.02 2787 2787.00 0.00 0.01 2787 2787.00 0.00 0.01 2787 2787.00 0.00 1.21

k9k7 63 441 4954.00 5002.08 29.75 0.01 4172 4172.00 0.00 0.03 4172 4172.00 0.00 0.03 4172 4172.00 0.00 0.01 4172 4172.00 0.00 45.67

k9k8 72 540 6972.00 7056.40 40.65 0.01 5984 5984.00 0.00 0.34 5984 5984.00 0.00 0.14 5984 6002.40 91.06 6.89 5984 5984.00 0.00 173.87

k9k9 81 648 9436.00 9556.00 61.09 0.02 8280 8280.00 0.00 0.81 8280 8280.00 0.00 0.34 8280 8444.48 242.20 3.13 8280 8280.00 0.00 292.58

p3c3 9 15 28.00 29.08 0.67 0.01 27 27.00 0.00 0.01 27 27.00 0.00 0.01 27 27.00 0.00 0.01 27 27.00 0.00 0.01

p3c4 12 20 44.00 45.16 1.00 0.01 40 40.00 0.00 0.01 40 40.00 0.00 0.01 40 40.00 0.00 0.01 40 40.00 0.00 0.01

p3c5 15 25 61.00 64.24 3.02 0.01 55 55.00 0.00 0.82 55 55.00 0.00 0.01 55 55.00 0.00 0.03 55 55.00 0.00 0.01

p3c6 18 30 78.00 83.76 6.06 0.01 66 66.00 0.00 0.04 66 66.00 0.00 0.01 66 66.00 0.00 0.01 66 66.00 0.00 0.01

p3c7 21 35 99.00 106.04 8.02 0.01 77 77.00 0.00 0.01 77 77.00 0.00 0.01 77 77.00 0.00 0.01 77 77.00 0.00 0.01

p3c8 24 40 118.00 129.00 11.11 0.01 88 88.00 0.00 0.01 88 88.00 0.00 0.01 88 88.00 0.00 0.01 88 88.00 0.00 0.01

p3c9 27 45 142.00 157.60 15.14 0.01 99 99.00 0.00 0.02 99 99.00 0.00 0.01 99 99.00 0.00 0.01 99 99.00 0.00 0.02

p4c3 12 21 43.00 43.00 0.00 0.01 43 43.00 0.00 0.01 43 43.00 0.00 0.01 43 43.00 0.00 0.01 43 43.00 0.00 0.01

p4c4 16 28 74.00 76.16 2.01 0.01 64 64.00 0.00 0.01 64 64.00 0.00 0.01 64 64.00 0.00 0.01 64 64.00 0.00 0.01
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Table B.4: Detailed results of Mach, MA, BVNS, MA-20, and DMAB+MA for Cartesian products (part four)

Mach MA BVNS MA-20 DMAB+MA

Graph |V | |E| Best Avg Std T Best Avg Std T Best Avg Std T Best Avg Std T Best Avg Std T

p4c5 20 35 105.00 108.36 3.99 0.01 91 91.24 0.96 0.23 91 91.00 0.00 0.01 91 91.00 0.00 0.01 91 91.00 0.00 0.02

p4c6 24 42 144.00 149.00 5.05 0.01 114 116.00 3.73 26.68 114 114.00 0.00 0.01 114 116.96 1.77 0.25 114 114.00 0.00 0.71

p4c7 28 49 183.00 190.68 8.07 0.01 133 137.82 10.94 13.03 133 133.00 0.00 0.01 133 133.32 2.26 2.08 133 133.00 0.00 0.18

p4c8 32 56 230.00 241.60 9.97 0.01 152 154.40 9.83 3.91 152 152.00 0.00 0.01 152 152.00 0.00 0.63 152 152.00 0.00 0.18

p4c9 36 63 279.00 296.16 12.44 0.01 171 183.44 23.96 7.16 171 171.00 0.00 0.01 171 171.00 0.00 0.32 171 171.00 0.00 0.21

p5c3 15 27 56.00 56.00 0.00 0.01 56 56.00 0.00 0.01 56 56.00 0.00 0.01 56 56.00 0.00 0.01 56 56.00 0.00 0.01

p5c4 20 36 100.00 101.12 1.00 0.01 92 92.76 0.98 21.79 92 92.00 0.00 0.01 92 93.20 0.99 0.50 92 92.00 0.00 0.63

p5c5 25 45 148.00 149.12 1.00 0.01 129 129.32 2.26 0.06 129 129.00 0.00 0.01 129 129.88 3.01 0.93 129 129.00 0.00 0.07

p5c6 30 54 198.00 200.24 2.01 0.01 166 167.66 5.48 3.01 166 166.00 0.00 0.01 166 166.16 1.13 1.01 166 166.00 0.00 0.07

p5c7 35 63 258.00 261.48 2.99 0.01 203 208.72 9.15 8.52 203 203.00 0.00 0.03 203 207.20 2.78 0.02 203 203.00 0.00 2.51

p5c8 40 72 324.00 326.52 2.99 0.01 232 244.76 15.49 3.06 232 232.00 0.00 0.02 232 240.40 9.97 0.06 232 232.00 0.00 1.55

p5c9 45 81 396.00 402.20 4.90 0.01 261 285.86 29.12 7.68 261 261.00 0.00 0.02 261 276.20 19.61 1.56 261 261.00 0.00 0.88

p6c3 18 33 69.00 69.00 0.00 0.01 69 69.00 0.00 0.01 69 69.00 0.00 0.01 69 69.00 0.00 0.01 69 69.00 0.00 0.01

p6c4 24 44 124.00 124.00 0.00 0.01 116 116.32 1.58 1.16 116 116.00 0.00 0.01 116 116.00 0.00 0.07 116 116.00 0.00 0.10

p6c5 30 55 183.00 183.00 0.00 0.01 173 173.00 0.00 0.06 173 173.00 0.00 0.01 173 173.00 0.00 0.01 173 173.00 0.00 4.42

p6c6 36 66 248.00 248.00 0.00 0.01 222 226.72 15.55 4.28 222 222.00 0.00 0.02 222 225.80 7.31 1.46 222 222.00 0.00 0.46

p6c7 42 77 325.00 325.00 0.00 0.01 279 283.94 14.75 1.42 279 279.00 0.00 0.04 279 282.66 9.48 0.53 279 279.00 0.00 0.88

p6c8 48 88 408.00 408.00 0.00 0.01 328 343.66 21.21 10.15 328 328.00 0.00 0.45 328 334.56 10.18 0.19 328 328.00 0.00 12.12

p6c9 54 99 503.00 503.00 0.00 0.01 369 398.30 26.17 5.95 369 369.00 0.00 0.85 369 386.28 16.11 0.17 369 369.00 0.00 6.65

p7c3 21 39 82.00 82.00 0.00 0.01 82 82.00 0.00 0.02 82 82.00 0.00 0.01 82 82.00 0.00 0.01 82 82.00 0.00 0.02

p7c4 28 52 146.00 146.00 0.00 0.01 138 138.44 3.11 0.06 138 138.00 0.00 0.01 138 138.00 0.00 0.01 138 138.00 0.00 0.11

p7c5 35 65 216.00 216.00 0.00 0.01 206 208.40 5.55 8.50 206 206.00 0.00 0.01 206 206.00 0.00 2.03 206 206.00 0.00 18.14

p7c6 42 78 294.00 294.00 0.00 0.01 282 286.56 13.71 22.55 282 282.00 0.00 0.05 282 283.76 2.01 0.60 282 282.00 0.00 3.49

p7c7 49 91 386.00 386.00 0.00 0.01 353 359.78 15.27 6.36 353 353.00 0.00 0.15 353 360.28 11.86 0.12 353 353.00 0.00 1.14

p7c8 56 104 486.00 486.00 0.00 0.01 424 441.02 28.23 4.28 424 424.00 0.00 2.63 424 430.56 15.19 0.50 424 424.00 0.00 1.94

p7c9 63 117 600.00 600.00 0.00 0.01 495 522.06 39.36 5.77 495 495.00 0.00 33.54 495 501.00 4.95 0.55 495 495.00 0.00 30.83

p8c3 24 45 95.00 95.00 0.00 0.01 95 95.00 0.00 0.03 95 95.00 0.00 0.01 95 95.00 0.00 0.01 95 95.00 0.00 0.01

p8c4 32 60 168.00 168.00 0.00 0.01 160 160.00 0.00 0.71 160 160.00 0.00 0.01 160 160.00 0.00 0.01 160 160.00 0.00 0.60

p8c5 40 75 249.00 249.00 0.00 0.01 239 239.66 4.67 1.97 239 239.00 0.00 0.01 239 239.00 0.00 0.31 239 239.00 0.00 79.00

p8c6 48 90 340.00 340.00 0.00 0.01 332 333.80 5.45 5.68 332 332.00 0.00 0.03 332 335.60 7.27 2.83 332 332.00 0.00 192.25

p8c7 56 105 447.00 447.00 0.00 0.01 437 439.92 13.03 22.68 437 437.00 0.00 0.85 437 440.20 11.75 0.27 437 437.00 0.00 6.62

p8c8 64 120 564.00 564.00 0.00 0.01 524 534.18 29.48 10.71 524 524.00 0.00 6.81 524 532.24 15.93 1.97 524 524.00 0.00 17.30

p8c9 72 135 697.00 697.00 0.00 0.01 623 643.08 41.52 10.40 623 623.00 0.00 18.72 623 630.60 18.29 0.84 623 623.00 0.00 187.24

p9c3 27 51 108.00 108.00 0.00 0.01 108 108.00 0.00 0.16 108 108.00 0.00 0.01 108 108.00 0.00 0.01 108 108.00 0.00 0.03

p9c4 36 68 190.00 190.00 0.00 0.01 182 182.00 0.00 0.13 182 182.00 0.00 0.01 182 182.00 0.00 0.02 182 182.00 0.00 0.96

p9c5 45 85 282.00 282.00 0.00 0.01 272 273.22 8.63 1.31 272 272.00 0.00 0.01 272 272.00 0.00 0.07 272 272.00 0.00 201.56

p9c6 54 102 386.00 386.00 0.00 0.01 378 380.78 11.15 3.58 378 378.00 0.00 0.03 378 378.00 0.00 2.79 378 378.00 0.00 231.38

p9c7 63 119 508.00 508.00 0.00 0.01 500 513.26 26.87 8.97 500 500.00 0.00 0.41 500 508.46 19.72 8.52 500 500.00 0.00 243.85
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Table B.5: Detailed results of Mach, MA, BVNS, MA-20, and DMAB+MA for Cartesian products (part five)
Mach MA BVNS MA-20 DMAB+MA

Graph |V | |E| Best Avg Std T Best Avg Std T Best Avg Std T Best Avg Std T Best Avg Std T

p9c8 72 136 642.00 642.00 0.00 0.01 628 644.82 55.86 19.92 628 628.00 0.00 30.21 628 637.40 22.61 7.26 628 628.00 0.00 55.80

p9c9 81 153 794.00 794.00 0.00 0.01 745 764.84 42.29 19.22 745 745.00 0.00 83.29 745 751.02 14.21 1.43 745 745.00 0.00 299.71

p3k3 9 15 28.00 28.94 0.68 0.01 27 27.00 0.00 0.01 27 27.00 0.00 0.01 27 27.00 0.00 0.01 27 27.00 0.00 0.01

p3k4 12 26 58.00 60.76 1.27 0.01 58 58.00 0.00 0.01 58 58.00 0.00 0.01 58 58.00 0.00 0.01 58 58.00 0.00 0.01

p3k5 15 40 104.00 107.56 1.40 0.01 104 104.00 0.00 0.01 104 104.00 0.00 0.01 104 104.00 0.00 0.01 104 104.00 0.00 0.01

p3k6 18 57 169.00 174.16 1.98 0.01 169 169.00 0.00 0.01 169 169.00 0.00 0.01 169 169.00 0.00 0.01 169 169.00 0.00 0.02

p3k7 21 77 254.00 261.12 2.99 0.01 254 254.00 0.00 0.01 254 254.00 0.00 0.01 254 254.00 0.00 0.01 254 254.00 0.00 0.01

p3k8 24 100 364.00 374.40 3.59 0.01 364 364.00 0.00 0.01 364 364.00 0.00 0.01 364 364.00 0.00 0.01 364 364.00 0.00 0.01

p3k9 27 126 504.00 513.28 3.95 0.01 502 502.00 0.00 0.01 502 502.00 0.00 0.01 502 502.00 0.00 0.01 502 502.00 0.00 0.01

p4k3 12 21 43.00 43.00 0.00 0.01 43 43.00 0.00 0.01 43 43.00 0.00 0.01 43 43.00 0.00 0.01 43 43.00 0.00 0.01

p4k4 16 36 88.00 88.00 0.00 0.01 88 88.00 0.00 0.01 88 88.00 0.00 0.01 88 88.00 0.00 0.01 88 88.00 0.00 0.01

p4k5 20 55 155.00 155.00 0.00 0.01 155 155.00 0.00 0.02 155 155.00 0.00 0.01 155 155.00 0.00 0.01 155 155.00 0.00 0.02

p4k6 24 78 248.00 248.00 0.00 0.01 248 248.00 0.00 0.05 248 248.00 0.00 0.01 248 248.00 0.00 0.01 248 248.00 0.00 0.04

p4k7 28 105 371.00 371.00 0.00 0.01 371 371.00 0.00 0.06 371 371.00 0.00 0.01 371 371.00 0.00 0.01 371 371.00 0.00 0.15

p4k8 32 136 528.00 528.00 0.00 0.01 528 528.00 0.00 0.16 528 528.00 0.00 0.01 528 528.00 0.00 0.02 528 528.00 0.00 0.33

p4k9 36 171 723.00 723.00 0.00 0.01 723 723.00 0.00 0.36 723 723.00 0.00 0.01 723 723.00 0.00 0.02 723 723.00 0.00 0.55

p5k3 15 27 56.00 56.00 0.00 0.01 56 56.00 0.00 0.01 56 56.00 0.00 0.01 56 56.00 0.00 0.01 56 56.00 0.00 0.01

p5k4 20 46 114.00 114.00 0.00 0.01 114 114.00 0.00 0.01 114 114.00 0.00 0.01 114 114.00 0.00 0.01 114 114.00 0.00 0.02

p5k5 25 70 200.00 200.00 0.00 0.01 200 200.00 0.00 0.01 200 200.00 0.00 0.01 200 200.00 0.00 0.01 200 200.00 0.00 0.03

p5k6 30 99 319.00 319.00 0.00 0.01 319 319.00 0.00 0.07 319 319.00 0.00 0.01 319 319.00 0.00 0.01 319 319.00 0.00 0.08

p5k7 35 133 476.00 476.00 0.00 0.01 476 476.00 0.00 0.19 476 476.00 0.00 0.02 476 476.00 0.00 0.02 476 476.00 0.00 0.42

p5k8 40 172 676.00 676.00 0.00 0.01 676 676.00 0.00 0.23 676 676.00 0.00 0.01 676 676.00 0.00 0.03 676 676.00 0.00 1.81

p5k9 45 216 924.00 924.00 0.00 0.01 924 924.00 0.00 0.45 924 924.00 0.00 0.03 924 924.00 0.00 0.11 924 924.00 0.00 1.80

p6k3 18 33 69.00 69.00 0.00 0.01 69 69.00 0.00 0.01 69 69.00 0.00 0.01 69 69.00 0.00 0.01 69 69.00 0.00 0.01

p6k4 24 56 140.00 140.00 0.00 0.01 140 140.00 0.00 0.03 140 140.00 0.00 0.01 140 140.00 0.00 0.01 140 140.00 0.00 0.02

p6k5 30 85 245.00 245.00 0.00 0.01 245 245.00 0.00 0.07 245 245.00 0.00 0.01 245 245.00 0.00 0.01 245 245.00 0.00 0.09

p6k6 36 120 390.00 390.00 0.00 0.01 390 390.00 0.00 0.51 390 390.00 0.00 0.01 390 390.00 0.00 0.03 390 390.00 0.00 0.45

p6k7 42 161 581.00 581.00 0.00 0.01 581 581.00 0.00 0.38 581 581.00 0.00 0.01 581 581.00 0.00 0.06 581 581.00 0.00 1.17

p6k8 48 208 824.00 824.00 0.00 0.01 824 824.00 0.00 0.31 824 824.00 0.00 0.03 824 824.00 0.00 0.20 824 824.00 0.00 2.74

p6k9 54 261 1125.00 1125.00 0.00 0.02 1125 1125.00 0.00 0.81 1125 1125.00 0.00 0.07 1125 1125.00 0.00 0.25 1125 1125.00 0.00 6.67

p7k3 21 39 82.00 82.00 0.00 0.01 82 82.00 0.00 0.01 82 82.00 0.00 0.01 82 82.00 0.00 0.01 82 82.00 0.00 0.02

p7k4 28 66 166.00 166.00 0.00 0.01 166 166.00 0.00 0.05 166 166.00 0.00 0.01 166 166.00 0.00 0.01 166 166.00 0.00 0.04

p7k5 35 100 290.00 290.00 0.00 0.01 290 290.00 0.00 0.15 290 290.00 0.00 0.01 290 290.00 0.00 0.02 290 290.00 0.00 0.27

p7k6 42 141 461.00 461.00 0.00 0.01 461 461.00 0.00 0.24 461 461.00 0.00 0.01 461 461.00 0.00 0.08 461 461.00 0.00 1.34

p7k7 49 189 686.00 686.00 0.00 0.01 686 686.00 0.00 0.45 686 686.00 0.00 0.04 686 686.00 0.00 0.24 686 686.00 0.00 2.73

p7k8 56 244 972.00 972.00 0.00 0.02 972 972.00 0.00 0.63 972 972.00 0.00 0.08 972 972.00 0.00 0.46 972 972.00 0.00 9.22

p7k9 63 306 1326.00 1326.00 0.00 0.02 1326 1326.00 0.00 0.77 1326 1326.00 0.00 0.13 1326 1326.00 0.00 1.40 1326 1326.00 0.00 21.03

p8k3 24 45 95.00 95.00 0.00 0.01 95 95.00 0.00 0.01 95 95.00 0.00 0.01 95 95.00 0.00 0.01 95 95.00 0.00 0.02
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Table B.6: Detailed results of Mach, MA, BVNS, MA-20, and DMAB+MA for Cartesian products (part six)

Mach MA BVNS MA-20 DMAB+MA

Graph |V | |E| Best Avg Std T Best Avg Std T Best Avg Std T Best Avg Std T Best Avg Std T

p8k4 32 76 192.00 192.00 0.00 0.01 192 192.00 0.00 0.21 192 192.00 0.00 0.01 192 192.00 0.00 0.02 192 192.00 0.00 0.14

p8k5 40 115 335.00 335.00 0.00 0.01 335 335.00 0.00 0.17 335 335.00 0.00 0.02 335 335.00 0.00 0.04 335 335.00 0.00 0.69

p8k6 48 162 532.00 532.00 0.00 0.01 532 532.00 0.00 0.35 532 532.00 0.00 0.03 532 532.00 0.00 0.15 532 532.00 0.00 2.00

p8k7 56 217 791.00 791.00 0.00 0.01 791 791.00 0.00 0.51 791 791.00 0.00 0.08 791 791.00 0.00 0.64 791 791.00 0.00 6.39

p8k8 64 280 1120.00 1120.00 0.00 0.02 1120 1120.00 0.00 0.79 1120 1120.00 0.00 0.13 1120 1120.00 0.00 1.34 1120 1120.00 0.00 151.16

p8k9 72 351 1527.00 1527.00 0.00 0.02 1527 1527.00 0.00 1.45 1527 1527.00 0.00 0.29 1527 1527.00 0.00 2.52 1527 1527.00 0.00 25.50

p9k3 27 51 108.00 108.00 0.00 0.01 108 108.00 0.00 0.15 108 108.00 0.00 0.01 108 108.00 0.00 0.01 108 108.00 0.00 0.03

p9k4 36 86 218.00 218.00 0.00 0.01 218 218.00 0.00 0.09 218 218.00 0.00 0.01 218 218.00 0.00 0.02 218 218.00 0.00 0.26

p9k5 45 130 380.00 380.00 0.00 0.01 380 380.00 0.00 0.29 380 380.00 0.00 0.02 380 380.00 0.00 0.18 380 380.00 0.00 1.09

p9k6 54 183 603.00 603.00 0.00 0.01 603 603.00 0.00 0.60 603 603.00 0.00 0.06 603 603.00 0.00 0.60 603 603.00 0.00 4.48

p9k7 63 245 896.00 896.00 0.00 0.01 896 896.00 0.00 0.78 896 896.00 0.00 0.15 896 896.00 0.00 1.19 896 896.00 0.00 21.05

p9k8 72 316 1268.00 1268.00 0.00 0.02 1268 1268.00 0.00 0.93 1268 1268.00 0.00 0.21 1268 1268.00 0.00 3.08 1268 1268.00 0.00 28.87

p9k9 81 396 1728.00 1728.00 0.00 0.02 1728 1728.00 0.00 2.41 1728 1728.00 0.00 0.54 1728 1728.00 0.00 5.78 1728 1728.00 0.00 52.67

p3p3 9 12 19.00 19.00 0.00 0.01 19 19.00 0.00 0.01 19 19.00 0.00 0.01 19 19.00 0.00 0.01 19 19.00 0.00 0.01

p4p3 12 17 31.00 33.40 1.98 0.01 29 29.00 0.00 0.01 29 29.00 0.00 0.01 29 29.00 0.00 0.01 29 29.00 0.00 0.01

p4p4 16 24 58.00 61.20 3.96 0.01 44 44.00 0.00 0.01 44 44.00 0.00 0.01 44 44.00 0.00 0.01 44 44.00 0.00 0.01

p5p3 15 22 43.00 43.32 0.47 0.01 42 42.00 0.00 0.34 42 42.00 0.00 0.01 42 42.00 0.00 0.01 42 42.00 0.00 0.01

p5p4 20 31 87.00 93.68 8.07 0.01 63 63.32 2.26 0.27 63 63.00 0.00 0.01 63 63.00 0.00 0.01 63 63.00 0.00 0.01

p5p5 25 40 133.00 153.08 18.33 0.01 90 90.82 4.49 1.20 90 90.00 0.00 0.01 90 90.00 0.00 0.01 90 90.00 0.00 0.02

p6p3 18 27 57.00 58.96 1.48 0.01 55 55.92 0.99 14.88 55 55.00 0.00 0.01 55 55.00 0.00 0.16 55 55.00 0.00 0.05

p6p4 24 38 122.00 137.32 8.23 0.01 82 87.00 7.09 2.34 82 82.00 0.00 0.01 82 82.00 0.00 0.10 82 82.00 0.00 0.03

p6p5 30 49 187.00 217.60 28.89 0.01 117 122.50 12.19 7.30 117 117.00 0.00 0.01 117 117.00 0.00 0.01 117 117.00 0.00 0.02

p6p6 36 60 254.00 301.00 36.34 0.01 152 172.20 24.62 23.37 152 152.00 0.00 0.01 152 152.00 0.00 0.02 152 152.00 0.00 0.05

p7p3 21 32 73.00 73.48 0.50 0.01 68 68.42 1.05 0.14 68 68.00 0.00 0.01 68 68.00 0.00 0.02 68 68.00 0.00 0.02

p7p4 28 45 161.00 181.16 14.83 0.01 105 112.44 8.19 2.42 105 105.00 0.00 0.01 105 106.68 4.15 0.77 105 105.00 0.00 0.45

p7p5 35 58 242.00 288.00 39.09 0.01 149 164.02 15.87 17.77 149 149.00 0.00 0.02 149 149.00 0.00 0.53 149 149.00 0.00 0.17

p7p6 42 71 333.00 417.88 54.34 0.01 193 220.12 27.19 1.55 193 193.00 0.00 0.14 193 193.00 0.00 0.17 193 193.00 0.00 0.16

p7p7 49 84 423.00 529.56 67.13 0.01 245 287.50 42.17 7.66 245 245.00 0.00 0.46 245 245.00 0.00 0.15 245 245.00 0.00 0.21

p8p3 24 37 91.00 92.92 1.56 0.01 79 79.80 2.42 0.90 79 79.00 0.00 0.01 79 79.00 0.00 0.02 79 79.00 0.00 0.01

p8p4 32 52 206.00 224.28 16.38 0.01 128 137.66 8.71 20.94 128 128.00 0.00 0.06 128 132.16 4.04 0.16 128 128.00 0.00 1.86

p8p5 40 67 303.00 372.40 57.13 0.01 181 204.66 19.56 5.80 181 181.00 0.00 0.20 181 189.42 10.75 0.27 181 181.00 0.00 0.79

p8p6 48 82 408.00 502.92 66.05 0.01 234 279.38 37.51 13.38 234 234.00 0.00 0.91 234 234.00 0.00 2.66 234 234.00 0.00 0.38

p8p7 56 97 521.00 677.08 89.76 0.01 297 367.34 54.10 16.63 297 297.00 0.00 3.80 297 297.00 0.00 0.62 297 297.00 0.00 0.44

p8p8 64 112 650.00 824.60 113.40 0.01 361 452.54 64.73 9.56 360 360.00 0.00 10.67 360 360.00 0.00 0.60 360 360.00 0.00 2.46

p9p3 27 42 109.00 109.44 0.50 0.01 90 91.42 4.94 2.19 90 90.00 0.00 0.01 90 90.00 0.00 0.01 90 90.00 0.00 0.01

p9p4 36 59 257.00 280.64 20.51 0.01 155 162.34 12.16 12.09 155 155.00 0.00 0.02 155 155.00 0.00 0.02 155 155.00 0.00 0.60

p9p5 45 76 382.00 465.64 74.71 0.01 218 244.60 21.39 13.45 218 218.00 0.00 0.85 218 222.48 6.60 0.13 218 218.00 0.00 7.09

p9p6 54 93 495.00 618.48 88.24 0.01 282 339.56 40.24 10.63 281 281.00 0.00 9.18 281 290.24 17.57 1.48 281 281.00 0.00 2.02
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Table B.7: Detailed results of Mach, MA, BVNS, MA-20, and DMAB+MA for Cartesian products (part seven)
Mach MA BVNS MA-20 DMAB+MA

Graph |V | |E| Best Avg Std T Best Avg Std T Best Avg Std T Best Avg Std T Best Avg Std T

p9p7 63 110 628.00 823.40 117.41 0.01 356 431.08 67.44 8.88 356 356.00 0.00 35.58 356 360.32 17.27 4.22 356 356.00 0.00 1.42

p9p8 72 127 779.00 1044.16 135.47 0.01 433 549.96 76.40 28.15 431 431.24 0.43 178.65 431 433.24 15.84 3.29 431 431.00 0.00 6.11

p9p9 81 144 944.00 1244.88 152.51 0.01 519 666.34 99.12 42.15 516 516.98 0.55 168.71 516 516.02 0.14 12.20 516 516.00 0.00 40.95

Table B.8: Detailed results of Mach, MA, BVNS, MA-20, and DMAB+MA for Harwell-Boeing graphs (part one)
Mach MA BVNS MA-20 DMAB+MA

Graph |V | |E| Best Avg Std T Best Avg Std T Best Avg Std T Best Avg Std T Best Avg Std T

young1c 841 1624 54633.00 59331.40 1252.32 0.09 24337 30641.02 3140.20 127.20 18764 21856.96 2632.64 587.52 24914 28818.00 2492.86 232.56 21905 22592.52 369.77 503.13

young2c 841 1624 51347.00 58991.74 2150.85 0.09 21427 30164.88 3886.54 126.18 18448 22221.44 2397.89 578.41 24914 28818.00 2492.86 232.63 21905 22592.52 369.77 502.90

young3c 841 1671 41479.00 60437.96 7493.14 46.47 24954 33046.14 4352.24 120.10 19352 23347.48 2919.67 575.00 26359 30413.24 2626.97 219.17 22869 23898.62 413.18 489.85

young4c 841 1624 52063.00 59225.06 1576.54 0.09 22983 30806.76 3317.10 127.98 18679 21836.42 2245.74 581.59 24914 28818.00 2492.86 232.63 21905 22592.48 369.78 503.04

bcspwr01 39 46 101.00 114.60 7.91 0.01 98 111.48 8.72 26.84 98 98.00 0.00 1.43 98 98.00 0.00 0.66 98 98.00 0.00 2.63

bcspwr02 49 59 157.00 180.90 21.24 0.02 150 179.26 19.88 44.35 148 148.02 0.14 146.74 148 148.00 0.00 0.95 148 148.00 0.00 3.50

bcspwr03 118 179 734.00 951.58 81.79 0.24 746 954.24 104.60 39.89 669 680.82 5.73 112.31 663 668.66 9.78 25.04 662 663.26 0.85 298.04

bcspwr04 274 669 5422.00 6686.28 655.18 3.01 4191 4637.76 369.54 74.06 4090 4334.66 163.31 266.75 4085 4430.34 263.61 84.81 4080 4247.56 126.32 354.55

bcspwr05 443 590 5359.00 6473.10 720.59 7.72 7508 9393.24 779.25 60.03 4442 5000.20 341.86 178.29 4794 5269.72 257.73 115.47 4085 4503.06 167.16 344.57

bcspwr06 1454 1923 28146.00 40827.76 5820.56 254.99 23500 32269.62 7005.98 132.23 29022 32251.06 2258.35 591.18 52941 61872.86 3064.88 233.47 26758 34439.36 2949.44 334.15

bcspwr07 1612 2106 29105 42193.74 13078.93 137.24 32855 37124.82 2396.10 604.74 68849 76775.10 3752.52 254.15 33317 42714.66 4607.67 347.92

bcspwr08 1624 2213 30770 49115.82 14818.43 133.06 38652 44496.46 3212.08 605.10 77958 84503.08 3530.63 250.15 38542 47475.10 4371.12 349.38

bcspwr09 1723 2394 147155 164380.56 11447.42 97.27 46453 59326.02 8820.82 606.96 87183 97766.88 4583.09 237.28 43296 63542.36 9245.17 322.61

bcspwr10 5300 8271 1821769 2197831.46 152125.22 163.63 416877 503657.08 61079.57 1000.98 1968924 2161344.08 78452.62 280.33 800571 1115294.44 145487.63 381.28

bcsstk01 48 176 1158.00 1329.44 113.42 0.01 936 955.72 25.31 29.37 936 936.00 0.00 11.86 936 937.60 3.23 16.80 936 936.00 0.00 5.53

bcsstk02 66 2145 35937.00 35937.00 0.00 0.13 35937 35937.00 0.00 0.01 35937 35937.00 0.00 0.01 35937 35937.00 0.00 0.01 35937 35937.00 0.00 0.11

bcsstk04 132 1758 35091.00 37724.08 1553.58 0.98 29812 30126.94 347.92 36.76 29812 29812.04 0.28 113.75 29812 30064.72 308.12 63.91 29812 29912.48 109.97 339.41

bcsstk05 153 1135 13904.00 16378.94 2153.00 0.82 11059 11333.56 407.25 12.14 11059 11059.04 0.28 56.76 11059 11059.00 0.00 8.07 11059 11059.00 0.00 300.03

bcsstk06 420 3720 65461.00 83423.66 6709.56 28.47 55484 67213.28 6547.29 19.73 55340 63102.14 3193.90 536.73 53489 59554.20 5223.61 213.36 51849 57484.16 4083.81 353.15

bcsstk07 420 3720 66229.00 83213.26 7563.80 28.59 53466 68658.02 7815.22 19.16 55244 62602.78 3060.75 532.29 53489 59540.32 5219.81 214.67 51849 57484.38 4083.98 353.17

bcsstm07 420 3416 64120.00 76820.90 6705.07 26.06 49665 63439.64 7279.80 15.93 49406 58944.18 4465.45 506.29 48609 53072.22 5136.76 199.22 47492 53341.18 3908.72 334.84

bcsstk19 817 3018 50190.00 72248.48 12317.71 69.16 23106 36483.20 8874.21 90.04 30665 48995.12 6293.72 588.64 38519 46721.02 4442.51 240.26 22591 29827.10 3323.54 351.72

can_24 24 68 212.00 248.40 14.46 0.02 182 187.60 11.31 0.38 182 182.00 0.00 0.01 182 182.00 0.00 0.11 182 182.00 0.00 0.03

can_61 61 248 1285.00 1556.24 181.69 0.03 1137 1167.36 46.18 25.33 1137 1137.00 0.00 0.31 1137 1137.00 0.00 5.98 1137 1137.00 0.00 3.06

can_62 62 78 228.00 259.84 18.23 0.03 193 251.16 26.23 29.13 192 193.74 0.88 181.00 192 193.20 4.20 7.40 192 192.00 0.00 10.54

can_73 73 152 956.00 1062.12 67.75 0.10 825 840.92 47.51 10.87 825 825.96 0.64 239.40 825 825.00 0.00 3.59 825 825.00 0.00 25.05

can_96 96 336 2071.00 2637.64 287.27 0.20 1616 1766.02 292.45 3.90 1616 1616.00 0.00 18.41 1616 1646.88 152.82 1.09 1616 1616.00 0.00 4.10

can_144 144 576 2250.00 2258.58 6.88 0.02 1776 3293.80 563.72 75.17 1776 1776.00 0.00 2.87 1776 2516.32 748.99 7.64 1776 1776.00 0.00 44.13

can_161 161 608 6657.00 7841.26 739.00 0.97 5010 5302.92 470.41 40.88 5002 5008.08 2.35 172.19 4999 5062.32 109.11 38.80 4998 4999.80 0.64 306.41

can_187 187 652 3809.00 5836.16 1078.78 1.33 3059 4488.76 1226.15 9.59 3059 3068.20 3.64 219.58 3059 3290.66 696.89 52.01 3059 3059.00 0.00 94.51

can_229 229 774 8320.00 11843.46 2289.70 2.05 6269 7473.28 1287.56 37.46 6273 6293.72 8.29 97.93 6262 6278.06 5.40 58.60 6246 6250.60 1.92 294.20

can_256 256 1330 25856.00 33708.14 4223.68 2.42 19220 20332.60 821.67 66.40 19122 19255.70 105.62 204.16 19132 19531.24 484.65 119.22 19102 19126.62 35.76 292.38

can_268 268 1407 29800.00 37033.62 4689.48 3.44 19880 21320.32 1158.65 55.57 19503 19682.56 281.84 244.82 19521 20022.30 719.02 119.25 19503 19685.26 226.75 189.77

can_292 292 1124 20766.00 25929.08 2141.71 6.53 15133 17285.68 1955.14 91.16 15139 15256.82 423.53 216.84 15127 15781.26 1082.28 108.48 15109 15125.90 7.04 282.09

can_445 445 1682 40448.00 50717.72 3812.98 17.12 27249 30728.36 2084.31 62.06 26733 27369.88 574.59 350.30 27865 28903.22 498.09 134.94 26634 26767.32 53.67 386.96



206

Table B.9: Detailed results of Mach, MA, BVNS, MA-20, and DMAB+MA for Harwell-Boeing graphs (part two)
Mach MA BVNS MA-20 DMAB+MA

Graph |V | |E| Best Avg Std T Best Avg Std T Best Avg Std T Best Avg Std T Best Avg Std T

can_634 634 3297 103540.00 129700.74 12673.74 56.31 73165 82995.66 3989.76 85.69 76908 91065.08 5904.69 568.94 73056 76571.98 2687.48 205.31 68527 72524.42 1829.20 335.20

can_715 715 2975 86257.00 113971.48 11437.74 72.65 63156 75799.94 8528.26 79.25 62404 72781.02 8967.44 580.27 69103 71054.40 1926.73 169.94 60349 64689.94 1392.98 309.31

can_838 838 4586 216608.00 346290.46 60038.66 122.41 124637 143583.44 9133.71 76.34 106252 129454.90 12091.13 599.30 109602 113604.50 6589.60 181.68 94520 97764.96 3549.58 318.99

can_1054 1054 5571 211112 246809.36 15159.96 63.22 173438 200473.06 17780.45 606.09 172864 187501.56 14659.66 224.34 143632 183913.32 23277.15 160.35

can_1072 1072 5686 223036 258367.88 16703.11 70.99 195409 221738.52 14554.74 613.49 181053 192547.34 13427.67 210.70 150715 191977.18 32628.30 156.86

impcol_b 59 281 2421.00 2819.72 197.30 0.06 1822 1870.66 73.77 12.03 1822 1822.00 0.00 0.30 1822 1822.00 0.00 0.20 1822 1822.00 0.00 0.56

impcol_c 137 352 4742.00 5544.64 336.59 0.41 3410 3795.30 307.26 30.99 3354 3366.00 3.78 173.50 3351 3412.60 132.12 42.46 3350 3417.72 88.69 371.19

impcol_d 425 1267 22858.00 32632.66 5855.78 12.08 13712 20690.52 2662.58 36.57 13341 16409.54 1536.03 427.99 12821 16372.84 2652.91 122.12 12162 15423.72 2519.64 403.15

impcol_e 225 1187 28081.00 34173.28 3188.15 3.42 15652 17242.18 1549.69 32.07 15523 15904.56 562.16 364.47 15511 15950.80 649.48 87.01 15491 15967.84 640.42 322.61

west0067 67 287 3337.00 3473.70 164.26 0.04 2409 2494.74 64.38 19.90 2407 2407.10 0.30 134.44 2407 2429.96 36.68 21.75 2407 2407.00 0.00 11.38

west0132 132 404 6205.00 6911.84 277.38 0.33 4814 5225.42 163.45 54.85 4780 4800.44 7.70 150.48 4770 4899.52 123.70 46.05 4768 4770.26 2.17 313.58

west0156 156 371 7120.00 7754.18 311.16 0.20 4638 4933.64 236.33 103.12 4626 4645.90 9.10 163.01 4611 4698.14 113.01 37.17 4604 4608.16 2.09 281.93

west0167 167 489 8203.00 10799.10 1119.05 0.49 5547 6055.60 585.95 24.72 5534 5550.24 5.96 139.59 5523 5534.46 15.65 49.19 5516 5519.00 1.12 325.56

west0381 381 2150 155096.00 164648.20 4385.82 6.46 100253 103016.14 1762.89 89.63 100219 102080.98 1502.74 413.06 100225 102093.04 1687.81 178.48 100209 100943.06 735.66 486.20

west0479 479 1889 124487.00 132887.40 4214.77 17.26 69966 71983.00 1473.18 104.72 70382 72322.62 1641.20 441.60 70740 72262.30 1023.44 157.25 69875 71406.26 589.10 267.00

west0497 497 1715 78320.00 91703.86 5504.76 21.49 46797 52658.56 3326.23 60.11 46387 49440.00 2544.32 492.99 47796 50782.20 2263.08 135.27 46702 47822.00 766.96 301.64

west0655 655 2841 266643.00 283637.26 9641.30 48.27 143668 147081.36 3699.50 109.00 143763 153218.60 6028.91 577.74 147148 150303.34 3539.90 192.78 143808 147321.98 1184.26 281.10

west0989 989 3500 464396.00 503147.48 14242.60 134.17 252128 259890.02 3615.15 88.46 250264 263139.04 8880.93 609.26 257352 265162.86 4418.41 222.34 246154 255459.14 3069.51 384.37

west1505 1505 5437 566391 583878.54 8751.31 82.66 540081 584276.78 27432.88 645.61 561648 588878.52 18289.88 232.03 542714 561671.64 7584.02 286.71

jgl009 9 32 76.00 76.00 0.00 0.01 75 75.00 0.00 0.01 75 75.00 0.00 0.01 75 75.00 0.00 0.01 75 75.00 0.00 0.01

jgl011 11 49 142.00 142.00 0.00 0.01 141 141.00 0.00 0.01 141 141.00 0.00 0.01 141 141.00 0.00 0.01 141 141.00 0.00 0.01

dwt_59 59 104 295.00 362.22 37.66 0.05 267 334.70 36.07 20.30 235 235.00 0.00 76.06 235 237.94 11.78 8.40 235 235.00 0.00 26.65

dwt_66 66 127 192.00 192.00 0.00 0.02 192 196.76 16.50 9.25 192 192.00 0.00 0.27 192 192.00 0.00 2.10 192 192.00 0.00 0.34

dwt_72 72 75 200.00 224.96 15.45 0.05 175 214.18 22.24 35.24 174 183.24 4.01 186.96 167 172.46 4.67 15.90 167 167.00 0.00 26.14

dwt_87 87 227 1228.00 1428.14 153.66 0.11 934 1089.12 138.86 57.02 932 934.32 1.49 230.09 932 932.78 2.81 15.57 932 932.00 0.00 115.42

dwt_162 162 510 2484.00 3729.20 457.36 0.82 1851 3213.16 726.55 7.51 1837 1840.34 2.52 184.29 1837 2021.72 379.20 32.33 1837 1888.94 210.91 353.75

dwt_193 193 1650 29040.00 34932.64 3776.18 2.39 22954 24360.06 1237.76 32.38 22944 22956.68 7.94 195.98 22934 23527.60 834.77 117.96 22935 23004.68 315.65 331.06

dwt_209 209 767 8093.00 10183.06 1015.40 1.83 6989 8162.32 653.46 39.80 6372 6436.26 28.13 167.51 6365 6660.92 339.59 67.21 6369 6390.92 20.02 310.68

dwt_221 221 704 5566.00 7196.58 860.60 2.00 4007 6012.72 865.11 46.32 3789 3803.12 8.38 56.55 3782 3979.28 451.88 70.19 3775 3779.18 2.50 381.86

dwt_245 245 608 5613.00 6666.00 599.85 2.20 4704 5931.46 752.52 37.43 3895 4046.10 133.61 167.19 3873 4225.10 343.70 71.99 3859 4000.24 137.08 361.67

dwt_307 307 1108 15341.00 18482.76 1931.10 5.70 10841 12826.94 1492.39 46.95 10704 10764.56 28.98 192.74 10770 10971.96 220.65 97.21 10661 10992.34 293.87 164.16

dwt_310 310 1069 9019.00 12583.92 2173.24 5.68 6575 11008.68 1844.62 28.17 6482 6510.36 11.96 120.63 6527 6767.42 497.57 102.84 6454 6802.30 700.28 392.42

dwt_361 361 1296 16456.00 20995.80 2889.29 9.15 12243 15754.06 1993.90 40.85 12153 12234.72 40.22 78.04 12356 12667.96 131.34 102.30 12061 12069.86 10.71 362.54

dwt_419 419 1572 21652.00 26142.92 2364.15 14.13 15686 17090.32 1480.08 110.41 14609 16421.66 1328.63 424.96 15596 17304.74 1402.09 157.44 14820 15577.26 230.21 280.55

dwt_503 503 2762 54075.00 68529.42 7833.72 29.92 37775 46268.12 6849.64 50.47 37615 43103.36 4501.87 519.30 40617 43240.72 3061.27 158.32 37448 37703.96 149.62 377.62

dwt_592 592 2256 35978.00 45235.26 5132.62 40.39 30480 38511.56 5168.36 86.81 26186 29539.58 2745.75 522.48 30272 32162.52 1798.42 179.38 25076 27677.52 2255.33 292.92

dwt_758 758 2618 28018.00 44070.40 7573.91 77.90 29679 41077.08 5319.71 76.79 15979 25561.32 7763.38 576.48 31052 37748.16 3773.36 237.82 15444 17980.52 1533.73 380.66

dwt_869 869 3208 49501.00 68702.68 8539.18 122.95 42792 64780.40 6784.37 122.00 33723 42910.32 6117.69 594.56 52383 58019.70 4417.83 226.94 31395 34167.66 2194.98 470.06
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Table B.10: Detailed results of Mach, MA, BVNS, MA-20, and DMAB+MA for Harwell-Boeing graphs (part three)
Mach MA BVNS MA-20 DMAB+MA

Graph |V | |E| Best Avg Std T Best Avg Std T Best Avg Std T Best Avg Std T Best Avg Std T

dwt_878 878 3285 62429.00 86857.44 10698.00 127.62 58814 72896.22 8789.64 131.39 48816 59601.20 9719.17 603.12 61065 65613.48 2558.83 217.27 45856 47927.32 2278.56 535.69

dwt_918 918 3233 84089.00 110641.74 13674.40 141.05 46994 58875.80 5471.66 94.66 39397 49768.22 7914.90 597.59 58792 71284.84 6711.59 236.30 38290 40057.52 797.50 389.48

dwt_1005 1005 3808 66979 80054.74 7826.33 119.66 68480 80082.66 7778.23 599.11 83937 95838.52 7392.76 240.76 64108 71889.56 2722.49 330.99

dwt_1007 1007 3784 57237 91398.90 14147.92 136.36 53474 74429.78 16821.02 605.10 76748 85346.44 6793.74 222.49 51228 54573.56 4099.79 536.61

dwt_1242 1242 4592 140302.00 173521.72 17294.16 352.63 97238 115759.00 12067.31 132.89 105536 127545.68 16962.39 614.97 135391 151390.66 8323.75 245.23 93740 102532.32 5729.87 362.19

jagmesh1 936 2664 37773.00 61974.34 9619.89 134.18 23464 39159.92 7529.96 132.24 23477 37426.80 5821.20 587.17 39438 49389.14 6247.76 228.98 23459 23531.94 74.42 392.54

jagmesh2 1009 2928 43845 51874.94 6000.33 136.75 44714 55480.66 6283.22 596.75 60534 67575.26 4162.29 229.65 42043 45445.02 2185.00 389.20

jagmesh3 1089 3136 43843 57661.88 7396.96 129.85 49295 57674.76 7211.66 596.77 69843 78141.16 4804.70 232.77 43547 47009.30 2866.53 376.61

jagmesh4 1440 4032 56007 72555.64 9377.58 142.22 47447 57384.56 5122.39 611.20 117688 133381.22 9318.80 239.97 28948 37820.80 8962.84 545.40

jagmesh5 1180 3285 58311.00 76269.06 11055.94 264.80 37623 48936.68 5992.95 141.25 37329 46275.72 6592.99 589.84 70276 82695.40 5097.72 233.60 34970 40839.94 2768.25 409.03

jagmesh6 1377 3808 41179 60499.82 9774.96 143.39 35511 48084.30 9035.13 603.75 101758 113588.40 6064.43 235.62 30177 36429.60 4573.56 520.05

jagmesh7 1138 3156 39714 48745.66 5790.34 138.75 37783 44296.26 3837.53 605.71 68707 78878.24 5220.98 235.18 29129 33160.34 3382.75 383.10

jagmesh8 1141 3162 70601.00 86014.30 7857.62 237.68 41668 55717.64 7058.97 139.96 44366 50581.50 5195.28 592.06 74023 84160.68 5237.84 209.24 42728 45101.10 1845.00 448.64

jagmesh9 1349 3876 82048.00 125564.52 19030.08 397.69 48391 78428.22 12525.27 142.87 54154 73762.40 12097.89 604.54 105374 126301.20 9083.93 256.13 47831 54359.82 7677.26 457.53

nos4 100 247 1220.00 1564.42 299.45 0.07 1033 1294.90 226.02 7.71 1031 1031.02 0.14 105.60 1031 1031.00 0.00 2.79 1031 1031.00 0.00 42.84

nos5 468 2352 96626.00 113888.38 10036.91 15.03 56803 64252.76 5957.96 22.99 55772 58991.16 4245.80 521.75 57633 61449.18 3802.01 149.75 55691 57910.52 3331.97 373.87

nos6 675 1290 33323.00 47184.62 5272.95 1.77 16838 20671.88 2334.70 111.59 12334 14290.28 956.52 457.29 16108 17224.66 1077.43 177.89 13205 15343.46 741.52 453.61

nos7 729 1944 94564.00 119962.14 8861.21 10.54 42487 53579.30 6401.00 42.28 42195 46792.38 4031.65 589.25 48878 50442.14 2301.37 160.44 41176 45610.92 5402.92 335.08

494_bus 494 586 4910.00 5703.78 490.91 9.01 10984 12677.10 735.37 79.33 4113 4996.68 448.35 169.95 5160 5600.60 220.86 118.43 4496 4891.28 197.83 347.85

662_bus 662 906 11992.00 15955.78 1617.86 28.72 24416 28407.14 1839.66 82.28 9296 11322.64 965.55 481.23 11176 12589.84 719.90 182.30 9238 10485.30 613.80 294.59

685_bus 685 1282 13594.00 17574.32 2242.16 34.02 28364 33641.70 2540.00 87.67 11157 14861.12 1963.67 541.32 15541 16849.06 658.83 165.72 10254 11814.68 625.54 292.73

ash85 85 219 1190.00 1431.06 148.65 0.13 913 1020.78 79.89 70.43 913 913.02 0.14 159.87 913 931.92 21.56 11.68 913 913.00 0.00 44.71

curtis54 54 124 470.00 608.06 88.56 0.03 411 456.96 34.15 47.72 411 411.00 0.00 53.44 411 411.00 0.00 8.44 411 411.00 0.00 51.62

ibm32 32 90 493.00 541.12 22.73 0.01 405 411.96 6.55 23.36 405 405.00 0.00 0.47 405 406.68 3.20 3.13 405 405.00 0.00 0.20

pores_1 30 68 207.00 207.00 0.00 0.01 185 192.82 6.59 11.65 185 185.00 0.00 0.02 185 187.52 3.72 4.90 185 185.00 0.00 1.16

will57 57 127 408.00 451.20 54.07 0.03 336 396.56 35.08 9.41 335 335.00 0.00 16.35 335 335.26 1.84 2.19 335 335.00 0.00 10.53

pores_2 1224 5822 262697.00 337697.96 29535.77 249.24 163369 207296.54 25794.59 58.64 201405 256167.38 36342.13 630.39 214843 234017.60 12997.06 227.96 165251 190735.82 13357.54 326.35

1138_bus 1138 1458 21615.00 26378.40 2514.16 125.17 35173 43929.80 3509.11 91.40 20076 24374.16 2229.53 586.84 32420 35406.70 1395.63 225.07 18629 23365.36 1992.09 357.35

abb313 313 1553 51478.00 56958.54 2654.01 11.69 37973 40729.62 2686.62 110.17 37998 38596.78 1158.98 223.95 38002 39034.52 1442.54 120.27 37972 38022.88 30.35 273.36

arc130 130 715 14742.00 16200.00 601.27 2.04 14398 14411.22 9.25 64.84 14397 14397.00 0.00 10.19 14397 14620.08 277.90 25.07 14397 14397.00 0.00 60.52

ash219 219 431 8254.00 8888.10 338.02 2.42 6232 6433.40 191.54 79.90 6264 6299.56 16.66 89.78 6254 6451.24 198.47 38.04 6237 6247.74 4.28 299.92

ash292 292 958 9757.00 11833.86 1320.16 4.58 7452 10509.68 1459.55 24.00 6452 6563.28 60.88 133.42 6492 6629.04 76.09 96.65 6402 6571.70 255.20 379.94

ash331 331 660 16444.00 18542.44 956.30 8.69 13662 14160.94 454.47 88.30 13788 13899.90 73.94 185.52 13749 14148.64 315.44 51.75 13664 13752.12 50.05 302.49

ash608 608 1212 54640.00 60047.66 3205.86 50.60 42983 43710.18 676.57 70.29 39581 42810.32 1718.43 518.75 39910 41211.70 1383.92 153.14 41450 43422.44 660.26 276.58

ash958 958 1912 127263.00 142242.36 7228.99 193.75 75428 77244.56 2123.78 90.23 76352 90569.38 6852.74 596.95 81279 86752.72 4841.72 207.21 77359 79729.38 1073.80 287.40

bp_0 822 3260 420057.00 440298.30 9522.66 106.62 223931 231994.86 3344.34 86.10 223073 232182.70 5587.33 586.87 222470 226663.78 3554.60 216.20 216660 222938.86 1591.31 336.51

bp_200 822 3788 535516.00 555385.82 9815.36 109.67 294102 301105.82 2752.04 75.10 290600 305269.76 5914.66 591.98 289981 295653.56 3803.98 229.39 287475 290985.24 1670.82 260.11

bp_400 822 4015 572167.00 596704.38 9497.85 114.25 324060 329346.28 2766.97 90.17 318247 332603.40 8265.38 596.02 318009 324172.94 5490.57 221.25 316164 319131.72 1395.22 266.14
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Table B.11: Detailed results of Mach, MA, BVNS, MA-20, and DMAB+MA for Harwell-Boeing graphs (part four)

Mach MA BVNS MA-20 DMAB+MA

Graph |V | |E| Best Avg Std T Best Avg Std T Best Avg Std T Best Avg Std T Best Avg Std T

bp_600 822 4157 602503.00 629506.40 12134.44 100.85 351209 356786.48 2899.07 84.74 342239 358065.46 6642.59 604.68 340582 346804.32 4354.77 216.61 337960 344438.24 2071.26 328.96

bp_800 822 4518 642744.00 682406.42 12845.75 124.12 385821 394573.04 3876.95 85.26 375938 389350.96 8475.83 581.14 377262 384494.30 4799.71 211.43 374300 381337.30 2388.42 245.51

bp_1000 822 4635 679857.00 704191.44 13126.95 115.83 402496 409493.08 3721.98 112.94 387928 403023.90 8210.95 599.26 391698 398680.60 4719.19 217.26 386326 394067.24 2978.83 328.38

bp_1200 822 4698 684878.00 722660.52 12759.37 110.82 407185 416958.12 3965.48 84.00 395464 408103.36 7820.06 600.68 398286 403586.50 4832.61 224.66 393936 400254.84 3086.96 292.68

bp_1400 822 4760 711741.00 732518.48 12835.04 114.31 418067 425577.46 3931.56 72.15 399548 413866.98 8808.66 591.90 405614 412433.44 4757.19 196.70 404171 411182.86 2486.09 313.49

bp_1600 822 4809 699646.00 738986.70 17753.96 118.46 413006 419124.52 3041.27 99.20 400758 415325.08 8837.94 598.25 402934 409152.34 5404.32 215.44 400206 405558.82 2029.27 350.76

fs_541_1 541 2466 109111.00 120966.20 5202.30 24.91 91002 97085.22 2241.08 73.59 101251 109599.56 4423.86 590.82 92556 96543.46 2673.44 191.94 88449 90027.60 586.81 282.09

fs_541_2 541 2466 109280.00 120169.20 6346.99 25.37 92132 97180.78 2018.10 78.06 99100 109587.18 5074.71 588.48 92556 96543.46 2673.44 191.97 88449 90027.60 586.81 282.12

fs_541_3 541 2466 108525.00 120257.80 6022.25 25.77 92132 97138.14 1821.39 85.46 100882 109938.84 5102.33 593.93 92556 96543.46 2673.44 191.93 88449 90027.60 586.81 282.12

fs_541_4 541 2466 106898.00 121138.06 5902.71 25.89 93227 97275.70 1908.90 76.06 100192 109637.50 5400.01 591.54 92556 96543.46 2673.44 191.91 88449 90027.60 586.81 282.09

lund_a 147 1151 12160.00 14750.48 1455.05 1.13 10171 11068.34 772.58 8.27 10165 10165.68 0.51 224.80 10165 10444.64 502.68 58.71 10165 10165.00 0.00 315.13

lund_b 147 1147 11758.00 15092.28 1347.61 1.10 10192 11217.82 940.98 8.19 10160 10162.30 2.35 218.12 10160 10528.50 523.47 51.20 10160 10160.08 0.34 325.65

shl_0 663 1682 146233.00 150985.36 2605.65 38.58 123072 126022.76 1425.56 79.38 113423 117301.26 1582.05 562.39 114748 116095.34 715.94 182.55 114028 117780.04 1066.26 312.34

shl_200 663 1720 150394.00 158115.94 2935.22 39.36 129804 132504.30 1491.63 63.05 119137 123209.10 1697.45 578.76 120698 121877.52 780.98 203.42 119986 123034.72 1013.09 303.05

shl_400 663 1709 150164.00 156132.60 2767.23 40.15 131422 134568.34 1479.94 76.40 121819 124156.54 1502.49 572.03 121741 123089.72 748.37 198.76 121936 124890.52 1095.37 293.01

str_0 363 2446 153765.00 167767.26 4943.70 18.36 63958 65505.86 1437.31 99.78 63977 66867.34 2552.32 463.48 64105 65841.08 1228.68 192.03 63928 64287.58 138.91 305.66

str_200 363 3049 203298.00 220102.54 7125.11 15.74 94943 96531.06 1794.87 101.74 94488 99327.02 4041.34 418.51 94421 97195.84 2937.03 140.96 94737 95746.90 404.16 255.99

str_400 363 3124 211966.00 227214.26 8001.62 13.53 99960 100952.78 770.73 90.98 99645 102630.96 2821.32 328.92 100007 102149.74 2360.46 160.59 99891 100353.54 207.02 308.96

str_600 363 3244 207363.00 234430.02 10192.94 12.56 105396 107034.54 1692.03 100.24 105175 110888.84 3880.90 412.58 105543 109188.28 3311.26 185.87 105184 105917.52 265.14 306.54

will199 199 660 19667.00 21096.92 704.46 0.27 13721 13910.02 133.83 82.57 13727 13772.94 23.09 158.31 13708 13818.04 145.37 61.22 13703 13716.36 6.29 310.43

Table B.12: Detailed results of Mach, MA, BVNS, MA-20, and DMAB+MA for random graphs (part one)
Mach MA BVNS MA-20 DMAB+MA

Graph |V | |E| Best Avg Std T Best Avg Std T Best Avg Std T Best Avg Std T Best Avg Std T

rand1N100_1 100 498 9651.00 9984.66 180.96 0.03 7672 7861.06 113.73 77.98 7625 7635.92 6.50 116.92 7614 7683.94 54.18 60.97 7614 7616.82 5.52 251.78

rand1N100_2 100 510 9779.00 10146.46 278.00 0.11 7778 7909.44 103.49 96.11 7749 7764.60 8.83 169.46 7742 7795.24 46.13 72.88 7742 7744.40 1.76 281.19

rand1N100_3 100 513 9906.00 9910.02 2.47 0.21 7904 8092.10 135.42 85.36 7898 7912.38 6.58 133.87 7892 7952.50 69.23 64.45 7892 7894.60 1.54 315.89

rand1N100_4 100 494 10008.00 10120.44 77.50 0.10 7584 7750.46 109.75 95.05 7546 7560.38 7.52 121.83 7540 7599.60 41.65 56.10 7540 7541.80 5.54 282.68

rand1N100_5 100 450 8512.00 9103.80 400.82 0.07 6635 6809.66 115.14 73.10 6637 6648.30 6.66 146.41 6627 6683.38 61.99 61.35 6627 6630.08 2.24 300.53

rand1N100_6 100 461 8400.00 8881.80 217.67 0.12 6817 6990.28 107.61 94.30 6811 6824.50 7.11 158.72 6802 6867.52 66.04 60.19 6802 6803.10 1.05 299.68

rand1N100_7 100 510 9779.00 10056.90 218.15 0.10 7764 7930.48 101.72 75.03 7748 7764.60 7.64 171.62 7742 7795.24 46.13 72.87 7742 7744.40 1.76 281.20

rand1N100_8 100 513 9906.00 9910.20 2.35 0.21 7899 8103.48 146.20 84.19 7900 7913.68 7.23 166.02 7892 7952.50 69.23 64.47 7892 7894.60 1.54 315.91

rand1N100_9 100 494 10008.00 10101.82 81.09 0.10 7561 7720.62 99.98 100.55 7548 7565.12 9.37 117.87 7540 7599.60 41.65 56.10 7540 7541.80 5.54 282.66

rand1N100_10 100 450 8514.00 9083.84 414.73 0.08 6635 6817.24 111.23 95.19 6636 6646.58 6.53 144.98 6627 6683.38 61.99 61.36 6627 6630.08 2.24 300.56

rand3N100_1 100 1422 33128.00 33128.00 0.00 0.25 28298 28578.08 173.92 59.59 28234 28258.92 12.43 195.77 28241 28335.74 83.41 128.69 28231 28241.32 5.46 305.87

rand3N100_2 100 1482 36283.00 36775.40 425.73 0.20 29694 30014.98 201.51 64.94 29614 29628.08 7.56 157.36 29610 29715.66 86.42 126.88 29610 29612.02 1.76 300.29

rand3N100_3 100 1528 36030.00 36030.00 0.00 0.53 30975 31408.88 199.99 74.66 30951 30970.04 12.80 145.25 30945 31070.06 89.92 134.39 30945 30947.88 1.98 319.70

rand3N100_4 100 1469 34845.00 34871.66 21.08 0.34 29422 29740.42 167.46 60.41 29319 29345.70 20.72 163.03 29319 29436.34 74.22 125.96 29319 29323.36 10.78 286.96

rand3N100_5 100 1455 34508.00 34599.20 85.03 0.17 29108 29384.98 189.84 83.23 28984 29002.90 12.01 150.67 28979 29099.60 92.67 152.73 28979 28981.86 3.56 313.35

rand3N100_6 100 1422 33128.00 33128.00 0.00 0.25 28349 28586.62 150.29 69.27 28238 28261.78 12.95 134.44 28241 28335.74 83.41 128.71 28231 28241.32 5.46 305.85

rand3N100_7 100 1482 36283.00 36749.88 437.64 0.21 29686 30024.80 222.84 64.78 29613 29629.38 8.75 128.01 29610 29715.66 86.42 126.89 29610 29612.02 1.76 300.29

rand3N100_8 100 1528 36030.00 36030.00 0.00 0.53 31062 31391.40 152.16 71.61 30952 30967.74 11.54 139.96 30945 31070.06 89.92 134.43 30945 30947.88 1.98 319.66
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Table B.13: Detailed results of Mach, MA, BVNS, MA-20, and DMAB+MA for random graphs (part two)
Mach MA BVNS MA-20 DMAB+MA

Graph |V | |E| Best Avg Std T Best Avg Std T Best Avg Std T Best Avg Std T Best Avg Std T

rand3N100_9 100 1469 34845.00 34868.22 21.65 0.34 29460 29714.34 170.61 57.83 29320 29342.94 17.71 172.46 29319 29436.34 74.22 125.90 29319 29323.36 10.78 286.97

rand3N100_10 100 1455 34508.00 34582.24 84.61 0.17 29043 29331.74 177.53 83.73 28981 29005.10 10.30 158.68 28979 29099.60 92.67 152.77 28979 28981.86 3.56 313.34

rand5N10_1 10 20 43.00 43.00 0.00 0.01 41 41.00 0.00 0.01 41 41.00 0.00 0.01 41 41.00 0.00 0.01 41 41.00 0.00 0.01

rand5N100_1 100 2399 61177.00 61177.00 0.00 0.17 52042 52399.76 254.12 32.70 51947 51968.56 13.04 113.89 51944 52049.72 116.14 184.15 51944 51948.30 3.63 341.25

rand5N100_10 100 2464 62245.00 62245.00 0.00 0.28 53792 54202.04 198.22 57.10 53714 53736.92 10.04 137.67 53712 53858.30 142.69 170.53 53712 53715.08 3.01 304.72

rand5N100_2 100 2505 63861.00 63861.00 0.00 0.33 54758 55119.84 246.93 50.91 54657 54671.88 9.31 117.24 54654 54777.30 106.01 153.38 54654 54656.68 1.57 329.50

rand5N100_3 100 2526 62874.00 62875.26 1.50 0.58 55416 55885.10 236.57 44.02 55321 55337.66 11.08 120.13 55317 55475.66 136.85 192.72 55317 55321.08 1.68 339.12

rand5N100_4 100 2453 61052.00 62094.30 933.00 0.32 53525 53942.50 199.21 42.67 53486 53512.98 20.97 183.62 53480 53616.90 103.00 167.85 53480 53487.16 11.26 274.83

rand5N100_5 100 2464 62245.00 62245.00 0.00 0.28 53833 54210.74 198.86 46.46 53717 53737.82 10.97 148.74 53712 53858.30 142.69 170.54 53712 53715.10 3.00 302.41

rand5N100_6 100 2399 61177.00 61177.00 0.00 0.17 52084 52367.00 203.84 63.89 51949 51968.54 9.19 153.94 51944 52049.72 116.14 184.14 51944 51948.30 3.63 341.28

rand5N100_7 100 2505 63861.00 63861.00 0.00 0.33 54761 55122.76 215.36 56.54 54657 54671.64 9.03 159.89 54654 54777.30 106.01 153.36 54654 54656.68 1.57 329.52

rand5N100_8 100 2526 62874.00 62875.32 1.50 0.58 55431 55863.48 239.78 71.35 55325 55336.66 9.49 130.95 55317 55475.66 136.85 192.70 55317 55321.08 1.68 339.14

rand5N100_9 100 2453 61052.00 62019.94 938.96 0.33 53645 53953.46 191.16 36.51 53483 53508.16 15.59 218.30 53480 53616.94 103.04 167.84 53480 53487.16 11.26 274.86

rand5N11_1 11 25 57.00 58.06 0.68 0.01 55 55.00 0.00 0.01 55 55.00 0.00 0.01 55 55.00 0.00 0.01 55 55.00 0.00 0.01

rand5N11_2 11 28 76.00 76.00 0.00 0.01 63 63.00 0.00 0.01 63 63.00 0.00 0.01 63 63.00 0.00 0.01 63 63.00 0.00 0.01

rand5N12_1 12 37 105.00 110.20 2.56 0.01 93 93.00 0.00 0.02 93 93.00 0.00 0.01 93 93.00 0.00 0.01 93 93.00 0.00 0.01

rand5N12_2 12 25 59.00 61.96 1.77 0.01 56 56.44 0.50 1.24 56 56.00 0.00 0.01 56 56.00 0.00 0.01 56 56.00 0.00 0.02

rand5N15_1 15 58 192.00 196.94 4.35 0.01 178 178.26 0.75 0.12 178 178.00 0.00 0.01 178 178.00 0.00 0.01 178 178.00 0.00 0.02

rand5N20_1 20 98 460.00 466.52 2.70 0.02 398 398.98 1.76 27.13 398 398.00 0.00 0.02 398 398.00 0.00 0.37 398 398.00 0.00 0.11

rand5N30_1 30 210 1487.00 1488.00 1.01 0.02 1269 1273.52 10.51 29.74 1269 1269.00 0.00 0.44 1269 1269.00 0.00 0.23 1269 1269.00 0.00 0.25

rand5N40_1 40 399 3706.00 3740.72 58.69 0.04 3308 3337.40 17.36 23.73 3308 3308.00 0.00 10.53 3308 3313.00 8.50 21.37 3308 3308.00 0.00 4.52

rand7N10_1 10 27 59.00 62.00 3.03 0.01 56 56.00 0.00 0.01 56 56.00 0.00 0.01 56 56.00 0.00 0.01 56 56.00 0.00 0.01

rand7N100_1 100 3426 87406.00 88033.06 327.67 0.51 78729 79059.78 153.47 56.73 78648 78670.62 12.35 111.00 78636 78786.98 119.79 194.80 78636 78646.24 5.02 350.01

rand7N100_2 100 3499 89233.00 89888.08 460.71 0.52 80949 81215.18 131.78 58.96 80846 80876.86 20.11 152.56 80833 80952.24 89.85 192.95 80836 80848.18 7.18 336.31

rand7N100_3 100 3464 88499.00 88781.14 276.60 0.75 79890 80182.04 179.35 44.71 79796 79824.64 15.23 174.62 79792 79913.48 89.14 193.27 79796 79803.90 3.71 335.62

rand7N100_4 100 3397 85915.00 85915.00 0.00 0.55 78083 78413.46 156.78 47.50 77977 78010.60 21.42 196.44 77972 78088.30 88.19 198.62 77974 77987.36 7.80 340.90

rand7N100_5 100 3484 89646.00 89674.42 24.43 0.32 80414 80710.22 167.58 50.24 80283 80300.42 10.96 117.47 80276 80374.26 85.34 184.91 80277 80281.82 2.90 363.91

rand7N100_6 100 3426 87406.00 88052.18 278.36 0.50 78756 79112.30 209.15 56.44 78640 78668.90 12.24 127.59 78636 78786.98 119.79 194.78 78636 78646.24 5.02 350.04

rand7N100_7 100 3499 89233.00 89871.88 480.64 0.51 80917 81210.52 148.23 27.65 80842 80885.50 17.98 131.24 80833 80952.24 89.85 193.00 80836 80848.18 7.18 336.34

rand7N100_8 100 3464 88499.00 88874.16 307.43 0.71 79884 80203.80 182.40 47.11 79798 79825.04 14.34 167.94 79792 79913.14 89.32 193.26 79796 79803.90 3.71 335.71

rand7N100_9 100 3397 85915.00 85915.00 0.00 0.54 78047 78407.08 201.35 41.97 77976 78014.04 20.11 140.15 77972 78088.40 88.32 198.62 77974 77987.30 7.70 347.46

rand7N100_10 100 3484 89646.00 89671.48 24.73 0.32 80300 80680.36 184.66 87.25 80282 80300.26 12.01 116.91 80276 80374.42 85.31 184.89 80277 80281.82 2.90 363.96

rand7N11_1 11 43 125.00 127.36 1.65 0.01 108 108.00 0.00 0.01 108 108.00 0.00 0.01 108 108.00 0.00 0.01 108 108.00 0.00 0.01

rand7N11_2 11 34 82.00 88.96 3.61 0.01 81 81.00 0.00 0.01 81 81.00 0.00 0.01 81 81.00 0.00 0.01 81 81.00 0.00 0.01

rand7N12_1 12 43 124.00 131.12 4.54 0.01 116 116.06 0.24 0.11 116 116.00 0.00 0.01 116 116.00 0.00 0.01 116 116.00 0.00 0.02

rand7N12_2 12 38 114.00 114.00 0.00 0.01 98 98.00 0.00 0.09 98 98.00 0.00 0.01 98 98.00 0.00 0.01 98 98.00 0.00 0.02

rand9N10_1 10 38 100.00 100.00 0.00 0.01 95 95.00 0.00 0.01 95 95.00 0.00 0.01 95 95.00 0.00 0.01 95 95.00 0.00 0.01

rand9N10_2 10 37 91.00 91.00 0.00 0.01 89 89.00 0.00 0.01 89 89.00 0.00 0.01 89 89.00 0.00 0.01 89 89.00 0.00 0.01
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Table B.14: Detailed results of Mach, MA, BVNS, MA-20, and DMAB+MA for random graphs (part three)
Mach MA BVNS MA-20 DMAB+MA

Graph |V | |E| Best Avg Std T Best Avg Std T Best Avg Std T Best Avg Std T Best Avg Std T

rand9N10_3 10 42 116.00 116.00 0.00 0.01 112 112.00 0.00 0.01 112 112.00 0.00 0.01 112 112.00 0.00 0.01 112 112.00 0.00 0.01

rand9N10_4 10 42 115.00 115.00 0.00 0.01 111 111.00 0.00 0.01 111 111.00 0.00 0.01 111 111.00 0.00 0.01 111 111.00 0.00 0.01

rand9N10_5 10 43 120.00 120.00 0.00 0.01 116 116.00 0.00 0.01 116 116.00 0.00 0.01 116 116.00 0.00 0.01 116 116.00 0.00 0.01

rand9N10_6 10 37 102.00 102.56 0.91 0.01 90 90.00 0.00 0.01 90 90.00 0.00 0.01 90 90.00 0.00 0.01 90 90.00 0.00 0.01

rand9N10_7 10 41 114.00 114.00 0.00 0.01 107 107.00 0.00 0.01 107 107.00 0.00 0.01 107 107.00 0.00 0.01 107 107.00 0.00 0.01

rand9N10_8 10 39 106.00 106.32 0.47 0.01 102 102.00 0.00 0.01 102 102.00 0.00 0.01 102 102.00 0.00 0.01 102 102.00 0.00 0.01

rand9N10_9 10 43 118.00 118.00 0.00 0.01 115 115.00 0.00 0.01 115 115.00 0.00 0.01 115 115.00 0.00 0.01 115 115.00 0.00 0.01

rand9N10_10 10 35 94.00 95.04 1.01 0.01 86 86.00 0.00 0.01 86 86.00 0.00 0.01 86 86.00 0.00 0.01 86 86.00 0.00 0.01

rand9N100_1 100 4425 113535.00 114247.74 192.85 0.59 106633 106845.14 102.30 67.17 106569 106593.86 10.49 119.03 106557 106626.92 48.86 193.92 106561 106573.56 5.27 350.92

rand9N100_2 100 4452 113148.00 114133.36 368.78 0.71 107413 107685.04 119.97 73.09 107401 107433.60 16.73 145.34 107388 107483.36 77.28 214.67 107391 107408.12 6.32 344.40

rand9N100_3 100 4449 113479.00 114273.66 270.10 0.74 107345 107531.00 122.05 63.48 107243 107260.20 9.16 120.97 107230 107315.78 79.80 215.56 107237 107246.84 4.02 354.70

rand9N100_4 100 4415 112764.00 113410.20 380.85 0.72 106211 106472.56 160.42 85.78 106154 106173.26 9.68 94.95 106148 106259.28 93.66 184.70 106152 106158.74 2.78 383.29

rand9N100_5 100 4467 113931.00 114562.58 374.70 0.68 107731 107950.70 137.87 84.45 107699 107715.42 7.70 122.39 107690 107753.72 70.34 197.79 107696 107702.46 3.40 347.62

rand9N100_6 100 4425 113894.00 114244.96 175.67 0.62 106627 106818.70 116.08 74.33 106571 106595.20 13.08 149.49 106557 106626.92 48.86 193.93 106561 106573.56 5.27 350.98

rand9N100_7 100 4452 113614.00 114354.08 297.15 0.64 107467 107684.34 110.33 74.05 107397 107440.48 17.02 123.02 107388 107483.36 77.28 214.62 107391 107408.12 6.32 344.26

rand9N100_8 100 4449 113456.00 114374.24 351.38 0.72 107260 107461.32 124.83 97.39 107242 107258.04 8.68 117.38 107230 107315.78 79.87 215.69 107237 107246.84 4.02 354.76

rand9N100_9 100 4415 112738.00 113401.84 381.97 0.73 106211 106484.06 145.88 72.88 106156 106173.02 7.67 105.64 106148 106259.18 93.61 184.66 106152 106158.74 2.78 383.29

rand9N100_10 100 4467 113931.00 114623.96 361.32 0.66 107744 107959.60 127.99 60.70 107699 107715.68 7.91 127.44 107690 107753.72 70.34 197.71 107696 107702.46 3.40 347.81

rand9N11_1 11 50 145.00 145.00 0.00 0.01 141 141.00 0.00 0.01 141 141.00 0.00 0.01 141 141.00 0.00 0.01 141 141.00 0.00 0.01

rand9N11_2 11 51 156.00 156.00 0.00 0.01 145 145.00 0.00 0.01 145 145.00 0.00 0.01 145 145.00 0.00 0.01 145 145.00 0.00 0.01

rand9N12_1 12 56 177.00 177.00 0.00 0.01 166 166.00 0.00 0.01 166 166.00 0.00 0.01 166 166.00 0.00 0.01 166 166.00 0.00 0.01

rand9N12_2 12 56 178.00 181.78 3.52 0.01 166 166.00 0.00 0.01 166 166.00 0.00 0.01 166 166.00 0.00 0.01 166 166.00 0.00 0.02

rand9N15_1 15 93 363.00 370.00 10.60 0.01 347 347.00 0.00 0.01 347 347.00 0.00 0.01 347 347.00 0.00 0.01 347 347.00 0.00 0.02

rand9N15_2 15 94 374.00 374.66 1.53 0.01 351 351.00 0.00 0.02 351 351.00 0.00 0.01 351 351.00 0.00 0.01 351 351.00 0.00 0.01

rand9N15_3 15 93 370.00 372.96 2.94 0.01 344 344.00 0.00 0.48 344 344.00 0.00 0.01 344 344.00 0.00 0.02 344 344.00 0.00 0.02

rand9N15_4 15 93 368.00 371.60 3.59 0.01 349 349.00 0.00 0.01 349 349.00 0.00 0.01 349 349.00 0.00 0.01 349 349.00 0.00 0.01

rand9N15_5 15 89 343.00 350.10 6.22 0.01 320 320.00 0.00 0.01 320 320.00 0.00 0.01 320 320.00 0.00 0.01 320 320.00 0.00 0.01

rand9N15_6 15 96 394.00 395.24 0.62 0.01 357 357.00 0.00 0.01 357 357.00 0.00 0.01 357 357.00 0.00 0.01 357 357.00 0.00 0.01

rand9N15_7 15 93 370.00 373.20 3.04 0.01 344 344.00 0.00 0.54 344 344.00 0.00 0.01 344 344.00 0.00 0.02 344 344.00 0.00 0.02

rand9N15_8 15 93 365.00 365.00 0.00 0.01 344 344.00 0.00 0.04 344 344.00 0.00 0.01 344 344.00 0.00 0.01 344 344.00 0.00 0.03

rand9N15_9 15 98 401.00 401.36 0.48 0.01 372 372.00 0.00 0.01 372 372.00 0.00 0.01 372 372.00 0.00 0.01 372 372.00 0.00 0.01

rand9N15_10 15 95 376.00 379.28 5.63 0.01 352 352.00 0.00 0.01 352 352.00 0.00 0.01 352 352.00 0.00 0.01 352 352.00 0.00 0.01

rand9N20_1 20 172 905.00 918.04 8.11 0.02 836 836.36 0.66 7.69 836 836.00 0.00 0.03 836 836.00 0.00 0.06 836 836.00 0.00 0.10

rand9N20_2 20 171 900.00 922.44 10.53 0.01 835 835.02 0.14 5.67 835 835.00 0.00 0.02 835 835.00 0.00 0.02 835 835.00 0.00 2.11

rand9N20_3 20 175 926.00 933.86 6.34 0.01 867 867.00 0.00 0.09 867 867.00 0.00 0.02 867 867.00 0.00 0.02 867 867.00 0.00 0.08

rand9N20_4 20 175 949.00 949.00 0.00 0.01 861 861.00 0.00 2.80 861 861.00 0.00 0.01 861 861.00 0.00 0.03 861 861.00 0.00 0.05

rand9N20_5 20 164 856.00 870.70 13.14 0.02 788 788.00 0.00 11.55 788 788.00 0.00 0.03 788 788.00 0.00 0.03 788 788.00 0.00 0.10

rand9N20_6 20 173 908.00 933.86 16.71 0.02 840 840.18 0.44 17.66 840 840.00 0.00 0.11 840 840.00 0.00 0.05 840 840.00 0.00 0.14
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Table B.15: Detailed results of Mach, MA, BVNS, MA-20, and DMAB+MA for random graphs (part four)
Mach MA BVNS MA-20 DMAB+MA

Graph |V | |E| Best Avg Std T Best Avg Std T Best Avg Std T Best Avg Std T Best Avg Std T

rand9N20_7 20 166 897.00 903.30 6.69 0.01 788 788.40 1.05 13.18 788 788.00 0.00 0.05 788 788.00 0.00 0.02 788 788.00 0.00 0.52

rand9N20_8 20 169 897.00 898.74 1.50 0.02 827 827.00 0.00 2.09 827 827.00 0.00 0.09 827 827.00 0.00 0.04 827 827.00 0.00 0.43

rand9N20_9 20 170 900.00 900.00 0.00 0.01 831 831.00 0.00 1.20 831 831.00 0.00 0.04 831 831.00 0.00 0.02 831 831.00 0.00 0.23

rand9N20_10 20 166 897.00 905.92 6.40 0.01 788 788.38 0.73 22.67 788 788.00 0.00 0.04 788 788.00 0.00 0.02 788 788.00 0.00 0.52

rand9N30_1 30 394 3038.00 3151.78 37.71 0.01 2858 2862.74 4.03 53.91 2858 2858.08 0.27 200.27 2858 2858.00 0.00 1.35 2858 2858.00 0.00 11.62

rand9N30_2 30 387 3054.00 3068.44 13.18 0.02 2777 2782.32 3.94 26.31 2777 2777.00 0.00 32.25 2777 2777.00 0.00 1.87 2777 2777.00 0.00 4.80

rand9N30_3 30 391 3034.00 3078.90 26.16 0.02 2834 2838.60 3.76 52.51 2834 2834.00 0.00 37.85 2834 2834.18 0.72 18.18 2834 2834.00 0.00 10.17

rand9N30_4 30 398 3099.00 3148.58 22.13 0.02 2912 2913.74 2.37 62.04 2912 2912.00 0.00 85.79 2912 2912.00 0.00 3.62 2912 2912.00 0.00 249.63

rand9N30_5 30 387 3037.00 3089.70 26.58 0.02 2770 2771.98 3.22 24.09 2770 2770.00 0.00 3.33 2770 2770.00 0.00 0.85 2770 2770.00 0.00 3.40

rand9N30_6 30 388 3029.00 3070.74 30.77 0.02 2793 2799.72 4.50 41.73 2793 2793.00 0.00 21.84 2793 2793.00 0.00 6.03 2793 2793.00 0.00 43.38

rand9N30_7 30 389 3017.00 3058.58 40.02 0.02 2806 2810.06 3.57 32.35 2806 2806.00 0.00 57.78 2806 2806.00 0.00 8.58 2806 2806.00 0.00 4.16

rand9N30_8 30 391 3080.00 3118.56 26.29 0.02 2837 2841.36 4.22 50.27 2837 2837.00 0.00 6.01 2837 2837.00 0.00 0.62 2837 2837.00 0.00 6.85

rand9N30_9 30 392 3053.00 3138.82 34.74 0.01 2824 2827.66 5.58 40.18 2824 2824.00 0.00 2.00 2824 2824.00 0.00 0.94 2824 2824.00 0.00 3.70

rand9N30_10 30 396 3098.00 3129.38 22.03 0.02 2863 2867.22 3.59 51.46 2863 2863.00 0.00 28.55 2863 2863.24 0.82 8.92 2863 2863.00 0.00 7.83

rand9N40_1 40 701 7159.00 7296.66 52.31 0.03 6710 6722.20 11.16 41.41 6710 6710.34 0.48 169.93 6710 6710.00 0.00 10.79 6710 6710.00 0.00 48.30

rand9N40_2 40 696 7088.00 7245.20 64.55 0.04 6673 6687.48 13.03 76.74 6673 6673.00 0.00 84.39 6673 6673.00 0.00 7.64 6673 6673.00 0.00 37.90

rand9N40_3 40 701 7218.00 7325.68 54.49 0.05 6734 6742.30 6.84 49.55 6733 6733.96 0.73 221.63 6733 6733.00 0.00 24.16 6733 6733.00 0.00 146.03

rand9N40_4 40 699 7091.00 7314.64 58.49 0.05 6706 6719.38 8.41 43.20 6703 6704.12 0.66 172.84 6703 6703.04 0.20 40.88 6703 6703.00 0.00 290.52

rand9N40_5 40 700 7132.00 7297.84 58.82 0.04 6711 6730.44 11.38 67.48 6711 6711.00 0.00 70.54 6711 6711.62 2.16 23.26 6711 6711.00 0.00 105.13

rand9N40_6 40 696 7114.00 7282.42 55.26 0.04 6673 6688.20 13.13 75.63 6673 6673.02 0.14 89.55 6673 6673.00 0.00 7.65 6673 6673.00 0.00 37.89

rand9N40_7 40 721 7431.00 7539.68 59.20 0.04 6994 7008.70 8.44 62.33 6994 6995.44 0.64 216.98 6994 6994.00 0.00 25.29 6994 6994.00 0.00 319.70

rand9N40_8 40 687 7149.00 7178.42 24.35 0.05 6536 6554.14 13.45 47.25 6535 6535.44 0.50 125.04 6535 6535.00 0.00 4.21 6535 6535.00 0.00 64.64

rand9N40_9 40 701 7159.00 7289.48 47.86 0.03 6710 6722.98 11.79 44.24 6710 6710.38 0.49 138.89 6710 6710.00 0.00 10.78 6710 6710.00 0.00 48.30

rand9N40_10 40 701 7290.00 7352.76 46.81 0.03 6714 6728.90 10.40 57.76 6713 6714.80 0.95 242.86 6713 6714.66 3.23 42.19 6713 6713.00 0.00 199.73

Table B.16: Detailed results of Mach, MA, BVNS, MA-20, and DMAB+MA for Standard graphs (part one)
Mach MA BVNS MA-20 DMAB+MA

Graph |V | |E| Best Avg Std T Best Avg Std T Best Avg Std T Best Avg Std T Best Avg Std T

bipartiteComplete50-50 100 2500 62500.00 62500.00 0.00 0.17 62500 62500.00 0.00 0.03 62500 62500.00 0.00 0.02 62500 62500.00 0.00 0.01 62500 62500.00 0.00 305.07

bipartiteComplete60-60 120 3600 108000.00 108000.00 0.00 0.32 108000 108000.00 0.00 0.05 108000 108000.00 0.00 0.05 108000 108000.00 0.00 0.02 108000 108000.00 0.00 347.00

bipartiteComplete70-70 140 4900 171500.00 171500.00 0.00 0.55 171500 171500.00 0.00 0.09 171500 171500.00 0.00 0.08 171500 171500.00 0.00 0.05 171500 171500.00 0.00 306.09

bipartiteComplete80-80 160 6400 256000.00 256000.00 0.00 0.89 256000 256000.00 0.00 0.17 256000 256000.00 0.00 0.13 256000 256000.00 0.00 0.08 256000 256000.40 0.81 197.96

bipartiteComplete90-90 180 8100 364500.00 364500.00 0.00 1.40 364500 364500.00 0.00 0.24 364500 364500.00 0.00 0.19 364500 364500.00 0.00 0.13 364500 364502.56 1.34 119.47

bipartiteComplete200-200 400 40000 4000000.00 4000000.00 0.00 30.15 4000000 4000000.00 0.00 3.62 4000000 4000000.00 0.00 2.58 4000000 4000000.00 0.00 2.09 4000050 4000060.04 4.19 245.09

bipartiteComplete300-300 600 90000 13500000.00 13500000.00 0.00 148.75 13500000 13500000.00 0.00 18.13 13500000 13500000.00 0.00 9.67 13500000 13500000.00 0.00 7.76 13500118 13500139.92 7.28 337.12

bipartiteComplete400-400 800 160000 32000000.00 32000000.00 0.00 464.36 32000000 32000000.00 0.00 51.38 32000000 32000000.00 0.00 23.28 32000000 32000000.00 0.00 20.89 32000218 32000241.08 10.87 267.46

caterpillar3 9 8 13.00 13.66 0.48 0.01 12 12.00 0.00 0.01 12 12.00 0.00 0.01 12 12.00 0.00 0.01 12 12.00 0.00 0.01

caterpillar4 14 13 26.00 27.02 0.87 0.01 23 23.00 0.00 0.01 23 23.00 0.00 0.01 23 23.00 0.00 0.01 23 23.00 0.00 0.01

caterpillar5 20 19 44.00 47.16 1.40 0.01 37 37.00 0.00 0.55 37 37.00 0.00 0.01 37 37.00 0.00 0.01 37 37.00 0.00 0.02

caterpillar6 27 26 71.00 73.44 2.54 0.01 56 56.00 0.00 0.65 56 56.00 0.00 0.01 56 56.00 0.00 0.02 56 56.00 0.00 0.10

caterpillar7 35 34 102.00 109.10 3.83 0.01 79 79.00 0.00 0.93 79 79.00 0.00 0.02 79 79.00 0.00 0.03 79 79.00 0.00 0.30

caterpillar13 104 103 518.00 550.62 23.88 0.03 348 364.44 11.36 74.50 347 347.00 0.00 41.52 347 348.62 4.99 11.90 347 347.46 2.30 147.00
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Table B.17: Detailed results of Mach, MA, BVNS, MA-20, and DMAB+MA for Standard graphs (part two)
Mach MA BVNS MA-20 DMAB+MA

Graph |V | |E| Best Avg Std T Best Avg Std T Best Avg Std T Best Avg Std T Best Avg Std T

caterpillar14 119 118 639.00 671.16 27.29 0.05 428 465.86 21.26 67.50 418 418.04 0.20 115.90 418 428.88 20.89 15.42 418 420.34 4.88 258.41

caterpillar16 152 151 917.00 966.78 43.08 0.10 669 747.64 39.11 78.46 586 602.72 14.61 206.26 586 639.74 35.94 19.63 586 616.48 17.70 304.72

caterpillar17 170 169 1090.00 1140.74 44.28 0.13 817 916.70 52.69 72.59 684 725.40 20.64 149.33 684 782.42 44.77 19.00 701 761.54 25.35 318.23

caterpillar19 209 208 1465.00 1535.90 55.68 0.22 1249 1414.82 70.93 64.76 912 1013.62 38.50 171.76 959 1096.44 53.60 21.47 962 1049.60 33.14 310.49

caterpillar23 299 298 2520.00 2610.84 88.26 0.66 2556 2919.36 193.60 75.41 1543 1799.46 81.79 151.50 1803 2080.46 124.65 20.95 1675 1870.46 60.03 320.33

caterpillar29 464 463 4854.00 4964.64 110.15 2.26 6387 7206.64 452.09 71.96 3041 3474.14 171.21 173.91 3738 4331.48 246.92 20.72 3489 3782.10 124.25 276.62

caterpillar35 665 664 8264.00 8434.68 167.55 6.78 12428 14744.42 969.84 78.61 5607 6080.50 289.20 358.37 6855 7571.28 357.44 31.12 6564 7155.64 203.81 298.73

caterpillar39 819 818 11320.00 11468.90 160.71 11.28 19061 22287.66 1469.85 74.80 7562 8141.98 282.82 266.03 9043 10230.44 538.07 52.94 9159 9726.04 282.02 282.75

cycle10 10 10 10.00 10.00 0.00 0.01 10 10.00 0.00 0.01 10 10.00 0.00 0.01 10 10.00 0.00 0.01 10 10.00 0.00 0.01

cycle11 11 11 11.00 11.00 0.00 0.01 11 11.00 0.00 0.01 11 11.00 0.00 0.01 11 11.00 0.00 0.01 11 11.00 0.00 0.01

cycle12 12 12 12.00 12.00 0.00 0.01 12 12.00 0.00 0.01 12 12.00 0.00 0.01 12 12.00 0.00 0.01 12 12.00 0.00 0.01

cycle20 20 20 20.00 20.00 0.00 0.01 20 20.00 0.00 0.04 20 20.00 0.00 0.01 20 20.00 0.00 0.01 20 20.00 0.00 0.06

cycle25 25 25 25.00 25.00 0.00 0.01 25 25.00 0.00 0.34 25 25.00 0.00 0.01 25 25.00 0.00 0.04 25 25.00 0.00 0.19

cycle30 30 30 30.00 30.00 0.00 0.01 30 30.00 0.00 1.89 30 30.00 0.00 0.01 30 30.00 0.00 0.30 30 30.00 0.00 0.19

cycle35 35 35 35.00 35.00 0.00 0.01 35 35.70 4.95 5.52 35 35.00 0.00 0.02 35 35.00 0.00 1.14 35 35.00 0.00 0.34

cycle40 40 40 40.00 40.00 0.00 0.01 40 48.48 16.13 7.04 40 40.00 0.00 0.08 40 40.00 0.00 3.41 40 40.00 0.00 0.65

cycle100 100 100 100.00 100.00 0.00 0.01 100 100.00 0.00 2.33 122 169.24 21.90 219.65 100 161.80 57.65 5.15 100 100.00 0.00 14.74

cycle120 120 120 120.00 120.00 0.00 0.01 120 120.00 0.00 4.45 186 240.04 18.65 74.42 120 208.60 54.43 13.11 120 120.00 0.00 32.53

cycle125 125 125 125.00 125.00 0.00 0.01 125 173.16 60.16 17.99 187 256.34 22.90 95.24 125 231.04 66.06 13.51 125 125.00 0.00 47.54

cycle140 140 140 140.00 140.00 0.00 0.01 140 142.80 19.80 9.05 248 301.20 21.97 14.39 160 276.28 57.31 15.09 140 140.00 0.00 33.71

cycle150 150 150 150.00 150.00 0.00 0.01 150 320.12 134.90 61.33 298 346.04 36.66 38.91 220 306.56 45.20 17.91 150 151.44 7.83 137.85

cycle160 160 160 160.00 160.00 0.00 0.01 160 172.20 36.09 13.40 288 346.52 26.47 0.04 250 365.12 79.89 18.46 160 160.00 0.00 33.77

cycle180 180 180 180.00 180.00 0.00 0.01 180 234.40 80.16 15.14 336 397.08 27.23 0.05 328 437.64 80.21 22.97 180 180.00 0.00 60.50

cycle200 200 200 200.00 200.00 0.00 0.02 200 307.32 108.81 20.65 374 438.64 34.37 0.06 376 523.32 107.79 27.05 200 200.00 0.00 54.27

cycle300 300 300 300.00 300.00 0.00 0.02 3098 3646.92 260.21 75.10 666 898.00 130.27 3.96 866 1093.64 180.87 44.06 598 749.12 71.39 316.41

cycle400 400 400 400.00 400.00 0.00 0.01 400 1146.64 416.05 97.27 798 884.84 68.44 0.17 1554 2008.88 283.48 81.98 400 407.96 56.29 307.18

cycle475 475 475 475.00 475.00 0.00 0.02 8964 10299.26 606.84 72.04 1160 1579.86 235.81 23.26 2496 2965.34 360.87 115.15 2014 2463.14 221.86 310.67

cycle600 600 600 600.00 600.00 0.00 0.02 842 2464.00 895.21 126.77 1198 1344.16 97.02 0.28 4452 5236.52 296.16 148.22 600 717.92 134.36 523.31

cycle800 800 800 800.00 800.00 0.00 0.03 1638 4349.80 1213.59 129.64 1598 1788.60 140.16 0.45 8658 10541.68 581.70 192.66 860 1171.04 144.10 572.38

cycle1000 1000 1000 1000.00 1000.00 0.00 0.05 3180 6498.20 1858.53 132.89 1998 2261.04 149.74 0.68 15874 18048.84 806.18 228.02 1142 1713.96 285.19 570.80

cyclePow10-2 10 20 30.00 32.72 2.31 0.01 30 30.00 0.00 0.01 30 30.00 0.00 0.01 30 30.00 0.00 0.01 30 30.00 0.00 0.01

cyclePow11-2 11 22 33.00 35.72 2.31 0.01 33 33.00 0.00 0.01 33 33.00 0.00 0.01 33 33.00 0.00 0.01 33 33.00 0.00 0.01

cyclePow12-2 12 24 36.00 38.56 2.10 0.01 36 36.00 0.00 0.01 36 36.00 0.00 0.01 36 36.00 0.00 0.01 36 36.00 0.00 0.01

cyclePow100-10 100 1000 5562.00 5710.44 71.76 0.03 5500 5500.00 0.00 0.20 5500 5500.00 0.00 0.42 5500 5783.80 1134.72 11.10 5500 5500.00 0.00 0.38

cyclePow100-2 100 200 300.00 303.12 2.29 0.01 300 300.00 0.00 1.88 300 300.00 0.00 3.02 300 458.00 159.32 2.49 300 300.00 0.00 24.84

cyclePow120-10 120 1200 6668.00 6781.04 66.49 0.04 6600 6600.00 0.00 0.96 6600 6600.00 0.00 2.29 6600 8146.52 2639.44 4.35 6600 6600.00 0.00 0.78

cyclePow120-2 120 240 360.00 362.00 1.85 0.02 360 360.00 0.00 3.85 360 360.00 0.00 17.10 360 536.80 178.63 6.35 360 360.00 0.00 38.53

cyclePow140-10 140 1400 7762.00 7897.80 58.46 0.06 7700 7700.00 0.00 2.80 7700 7700.00 0.00 5.06 7700 11226.60 3568.11 0.39 7700 7700.00 0.00 1.49
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Table B.18: Detailed results of Mach, MA, BVNS, MA-20, and DMAB+MA for Standard graphs (part three)
Mach MA BVNS MA-20 DMAB+MA

Graph |V | |E| Best Avg Std T Best Avg Std T Best Avg Std T Best Avg Std T Best Avg Std T

cyclePow140-2 140 280 420.00 422.96 2.43 0.02 420 420.00 0.00 9.33 420 427.68 31.63 61.45 420 635.64 255.78 11.62 420 420.00 0.00 60.22

cyclePow160-10 160 1600 8866.00 9004.28 62.20 0.07 8800 8800.00 0.00 6.34 8800 8800.00 0.00 9.60 8800 11882.20 3979.69 0.77 8800 8800.00 0.00 1.67

cyclePow160-2 160 320 480.00 482.12 2.15 0.02 480 495.28 78.17 11.95 480 567.56 143.86 137.50 480 817.12 306.13 18.20 480 480.00 0.00 61.26

cyclePow180-10 180 1800 9938.00 10121.64 73.38 0.08 9900 10082.60 1291.18 9.16 9900 9900.00 0.00 20.32 9900 13994.20 4670.78 2.12 9900 9900.00 0.00 3.06

cyclePow180-2 180 360 540.00 542.32 2.15 0.01 540 652.64 207.56 17.77 540 751.28 203.88 106.25 540 979.76 326.73 27.16 540 540.00 0.00 39.31

cyclePow200-10 200 2000 11052.00 11194.92 64.71 0.10 11000 11143.00 1011.16 15.34 11000 11000.00 0.00 43.57 11000 15767.40 5221.62 3.28 11000 11000.00 0.00 6.01

cyclePow200-2 200 400 600.00 603.04 2.15 0.01 600 820.56 277.47 22.60 600 1014.20 195.27 56.92 600 1132.80 308.70 27.59 600 600.00 0.00 63.37

cyclePow400-10 400 4000 22062.00 22193.32 69.95 0.31 22000 43369.32 11873.01 89.08 22000 35743.40 9125.26 222.49 23296 34858.20 13154.39 169.12 22000 22000.00 0.00 80.41

cyclePow400-2 400 800 1200.00 1202.64 2.15 0.03 1200 3516.20 1369.06 103.82 2138 2522.84 190.82 10.85 3622 4279.84 817.06 122.02 1200 1200.00 0.00 135.92

cyclePow600-10 600 6000 33082.00 33211.52 67.78 0.64 50050 88245.88 17049.09 151.77 53130 63653.04 5494.55 434.19 51274 81616.76 20049.86 229.13 33000 34427.84 5184.53 289.44

cyclePow600-2 600 1200 1800.00 1802.56 2.21 0.06 2978 7222.32 2121.76 127.95 3418 3924.96 311.63 41.07 10432 11594.64 775.18 164.50 1800 1948.00 321.84 373.25

cyclePow800-10 800 8000 44072.00 44187.68 60.78 1.09 100980 157741.88 28272.27 161.96 78210 92600.28 7308.85 462.91 95976 140205.40 18333.29 236.38 44000 54896.24 12812.27 446.20

cyclePow800-2 800 1600 2400.00 2402.56 2.43 0.09 7286 12790.36 3161.43 134.35 4618 5206.28 396.26 43.88 20198 23015.12 1802.37 233.61 2400 3134.76 712.36 539.48

cyclePow1000-2 1000 2000 3000.00 3002.56 2.32 0.13 9832 18412.12 3906.75 137.31 5762 6600.28 462.18 127.77 34592 39649.08 2333.06 233.97 3000 4095.28 770.83 557.57

mesh2D5x4 20 31 87.00 96.52 8.39 0.01 63 63.64 3.17 0.07 63 63.00 0.00 0.01 63 63.00 0.00 0.01 63 63.00 0.00 0.01

mesh2D5x5 25 40 133.00 152.64 18.08 0.01 90 90.88 4.35 0.43 90 90.00 0.00 0.01 90 90.00 0.00 0.01 90 90.00 0.00 0.02

mesh2D5x6 30 49 187.00 222.20 27.57 0.01 117 120.22 9.76 6.92 117 117.00 0.00 0.01 117 117.00 0.00 0.02 117 117.00 0.00 0.03

mesh2D5x7 35 58 242.00 297.78 40.51 0.01 149 158.44 13.92 7.18 149 149.00 0.00 0.03 149 149.00 0.00 0.27 149 149.00 0.00 0.16

mesh2D5x8 40 67 303.00 373.60 57.24 0.01 181 198.56 19.13 15.35 181 181.00 0.00 0.15 181 188.48 10.53 0.96 181 181.00 0.00 1.36

mesh3D4x4x4 64 144 1022.00 1236.12 104.45 0.01 752 779.14 34.26 34.42 752 752.00 0.00 0.87 752 752.00 0.00 0.24 752 752.00 0.00 295.64

mesh2D10x10 100 180 1322.00 1846.00 202.29 0.01 724 946.70 116.13 21.64 702 704.14 1.14 202.31 700 705.68 30.79 24.69 700 700.00 0.00 292.77

mesh2D5x25 125 220 2625.00 3301.80 562.63 0.01 700 1108.72 224.69 38.22 696 696.96 1.05 167.96 696 696.00 0.00 8.69 696 696.00 0.00 193.02

mesh3D5x5x5 125 300 3989.00 4521.74 374.22 0.04 2278 2392.80 141.63 67.68 2262 2267.02 2.93 210.76 2262 2267.06 20.15 15.17 2262 2262.00 0.00 276.24

mesh2D10x15 150 275 2811.00 3671.24 405.50 0.02 1340 1631.20 195.66 24.05 1303 1311.22 4.48 164.30 1294 1367.78 86.68 27.89 1289 1292.06 1.08 314.67

mesh2D7x25 175 318 4035.00 5357.28 935.75 0.02 1312 1727.82 339.96 14.17 1320 1332.10 5.39 152.44 1310 1322.40 48.82 32.68 1308 1308.00 0.00 236.57

mesh2D8x25 200 367 4825.00 6687.92 1002.67 0.01 1681 2076.66 312.34 15.42 1703 1720.48 8.31 80.40 1689 1741.60 145.94 33.75 1679 1679.00 0.00 312.45

mesh3D6x6x6 216 540 10334.00 12570.18 868.04 0.11 5536 5719.28 171.54 46.65 5505 5541.26 15.11 107.45 5500 5583.20 128.96 53.79 5492 5492.56 1.21 307.35

mesh2D15x20 300 565 9231.00 11777.04 675.23 0.02 4785 5952.72 566.86 66.68 3688 3727.28 16.03 141.54 3692 3907.92 318.61 70.75 3630 3646.66 5.82 359.20

mesh3D7x7x7 343 882 23981.00 29389.80 2247.46 0.70 12772 14474.92 598.65 77.39 11956 12033.80 39.74 149.00 12167 12424.42 84.77 83.57 11893 11934.38 16.60 307.77

mesh2D19x25 475 906 21014.00 24710.16 888.98 0.04 15322 18639.18 1513.37 58.52 7368 8659.38 781.03 377.02 8120 8787.50 674.22 113.80 7260 7330.62 51.43 336.97

mesh3D8x8x8 512 1344 54672.00 62886.90 4180.46 2.48 30485 33523.00 1468.60 64.31 23019 24359.60 1353.08 474.86 24831 25772.88 358.20 129.36 22967 23100.26 98.90 272.20

mesh2D25x26 650 1249 37183.00 39980.28 829.16 0.06 31549 37348.14 2915.46 70.15 11847 15137.20 2380.37 478.24 14892 16736.58 1608.96 175.81 11659 12439.40 631.52 324.78

mesh3D9x9x9 729 1944 103291.00 120571.80 7408.10 8.89 62594 69234.34 3273.33 85.48 43501 51506.52 3973.66 585.10 48390 50003.56 703.87 182.80 41389 43033.48 701.29 338.62

mesh2D28x30 840 1622 58112.00 59516.08 460.91 0.09 55386 66676.44 5705.90 76.42 21315 25847.70 1638.99 577.29 24115 28728.26 2523.78 226.83 17814 22099.08 2483.86 329.27

mesh2D20x50 1000 1930 60698.00 92680.68 5911.45 0.12 76549 94027.82 6467.35 96.35 21635 30258.36 4965.33 597.73 35958 40996.12 3238.38 237.62 22617 29792.30 3307.89 360.34

mesh3D10x10x10 1000 2700 168085.00 216353.50 14673.77 22.09 119167 132531.82 7518.42 78.56 84969 102090.38 7745.08 605.30 88595 91528.26 2890.92 200.62 70940 76059.02 1753.78 325.72

mesh3D11x11x11 1331 3630 317459.00 362225.38 20953.53 79.57 211115 240252.88 13476.41 91.87 157673 179189.80 13487.00 603.51 153138 161363.38 5645.58 228.48 117888 129196.12 4927.68 301.71

mesh3D12x12x12 1728 4752 516960.00 591890.22 34160.33 199.09 359879 409358.34 24669.89 99.10 251473 299958.18 19521.73 632.38 256217 283325.88 18172.57 253.22 193910 213781.22 8752.56 381.02
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Table B.19: Detailed results of Mach, MA, BVNS, MA-20, and DMAB+MA for Standard graphs (part four)
Mach MA BVNS MA-20 DMAB+MA

Graph |V | |E| Best Avg Std T Best Avg Std T Best Avg Std T Best Avg Std T Best Avg Std T

mesh3D13x13x13 2197 6084 815289.00 921799.02 53100.78 436.53 558891 658646.16 46605.64 106.07 425435 471642.18 23238.03 685.05 420354 488684.00 31874.50 259.23 285791 337104.00 21362.38 394.28

path10 10 9 9.00 9.00 0.00 0.01 9 9.00 0.00 0.01 9 9.00 0.00 0.01 9 9.00 0.00 0.01 9 9.00 0.00 0.01

path11 11 10 10.00 10.00 0.00 0.01 10 10.00 0.00 0.01 10 10.00 0.00 0.01 10 10.00 0.00 0.01 10 10.00 0.00 0.01

path12 12 11 11.00 11.00 0.00 0.01 11 11.00 0.00 0.01 11 11.00 0.00 0.01 11 11.00 0.00 0.01 11 11.00 0.00 0.01

path15 15 14 14.00 14.00 0.00 0.01 14 14.00 0.00 0.01 14 14.00 0.00 0.01 14 14.00 0.00 0.01 14 14.00 0.00 0.01

path20 20 19 19.00 19.00 0.00 0.01 19 19.00 0.00 0.01 19 19.00 0.00 0.01 19 19.00 0.00 0.01 19 19.00 0.00 0.02

path25 25 24 24.00 24.00 0.00 0.01 24 24.00 0.00 0.16 24 24.00 0.00 0.01 24 24.00 0.00 0.02 24 24.00 0.00 0.04

path30 30 29 29.00 29.00 0.00 0.01 29 29.00 0.00 0.29 29 29.00 0.00 0.04 29 29.00 0.00 0.07 29 29.00 0.00 0.09

path35 35 34 34.00 34.00 0.00 0.01 34 34.00 0.00 0.70 34 34.00 0.00 0.12 34 34.00 0.00 0.17 34 34.00 0.00 0.23

path40 40 39 39.00 39.00 0.00 0.01 39 39.00 0.00 1.25 39 39.00 0.00 0.48 39 39.00 0.00 0.32 39 39.00 0.00 0.37

path100 100 99 99.00 99.00 0.00 0.01 99 104.10 12.48 8.92 99 152.62 26.07 91.82 99 128.48 23.95 17.80 99 99.00 0.00 10.03

path120 120 119 119.00 119.00 0.00 0.01 119 131.92 18.30 18.81 119 192.76 40.10 0.04 131 179.98 29.77 18.75 119 119.00 0.00 17.36

path125 125 124 124.00 124.00 0.00 0.01 124 170.48 43.70 55.81 153 237.82 28.68 77.28 140 202.12 27.79 17.91 124 124.46 3.25 134.57

path140 140 139 139.00 139.00 0.00 0.01 139 164.08 28.42 27.30 139 215.98 38.25 0.01 188 264.42 45.11 20.64 139 139.00 0.00 27.95

path150 150 149 149.00 149.00 0.00 0.01 149 260.28 97.75 84.65 217 313.84 44.72 43.18 228 284.64 41.83 22.85 149 163.86 22.36 326.59

path160 160 159 159.00 159.00 0.00 0.01 159 210.40 46.71 16.58 159 255.54 47.20 0.01 201 325.24 58.31 22.50 159 159.00 0.00 47.59

path175 175 174 174.00 174.00 0.00 0.02 435 747.98 133.57 71.07 302 395.64 53.68 9.90 299 381.68 60.70 23.42 174 229.64 36.17 321.49

path180 180 179 179.00 179.00 0.00 0.01 179 243.86 52.98 19.69 185 291.78 52.92 0.01 313 393.38 65.62 24.58 179 179.00 0.00 56.96

path200 200 199 199.00 199.00 0.00 0.02 199 301.60 82.49 40.77 199 323.72 58.59 0.03 404 511.74 76.73 25.15 199 199.00 0.00 85.07

path300 300 299 299.00 299.00 0.00 0.02 2571 3564.34 261.75 75.39 580 770.80 104.96 4.12 871 1093.16 211.05 46.82 562 708.86 71.01 344.41

path400 400 399 399.00 399.00 0.00 0.01 399 1104.28 461.74 116.18 413 664.62 115.74 0.04 1476 1945.86 298.83 81.61 399 463.42 86.96 379.78

path475 475 474 474.00 474.00 0.00 0.02 8655 10301.72 578.72 71.52 1175 1562.54 242.19 23.38 2467 2893.52 202.52 112.14 1628 2393.48 275.00 296.59

path600 600 599 599.00 599.00 0.00 0.02 807 2490.06 807.81 125.51 621 936.58 174.45 0.20 4354 5136.34 302.61 143.90 599 846.70 166.89 528.05

path800 800 799 799.00 799.00 0.00 0.03 1902 4205.98 1185.44 129.13 865 1289.72 222.74 0.29 9004 10250.58 553.28 201.33 888 1249.02 230.96 548.15

path1000 1000 999 999.00 999.00 0.00 0.05 3195 6271.26 1709.62 132.89 1057 1622.10 257.87 0.31 16239 17749.22 752.76 233.36 1231 1745.14 317.77 559.07

tree2x4 31 30 60.00 60.00 0.00 0.02 60 60.00 0.00 0.71 60 60.00 0.00 0.02 60 60.00 0.00 0.02 60 60.00 0.00 0.18

tree3x3 40 39 97.00 97.42 0.50 0.01 91 92.78 3.60 15.93 91 91.00 0.00 0.01 91 91.00 0.00 0.05 91 91.00 0.00 0.17

tree10x2 111 110 748.00 748.00 0.00 0.09 580 581.02 1.58 29.97 580 580.00 0.00 0.01 580 580.00 0.00 0.02 580 580.00 0.00 0.12

tree3x4 121 120 370.00 370.52 0.50 0.17 350 373.66 16.11 54.56 350 358.56 6.50 152.99 350 351.98 5.69 12.28 350 350.00 0.00 64.04

tree5x3 156 155 700.00 718.96 17.92 0.29 604 673.88 33.83 59.32 599 605.64 10.06 94.60 599 604.96 10.77 17.03 599 603.36 8.41 243.75

tree13x2 183 182 1634.00 1634.00 0.00 0.35 1264 1318.94 31.55 82.66 1232 1232.00 0.00 0.02 1232 1232.00 0.00 0.04 1232 1232.00 0.00 0.79

tree2x7 255 254 752.00 823.60 53.33 1.30 1530 2174.36 207.06 58.05 913 1069.66 72.34 5.50 810 885.58 34.58 32.06 799 914.54 38.59 325.11

tree17x2 307 306 3650.00 3650.00 0.00 1.45 3091 3403.36 178.17 66.25 2682 2682.00 0.00 0.09 2682 2682.00 0.00 0.15 2682 2682.00 0.00 4.82

tree21x2 463 462 6882.00 6882.00 0.00 4.66 6584 7429.24 461.92 71.68 4972 4972.00 0.00 0.25 4972 4972.00 0.00 0.46 4972 4972.00 0.00 25.41

tree25x2 651 650 11618.00 11618.00 0.00 12.51 12678 14571.76 1015.24 79.04 8294 8294.00 0.00 0.51 8294 8294.00 0.00 1.53 8294 8310.84 13.51 311.14

tree5x4 781 780 4293.00 4330.86 81.14 27.88 21812 25050.02 1626.75 58.63 8586 10837.32 982.64 595.74 7933 8925.84 420.21 171.46 7767 8779.52 485.34 294.06

wheel10 10 18 35.00 35.00 0.00 0.01 35 35.00 0.00 0.01 35 35.00 0.00 0.01 35 35.00 0.00 0.01 35 35.00 0.00 0.01

wheel11 11 20 41.00 41.00 0.00 0.01 41 41.00 0.00 0.01 41 41.00 0.00 0.01 41 41.00 0.00 0.01 41 41.00 0.00 0.01
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Table B.20: Detailed results of Mach, MA, BVNS, MA-20, and DMAB+MA for Standard graphs (part five)
Mach MA BVNS MA-20 DMAB+MA

Graph |V | |E| Best Avg Std T Best Avg Std T Best Avg Std T Best Avg Std T Best Avg Std T

wheel12 12 22 48.00 48.00 0.00 0.01 48 48.00 0.00 0.01 48 48.00 0.00 0.01 48 48.00 0.00 0.01 48 48.00 0.00 0.01

wheel15 15 28 71.00 71.00 0.00 0.01 71 71.00 0.00 0.01 71 71.00 0.00 0.01 71 71.00 0.00 0.01 71 71.00 0.00 0.01

wheel20 20 38 120.00 120.00 0.00 0.01 120 120.00 0.00 0.01 120 120.00 0.00 0.01 120 120.00 0.00 0.02 120 120.00 0.00 0.02

wheel40 40 78 440.00 440.00 0.00 0.01 440 440.00 0.00 0.09 440 440.00 0.00 0.27 440 440.72 5.09 2.47 440 440.00 0.00 0.60

wheel100 100 198 2600.00 2600.00 0.00 0.01 2600 2600.00 0.00 3.14 2628 2689.68 23.35 179.38 2600 2652.72 47.13 9.57 2600 2600.00 0.00 2.56

wheel120 120 238 3720.00 3720.00 0.00 0.02 3720 3724.80 23.75 5.32 3812 3870.36 20.87 145.32 3720 3797.52 54.04 22.15 3720 3720.00 0.00 3.05

wheel140 140 278 5040.00 5040.00 0.00 0.03 5040 5043.48 20.28 12.50 5154 5243.60 37.20 139.76 5062 5183.40 63.91 24.72 5040 5040.00 0.00 4.45

wheel160 160 318 6560.00 6560.00 0.00 0.04 6560 6582.88 51.08 15.68 6710 6832.44 51.65 121.85 6650 6767.40 76.61 29.51 6560 6560.00 0.00 6.51

wheel180 180 358 8280.00 8280.00 0.00 0.05 8280 8351.88 84.83 19.61 8522 8649.04 61.71 112.18 8406 8528.92 89.08 34.10 8280 8280.00 0.00 8.74

wheel200 200 398 10200.00 10200.00 0.00 0.07 10200 10282.12 93.22 27.37 10520 10672.36 70.52 91.10 10398 10539.76 105.53 38.31 10200 10200.00 0.00 13.45

wheel400 400 798 40400.00 40400.00 0.00 0.49 40400 41184.04 439.27 100.97 41360 42015.40 275.31 36.02 41630 41939.00 179.04 100.45 40400 40400.00 0.00 71.21

wheel600 600 1198 90600.00 90600.00 0.00 1.61 90952 92570.16 818.74 130.31 92722 93888.44 591.17 126.86 94668 95187.88 259.98 187.68 90600 90600.00 0.00 124.01

wheel800 800 1598 160800.00 160800.00 0.00 3.72 161962 164241.36 1261.65 133.74 164540 166256.88 744.55 304.64 169164 170340.44 540.48 230.65 160800 160801.96 9.50 275.30

wheel1000 1000 1998 251000.00 251000.00 0.00 7.27 252896 256614.00 1981.52 136.81 257820 259832.80 913.22 491.77 266086 267913.16 752.61 230.48 251000 251172.44 199.78 400.79
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