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La bioinformática es el campo de la ciencia que comprende el uso de técnicas computacionales

para abordar problemas de ı́ndole biológica. Una de las áreas de investigación más significativas en

bioinformática involucra la determinación de la estructura tridimensional de las protéınas. Conocer

la estructura proteica es un paso fundamental para el entendimiento de estos elementos esenciales de

la vida. Sin embargo, dadas las limitaciones de lo métodos experimentales existentes, los enfoques

computacionales se han convertido en una pieza clave para el análisis de tales estructuras. Este

proyecto de tesis se enfoca en el modelo hidrofóbico-polar (HP), una versión abstracta pero aún

desafiante del problema de predicción de la estructura de protéınas (PSP). Este modelo se basa en el

hecho de que las interacciones hidrofóbicas entre aminoácidos juegan un papel determinante durante

el proceso de plegamiento de las protéınas. Desde el punto de vista computacional, PSP utilizando

el modelo HP representa un problema dif́ıcil de optimización combinatoria, un problema que se

ha demostrado pertenece a la clase NP-completo. La neutralidad, multimodalidad e infactibilidad

son tres propiedades que caracterizan los paisajes de aptitud (fitness landscapes) del modelo HP,

siendo éstas las principales fuentes de dificultad que deben ser consideradas durante el diseño de

metaheuŕısticas para resolver este problema. El trabajo de investigación reportado en este documento

involucra el análisis de esquemas de evaluación alternativos para lidiar con estas dificultades inherentes

xv



del planteamiento convencional del modelo HP. La premisa básica de este trabajo es que, mediante

el cambio del esquema de evaluación, será posible influir en el orden de preferencia que existe entre

las soluciones candidatas, impactando aśı en las caracteŕısticas del paisaje de aptitud.

La primera etapa de este proyecto se centró en el tema de la neutralidad. La neutralidad se origina

por la baja capacidad de discriminación asociada con el esquema de evaluación convencional (función

objetivo) del modelo HP. Esto genera grandes mesetas (plateaus) en el paisaje de aptitud, donde

un algoritmo puede fallar al identificar una dirección apropiada de búsqueda. Se realizó un estudio

comparativo detallado para evaluar el potencial de discriminación, la compatibilidad con el problema,

y la efectividad para guiar la búsqueda, de un conjunto de esquemas de evaluación alternativos que

se han propuesto en la literatura. El uso de alternativas de discriminación de grano fino, compatibles

con el problema, mejoró sustancialmente el desempeño promedio de los algoritmos considerados. Se

encontró también que es posible tomar ventaja y explotar la neutralidad inherente del modelo HP.

La segunda parte de esta tesis reporta la primera aplicación de técnicas de optimización multi-

objetivo para resolver PSP espećıficamente utilizando el modelo HP. Planteamientos multiobjetivo

se proponen para lidiar con la multimodalidad del problema, es decir, con la existencia de múltiples

óptimos locales en el paisaje de aptitud. Los efectos de la transformación del problema fueron investi-

gados a fondo, aśı como su impacto en el comportamiento de los algoritmos de búsqueda. Como

resultado, se encontró que esta transformación introduce incomparabilidad entre soluciones, lo que

conlleva un incremento en la neutralidad del paisaje de aptitud. La neutralidad añadida permite

que un algoritmo pueda desplazarse hacia clases de aptitud inferiores, evitando de este modo quedar

atrapado en óptimos locales. Consecuentemente, la implementación de los enfoques multiobjetivo

propuestos ha provocado una mejora significativa en el desempeño de los algoritmos estudiados.

Con base en los hallazgos mencionados, la etapa final de este proyecto exploró el uso de una

estrategia basada en optimización multiobjetivo para hacer frente a las grandes áreas de infactibilidad

que presentan los paisajes de aptitud del modelo HP. Este problema con restricciones fue replanteado

como un problema sin restricciones, al ser éstas tratadas como un criterio de optimización adicional.

Un análisis detallado de la transformación del problema reveló que una fracción considerable de la

infactibilidad es convertida en neutralidad. Esta neutralidad define nuevas rutas en el paisaje de

xvi



aptitud, rutas que no sólo pueden ser más cortas, sino que pueden también ser aprovechadas con la

finalidad de escapar de óptimos locales. Mediante la evaluación de diferentes mecanismos, el estudio

realizado resalta la importancia de introducir un sesgo adecuado cuando se implementa el enfoque

multiobjetivo para manejo de restricciones. Finalmente, la efectividad del enfoque multiobjetivo

propuesto se demostró en términos del desempeño de los algoritmos de búsqueda considerados.
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Bioinformatics is the field of science that encompasses the use of computational techniques to address

questions of biological significance. One of the most active research areas in bioinformatics is that

of protein structure determination. To gain knowledge about protein structure is a fundamental step

towards the understanding of such important building blocks of life. Given the limitations of existing

experimental methods, however, computational approaches have become the cornerstone of protein

structure analysis. This thesis project focuses on the hydrophobic-polar (HP) model, a simplified yet

challenging representation of the protein structure prediction (PSP) problem. This model captures

the fact that hydrophobic interactions among amino acids constitute a major determinant of the

functional conformation of proteins. From the computational point of view, the HP model for the

prediction of protein structure gives rise to a challenging combinatorial optimization problem that has

been proved to be NP-complete. Neutrality, multimodality and infeasibility are three characterizing

properties of the fitness landscapes of PSP under the HP model, representing the main sources of

difficulty to be addressed when designing metaheuristic algorithms for solving this problem. The

research reported in this thesis is concerned with the analysis of alternative evaluation schemes to

cope with these inherent difficulties of the conventional problem formulation. The basic premise is

that, by changing the evaluation scheme, it will be possible to influence the comparability relation

among candidate solutions in order to impact on the characteristics of the fitness landscape.
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The first part of this project dealt with the neutrality issue. Neutrality relates to the existence of

large plateaus in the fitness landscape due to the poor discrimination provided by the conventional

evaluation scheme (original optimization objective) of the HP model. In such plateaus, metaheuristics

could fail to identify a promising direction, leading the search process to be driven almost at random.

A detailed comparative analysis was conducted to evaluate the discrimination ability, the compatibility

with the problem, and the effectiveness to guide the search process for a set of alternative evaluation

schemes which have been proposed in the literature. The use of more fine-grained and problem-

compatible evaluation schemes enhanced the average performance of search algorithms. It was also

found that it is possible to take advantage of the inherent neutrality of the HP model.

The second part of this thesis reports the first application of multi-objective optimization methods

to the particular HP model of the PSP problem. Alternative multi-objective formulations of the

problem were proposed to cope with multimodality; i.e., the presence of multiple local optima in

the fitness landscape. The effects of the problem transformation have been investigated, as well as

the impact of the proposed approaches on the search behavior of metaheuristic algorithms. It was

found that the problem transformation introduces incomparability among solutions, which translates

into landscape neutrality. This added neutrality allows algorithms to move through inferior fitness

classes as a means to avoid stagnating at local optima. Consequently, the use of the proposed

multi-objective formulations has been reflected as a significant increase in search performance.

In the light of the above findings, the last part of this research explored the use of multi-

objective optimization to deal with the large areas of infeasibility that the landscapes of the HP

model involve. This constrained problem is transformed into an unconstrained one by defining an

additional optimization criterion to account for the problem constraints. An analysis of the problem

transformation revealed that an important fraction of infeasibility is converted into neutrality, defining

potentially shorter paths to move through the landscape which can also be exploited to escape from

local optima. By evaluating different mechanisms, this study highlights the relevance of introducing

a proper search bias when handling constraints by multi-objective optimization. The implementation

of the proposed strategy significantly improved the performance of the considered search algorithms.
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1
Introduction

1.1 Problem statement and motivation

Proteins are fundamental elements of living organisms, performing an astonishing range of biological

functions. They are involved, for example, in transport, structural, enzymatic, hormonal, regulatory

and defensive processes. A protein is chain-like molecule, represented by a linear sequence defined over

a set of 20 different building blocks called amino acids. The three-dimensional structure of a protein

is known to be one of the major determinants of its distinctive functional properties. Therefore,

studying the structure of proteins becomes critical for the understanding of such important biological

macromolecules. Advances in molecular biology and genome projects during the last decades have led

to an exponential growth in the number of newly discovered protein sequences. Given the limitations

of experimental methods to determine the structure of proteins, however, there is currently a huge

gap between the number of identified protein sequences and the number of known protein structures.1

Thus, computational techniques have been developed in order to bridge such an ever-increasing gap.

1 There are currently a total of 51, 616, 950 protein sequence entries in the UniProtKB/TrEMBL database
(http://www.uniprot.org/statistics/TrEMBL, January 22, 2014). In contrast, there exist only 97, 591 ex-
perimentally determined structures in the Protein Data Bank (http://www.rcsb.org/pdb, February 8, 2014).

1

http://www.uniprot.org/statistics/TrEMBL
http://www.rcsb.org/pdb


2 1.1. Problem statement and motivation

It is generally accepted that the amino-acid sequence encodes all the information related to the

three-dimensional structure of a protein. In other words, it is the specific configuration of amino acids

in a protein which determines how it folds into a unique and compact three-dimensional conformation,

often referred to as the native state. Among all the possible conformations that a protein can adopt,

it is believed that its native state corresponds to the one minimizing the overall free-energy [1, 2].

Hence, the process of inferring the functional, energy-minimizing conformation for a protein molecule

from its linear sequence of amino acids can be posed as an optimization problem. This problem

is referred to as the protein structure prediction (PSP) problem in the specialized literature, and

represents one of the most active and challenging research areas in the field of bioinformatics.

The difficulty of the PSP problem stems not only from the fact that proteins are very flexible,

which causes that the space of potential conformations is extremely large; but also, the lack of a

complete understanding of protein folding has prevented the development of models that can accu-

rately capture all characteristics and the forces that this complex and elusive natural “optimization”

process involves. Furthermore, the analysis of a protein conformation at atomic resolution, using the

more detailed and realistic models, is a computationally-intensive task which can be prohibitive even

for relatively small proteins. Therefore, simplified protein models have been proposed as an attempt

to alleviate, to a certain extent, the computational intractability of the PSP problem, while still

providing valuable insight to advance the understanding of the most general and essential principles

governing the folding process [28, 38, 86, 120, 180]. One of such reduced representations of the PSP

problem is the so-called hydrophobic-polar (HP) model, the focus of this research project [61, 126].

In the HP model, protein chains consist of only two types of amino acids, hydrophobic (H) and

polar (P). This model abstracts the so-called hydrophobic effect: whereas H amino acids tend to

clump together at the core of the protein to hide from the aqueous environment, P amino acids are

usually found at the outer surface of the molecule. Therefore, the hydrophobicity of amino acids

constitutes a major stabilizing force determining the native conformation of proteins, a fact that is

well captured by the HP model. Also, this model discretizes the conformational space, so that a valid

protein structure is modeled as a self-avoiding embedding of the protein chain on a given lattice.

Under the HP model, thus, PSP is defined as the problem of finding a self-avoiding conformation
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of the protein where the interaction among H amino acids on the lattice is maximized (assuming

that maximizing H-H interactions will result in the formation of a compact hydrophobic core).

In spite of the significant simplifications and assumptions made in the HP model, this abstract

formulation inherits, to a large extent, the challenging nature of the original problem. From the

computational point of view, the prediction of protein structures under the HP model represents a

hard combinatorial optimization problem that has been shown to be NP-complete [10, 43]. Such a

complexity has motivated the use of a diversity of metaheuristic approaches to address this problem

(refer to Section 2.3.3.4 for a review on the application of metaheuristic algorithms to this problem).

Three main sources of difficulty can be identified with regard to the design of metaheuristic

algorithms for solving the HP model of the PSP problem: the neutrality, multimodality and infeasi-

bility of its fitness landscapes. Neutrality originates from the poor discrimination associated with the

conventional evaluation scheme (original optimization objective) of the HP model. A low discrimi-

nation translates into large plateaus of neutral (i.e., incomparable) solutions, on which metaheuristic

algorithms may drift due to the lack of a search direction to guide the optimization process. Mul-

timodality, in turn, refers to the existence of multiple local optima in the fitness landscape. Hence,

metaheuristic algorithms, mainly local search-based methods, can easily stagnate at a suboptimal

solution. Finally, the infeasibility difficulty relates to the fact that, using the existing problem repre-

sentations, a significant portion of the solution space encodes non-self-avoiding protein structures.

A search algorithm could invest a considerable amount of computational effort in exploring the large

areas of infeasibility of the fitness landscape. Otherwise, handling infeasible areas as inaccessible may

result in a complicated landscape from the perspective of the search algorithm. Thus, metaheuristic

algorithms need to be equipped with explicit mechanisms to cope effectively with these issues.

1.2 The proposal

Metaheuristic algorithms can be broadly classified as single-solution-based and population-based

metaheuristics [218]. In either case, and regardless of the search mechanisms implemented, the

success of these algorithms relies largely on a proper solution representation, as well as on an effective
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Optimization through metaheuristics

Representation 
of candidate 

solutions

Optimization 
strategy with 

specific search 
mechanisms

Thesis proposal

Evaluation 
scheme

Alternative evaluation 
schemes to cope with 

neutrality

Alternative evaluation 
schemes to cope with 

multimodality

Alternative evaluation 
schemes to cope with 

infeasibility

Figure 1.1: Illustrating the relationship between the fundamental components on which metaheuristic-
based optimization relies (left), and the way this thesis deals with the main difficulties of the studied
optimization problem by changing one of such components, namely, the evaluation scheme (right).

evaluation scheme (see left part of Figure 1.1). The evaluation scheme plays a critical role in defining

the characteristics of the fitness landscape, being the responsible for assessing the quality (fitness)

of the candidate solutions and determining how they compare with respect to each other. In this

way, the evaluation scheme is a problem-specific design component that provides metaheuristic

algorithms with this valuable information in order to guide the search process. By changing the

evaluation scheme, therefore, it will be possible to transform the fitness landscape of the problem

and impact on the behavior of search algorithms. As illustrated in Figure 1.1, this research project

is concerned with the analysis of how the use of alternative evaluation schemes can contribute to

dealing with the neutrality, multimodality and infeasibility of the HP model’s fitness landscapes and,

thus, to the development of more efficient metaheuristics for solving this problem.

Previous efforts have been reported on the use of alternative evaluation schemes to deal with the

neutrality of the HP model [9,26,45,98,122,142]. Nevertheless, the literature lacks solid experimental

evidence supporting the effectiveness of most of these alternative problem formulations, and there is

not a complete understanding of their influence on the performance of metaheuristics. Part of this

thesis project engages in a detailed comparative analysis as an attempt to answer these questions.
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Regarding multimodality, this research reports for the first time (to the author’s knowledge) the

use of alternative evaluation schemes to address such a difficulty of the HP model’s fitness landscapes.

The multi-objectivization of the HP model is proposed, where alternative multi-objective formulations

of the problem are used to cope with this issue. This research work produces also the first efforts on

the application of multi-objective optimization techniques to this particular problem.

Finally, the infeasibility issue has been previously tackled from the perspective of the evaluation

scheme by implementing a penalty strategy. Despite its simplicity, an inherent drawback of such an

approach lies in the need for defining the severity of the penalties to be applied, which has been

regarded to be a difficult optimization problem itself [161, 186]. Alternatively, this research explores

for the first time the use of multi-objective optimization to handle the constraints of the HP model.

1.3 Research hypothesis

The underlying hypothesis on which this research work is based is as follows:

By implementing alternative evaluation schemes, it will be possible to alter essential

characteristics of the fitness landscape in order to address the neutrality,

multimodality and infeasibility challenges which arise when designing metaheuristic

algorithms for solving the protein structure prediction problem under the HP model.

1.4 Aim of the thesis

The main objective of this research project can be stated as follows:

To contribute to the fields of computer science and bioinformatics, particularly in the

areas of optimization, metaheuristic algorithms and protein structure prediction, through

the study of alternative evaluation schemes, tailored to the HP model of the protein

structure prediction problem, and the analysis of how they contribute to overcoming the

neutrality, multimodality and infeasibility difficulties associated with this problem.



6 1.5. Outline of the thesis

1.5 Outline of the thesis

Besides the present introductory chapter, this thesis has been organized into five other chapters. A

general overview of the remaining chapters is provided below:

• Chapter 2 provides background concepts and sets the notation used in this document. Also,

previous work on the application of metaheuristic algorithms to the HP model is summarized.

In addition, this chapter describes the adopted performance assessment methodology, detail-

ing the considered test instances, the implemented performance measures, the methodology

followed during the statistical significance analyses, and the utilized experimental platform.

• Chapter 3 addresses the neutrality of the HP model’s fitness landscapes. This chapter studies

different alternative energy (evaluation) functions which have been reported in the specialized

literature to cope with this issue. The considered approaches are described in detail and an

in-depth comparative analysis explores their discrimination capabilities, their consistency with

respect to the original problem’s definition, and their effectiveness to guide the search process.

• In Chapter 4, the multi-objectivization of the HP model is proposed as a means of dealing

with multimodality. Three different multi-objective evaluation schemes for the HP model are

investigated, all of them based on the decomposition of the original optimization criterion of

the problem. A thorough analysis of the potential effects of the (single-objective to multi-

objective) problem transformation is conducted. Also, it is evaluated the extent to which

multi-objectivization impacts on the search performance of metaheuristic algorithms.

• Chapter 5 proposes the use of multi-objective optimization as a constraint-handling strategy

for the HP model. This originally constrained single-objective problem is restated as an un-

constrained multi-objective problem by treating constraints as a supplementary optimization

criterion. The effects of this problem transformation are carefully analyzed. Different mecha-

nisms to provide this strategy with a proper search bias are investigated. Finally, the suitability

of the proposed approach is evaluated in terms of the performance of search algorithms.
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• Finally, Chapter 6 provides concluding remarks, summarizes the main achieved findings and

contributions, and highlights some possible directions for future research which can be derived

from the findings of the present work.

It is worthy to mention at this point that the provided discussion of the related work has been

split and it is covered throughout the different chapters of this document in order to make each

performed study more self-contained (see Sections 2.3.3.4, 3.2, 4.2 and 5.2).





2
Background concepts and

performance assessment methodology

2.1 Introduction

The purpose of this chapter is to provide a series of basic concepts and definitions in order to

familiarize the reader with the main topics related to this research, as well as with the notation

and performance assessment methodology adopted in the remaining chapters of this document.

The particular case of study of this project, the HP model for the prediction of protein structures,

represents a challenging optimization problem. Therefore, this chapter begins by covering in Section

2.2 fundamental definitions from the field of optimization. Then, Section 2.3 offers a general overview

on proteins and the protein structure prediction problem, with special emphasis on the HP model

of this problem addressed in this thesis. Finally, Section 2.4 concludes this chapter by describing

in detail the HP model test instances, the performance measures, the statistical significance testing

methodology, and the experimental platform utilized during the experiments of this research work.

9
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2.2 Optimization

This section introduces some background concepts related to optimization which are essential for

the sake of self-containedness of this thesis document. The remainder of this section is organized as

follows. Sections 2.2.1 and 2.2.2 provide a formal definition of the single-objective and multi-objective

optimization problems, respectively. Multi-objectivization, the transformation from a single-objective

to a multi-objective optimization problem, is discussed in Section 2.2.3. Finally, basic concepts with

regard to fitness landscapes and fitness landscape analysis are presented in Section 2.2.4.

2.2.1 Single-objective optimization

Without loss of generality, a single-objective optimization problem can be formally stated as follows:

Minimize f(x), (2.1)

subject to x ∈ XF ,

where x is a solution vector ; XF denotes the feasible set, i.e., the set of all feasible solution vectors

in the search space X , XF ( X ; and f : X → R is the objective function to be optimized. The aim

is thus to find the feasible solution(s) yielding the optimum value for the objective function. That

is, the problem is to find x∗ ∈ XF such that f(x∗) = min{f(x) | x ∈ XF}.

2.2.2 Multi-objective optimization

Without loss of generality, a multi-objective optimization problem can be formally defined as follows:

Minimize f(x) = [f1(x), f2(x), . . . , fk(x)]T , (2.2)

subject to x ∈ XF ,
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where f(x) is the objective vector and fi : X → R is the i-th objective function, i ∈ {1, 2, . . . , k}.

Rather than searching for a single optimal solution, the task in multi-objective optimization is to

identify a set of trade-offs among the, usually conflicting, problem objectives. More formally, the

goal is to find a set of Pareto-optimal solutions P∗, such that

P∗ = {x∗ ∈ XF | @x ∈ XF : x ≺ x∗}. (2.3)

The symbol “≺” denotes the Pareto-dominance relation [176]:

x ≺ x′ ⇔ ∀i ∈ {1, 2, . . . , k} : fi(x) ≤ fi(x
′) ∧ (2.4)

∃j ∈ {1, 2, . . . , k} : fj(x) < fj(x
′).

If x ≺ x′, then x is said to dominate x′. Otherwise, x′ is said to be nondominated with respect to

x, denoted by x ⊀ x′. The image of P∗ in the objective space is the so-called Pareto-optimal front,

usually referred to as the trade-off surface. Some of these concepts are illustrated in Figure 2.1.

2.2.3 Multi-objectivization

Multi-objectivization1 refers to the process of reformulating an originally single-objective optimization

problem in terms of two or more objective functions [119].2 Two main directions exist to perform

such a single-objective to multi-objective transformation: (i) by incorporating additional information

in the form of supplementary objectives, also referred to as artificial or helper objectives [18, 105];

or (ii) by means of the decomposition of the original objective function of the problem [85, 119]. In

either case, the goal remains to solve the original problem, so that the original optima are to be also

Pareto-optimal with regard to the new alternative multi-objectivized formulation.

When multi-objectivization is based on the addition of supplementary objectives, the single-

objective problem is restated as a multi-objective problem of the form f(x) = [f(x), g1(x), . . . , gh(x)]T ;

1The term multi-objectivization was originally coined by Knowles et al. [119], but the first studies on this kind of
problem transformation date back to the work of Louis and Rawlins [145].

2It should be noted that originally multi-objective problems have been also multi-objectivized in the literature [96].
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Objective space

f
1

f
2

Image of X F

Pareto-optimal front

Decision (variable) space

x
1

x
2

Feasible set XF

Infeasible solution Pareto-optimal solutionFeasible solution

Figure 2.1: Illustration of basic concepts of multi-objective optimization.

where f is the original objective function of the problem and gi denotes the i-th supplementary ob-

jective, 1 ≤ i ≤ h. In the literature, this has been the most extensively studied approach to

multi-objectivization. In a recent review [202], Segura et al. make a distinction between multi-

objectivization proposals where supplementary objectives are problem-dependent and are based solely

on information from the evaluated solution [18,82,103,105,137,138,222], and those where they act as

diversity measures [22,23,166,200,203–205,208,221,237]. The authors give also separate treatment

to studies where additional objectives are implemented to handle constraints [161, 195, 234].

Finally, in multi-objectivization by decomposition, the original objective is fragmented into several

different components, each to be treated as an objective function under the new alternative formula-

tion. Formally, the problem is restated in terms of d ≥ 2 objectives, f(x) = [f1(x), . . . , fd(x)]T , such

that the sum of all the new objectives equals the original objective function; i.e., f(x) =
∑d

i=1 fi(x),

for all x ∈ XF .3 Some works reported in this direction include [8,50–52,55,84,85,119,174,213,233].

3 Though other different decompositions are possible, this definition ensures that the original optimum coincides
with one of the Pareto-optima in the multi-objective version of the problem [119].
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2.2.4 Fitness landscapes

The notion of a fitness landscape, first introduced by Wright [239], has been found to be useful in

understanding the most essential characteristics of certain optimization problems, or problem classes.

By analyzing the fitness landscape, it is possible to gain further insight into problem difficulty as a

means of explaining, or even predicting, the performance of search algorithms. Fitness landscape

analysis is expected to provide important clues for guiding the development of more competitive

search mechanisms, which are able to deal with (or to take advantage of) the particular characteristics

of the landscape associated with the given optimization task. Some fundamental definitions on this

topic, which are relevant according to the scope of this research project, are presented below. For a

more comprehensive treatment of the topic the reader can be referred to [107,150,182,214,227,232].

A fitness landscape can be generically defined in terms of a triplet (X ,N , ξ). The first ele-

ment, X , represents the set of all potential solutions to the problem, i.e., the search space. The

notion of connectedness among solutions in X is introduced by the so-called neighborhood structure,

N : X → 2X , a function mapping each possible solution x ∈ X to a set of solutions N (x) ⊆ X .4

Hence, N (x) is referred to as the neighborhood of x and each solution x′ ∈ N (x) is called a neighbor

of x. Finally, ξ denotes the evaluation scheme, which consists of i) a measure (or set of measures) to

serve as an indicator of the quality or “height” of the different candidate solutions; and ii) a mecha-

nism to impose an ordering relation given the adopted quality measure(s). As the evaluation scheme,

in single-objective optimization a fitness function (usually directly related to the problem’s objective

function) is considered, and a simple ordering based on such fitness function sets the preference

relation among solutions. A search algorithm can thus be thought of as navigating in order to find

the highest peak of the fitness landscape [159], i.e., the solution with the overall best fitness value.5

In the multi-objective context, however, a number of (conflicting) criteria determine the quality of

solutions, so that defining an ordering relation is not as straightforward as in the single-objective

case. The partial order induced by the Pareto-dominance relation is assumed in this research.

4 2X refers to the power set of X , usually also denoted by P(X ).
5 While an objective function can be either minimized or maximized, in this research project a fitness function is

assumed to be always maximized (the goal is to search for the fittest candidate solution).
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2.2.4.1 Neutrality

The fitness landscape of a problem can be studied in terms of different properties, being neutrality of

particular importance given the purposes of the present study. The standard definition of neutrality,

in the single-objective case, refers to the degree to which a landscape contains connected areas of

equal fitness [182]. Considering a broader notion to cover also the multi-objective case, neutrality

can be understood as the result of the incomparability that the adopted evaluation scheme ξ induces.

The term incomparability is used in this study to indicate the situation where no preferences can be

imposed between a pair of solutions, so that these solutions are considered equivalent when evaluated

under ξ. In this way, two different solutions x1,x2 ∈ X are said to be neutral (i.e., incomparable),

denoted by neutral(x1,x2), if either they share the same fitness value (single-objective case), or

they are nondominated, in the Pareto sense, with respect to each other (multi-objective case).

Having defined neutrality, a series of related basic concepts can be introduced as follows. The

neutral neighborhood of a solution x ∈ X , Nn(x), is given by the subset of all its neutral neighbors,

i.e., Nn(x) = {x′ ∈ N (x) | neutral(x,x′)}. The total number of neutral neighbors of x, i.e., the

cardinality of Nn(x), is known as the neutrality degree of x, and the ratio of the neutrality degree

to the size of the neighborhood is referred to as the neutrality ratio. A neutral fitness landscape is

characterized by a large number of solutions presenting a high degree of neutrality. This leads to

(potentially large) connected areas of incomparable solutions called plateaus, more formally referred

to as neutral networks. This is a common scenario in problems for which, despite involving a huge

search space, only a reduced number of different fitness values can be assigned, as is the case of

the HP model of the protein structure prediction problem studied herein. Consider the neutrality

graph G = (X , En) where En = {(x1,x2) ∈ X 2 | x2 ∈ Nn(x1)}. Each connected component of the

graph G corresponds to a different neutral network. In other words, a neutral network is a connected

subgraph G′ = (X ′, E ′n) of G, X ′ ⊆ X and E ′n ⊆ En, where i) there exists a path connecting any

pair of solutions x1,x2 ∈ X ′, and ii) there exists no edge (x1,x2) ∈ En \ E ′n such that x1 ∈ X ′ and

x2 ∈ X \ X ′. The neutral network of a solution x, i.e., the neutral network to which x belongs,

will be denoted in this study as NN(x). Finally, another important concept is that of a neutral
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walk. A neutral walk from x1 to xk refers to a sequence of solutions 〈x1,x2, . . . ,xk〉 such that

xi+1 ∈ Nn(xi), 1 ≤ i < k. That is, a neutral walk represents a path on a neutral network.

2.3 Proteins and protein structure prediction

This section introduces fundamental concepts with regard to the biological aspects of this research

work, as well as provides a formal definition of the particular problem this thesis focuses on. This

section proceeds as follows. Section 2.3.1 discusses the essentials of proteins, their structure and the

functional diversity of these important biological macromolecules. Section 2.3.2 covers basic notions

about protein structure determination and describes the computational approaches to perform this

task. A formal definition of the HP model of the protein structure prediction problem is presented

in Section 2.3.3. Section 2.3.3 includes also a review on the diversity of metaheuristic approaches

which have been reported in the specialized literature to address this problem.

2.3.1 Proteins

Proteins are at the heart of cellular function, making possible most of the key processes associated

with life (the diversity of protein functions are discussed later in Section 2.3.1.2). Amino acids, the

building blocks of proteins, are all of them consistent with the general structure presented in Figure

2.2 (left part of the figure). Each amino acid has a central carbon atom (Cα) which is covalently
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Figure 2.2: General structure of all amino acids (left). The peptide bond formation process (right).
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Table 2.1: The 20 amino acids and their standardized representations in one and three letters. It is
indicated whether each amino acid can be classified as hydrophobic or polar [4, 115, 129, 209, 212,
216, 238]; some amino acids (C, G, S, T, and Y) are classified differently depending on the authors.

Amino acid Three-letter representation One-letter representation Hydrophobic• / Polar◦
Alanine Ala A •
Arginine Arg R ◦
Asparagine Asn N ◦
Aspartic acid Asp D ◦
Cysteine Cys C • [4, 216]◦ [115, 129, 209, 212]

Glutamic acid Glu E ◦
Glutamine Gln Q ◦
Glycine Gly G • [4, 129, 209, 216]◦ [115, 212]

Histidine His H ◦
Isoleucine Ile I •
Leucine Leu L •
Lysine Lys K ◦
Methionine Met M •
Phenylalanine Phe F •
Proline Pro P •
Serine Ser S • [4, 216]◦ [115, 129, 209, 212]

Threonine Thr T • [4, 216]◦ [115, 129, 209, 212]

Tryptophan Trp W •
Tyrosine Tyr Y • [4, 209, 216]◦ [115, 129, 212]

Valine Val V •

bonded to a carboxyl group (COOH), to an amino group (NH2), to a hydrogen atom (H) and to a

radical (R) group or side chain. There are 20 amino acids commonly found in proteins, each of which

has a distinctive R group that is responsible for its particular chemical properties. Table 2.1 lists the

20 amino acids and their corresponding standardized one-letter and three-letter representations.

In proteins, amino acids are held together by peptide bonds. Hence, protein chains are also

referred to as polypeptides. The peptide bond is formed when the carboxyl group of an amino acid

reacts with the amino group of another, releasing a water molecule. The elements of a polypeptide

chain are, therefore, amino acid residues. This process is illustrated in the right part of Figure 2.2.
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Figure 2.3: Four distinct levels of protein structure complexity (figure taken from http://www.vce.

bioninja.com.au/aos-1-molecules-of-life/biomolecules/proteins.html).

2.3.1.1 The structure of proteins

Proteins present complex structures commonly described in terms of four hierarchical levels of orga-

nization. The linear sequence of amino acid residues in the polypeptide chain constitutes the primary

structure of a protein. The secondary structure describes the arrangement of amino acids within

certain areas of a polypeptide chain into motifs such as α helices, β sheets, and coils (also called

loops). The tertiary structure defines the overall folding of the protein chain in three-dimensional

space, where secondary structure elements are packed into globular domains. It is the tertiary, three-

dimensional conformation which is essential to the function of the protein molecule. Finally, some

proteins are composed of multiple (two ore more) polypeptide chains called subunits.6 The quater-

nary structure describes the spatial arrangement and position of each of the subunits in a multiunit

protein. The stabilizing forces that hold the polypeptide subunits together are the same forces that

are responsible for tertiary structure stabilization. A major force stabilizing the quaternary structure

is the hydrophobic interaction among nonpolar side chains at the contact regions of the subunits.

2.3.1.2 Diversity of proteins and their function

According to the diversity of their biological functions, proteins can be mainly classified as:

• Hormonal. Usually transported through the blood, hormones are messenger proteins that

transmit signals from one cell to another to coordinate certain activities. An example of a

6 A protein molecule that consists of a single polypeptide chain is said to be monomeric. Proteins made up of
more than one polypeptide chain (as many of the large ones) are called oligomeric.

http://www.vce.bioninja.com.au/aos-1-molecules-of-life/biomolecules/proteins.html
http://www.vce.bioninja.com.au/aos-1-molecules-of-life/biomolecules/proteins.html
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hormonal protein is insulin, which regulates glucose metabolism by controlling the blood-sugar

concentration. Other examples of hormonal proteins include oxytocin and somatotropin.

• Enzymatic. Enzymes are responsible for catalyzing the thousands of chemical reactions of the

living cell. Examples include lactase, which breaks down the sugar lactose found in milk, and

pepsin, a digestive enzyme that works in the stomach to break down proteins in food.

• Structural. Also known as fibrous or support proteins, structural proteins are necessary com-

ponents of the body. Examples include keratin, collagen, and elastin. Keratin is the main

structural component in hair, nails, teeth and skin. Collagen and elastin provide support for

connective tissues such as tendons and ligaments.

• Defensive. Antibodies, or immunoglobulins, are specialized proteins produced by the immune

system. They defend the body from antigens, such as bacteria, viruses and other harmful

microorganisms, rendering them inactive.

• Storage. Storage proteins mainly store mineral ions such as iron and potassium. Ovalbumin

and casein are storage proteins found in breast milk and egg whites, respectively, that play an

important role in embryonic development.

• Transport. Transport proteins carry vital materials (molecules) to the cells. Hemoglobin,

for example, transports oxygen through the blood. Myoglobin, in turn, absorbs oxygen from

hemoglobin and then releases it to the muscles. Other examples of transport proteins are

calbindin and cytochromes.

• Receptor. Receptor proteins are located at outer part of the cells. They regulate substances,

nutrients and signals that enter and leave the cells. Some receptors, for example, activate

enzymes, while others stimulate endocrine glands to secrete epinephrine and insulin to regulate

blood sugar levels. An example is the acetylcholine receptor.



2. Background concepts and performance assessment methodology 19

Figure 2.4: The tertiary, three-dimensional structure of hemoglobin, a globular protein (this figure
was taken from http://en.wikipedia.org/wiki/File:1GZX_Haemoglobin.png).

• Contractile. Also known as motor proteins, contractile proteins perform mechanical work and

are responsible for movement. They regulate the strength and speed of heart and muscle

contractions. Contractile proteins include actin and myosin.

In addition, proteins are commonly classified into three main groups based on their molecular

shape and solubility [215]:

• Globular (spheroproteins). A globular protein consists of peptide chains that fold generally

into spherical (“globe-like”) shapes. The folding of globular proteins is such that most amino

acids with hydrophobic side chains are on the inside (at the core) of the protein, whereas most

hydrophilic side chains are on the surface of the molecule. This particular characteristic makes

globular proteins soluble in aqueous solutions, which allows them to travel through blood or

other body fluids to sites where their function is needed. Globular proteins comprise the most

varied type of proteins, being involved in functions such as catalysis, transport and regulation

(these functions and protein examples have been described above). Figure 2.4 shows the

three-dimensional structure of hemoglobin, a protein which falls into the globular category.

• Structural (scleroproteins). Structural or fibrous proteins, as described previously in this sec-

tion, perform structural functions that provide support and external protection (e.g., keratin,

http://en.wikipedia.org/wiki/File:1GZX_Haemoglobin.png
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collagen, and elastin). They form muscle fiber, tendons, connective tissue and bone . These

proteins present simple, regular, and linear structures (with an elongated and narrow shape)

that tend to aggregate together to form macromolecular structures. Structural proteins tend

not to denature as easily as globular proteins and, generally, are inert and water-insoluble.

• Membrane. A membrane protein is a protein that is found associated with a membrane system

of a cell. Membrane protein structure is somewhat opposite to that of globular proteins, with

most of the hydrophobic amino acid side chains oriented outwards. Thus, such proteins tend

to be water-insoluble and they usually have fewer hydrophobic amino acids than the globular

ones. These proteins are much less well-understood, because they are difficult to purify and

study. Membrane proteins play several roles including relaying signals within cells, allowing

cells to interact, and transporting molecules. Rhodopsin is an example of a membrane protein.

2.3.2 Protein structure determination

In the 1950s, Christian Anfinsen studied the properties of ribonuclease A (or RNase A, a 24-residue

protein) and observed that its polypeptide chain could fold spontaneously into a unique three-

dimensional structure, its native conformation [2]. Likewise, Anfinsen’s experiments showed that

after denaturation, i.e., the structural change of the molecule caused by extreme conditions (e.g.,

temperature or pH changes), the protein chain was able to refold back to its native conformation

upon return to normal conditions. From these findings, Anfinsen proposed his theory of protein fold-

ing, stating that the native conformation of a protein is determined by the totality of interactions that

occur at the atomic level and, hence, by the chemical properties of its specific amino acid sequence,

in a given environment. Among all possible conformations that a protein can adopt, it is believed that

its native state corresponds to the one minimizing the overall free-energy; i.e., the thermodynamically

most stable state of the molecule. This is the so-called thermodynamic hypothesis [1].

In the 1960s, Cyrus Levinthal introduced the argument that there are far too many possible

conformations for a linear sequence of amino acids that finding the most stable thermodynamic

structure, through pure random sampling of the energy landscape, would require a period of time
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far greater than the age of the universe [179]. In nature, however, proteins adopt their native

conformation quickly (on the order of seconds or less), which suggests that very specific pathways

must be followed during the folding process. This is known as the Levinthal’s paradox [130,131]. As

it was aptly pointed out by Lesk [129], the observation that each protein folds spontaneously into

a unique three-dimensional native conformation implies that nature has a well-defined algorithm for

predicting the structure of proteins from their amino acid sequences.

In structural biology, there exist experimental methods to determine the three-dimensional struc-

ture of proteins. The most representative approaches are X-ray Crystallography (CRX) and Nuclear

Magnetic Resonance Spectroscopy (NMR). In CRX, the protein is purified and crystallized, then

subjected to an intense beam of X-rays. This produces distinctive characteristic patterns of spots,

which are then analyzed to determine the distribution of electrons in the protein. The resulting

map of the electron density is then interpreted to determine the location of each atom. In NMR,

the purified protein is placed in a strong magnetic field and then probed with radio waves. This

produces information that is used to build a model of the protein defining the location of each

atom. Out of the 97, 591 experimentally determined structures in the Protein Data Bank,7 86, 321

were obtained using CRX, 10, 231 using NMR, and the remaining structures were determined using

some other alternative techniques (e.g., electron microscopy). Experimental methods to determine

protein structures can be expensive, time consuming and their applicability is usually restricted to

small proteins or to those with specific properties. For example, the process of crystallization in

CRX is difficult and can impose limitations on the types of proteins that may be studied by this

method. Similarly, the NMR technique is currently limited to small protein molecules because of the

computational costs it involves. Therefore, computational approaches have become valuable tools

for studying the structure of proteins and, hence, play a major role in advancing the understanding

of such essential building blocks of life. The computational approaches for protein structure de-

termination can be broadly divided into two main categories: (i) template-based methods, and (ii)

template-free methods. These approaches are respectively discussed in Sections 2.3.2.1 and 2.3.2.2.

7From http://www.rcsb.org/pdb. February 8, 2014.

http://www.rcsb.org/pdb
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2.3.2.1 Computational template-based methods

Template-based methods aim to determine the structure of new proteins based on existing infor-

mation of other experimentally determined protein structures. Known structures serve as templates

to find the structure of new proteins with common characteristics. Template-based methods are

often referred to as comparative modeling or knowledge-based methods. This category includes the

homology modeling and fold recognition approaches, which are briefly described below [129]:

• Homology modeling. These methods construct an atomic model based on known structures

of proteins related at the polypeptide chain level. The basic premise of these methods is that

proteins with similar sequences usually have similar structures. Thus, a known structure can

be assigned to a new polypeptide chain with a high degree of confidence if the two proteins

present a high degree of correspondence (i.e., identity) in their amino acids sequences.

• Fold recognition. Given a library of known (experimentally determined) structures, fold recog-

nition methods try to detect which of them shares a folding pattern that could represent the

most reasonable model for the new protein chain. The main basis of these methods is that, in

some cases, proteins can share similar structures even in the absence of sequence matching.

While the use of previous knowledge is the major advantage of template-based methods, it is also

their major drawback [112]. The complete reliance on a database of known structures means that

it is possible to accurately model structures similar to those already known, but it is impossible to

discover entirely new protein folds using these strategies. Only those proteins for which there exist

appropriate templates can be modeled. Moreover, protein models obtained using these methods

usually need to be subjected to further refinement by applying template-free approaches [125].

2.3.2.2 Computational template-free methods

Template-free methods are also commonly referred to as ab initio or de novo strategies. In contrast

to template-based methods, template-free approaches attempt to determine the native structure of

a protein using only the information from its amino acid sequence (knowledge from other already
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known protein structures is not taken into consideration). Given a particular configuration of the

amino acid sequence, these approaches rely on the understanding of the basic principles that control

protein folding in order to infer the native, energy-minimizing conformation of the protein molecule.

On the one hand, template-free methods constitute a more general approach to protein structure

determination. Given that these methods do not depend on the knowledge and availability of related

protein structures, the application range of these methods is wider (in essence, any protein could

equally be modeled). Unlike the template-based modeling, ab initio modeling could help answer the

basic questions on how and why a protein adopts the specific structure out of many possibilities [127].

Also, these methods are commonly used in a final refinement stage for models obtained by template-

based techniques, or those experimentally determined at low resolution [125]. On the other hand,

template-free methods are known to represent the less accurate approach to structure prediction.

This is not only due to the high complexity of the prediction problem and the lack of efficient

algorithms for sampling the huge conformational space, but also because of the currently incomplete

understanding of the essential principles that govern the folding process. Therefore, template-free

methods impose great challenges from both the biological and computational perspectives.

As expressed by Kelm et al. [112], a template-free method aims to simulate the protein fold-

ing process in silico. This is generally implemented by encoding the rules of chemistry and physics

in an energy function, and then exploring a protein chain’s conformational space while minimizing

this designed energy function. In the literature, there have been reported detailed physics-based

energy functions which attempt to capture the interactions between pairs of atoms to compute the

three-dimensional structure of proteins [196]. These models are thus to be referred to as physics-

based all-atom energy models. Among the most representative of such models, it is possible to

mention ECEPP (Empirical Conformational Energy Program for Peptides) [3,162,170], OPLS (Op-

timized Potentials for Liquid Simulations) [108], CHARMM (Chemistry at HARvard Macromolecular

Mechanics) [19,20], AMBER (Assisted Model Building with Energy Refinement) [41,189], and GRO-

MOS (GROningen MOlecular Simulation) [198, 199]. These models contain terms associated with

bond lengths, angles, torsion angles, van der Waals, and electrostatics interactions, and the major

difference between them lies in the selection of atom types and the interaction parameters [127].
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Physics-based all-atom models, as those mentioned above, have largely been used within the

framework of molecular dynamics (MD) simulations [197]. MD samples the space of potential

conformations by simulating the natural process of protein folding. MD starts from an arbitrarily

chosen conformation that reacts and changes progressively as a result of the existing forces at the

atomic level. Assuming that the description of the forces at the atomic level is accurate (which is not

the case), following the trajectory of the system should lead to the native protein conformation. MD is

a very computationally demanding technique. It involves a full atomic representation of proteins and

considers the interaction between all pairs of atoms in the amino acids (whose number grows rapidly

as the length of the protein chain increases), as well as the interaction between these atoms and

those of the surrounding environment. The complexity of MD simulations has motivated the use of

alternative approaches based on energy minimization through pathways that do not necessarily follow

the natural protein folding process, such is the case of metaheuristic algorithms [46,54,64,148,153].

Besides pure physics-based energy models, there exist also knowledge-based approaches. Al-

though knowledge-based models do not directly use previously determined protein structures as in

template-based methods, they involve statistical models that capture the properties of native con-

formations, as observed in protein structure databases. These properties include, for example, the

tendencies of certain amino acids to interact with one another and with the solvent, or secondary

structure propensities [127,172]. According to Ngan et al. [172], in essence, the physics-based func-

tions aim at predicting the native structure of a given sequence by mimicking the energetics of protein

folding, whereas the knowledge-based functions bypass this intermediate step by directly making sta-

tistical inferences on what are observed in the database. One of the consistently best-performing

prediction techniques in CASP8 competitions is ROSETTA [185]. The ROSETTA method relies on

the use of a library of fragments representing observed (from a database of known protein structures)

local structures for all short segments of the protein sequence. In a first stage, these fragments are

assembled by means of the simulated annealing search procedure [114], the candidate solutions being

evaluated on the basis of a scoring function derived from conformational statistics of known protein

8 CASP (Critical Assessment of Structure Prediction) experiments aim at monitoring and establishing the current
state-of-the-art in protein structure prediction [165].
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structures. In the second stage, however, low-resolution conformations obtained through fragment

assembly are subject to all-atom refinement using the ROSETTA’s physics-based energy model.

Due to the flexibility and the number of atoms in protein molecules, the space of potential

conformations is excessively large. This makes studies at atomic resolution to some extent prohibitive

even for relatively short protein sequences. In addition to the use of all-atom protein models, therefore,

it is possible to find in the literature structure prediction approaches implementing a range of other

models characterized by the varying levels of detail (or resolution) used to represent amino acids

and their interactions. Simplified or coarse-grained models have been developed in order to capture

the most important characteristics of proteins. These models discretize the conformational space,

and some of the atoms are ignored or groups of them are treated as united pseudo-atoms [14]. By

sacrificing atomistic details and imposing constraints on the possible conformations, coarse-grained

models lower the computational complexity of protein simulations, enabling the study of the most

general and essential principles governing the folding process [28, 38, 86, 120, 180]. To a certain

degree, however, these models compromise the accuracy and biological plausibility of the predicted

conformations. Nevertheless, as pointed out by Homouz [90], this is the price that has to be paid to

capture the main features of protein folding over reasonable times.

One of the most extensively explored simplified models for protein structure prediction is the

hydrophobic-polar (HP) model proposed by Dill [61, 126]. This model abstracts the fact that the

hydrophobicity of amino acids is a major determinant of the folded state of proteins. Only two types

of amino acids are considered, hydrophobic (H) and polar (P ), and the problem is reduced to that

of finding a self-avoiding embedding of the protein chain on a given lattice such that the interaction

among H amino acids is maximized. Notwithstanding, even under such a simplified model protein

structure prediction represents a challenging optimization problem [10, 43]. The HP model is the

particular case of study of this research project and is further described in Section 2.3.3.

Extensions to the HP model have been reported in the literature. For example, rather than

considering only attractive forces between H amino acids, i.e., H-H interactions, repulsive forces

in H-P and P -P interactions are also involved in the so-called “shifted” HP model [27]. The

shifted HP model is also commonly referred to as the functional protein model [13, 53, 88, 121].
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The HPNX model [17] is a more fine-grained energy model which extends the HP model by further

classifying polar amino acids as positively charged (P ), negatively charged (N) and neutral (X).

The HPNX model aims to maximize not only the interaction among H amino acids, but captures

also electrostatic interactions between positively and negatively charged residues. An improvement

of the HPNX model was recently proposed, called the hHPNX model [93]. In the hHPNX model,

the H group of amino acids splits into two distinct categories, h and H, in order to give separate

treatment to some hydrophobic amino acids such as alanine and valine. This separation is based on

the observation that these amino acids present different interaction behaviors than other hydrophobic

residues [44]. There are also studies on lattice models that use larger alphabets (amino acid groups).

For example, it is possible to consider interactions between the whole set of 20 amino acid types [132].

Finally, there exists a variety of off-lattice coarse-grained protein models, models that do not constrain

the space of potential conformations to the possible embeddings of a protein chain on a given lattice.

For comprehensive reviews on the diversity of such models the reader is referred to [14, 90, 120].

As commented before, the use of coarse-grained protein models sacrifices, to a certain extent, the

practical usefulness of the achieved predictions. As expressed by Blaszczyk et al. [14], none of the

existing models is able to simplify an atomistic system without losing its important features, such

as structural details, characteristic interactions and dynamics. Therefore, rather than functioning

as stand-alone protein structure prediction approaches, coarse-grained models are commonly used

within the framework of a hierarchical or multi-scale methodology. In [173], for instance, O ldziej et al.

used a coarse-grained model, the physics-based united-residue (UNRES) model [134–136], during

the first stage of the prediction process. Then, the lowest-energy coarse-grained structures were

converted to an all-atom representation and optimized based on the ECEPP force field [3,162,170].

Dayem Ullah et al. [56] proposed a hierarchical approach where the first stage relies on the HP

lattice model to find compact structures maximizing the interaction among H-type amino acids. In

a later stage, the obtained compact structures served as the starting points to further optimize the

protein structure for the input sequences by employing simulated annealing and a 20 amino acid

pairwise interactions energy function [11]. The initialization of the simulated annealing procedure

with HP model-based compact conformations significantly improved the overall performance of the
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proposed prediction scheme [56]. Other interesting studies on the use of this kind of hierarchical

methodologies for protein structure prediction include [87, 116, 190, 241]. Finally, it is important to

conclude this section by highlighting that the success achieved through hierarchical methodologies

for protein structure prediction, justifies the work of the continuously growing community (as seen

from the number of reported studies) that concentrates on improving coarse-grained protein models,

as well as on the development of more effective strategies to search their corresponding landscapes.

2.3.3 Protein structure prediction under the HP model

The 20 different amino acids found in proteins can be classified primarily as hydrophobic or polar

on the basis of their affinity for water. This is determined from the hydrophobicity index, a measure

of the relative hydrophobicity of amino acids (or how soluble the amino acids are in water). Table

2.1, presented previously in Section 2.3.1, details whether each of the 20 amino acids falls into these

categories. Polar (P ) or hydrophilic amino acids are usually found at the outer surface of proteins. By

interacting with the aqueous environment, P amino acids contribute to the solubility of the molecule.

In contrast, hydrophobic (H) or nonpolar amino acids tend to pack on the inside of proteins, where

they interact with one another to form a water-insoluble core. Such a phenomenon, usually referred

to as hydrophobic collapse, is one of the major driving forces during the folding process of globular

proteins (as discussed in Section 2.3.1.2). The hydrophobic collapse represents the reasoning and

motivation behind the hydrophobic-polar (HP) model for protein structure prediction [61, 126].

In the HP model, proteins are abstracted as chains of H- and P -type beads. Protein sequences,

which are originally defined over a 20-letter alphabet, are now of the form S = 〈a1, a2, . . . , a`〉, where

ai ∈ {H,P} denotes the i-th amino acid and ` is the length of the sequence. The number of H

and P amino acids in S are here referred to as `H and `P , respectively. A protein conformation is

represented in this model as an embedding of the protein chain on a given lattice (both the two-

dimensional square and three-dimensional cubic lattices are considered in this research project). With

the aim of emulating the so-called hydrophobic collapse, the goal in the HP model is to maximize

the interaction among H amino acids in the lattice. Such interactions are to be referred to as H-H
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topological contacts. Two H amino acids ai and aj are said to form a topological contact if they

are nonconsecutive in S (i.e., |j − i| ≥ 2) but adjacent in the lattice. The objective is thus to find

a lattice embedding of the protein chain where the number of H-H topological contacts, HHtc, is

maximized. Adhering to the notation of the field, an energy function, to be minimized, is defined as

the negative of HHtc; i.e., maximizing HHtc is equivalent to minimizing such an energy function.

2.3.3.1 The HP model as an optimization problem

Let X be the set of all potential protein conformations, i.e., the search space, and let XF denote the

subset of all the feasible states (XF ( X ). PSP under the HP model can be more formally stated

as the problem of finding x∗ ∈ XF such that E(x∗) = min{E(x) | x ∈ XF}. The energy function

E : X → R maps each possible conformation x ∈ X to an energy value:

E(x) =
∑
ai,aj

e(ai, aj), (2.5)

where

e(ai, aj) =


−1, if ai and aj are both H amino acids

and they form a topological contact;

0, otherwise.

As an example, the optimal structure for a protein sequence of length ` = 20 on the two-

dimensional square lattice is presented in Figure 2.5. This example corresponds to protein sequence

2d4, one of the test instances for the HP model considered in this study (refer to Section 2.4.1 for

details about the adopted test cases). The prediction of protein structures based on the HP model

is a hard combinatorial optimization problem which has been proved to be NP-complete [10, 43].
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Figure 2.5: Optimal conformation for sequence 2d4 of length ` = 20 on the two-dimensional square
lattice. Black and white beads denote H and P amino acids, respectively. Amino acids have been
numbered from 1 to ` according to their positions in the protein sequence S. The energy of this
conformation is E = −9, since there are 9 H-H topological contacts, HHtc = 9.

2.3.3.2 Problem constraints

For a protein conformation to be considered feasible (i.e., valid), its corresponding embedding on the

lattice is required to satisfy two different properties: connectivity and self-avoidance. On the one

hand, connectivity requires consecutive amino acids in the protein sequence to be placed at adjacent

positions of the lattice. On the other hand, the self-avoidance property implies that the conformation

has to be free of collisions; i.e., two different amino acids can not be assigned to the same lattice

position. While connectivity is implicitly satisfied by using an internal coordinates representation,

as described in Section 2.3.3.3, such a representation scheme can not ensure the self-avoidance

of the encoded conformations; refer to the example provided in Figure 2.6. Therefore, an explicit

mechanism is required to be implemented in order to address the self-avoidance constraint.

1 2

3

4 5

6

7

89

Figure 2.6: An infeasible protein conformation. A collision was produced when amino acids 3 and 7
were mapped to the same lattice position.
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Figure 2.7: Internal coordinates representation based on absolute moves. Illustration of the encoding
scheme (left). An example conformation encoded as FLLFRFRB (right).

2.3.3.3 Conventional problem representations

In the literature, the vast majority of the metaheuristic approaches which have been proposed for the

HP model of the PSP problem are based on the use of an internal coordinates representation of the

protein conformations. Using internal coordinates, a protein conformation is encoded as a sequence

of moves specifying the lattice position for each amino acid with regard to the preceding one; the

position of the first amino acid is fixed. Two alternative encoding schemes can be adopted, namely,

the absolute moves encoding [224] and the relative moves encoding [177].

Based on a global reference system defined by the lattice, the absolute moves encoding represents

three-dimensional conformations (in the cubic lattice) as sequences in {F,B, L,R, U,D}`−1. These

symbols (F ,B,L,R,U and D) are used to denote the forward, backward, left, right, up and down

moves from one amino acid to the next. Only moves {F,B, L,R} are allowed in the two-dimensional

case (square lattice). An example of the absolute moves encoding is presented in Figure 2.7.

In the relative moves encoding, conformations are represented as sequences in {F,L,R, U,D}`−2

for the three-dimensional lattice, and {F,L,R}`−2 for the two-dimensional one. In contrast to the

absolute encoding, the relative alternative implements a local reference system which rotates at each

encoding decision (other than F ). No backward (B) moves are allowed, ensuring that the encoded

conformation will always be one-step self-avoiding. Note that only `− 2 encoding decisions need to

be taken by assuming the first move to be forward (F ). An example is provided in Figure 2.8.
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Figure 2.8: Internal coordinates representation based on relative moves. Illustration of the encoding
scheme (left). An example conformation encoded as FLFRRLRR (right).

2.3.3.4 Related work: metaheuristic approaches for the HP model

As mentioned in Section 2.3.3.1, the HP model for protein structure prediction has been proved

to be an NP-complete problem [10, 43]. Though exact methods have been proposed in the litera-

ture to cope with this particular problem [30, 94], the exponential growth in the number of possible

protein conformations has limited the application of these methods to relatively small problem in-

stances. The plethora of the proposed approaches for the HP model rely on the use of a diversity of

metaheuristic algorithms [140, 248]. The genetic algorithm (GA) has been, by far, the most widely

used metaheuristic approach to deal with the HP model [81, 89]. The seminal work of Unger and

Moult investigated the application of GAs to solve the two-dimensional HP model based on the

square lattice [225, 226], later extending their research to the three-dimensional model based on the

cubic lattice [224]. Unger and Moult showed that GAs can be more effective than Monte Carlo

(MC) methods, since GAs are less likely to be trapped in local optima (mainly due to the nature of

the crossover operator [223]). Note, however, that some MC-based approaches have achieved very

competitive results in the literature; see, for example, the replica exchange Monte Carlo algorithm

proposed by Thachuk et al. [219]. In fact, Unger and Moult’s algorithm can be considered to be a

hybridization of a GA with MC. Metropolis filters are used at the output of variation operators, so

that improving solutions are always accepted but the acceptance of non-improving offspring is based

on a nondeterministic decision. These filters restrict also the acceptance of infeasible solutions; if an

infeasible solution is generated, the variation operators iterate until a feasible solution is obtained.
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Patton et al. [177] implemented a GA based on the work of Unger and Moult. The algorithm of

Patton et al. does not filter infeasible solutions, but penalizes infeasible solutions according to the

number of conflicts they present. Using different test protein sequences, the GA of Patton et al. was

found to achieve equal or better results than those of Unger and Moult’s algorithm, but with only

about 10% of their total number of objective function evaluations. A fundamental difference between

the GA of Patton et al. and that of Unger and Moult is the encoding scheme. Both proposals use

an internal coordinates representation. However, whereas Unger and Moult adopted the absolute

moves encoding, Patton et al. utilized the relative moves encoding (the absolute and relative moves

encoding schemes were described in Section 2.3.3.3). The studies of Unger and Moult [224–226]

and Patton et al. [177] are among the most important works in the specialized literature. This

is not only due to the pioneering nature of these works, but also because the proposed absolute

and relative encoding schemes represent the basis on which the vast majority of the metaheuristic

approaches for the HP model proposed so far have been designed. Despite the fact that the relative

moves encoding reduces the size of the conformational space and all the encoded conformations

are one-step self-avoiding (see Section 2.3.3.3), there is not clear evidence in the literature which

suggests the superiority of one of these encoding schemes with respect to the other in practice; even

contradictory arguments and results have been reported on this regard [42, 122].

There are other early works that use GAs in order to solve the HP model of the PSP problem; refer,

for instance, to [113, 122, 123]. Broadly, the reported GAs differ mainly in the used representation,

the fitness (evaluation) function, the treatment of infeasible solutions and the implemented search

operators. The work of Krasnogor et al. [122] has been particularly relevant because it analyzed the

impact that the choice of certain design components could have on the performance of GAs when

solving this problem, namely, the encoding of solutions, the evaluation function and the constraint-

handling mechanism. In the literature, different implementations for each of these components have

been proposed. However, as the authors aptly pointed out [122]:

“... prior researchers selected an encoding without explicit numerical comparisons. Since

other algorithmic parameters were also chosen differently, it is difficult to asses the impact

that the choice of encoding has on a genetic algorithm’s performance.”



2. Background concepts and performance assessment methodology 33

Despite the significant growth of the field since then, such a statement remains true at the present

time and it generalizes to the different design components defining the characteristics of the fitness

landscape, which exert thus a direct influence on the behavior of metaheuristic algorithms. For

example, several authors have proposed alternative formulations of the evaluation function for the HP

model in oder to guide more effectively the search process [9, 26, 32, 45, 98, 122, 142]. Nevertheless,

in most of the cases the merits of these alternative evaluation functions have only been partially

investigated. Therefore, Chapter 3 of this thesis is concerned with the analysis and comparison

of such different strategies. Similarly, there is not a clear consensus with respect to the most

appropriate treatment for the large number of infeasible solutions that the landscapes in the HP

model involve [42,57,66,122,192]. By proposing and analyzing the advantages of a new constraint-

handling mechanism for the HP model, and by comparing it with respect to representative approaches

from the literature, Chapter 5 is intended to contribute in providing further insight into this matter.

More recent studies on the application of GAs to the HP model of the PSP problem include

[24, 42, 45, 47, 92, 142]. Also, it has become popular in recent years to address this problem by

hybridizing GAs with a local improvement strategy [7, 9, 31–34, 98–101, 143, 169]. These are the so-

called memetic algorithms [163,164]. It has also been reported in the literature the use of multimeme

algorithms [124], where the evolutionary method is hybridized with a set of local search heuristics

that are self-adaptively selected and applied according to each particular problem instance, search

stage or individual in the population [121, 178]. Finally, the HP model of the PSP problem has

also been tackled by coupling GAs with other metaheuristics such as tabu search (TS) [80], see for

example [98, 183, 246], and the artificial bee colony algorithm [110, 111], refer for instance to [229].

Alongside GAs, a variety of metaheuristic approaches have been proposed for PSP under the HP

model, including TS (without hybridizing to GAs) [15, 175], other TS-based hybrids [184, 249], ant

colony optimization [35, 37, 63, 83, 95, 168, 211], immune-based algorithms [48, 49, 53, 57], particle

swarm optimization [21,109,152], differential evolution [12,104,141,192] and estimation of distribu-

tion algorithms [29,191]. The HP model has also been dealt through recently developed metaheuristic

paradigms such as the firefly-inspired algorithm [149, 247], artificial plant optimization [25] and the

energy-landscape paving technique [133]. Cellular automata have also been used to achieve not only
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the final folded conformation of HP model protein sequences, but also to model the temporal and

dynamic folding process which emerges as a consequence of amino acid interactions [193, 194].

Finally, it is important to remark that, according to the author’s revision of the state-of-the-art,

all previous studies have addressed the HP model of the PSP problem from the single-objective

optimization perspective. It was not until the research work developed in Chapters 4 and 5 of this

thesis that this particular problem is approached by using multi-objective optimization techniques.

2.4 Performance assessment

This section presents the performance assessment methodology followed during the development

of this research. First, Section 2.4.1 details all the considered test instances for the two- and

three-dimensional variants of the HP model (square and cubic lattices, respectively). Section 2.4.2

defines the adopted performance measures. The methodology on which the conducted statistical

significance analyses were based is described in Section 2.4.3. Finally, Section 2.4.4 summarizes the

main characteristics of the experimental platform utilized during the course of this project.

2.4.1 Test instances

A total of 30 well-known benchmark sequences for the HP model have been considered in this

research project: 15 out of them are for the two-dimensional square lattice, and the remaining 15 are

for three-dimensional cubic lattice. Tables 2.2 and 2.3 present the full HP protein sequences, their

length (`) and the optimal or best-known energy value (E∗) reported in the literature, to the best

of the author’s knowledge [53, 100, 121, 219, 240, 245].

2.4.2 Performance measures

Although alternative (either single-objective or multi-objective) formulations of the HP model are

investigated in Chapters 3, 4 and 5, it is important to remark that the focus of this research project

remains always to solve the original problem, as it was introduced in Section 2.3.3. Therefore, all
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Table 2.2: Considered test sequences for the HP model. Two-dimensional square lattice.

Seq. Full HP protein sequence ` E∗

2d1 H2P5H2P3HP3HP 18 -4

2d2 HPHPH3P3H4P2H2 18 -8

2d3 PHP2HPH3PH2PH5 18 -9

2d4 HPHP2H2PHP2HPH2P2HPH 20 -9

2d5 H3P2HPHPHP2HPHPHP2H 20 -10

2d6 H2P2HP2HP2HP2HP2HP2HP2H2 24 -9

2d7 P2HP2H2P4H2P4H2P4H2 25 -8

2d8 P3H2P2H2P5H7P2H2P4H2P2HP2 36 -14

2d9 P2HP2H2P2H2P5H10P6H2P2H2P2HP2H5 48 -23

2d10 H2(PH)4H3P(HP3)3(P3H)3PH4(PH)4H 50 -21

2d11 P2H3PH8P3H10PHP3H12P4H6PH2PHP 60 -36

2d12 H12PHPH(P2H2P2H2P2H)3PHPH12 64 -42

2d13 H4P4H12P6(H12P3)3HP2H2P2H2P2HPH 85 -53

2d14 P6HPH2P5H3PH5PH2P4H2P2H2PH5PH10PH2PH7P11H7P2HPH3P6HPH2 100 -48

2d15 P3H2P2H4P2H3PH2PH2PH4P8H6P2H6P9HPH2PH11P2H3PH2PHP2HPH3P6H3 100 -50

Table 2.3: Considered test sequences for the HP model. Three-dimensional cubic lattice.

Seq. Full HP protein sequence ` E∗

3d1 HPHP2H2PHP2HPH2P2HPH 20 -11

3d2 H2P2HP2HP2HP2HP2HP2HP2H2 24 -13

3d3 P2HP2H2P4H2P4H2P4H2 25 -9

3d4 P3H2P2H2P5H7P2H2P4H2P2HP2 36 -18

3d5 P2H3PH3P3HPH2PH2P2HPH4PHP2H5PHPH2P2H2P 46 -35

3d6 P2HP2H2P2H2P5H10P6H2P2H2P2HP2H5 48 -31

3d7 H2(PH)4H3P(HP3)3(P3H)3PH4(PH)4H 50 -34

3d8 PH(PH3)2P(PH2PH)2H(HP)3(H2P2H)2 PHP4(H(P2H)2)2 58 -44

3d9 P2H3PH8P3H10PHP3H12P4H6PH2PHP 60 -55

3d10 H12PHPH(P2H2P2H2P2H)3PHPH12 64 -59

3d11 P(HPH2PH2PHP2H3P3)3(HPH)3P2H3P 67 -56

3d12 P(HPH)3P2H2(P2H)6H(P2H3)4P2(HPH)3 P2HP(PHP2H2P2HP)2 88 -72

3d13 P2H2P5H2P2H2PHP2HP7HP3H2PH2P6HP2HPHP2HP5H3P4H2PH2P5H2P4H4PHP8H5P2HP2 103 -58

3d14 P3H3PHP4HP5H2P4H2P2H2(P4H)2P2HP2H2P3H2PHPH3P4H3P6H2P2

HP2HPHP2HP7HP2H3P4HP3H5P4H2(PH)4

124 -75

3d15 HP5HP4HPH2PH2P4HPH3P4HPHPH4P11HP2HP3HPH2P3H2P2HP2HPHPHP8HP3

H6P3H2P2H3P3H2PH5P9HP4HPHP4

136 -83
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the obtained experimental results are to be evaluated in terms of the conventional energy function

of the HP model (E) or, which is equivalent, according to the total number of H-H topological

contacts (HHtc) in the obtained protein conformations.

Two additional performance measures have been considered, both computed over multiple inde-

pendent executions of the implemented search algorithms. First, the relative root mean square error

(RMSE) is determined individually for each given test instance t as follows:

RMSE(t) = 100%

√√√√ 1

R

R∑
r=1

(
Er(t)− E∗(t)

E∗(t)

)2

, (2.6)

where Er(t) denotes the energy of the best solution found during a single execution r, R is the total

number of executions carried out, and E∗(t) is the optimal (or best known) energy value for instance

t (as indicated in Section 2.4.1). RMSE indicates the performance scored for the particular instance

t in a 0% to 100% scale, being RMSE(t) = 0% the preferred value for this measure.

Finally, the overall relative root mean square error (O-RMSE) measure extends RMSE in order to

assess the overall performance of the studied approaches, considering all the test instances. Having

defined RMSE, O-RMSE can be formally defined as follows:

O-RMSE =
1

|T |
∑
t∈T

RMSE(t), (2.7)

where T is the set of all the adopted test instances. Thus, O-RMSE = 0% suggests the ideal situation

where the optimal solution for each instance was reached during all the performed executions.

2.4.3 Statistical significance testing

In the experiments presented in this document, the statistical significance analyses were conducted

as follows. First, D’Agostino-Pearson’s omnibus K2 test was used to evaluate the normality of data

distributions. For normally distributed data, either ANOVA or the Welch’s t parametric tests were

used depending on whether the variances across the samples were homogeneous (homoskedasticity)
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or not. This was investigated using the Bartlett’s test. For non-normal data, the nonparametric

Kruskal-Wallis test was adopted. Finally, a significance level of α = 0.05 has been considered.

2.4.4 Experimental platform

The algorithms implemented in this research project were coded in ANSI C and compiled with gcc

using the optimization flag -O3. All experiments performed were run sequentially on the Neptuno

cluster at the Information Technology Laboratory, CINVESTAV-Tamaulipas. This cluster is equipped

with 10 InfiniBand interconnected nodes, each of which features 8 cores running at 2.66 GHz, has a

total of 16 GB of RAM, and uses the CentOS distribution of the Linux operating system.





3
Using alternative energy functions

to cope with the neutrality of the

HP model’s fitness landscapes

3.1 Introduction

Metaheuristic algorithms rely on an effective evaluation scheme, which can distinguish each candidate

solution from the others, to make the most appropriate choice at each iteration. This is of utmost

importance in order to guide the search process towards promising regions of the solution space.

Nevertheless, the conventional evaluation scheme of the HP model, consisting of the energy func-

tion defined in Section 2.3.3.1, induces a very poor discrimination among potential conformations.

Therefore, there could be many different conformations for a given protein sequence presenting the

same energy value (this scenario is illustrated through Figure 3.1). More precisely, given a protein

sequence S, with length ` and optimal energy value E∗, there can be at most |E∗| + 1 available

39
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Figure 3.1: Four different structures for protein sequence HHPHPHP on the two-dimensional square
lattice. All the four protein conformations present the same energy value, namely, E = 0.

energy levels to classify a search space of size1 |X | = 4`−1. As an example, consider sequence 2d1,

the smallest of the test cases adopted for this research project (refer to Section 2.4.1 for details). In

this case, ` = 18 and E∗ = −4, so that there are only five different energy levels which can be used

to discriminate among a total of 417 = 17, 179, 869, 184 potential solutions. Note, however, that

some equally ranked conformations could present better chances than others to be further improved.

From the fitness landscape perspective, the low discrimination provided by the conventional

energy function of the HP model translates into the existence of a considerable number of solutions

with a high neutrality degree. As discussed in greater detail in Section 2.2.4, this produces a

neutral fitness landscape characterized by large plateaus of incomparable solutions. In such plateaus,

metaheuristic algorithms, especially trajectory (local search-based) methods, could fail to detect and

exploit promising search directions, leading the optimization process to be oriented almost at random.

For this reason, alternative energy functions for the HP model have been proposed in the literature

[9,26,45,98,122,142]. The aim of these alternative formulations of the energy function is to provide

a more fine-grained discrimination among candidate conformations, as a means of guiding the search

process of metaheuristics in a more effective manner. In most of the cases, however, the proposal

of these alternative evaluation approaches was not supported, or it was only partially supported, by

solid experimental evidence. Moreover, to the best of the author’s knowledge, a comparative study

devoted to exploring the impact of using different of such approaches has never been reported.

1 The given size of the search space assumes the use of the two-dimensional square lattice and the absolute moves
representation of the protein conformations, see Section 2.3.3.3.
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This chapter is intended to formally analyze and compare different formulations of the HP model’s

energy function. Seven energy formulations are considered: the conventional energy function of the

HP model, and six alternative proposals from the literature. Given that the purpose of using an

alternative energy function is mainly to address the weak discrimination of the conventional formu-

lation, an in-depth investigation of the discrimination potential for each of the studied approaches is

first conducted. Then, an essential property, HP-compatibility, is introduced and explored for each

considered function. This property reflects whether or not an alternative energy function is consistent

with the original definition of the problem. Finally, an assessment of the practical usefulness of the

studied evaluation approaches within two different metaheuristic algorithms is carried out.

This chapter is organized as follows. In Section 3.2, the alternative energy functions for the HP

model considered in this study are described. The experimental results are presented in Section 3.3.

Finally, Section 3.4 provides the conclusions as well as some possible directions for future research.

3.2 Alternative energy functions for the HP model

The purpose of this section is to describe in detail the studied alternative formulations of the HP

model’s energy function. Six different approaches that have been proposed in the specialized literature

are covered by this study, each of which is discussed separately below.

3.2.1 Krasnogor et al., 1999

Given two conformations with the same number of H-H topological contacts, it is possible that

one of them has better characteristics than the other. Based on this observation, Krasnogor et al.

proposed the following distance-dependent energy function [122]:2

EK99(x) =
∑
ai,aj

e(ai, aj), (3.1)

2 This energy function is denoted as EK99 in order to distinguish this alternative formulation from the conventional
formulation of the HP model’s energy function, defined as E in Section 2.3.3.1. Acronyms similar to K99, which is
based on first author’s initial and publication year, have also been used within the definition of all other alternative
energy formulations described in subsequent sections.
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where

e(ai, aj) =


−1, if ai and aj are both H and d(ai, aj) = 1;

−1/(d(ai, aj)
k`H), if ai and aj are both H and d(ai, aj) > 1;

0, otherwise.

In the above definition, d(ai, aj) denotes the distance on the lattice between amino acids ai and aj,

and a value of d(ai, aj) = 1 indicates that ai and aj form a topological contact. The authors suggest

to use a value of k = 4 for the square lattice and k = 5 for the cubic and triangular lattices [122].

According to Krasnogor et al. [122], this formulation of the energy function preserves the con-

ventional rank ordering of the conformations, at the same time it enables a finer level of distinction

among conformations with the same number of H-H topological contacts. In [122], this function

was analyzed using a genetic algorithm. Only five relatively short protein sequences (with less than

50 amino acids) were considered. Experiments were performed for the two-dimensional square and

triangular lattices, as well as for the three-dimensional cubic lattice. Although no detailed results

are provided, it was pointed out that no significant improvements in performance were obtained by

using this modified energy function. However, the authors suggest that the advantages of using this

function can become more evident for larger protein sequences and by implementing this approach

within a local search strategy. The relevance of using this proposal needs to be further investigated.

3.2.2 Custódio et al., 2004

Given that the aim in the HP model is only to maximize the interactions between H amino acids,

the positioning of P amino acids is not directly optimized. This may result in unnatural structures

for sequences with long P segments and, particularly, when such P segments are located at the ends

of the protein chain [45]. An example of this scenario is presented in Figure 3.2.

Custódio et al. proposed a modified energy function based on the assumption that it may be

preferable for an H amino acid to have a P neighbor rather than to be in contact with the aqueous

solvent [45]. In the proposed function, the energy of a conformation is computed as the weighted sum
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Figure 3.2: Two conformations with the same number of H-H topological contacts (HHtc = 1).
However, the structure on the left is more natural-like (globular) than the one on the right.

of the number of H-H contacts (HHc), H-P contacts (HPc) and H-solvent contacts (HSc). A

free lattice location (not assigned to any amino acid) is said to be occupied by the solvent. Formally,

the energy of a conformation x is given by:

EC04(x) = ω1HHc+ ω2HPc+ ω3HSc, (3.2)

where ω1, ω2 and ω3 denote the relative importance of HHc, HPc and HSc, respectively. Although

not specified in [45], these weighting coefficients were set to ω1 = 0, ω2 = 10 and ω3 = 40 for

the reported experiments.3 Thus, given these weights, the minimization of (3.2) penalizes H-P and

H-solvent contacts, H-P contacts being favored over H-solvent contacts, while H-H interactions

are not penalized (H-H contacts have no contribution to the energy value using these weights).

Custódio et al. [45] evaluated the suitability of this proposal by using a genetic algorithm. A total

of 10 instances for the three-dimensional cubic lattice were considered (7 sequences of length ` = 27

and the remaining 3 sequences are of length ` = 64). The proposed function allowed to improve the

performance of the implemented algorithm for some of the adopted instances. The reported results

also suggest that this function presents a greater tendency to form more natural-like conformations.

3.2.3 Lopes and Scapin, 2006

Lopes and Scapin [142,143] proposed an alternative energy function for the HP model which is based

on the concept of radius of gyration. The radius of gyration is a measure of the compactness of

3This information was obtained through personal communication with the authors.
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conformations; the more compact the conformation is, the lower the value is for this measure. The

proposed function is defined in (3.3):

EL06(x) = HnLB ·RadiusH ·RadiusP. (3.3)

The HnLB term comprises the number of H-H topological contacts in the conformation (HHtc)

and a penalty factor which takes into account the violation of the self-avoiding constraint. Formally:

HnLB = HHtc− (NC · PW ), (3.4)

where NC is the number of collisions (defined in [142,143] as the number of lattice nodes assigned

to more than one amino acid) in the conformation and PW is the penalty weight. The value of PW

depends on the chain length, `, and it can be computed as PW = (0.033 × `) + 1.33, as derived

based on empirical observations of the authors during preliminary experimentation [143].4

Before defining the RadiusH and RadiusP terms, let us first define RgH as the radius of

gyration for H amino acids:

RgH =

√√√√√
∑
a|a=H

[
(xa −XH)2 + (ya − YH)2 + (za − ZH)2

]
`H

, (3.5)

where xa, ya and za are the lattice coordinates of amino acid a. The XH , YH and ZH terms denote

the arithmetic mean of the coordinates for all H amino acids. Analogously, we can compute RgP ,

the radius of gyration for P amino acids, by considering P rather than H amino acids in (3.5).

4During the experimentation reported in this chapter, only solutions encoding feasible protein conformations have
been considered. Therefore, the penalty factor in (3.4) was simply omitted.
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Once RgH has been defined, the RadiusH term measures how compact the hydrophobic core

of the conformation is. The RadiusH term is given by:

RadiusH = MaxRgH −RgH, (3.6)

where MaxRgH denotes the radius of gyration for H amino acids in a totally unfolded conformation;

i.e., MaxRgH represents the maximum possible RgH value for the given protein sequence.

Finally, the RadiusP term aims to push P amino acids away from the hydrophobic core. Given

the previously defined RgH and RgP measures, the RadiusP term is computed as:

RadiusP =

 1, if (RgP −RgH) ≥ 0;

1
1−(RgP−RgH)

, otherwise.
(3.7)

The RadiusP term will always lie in the range [0, 1]. A value of (RgP − RgH) > 0 means

that P amino acids are more exposed than H amino acids. This is a convenient scenario, so that

the RadiusP term has no contribution to the final energy value (RadiusP = 1). Otherwise,

(RgP −RgH) < 0 suggests that H amino acids are more spread than the P ones, so that RadiusP

is used to penalize the energy value of the conformation. Note that (3.3) is to be maximized.5

Lopes and Scapin argue that the above described function provides an adequate discrimination

among conformations with the same number of H-H topological contacts [142, 143]. This function

was implemented within a genetic algorithm in order to solve several instances on the two-dimensional

square lattice. However, no results are provided on the advantages of using this proposed variant of

the energy function with regard to the conventional energy formulation of the HP model.

3.2.4 Berenboym and Avigal, 2008

Berenboym and Avigal proposed an alternative energy function called the global energy [9]. In this

function, each pair of nonconsecutive H amino acids contributes to the energy value even if they are

5The negative of (3.3) can be used as an energy-minimization formulation of the problem which adheres to the
notation commonly used in this field.
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not topological neighbors. Formally, the global energy for a given conformation x is defined as:

EB08(x) =
∑
ai,aj

e(ai, aj), (3.8)

where

e(ai, aj) =


−1

(xai−xaj )2+(yai−yaj )2+(zai−zaj )2
, if ai and aj are both H and |j − i| ≥ 2;

0, otherwise.

Here, xai , yai and zai denote the lattice coordinates of amino acid ai. In [9], the effects of using a

local search operator within a genetic algorithm were analyzed for both, the conventional and the

proposed global energy functions. However, an explicit comparison to demonstrate the advantages

of using a particular energy function was not reported. This issue needs to be further explored.

3.2.5 Cebrián et al., 2008

Cébrian et al. [26] proposed a variant of the HP model’s energy function, which was later further

explored in [65]. The proposed energy formulation measures the deviation that each pair of H

amino acids presents with respect to the unit distance (i.e., topological contact distance). Let

d(ai, aj)
2 = (xai − xaj)2 + (yai − yaj)2 + (zai − zaj)2 be the lattice distance between amino acids ai

and aj, and let dv(ai, aj) = d(ai, aj)
2 − 1 denote its deviation from the unit distance. The energy

value of a conformation x is given by:

EC08(x) =
∑

ai,aj |ai=H,aj=H

dv(ai, aj)
k, (3.9)

where k ≥ 1 is a parameter of the function, whose larger values give more weight to unit distances. A

value of k = 2 was adopted for this study, since this value provided the best behavior according to the

results reported in [26]. EC08(x
∗) = 0 would refer to the ideal (potentially unrealistic) scenario where

all pairs of H amino acids are at a unit distance in conformation x∗. In [26, 65], no experimental

results to support the advantages of using the proposed energy function were reported.
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3.2.6 Islam and Chetty, 2009

In [98, 99, 101], the authors reported a memetic algorithm with a modified energy function which

incorporates two additional measures: H-compliance and P -compliance.

H-compliance measures the proximity of H amino acids to the center of a hypothetical cuboid

(or rectangle in a two-dimensional space) enclosing all H amino acids, which is to be denoted by the

reference point (xr, yr, zr). Formally, this measure is given by:

H-compliance(x) =

∑
a|a=H

(xr − xa)2 + (yr − ya)2 + (zr − za)2

`H
, (3.10)

where xa, ya and za denote the lattice coordinates of amino acid a.

P -compliance is a measure of how close P amino acids are to the boundaries of a hypothetical

cuboid enclosing all P amino acids. Such a cuboid is defined by xmin, xmax, ymin, ymax, zmin and

zmax. The P -compliance measure is formally given by:

P -compliance(x) =

∑
a|a=P

min

 |xmin − xa|, |xmax − xa|, |ymin − ya|,|ymax − ya|, |zmin − za|, |zmax − za|


`P

. (3.11)

Finally, the energy of a given conformation x is defined as:

EI09(x) = αE(x) +H-compliance(x) + P -compliance(x), (3.12)

where E is the conventional energy function of the HP model defined in (2.5), see Section 2.3.3.1,

and α is to be large enough in order to ensure that this will be the dominant term in (3.12).

In [98], the authors demonstrated the advantages of using the proposed energy function using

an 85-length HP protein sequence on the two-dimensional square lattice. However, the influence of

using this function should be further explored for a larger set of test cases.
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3.3 Comparative analysis

In this section, seven different formulations of the energy function for the HP model are evaluated

and compared:6 D85, the conventional energy function of the HP model [61,126]; and the alternative

energy formulations K99, reported by Krasnogor et al. [122]; C04, reported by Custódio et al. [45];

L06, reported by Lopes and Scapin [142, 143]; B08, reported by Berenboym and Avigal [9]; C08,

reported by Cébrian et al. [26]; and I09, reported by Islam and Chetty [98, 99, 101].

It is important to remark that even when an alternative energy function is implemented, the goal

of the optimization process remains to maximize the number of H-H topological contacts (HHtc),

which is the singular objective in the HP model (see Section 2.3.3). In this study, the purpose of

using alternative formulations of the energy function is to guide the search process in a more effective

manner while solving the original problem. For all the experiments reported in this chapter, protein

conformations are encoded using an internal coordinates representation based on absolute moves.

Details on this problem representation are provided in Section 2.3.3.3. Moreover, only solutions

encoding feasible protein conformations have been considered during all the analyses presented in

this chapter. All the feasible conformations (either analyzed directly in Sections 3.3.1 and 3.3.2, or

used as the initial solutions for the search algorithms implemented in Sections 3.3.3 and 3.3.4) have

been randomly generated using the backtracking procedure proposed in [42].

The remaining of this section is organized as follows. First, important properties of the stud-

ied energy functions are examined in Sections 3.3.1 and 3.3.2. Then, the effectiveness of these

approaches to guide the optimization process is evaluated in Sections 3.3.3 and 3.3.4.

3.3.1 Degree of discrimination

The discrimination potential is an important property of the evaluation scheme which impacts directly

on the behavior of metaheuristic algorithms. That is, if it is not possible to set preferences among

candidate solutions, then the progress in the search process could become practically dominated by

6For convenience, a three-letter acronym has been assigned to refer to each of the studied energy functions. The
adopted acronyms are based on first author’s initial and publication year.
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random decisions. In this section, the degree of discrimination that the studied energy functions

provide is investigated. This is done by analyzing the distribution of ranks that these approaches

induce on a set of protein conformations. A ranking expresses the relationship among a set of

elements according to a given property. In the context of this study, protein conformations are to

be ranked and the property to set such a relationship corresponds to the energy value. Given a set

of protein conformations, the first ranking position is assigned to the conformation with the best

energy value, the next ranking position to the one with the second best energy value, and so on. If

two or more conformations present the same energy, then they will share the same rank.

The relative entropy (RE) measure proposed by Corne and Knowles was adopted [40]. Given a

set of n ranked conformations (there are at most n ranks, and at least 1), the relative entropy of

the distribution of ranks D is defined as:

RE(D) =

∑
r

D(r)

n
log(

D(r)

n
)

log(1/n)
, (3.13)

where D(r) denotes the number of conformations with rank r. RE(D) tends to 1 as approaching

to the ideal situation where each conformation has a different rank (i.e., the maximum possible

discrimination). On the other hand, when all the conformations share the same ranking position

(i.e., the poorest discrimination), RE(D) takes a value of zero.

In this experiment, 1, 000 different feasible conformations were generated at random. For each of

the studied functions, these solutions were evaluated and ranked to finally compute the RE measure.

A total of 100 repetitions of this experiment were performed for all the test instances. The overall

statistics of this experiment are presented in Figure 3.3. Instance-specific results are provided in

Figure 3.4. From Figure 3.3, it can be seen that some of the functions discriminate stronger than

others. The obtained results are quite similar for both the two- and the three-dimensional lattices.

In all test cases, the conventional energy function of the HP model, D85, achieved the lowest RE

values. This confirms the poor discrimination capabilities of this function, which has been the main

factor motivating the exploration of alternative approaches. Among the alternative functions, C04
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Figure 3.3: Relative entropy (RE) of the distribution of ranks obtained by using the different energy
functions analyzed. Overall statistics for all two- (left) and three-dimensional (right) test cases.
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Figure 3.4: Relative entropy (RE) obtained by the different energy functions analyzed. Average of
100 independent repetitions for all two- (left) and three-dimensional (right) test instances.

presented the worst performance in terms of discrimination. Function L06 reached high RE values

most of the time. However, this function presented a moderate discrimination for the shortest test

sequences (see Figure 3.4). Regarding function I09, it is possible to note that the obtained RE values

were almost always above 0.9, which indicates a strong discrimination. Finally, it is important to

remark the high degree of discrimination provided by functions K99, B08 and C08. Functions K99

and B08 are the most discriminating functions according to the obtained results, followed by C08

which suffered slight decreases for some of the test instances.

The above results can be better understood by analyzing the histograms with the distribution

of ranks achieved by each of the studied energy functions. Figure 3.5 presents such histograms

for a single repetition of this experiment regarding sequence 2d4 on the two-dimensional square
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Figure 3.5: Density of the distribution of ranks achieved by the studied energy functions. Results for
a single repetition, sequence 2d4, two-dimensional square lattice.

lattice (similar results were observed for other test instances). From Figure 3.5, it is possible to

note how poor the distribution of ranks achieved by function D85 is. Only seven different ranking

positions were induced to classify the 1, 000 generated conformations. It can be seen that there

are almost 400 conformations sharing the sixth rank. As stated in the preamble of this chapter,



52 3.3. Comparative analysis

using function D85 there can be only |E∗| + 1 different energy levels. Therefore, no matter the

amount of generated conformations, the maximum number of ranks which can be assigned through

function D85 is 10, since E∗ = −9 for this benchmark sequence (2d4). The second worst scenario is

presented by function C04, where only 40 different ranking positions were produced, out of which one

was assigned to more than 100 conformations. Functions L06 and I09 enabled a more fine-grained

discrimination, since about 730 and 680 different ranking positions were occupied to classify the

totality of conformations, respectively. In the case of function I09, a maximum of seven conformations

were assigned to the same rank. On the other hand, the histogram for function L06 presents a high

peak indicating that there are about 250 equally ranked conformations. Function L06 is defined

as the product of three terms, out of which one corresponds to the number of H-H topological

contacts, HHtc (see Section 3.2.3). Thus, all conformations for which HHtc = 0 will share the

same energy value, EL06 = 0. This can be seen as a drawback; function L06 will not be able to

discriminate among these conformations even if some of them present better characteristics than the

others. Finally, the histograms for K99, B08 and C08 confirm the high degree of discrimination that

these functions provide. Function C08 allowed roughly 930 different ranking positions to be assigned.

K99 and B08 exhibited the strongest discrimination among all the studied energy functions. The

corresponding histograms for these functions reveal that almost every conformation was mapped to

a different ranking position. Only a few ranks were assigned to at most two conformations.

3.3.2 HP-compatibility

Alternative energy functions for the HP model are used in order to perform a more effective exploration

through the space of potential protein conformations. Nevertheless, as stated at the beginning of

Section 3.3, these functions need to remain consistent with the original optimization objective of

the HP model of the PSP problem. This original objective consists in minimizing the conventional

energy function, here referred to as function D85, by maximizing the total number of H-H topological

contacts, HHtc (see Section 2.3.3). Therefore, an important issue to be investigated is whether or

not these alternative energy formulations are consistent with such an original objective.
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The alternative energy functions should not contradict the conventional function D85 at the time

of discriminating among potential conformations. Otherwise, the search process could be oriented

towards solutions which differ from the original optima in the HP model (false optima could potentially

be introduced). In this study, functions that meet this requirement, i.e., not contradicting function

D85, are said to feature the HP-compatibility property or, in other words, they are HP-compatible.

Thus, HP-compatibility can be defined as the capability of an alternative energy function to preserve

the conventional rank ordering among potential protein conformations. More formally:7

An alternative energy function Ê : XF → R is said to be HP-compatible if and only if

Ê(x1) < Ê(x2)⇒ E(x1) ≤ E(x2) for every pair of conformations x1,x2 ∈ XF . Other-

wise, if there exists at least a pair of conformations x1,x2 ∈ XF such that E(x1) < E(x2)

but Ê(x1) > Ê(x2), then function Ê is not HP-compatible.

Note that the case where E(x1) = E(x2) but Ê(x1) 6= Ê(x2) is not considered a contradiction.

This is a convenient scenario, since the aim of using the alternative function Ê is precisely to enable

a more fine-grained discrimination than that achieved through the conventional function E.

In this section, the HP-compatibility property is explored for all the alternative energy functions

considered. An experiment was conducted where 1, 000 different feasible structures were generated

at random, and all pairwise comparisons among them were performed. The percentage of such

comparisons where the alternative function agrees with (does not contradict) the conventional one

was computed. The resulting measure is to be referred to as the relative compatibility (RC). Although

a value of RC = 100% does not guarantee the HP-compatibility property for a given function,

RC < 100% is enough to disprove it. To some extent, by focusing on the RC values it is possible to

inquire into the severity of the cases where the HP-compatibility property is not satisfied. For all the

selected instances, 100 repetitions of this experiment were performed. The average RC obtained for

each instance is depicted in Figure 3.6. Figure 3.7 provides the overall statistics of this experiment.

From Figures 3.6 and 3.7, it is possible to note that functions K99 and I09 showed 100% of

agreement with the conventional HP energy function for all the instances of this experiment. These

7By convention, this definition assumes that lower energy values correspond to higher quality conformations. In
this definition, E denotes the conventional energy function (D85) of the HP model described in Section 2.3.3.1.
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Figure 3.6: Relative compatibility (RC) obtained by each of the alternative energy functions analyzed.
Average results for all two-dimensional (left) and three-dimensional (right) test instances.
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Figure 3.7: Relative compatibility (RC) obtained by each of the alternative energy functions analyzed.
Overall statistics for all two-dimensional (left) and three-dimensional (right) test cases.

results suggest, but do not ensure, that functions K99 and I09 are HP-compatible. On the other

hand, the obtained results reveal that functions C04, L06, B08 and C08 do not present the HP-

compatibility property, which becomes more evident with the increasing problem size. Function L06

scored very competitive results for the shortest two- and three-dimensional test sequences. However,

its performance declined for the largest test cases, especially when facing sequences 2d12 and 3d10.

The average RC values obtained by L06 were almost always above 95%. The performance of function

C04 gradually decreased as the problem size increased. The RC values achieved by this approach

ranged from 90% to 95% most of the time. Function B08 presented the second worst overall behavior

in this experiment. In the two-dimensional instances, the performance of B08 was above RC = 90%

for the shortest sequences but at around 85% for the largest ones. Regarding the three-dimensional

instances, function B08 obtained RC values below 85% in most of the cases.
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Figure 3.8: Two conformations x1 and x2 for sequence 2d4 on the two-dimensional square lat-
tice. This figure illustrates the situation where function C08 contradicts function D85; that is,
[E(x1) = −7] < [E(x2) = 0] but [EC08(x1) = 5548] > [EC08(x2) = 5308].

Finally, it can be highlighted the poor performance exhibited by function C08. This approach

achieved the lowest RC values for all the adopted test cases. The average RC obtained by function

C08 was roughly 75% for two-dimensional benchmarks, while it was at about 70% for the three-

dimensional cases. Figure 3.8 presents an example scenario where function C08 contradicts the

conventional function D85. In this example, a couple of two-dimensional conformations x1 and x2

for sequence 2d4 are compared with respect to each other by using functions D85 and C08. As a

result, the conventional energy function D85 prefers conformation x1 (with HHtc = 7) to x2 (with

HHtc = 0), while function C08 induces the opposite order of preference between these solutions.

The low RC values obtained by some functions, particularly C08, suggest serious implications.

The lower the RC value, the more likely that the global optimum induced by the alternative function

differs from the global optimum of the original problem. Therefore, alternative functions which are

not HP-compatible cannot be expected to steer the search process in an effective manner.

3.3.3 Search performance using a basic local search algorithm

A best improvement local search (BILS) algorithm was implemented in order to evaluate the ef-

fectiveness of the studied energy functions at guiding the search process, see Algorithm 1. BILS

starts with a randomly generated conformation, denoted by x. In a greedy manner, x is iteratively

replaced by the best among all the improving conformations defined in the neighborhood of x, N (x).
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The search process stops when, given the current conformation x and the adopted neighborhood

structure, it is not possible to achieve an improvement, i.e., x is locally optimal.

Algorithm 1 Best improvement local search (BILS) algorithm.

choose x ∈ XF uniformly at random
repeat
x← Best Improvement(N (x))

until no improvement is possible

As stated at the beginning of Section 3.3, only solutions encoding feasible conformations are

considered in this study. Hence, the initial solutions for the BILS algorithm were generated using the

backtracking procedure proposed in [42]. The implemented neighborhood structure N (x) is defined

by all feasible conformations which can be reached through single 1-variable perturbations of x; i.e.,

N (x) = {x′ ∈ XF | Hd(x,x
′) = 1}, where Hd(x,x

′) denotes the Hamming distance between x

and x′. Given a protein sequence of length `, the size of such a neighborhood is |N (x)| = 3(`− 1)

in the two-dimensional square lattice and |N (x)| = 5(`− 1) for the three-dimensional case.

The motivation for using such a simple BILS algorithm is as follows. On the one hand, BILS

seems to be a suitable algorithm for analyzing the impact of varying the evaluation scheme. Once

the neighborhood structure has been defined, the behavior and performance of the algorithm will

be mainly determined by the discrimination capabilities of the different energy functions. “A local

search is effective if it is able to find good local minima” [16]. BILS stops at a local optimum,

and the characteristics of such a local optimum will depend on the used discrimination method.

Moreover, due to the low degree of discrimination provided by some of the functions, the search

process can be expected to stop early (after a reduced number of iterations). On the other hand, no

additional parameters of the algorithm have to be adjusted, which avoids affecting (neither negatively

nor positively) the behavior induced by the studied energy functions through parameter settings.

The behavior of the BILS algorithm was evaluated when using each of the different studied energy

functions. Figure 3.9 presents the results obtained for all the two-dimensional instances, while the

results for the three-dimensional case are provided in Figure 3.10. Plots in these figures show the

average number of H-H topological contacts (HHtc) achieved by the BILS algorithm as the search
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Figure 3.9: Results of BILS when using the studied energy functions. Number of H-H topological
contacts (HHtc) obtained at each iteration. Average of 100 independent runs. Each plot presents
the results for a particular two-dimensional instance. Legend is provided at the top of the figure.
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Figure 3.10: Results of BILS when using the studied energy functions. Number of H-H topological
contacts (HHtc) obtained at each iteration. Average of 100 independent runs. Each plot presents
the results for a particular three-dimensional instance. Legend is provided at the top of the figure.
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progressed (at each iteration), for each considered test case. These results were computed from

a total of 100 independent executions performed for each configuration of the experiment. From

Figures 3.9 and 3.10 it is possible to derive some general conclusions. As expected, the conventional

energy function D85 presented a limited performance for this experiment. For all the test instances

(except for sequence 3d9), the algorithm reached the lowest number of iterations due to the poor

discrimination that function D85 provides. In most cases, however, the poorest performance of the

algorithm was obtained when using function C08. Although functions B08 and C04 behaved better

than function D85 in most of the two-dimensional instances, these functions reported a poorer search

performance than D85 for some of the three-dimensional test cases. Function L06 obtained very

competitive results most of the time. L06 allowed the algorithm to score the highest HHtc values

for some of the test cases (e.g., 2d3, 2d5, 2d10, 3d2), while showing a slightly inferior performance

for some other instances (e.g., 2d1, 2d7, 3d10). Finally, it is possible to highlight the promising

behavior that functions I09 and K99 consistently exhibited for all the considered test cases.

More detailed information and the results of the statistical significance analysis are provided in

Tables 3.1 and 3.2. For the different analyzed energy functions and all the adopted test cases, these

tables detail the best obtained energy value (Eb), the number of times that this solution was found

(ν), and the arithmetic mean (Ē). Also, the obtained values for the overall relative root mean

square error (O-RMSE) measure are presented at the bottom of the tables. In these tables, values

marked + highlight a statistically significant increase in performance achieved by the alternative

energy function with regard to the conventional function D85. Conversely, values marked − indicate

that a statistically significant performance decrease was obtained as a consequence of using the

alternative formulation. In addition, the best average performance (lowest average energy) for each

of the instances and the best (lowest) O-RMSE value have been shaded in these tables. Tables

3.1 and 3.2 confirm the superiority that functions K99, I09 and L06 have shown in this experiment.

In the vast majority of the instances, it can be seen from the tables that functions K99, I09 and

L06 significantly improved the performance of the BILS algorithm with respect to the conventional

function D85. There were no significant differences between functions D85 and C04 except for

sequences 3d3 and 3d4, in both cases favoring C04. Function B08 scored significantly better results



60 3.3. Comparative analysis

Table 3.1: Detailing the performance results obtained by the BILS algorithm when using the seven
studied energy formulations for the HP model. Two-dimensional test cases.

D85 K99 C04 L06 B08 C08 I09

Seq. Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē

2d1 -3 (1) -0.6 -3 (2) -1.0+ -3 (1) -0.8 -3 (2) -0.7 -3 (2) -1.0+ -2 (12) -0.7 -3 (3) -1.0+

2d2 -7 (1) -2.9 -7 (3) -3.6+ -7 (1) -3.0 -7 (3) -3.7+ -7 (3) -3.3+ -7 (1) -3.0 -7 (2) -3.5+

2d3 -8 (1) -4.2 -8 (1) -4.6 -8 (1) -4.2 -8 (1) -4.9+ -7 (4) -4.5 -7 (1) -3.9 -8 (1) -4.6+

2d4 -7 (1) -3.1 -7 (3) -3.7+ -7 (1) -3.3 -7 (2) -3.9+ -7 (3) -3.7+ -7 (1) -3.1 -7 (3) -3.9+

2d5 -6 (7) -3.2 -7 (1) -3.8+ -6 (7) -3.3 -7 (4) -4.2+ -7 (1) -3.6 -6 (6) -2.9 -7 (4) -3.9+

2d6 -7 (2) -3.0 -7 (1) -3.7+ -7 (1) -3.2 -7 (1) -3.8+ -7 (1) -3.6+ -6 (2) -3.0 -7 (2) -3.8+

2d7 -5 (1) -1.4 -7 (1) -2.2+ -6 (1) -1.6 -7 (1) -2.1+ -7 (1) -2.2+ -7 (1) -1.6 -7 (1) -2.4+

2d8 -7 (2) -3.8 -8 (1) -4.7+ -7 (2) -3.8 -7 (6) -4.5+ -7 (7) -4.4+ -7 (4) -3.6 -9 (1) -4.6+

2d9 -12 (3) -7.3 -12 (4) -8.3+ -12 (2) -7.6 -13 (1) -8.4+ -12 (4) -8.1+ -11 (7) -6.3− -15 (1) -8.7+

2d10 -10 (6) -6.3 -13 (1) -7.6+ -11 (1) -6.5 -12 (3) -7.9+ -13 (1) -7.1+ -11 (1) -5.6− -13 (2) -7.7+

2d11 -22 (2) -15.8 -24 (3) -17.1+ -22 (1) -16.0 -24 (3) -17.0+ -25 (1) -16.4 -24 (1) -14.3− -25 (1) -17.1+

2d12 -22 (1) -15.7 -24 (1) -17.3+ -22 (1) -15.8 -22 (2) -16.6+ -21 (4) -16.5+ -22 (1) -14.2− -23 (1) -17.1+

2d13 -30 (2) -22.2 -35 (1) -24.4+ -30 (3) -22.4 -35 (1) -24.4+ -31 (2) -23.1 -33 (1) -20.3− -35 (1) -24.4+

2d14 -28 (1) -18.8 -30 (1) -21.1+ -26 (4) -19.1 -29 (1) -20.5+ -28 (1) -19.6 -25 (1) -16.5− -29 (1) -20.8+

2d15 -26 (2) -19.0 -28 (3) -21.3+ -29 (1) -19.1 -28 (1) -20.9+ -26 (1) -19.4 -22 (5) -16.6− -27 (3) -21.5+

O-RMSE 67.33% 61.47% 66.26% 61.52% 63.30% 69.58% 60.92%

Table 3.2: Detailing the performance results obtained by the BILS algorithm when using the seven
studied energy formulations for the HP model. Three-dimensional test cases.

D85 K99 C04 L06 B08 C08 I09

Seq. Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē

3d1 -10 (2) -5.8 -11 (2) -6.7+ -10 (1) -5.9 -11 (1) -6.8+ -11 (1) -6.2 -9 (2) -4.5− -10 (4) -6.5+

3d2 -9 (4) -5.2 -11 (1) -6.2+ -10 (1) -5.3 -10 (3) -6.4+ -9 (6) -5.7+ -7 (7) -4.1− -10 (1) -6.1+

3d3 -7 (2) -2.7 -9 (1) -4.6+ -7 (3) -3.5+ -8 (2) -4.6+ -9 (1) -4.5+ -7 (3) -2.9 -8 (2) -4.7+

3d4 -12 (2) -6.5 -13 (2) -8.6+ -13 (1) -7.1+ -14 (1) -8.7+ -14 (2) -8.1+ -13 (1) -5.8− -15 (1) -8.9+

3d5 -22 (1) -13.9 -23 (1) -15.6+ -21 (1) -14.1 -22 (2) -15.3+ -22 (1) -13.2 -17 (2) -10.7− -22 (1) -15.5+

3d6 -19 (4) -12.4 -22 (1) -14.9+ -19 (1) -12.4 -21 (3) -15.0+ -19 (4) -13.3+ -18 (1) -10.3− -21 (3) -14.5+

3d7 -18 (2) -11.8 -20 (2) -13.4+ -18 (1) -11.5 -22 (1) -13.3+ -17 (2) -11.4 -17 (1) -9.1− -18 (4) -13.5+

3d8 -23 (2) -15.9 -25 (1) -17.5+ -22 (2) -15.6 -24 (1) -17.4+ -23 (1) -14.8− -19 (1) -11.2− -24 (2) -17.4+

3d9 -36 (2) -25.8 -38 (4) -27.3+ -36 (1) -25.5 -36 (3) -27.2+ -36 (1) -24.9 -32 (1) -20.7− -38 (2) -26.8

3d10 -34 (1) -24.8 -38 (1) -26.9+ -36 (1) -25.0 -35 (2) -25.1 -33 (1) -23.2− -33 (1) -20.2− -37 (1) -26.7+

3d11 -28 (2) -18.2 -31 (1) -20.1+ -26 (2) -18.4 -29 (1) -20.3+ -27 (1) -16.9− -25 (1) -13.6− -31 (2) -20.3+

3d12 -29 (5) -20.6 -31 (6) -22.7+ -30 (1) -20.0 -33 (1) -22.9+ -27 (2) -17.6− -22 (1) -14.5− -34 (2) -23.0+

3d13 -22 (1) -13.0 -28 (1) -17.6+ -22 (1) -13.9 -24 (4) -16.7+ -22 (2) -13.2 -17 (1) -8.8− -24 (3) -16.7+

3d14 -24 (2) -16.6 -30 (1) -20.9+ -29 (1) -17.1 -32 (1) -21.0+ -26 (1) -15.6− -20 (1) -11.0− -34 (1) -21.1+

3d15 -30 (1) -19.2 -36 (1) -24.0+ -30 (1) -19.3 -35 (2) -22.9+ -28 (2) -18.0 -21 (2) -12.8− -32 (3) -22.7+

O-RMSE 65.61% 58.87% 64.54% 59.17% 64.34% 73.09% 59.22%
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than function D85 in 9 out of the 15 two-dimensional instances, and 4 of the three-dimensional

instances. Note, however, that this function was significantly outperformed by function D85 in 5

of the largest three-dimensional test cases. Finally, it can also be confirmed the poor performance

presented by function C08. Function C08 performed significantly worse than function D85 for the

largest two-dimensional instances and for all but one of the three-dimensional cases.

3.3.4 Search performance using the iterated local search algorithm

In Section 3.3.3, a basic local search algorithm was employed as a first step in analyzing the effec-

tiveness of the studied energy functions at guiding the search process. Through local search it is

possible to converge towards local optima. However, the performance of these algorithms is usually

unsatisfactory in terms of finding global optimum solutions [16, 218]. Therefore, it is required to

implement additional strategies to foster exploration and to allow the search process to escape from

local optima. A possible strategy consists in iteratively applying local search each time starting from a

different initial solution, such as it is done in the iterated local search (ILS) algorithm [146,147,157].

In this section, a basic ILS algorithm is used for inquiring into the suitability of the studied energy

functions (outlined in Algorithm 2). The ILS algorithm starts with a feasible conformation generated

at random8, denoted as x. Then, a local search strategy (embedded heuristic) is applied to x until

a local optimum x∗ is found. At each iteration, a perturbation x′ of the current local optimum x∗

is obtained and used as a starting point of another round of local search. The new local optimum

solution found x′∗ may be accepted as the new incumbent solution x∗, based on a given acceptance

criterion. This iterative procedure is repeated until a given stop condition is met.

In order to implement the ILS algorithm, three basic components have to be defined, namely,

the embedded local search heuristic, the perturbation strength and the acceptance criterion. In

this study, these components are defined as follows. The best improvement local search (BILS)

algorithm, as described and implemented in Section 3.3.3, is adopted as the embedded heuristic. Six

different values for the perturbation strength are considered: {2, 3, 4, 6, 8, 10}. Here, the perturbation

8Initial feasible solutions were generated using the backtracking algorithm proposed in [42].
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Algorithm 2 Iterated local search (ILS) algorithm.

1: choose x ∈ XF uniformly at random
2: x∗ ← LocalSearch(x)
3: repeat
4: x′ ← Perturbation(x∗)
5: x′∗ ← LocalSearch(x′)
6: x∗ ← AcceptanceCriterion(x∗,x′∗)
7: until < stop condition >

strength refers to the number of encoding positions in the conformation which are to be affected by

the perturbation. Three different acceptance criteria are explored: (i) IMP, the new local optimum

x′∗ is accepted if it has a better energy value than the incumbent solution x∗; (ii) IEQ, the new local

optimum x′∗ is accepted if it is at least as good as the incumbent solution x∗; and (iii) ALL, the

new local optimum x′∗ is always accepted. The three different acceptance criteria, together with the

six considered values for the perturbation strength, lead to a total of 18 parameter configurations of

the ILS. All these parameter configurations were evaluated in order to identify the most appropriate

conditions for the compared approaches. In all the cases, the algorithm was allowed to run until

a maximum number of 5 × 105 solution evaluations was reached, and a total of 50 independent

executions were performed. Figure 3.11 presents the overall relative root mean square error (O-

RMSE) obtained by the studied energy functions for the different parameter settings of the ILS.

Among the alternative energy functions, Figure 3.11 shows that K99, L06 and I09 consistently

competed at the top of the ranking for the different parameter configurations of the ILS. In the two-

dimensional case, the performance of function B08 was competitive for most of the ILS configurations.

In contrast, this function exhibited a low performance in all cases when facing the three-dimensional

instances. Function C08 obtained the worst (higher) O-RMSE values in most of the cases, followed

by function C04. Functions C08 and C04 are thus the worst performers of this experiment. Regarding

the conventional energy function D85, an interesting behavior can be observed when comparing the

results obtained using the different acceptance criteria. While the ranking among the alternative

energy functions remains consistent in most of the cases from one acceptance criterion to another,

there was a significant increase in the performance of function D85 when using the IEQ acceptance
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Figure 3.11: Overall relative root mean square error (O-RMSE) obtained for all parameter configu-
rations of the ILS algorithm. Two-dimensional (left) and three-dimensional test cases.

criterion. The IEQ acceptance criterion allowed the algorithm to exploit the low discrimination

associated with function D85 as a means of enhancing exploration and escaping from local optima.

In order to provide a more detailed analysis, the parameter adjustment which allowed each of

the studied energy functions to reach the lowest O-RMSE value has been selected.9 Tables 3.3

and 3.4 detail the obtained results for all two-dimensional and three-dimensional test cases. The

information in these tables is organized as described in Section 3.3.3 with regard to Tables 3.1 and

3.2. From Table 3.3, it is possible to observe that function I09 reached the lowest average energy

for 11 (73.33%) out of the 15 two-dimensional instances, obtaining the best O-RMSE value. In

5 of the instances, the improvements obtained by function I09 were statistically significant with

respect to the conventional energy function D85. The second best performer was function K99,

which showed the best average performance for 7 of the instances and significantly improved the

results of function D85 in 3 other cases. Function L06 achieved significantly better results than

function D85 for 5 of the instances, but there was a significant difference against function L06 in

4 of the largest test cases. Slightly similar results were obtained by function B08. Although the

conventional function D85 does not present a remarkable performance, the results of this function

are still considered competitive. Finally, the poorest performance was obtained by functions C04 and

9For the two-dimensional instances, the ALL acceptance criterion and a perturbation strength of 2 were chosen for
all the studied approaches. In the three-dimensional case, the IEQ acceptance criterion was selected for all the energy
functions. A perturbation strength of 4 was used for all functions except C04, for which this parameter was set to 6.
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Table 3.3: Detailing the results obtained by the ILS algorithm when using the seven studied energy
formulations for the HP model. Two-dimensional test cases.

D85 K99 C04 L06 B08 C08 I09

Seq. Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē

2d1 -4 (50) -4.0 -4 (50) -4.0 -4 (49) -4.0 -4 (50) -4.0 -4 (50) -4.0 -4 (50) -4.0 -4 (50) -4.0

2d2 -8 (50) -8.0 -8 (50) -8.0 -8 (49) -8.0 -8 (50) -8.0 -8 (50) -8.0 -8 (49) -8.0 -8 (50) -8.0

2d3 -9 (44) -8.9 -9 (47) -8.9 -9 (46) -8.9 -9 (50) -9.0+ -9 (49) -9.0 -9 (48) -9.0 -9 (47) -8.9

2d4 -9 (50) -9.0 -9 (50) -9.0 -9 (50) -9.0 -9 (50) -9.0 -9 (50) -9.0 -9 (50) -9.0 -9 (50) -9.0

2d5 -10 (50) -10.0 -10 (50) -10.0 -10 (49) -10.0 -10 (50) -10.0 -10 (50) -10.0 -10 (35) -9.7− -10 (50) -10.0

2d6 -9 (47) -8.9 -9 (50) -9.0 -9 (42) -8.8 -9 (50) -9.0 -9 (50) -9.0 -9 (44) -8.9 -9 (50) -9.0

2d7 -8 (36) -7.7 -8 (47) -7.9+ -8 (25) -7.5− -8 (50) -8.0+ -8 (50) -8.0+ -8 (50) -8.0+ -8 (50) -8.0+

2d8 -14 (2) -12.3 -14 (2) -12.4 -13 (1) -11.2− -14 (7) -12.9+ -14 (9) -12.8+ -14 (4) -12.2 -14 (15) -13.0+

2d9 -21 (3) -18.8 -22 (1) -19.6+ -20 (1) -17.4− -21 (4) -19.5+ -21 (5) -19.1 -21 (1) -17.5− -22 (1) -20.1+

2d10 -20 (1) -18.2 -21 (1) -18.3 -19 (1) -16.8− -21 (1) -18.4 -19 (1) -17.1− -17 (3) -15.3− -21 (1) -18.7+

2d11 -33 (7) -31.3 -34 (1) -31.5 -33 (1) -29.3− -33 (2) -30.7− -33 (3) -30.9 -32 (1) -27.5− -34 (2) -31.0

2d12 -34 (1) -30.5 -35 (2) -31.2+ -34 (1) -29.3− -35 (1) -32.1+ -33 (1) -29.3− -28 (8) -26.5− -35 (2) -32.2+

2d13 -46 (3) -42.6 -47 (1) -43.0 -45 (1) -40.2− -46 (1) -41.9− -46 (1) -42.2 -44 (1) -37.1− -46 (1) -42.9

2d14 -42 (3) -38.6 -41 (2) -38.2 -38 (1) -34.4− -40 (3) -37.2− -40 (3) -37.2− -39 (1) -32.6− -41 (4) -38.4

2d15 -42 (1) -39.1 -42 (3) -39.0 -39 (1) -35.1− -41 (1) -38.2− -41 (2) -37.0− -35 (1) -30.6− -42 (5) -39.3

O-RMSE 10.73% 9.80% 14.75% 9.63% 10.84% 16.16% 9.02%

Table 3.4: Detailing the results obtained by the ILS algorithm when using the seven studied energy
formulations for the HP model. Three-dimensional test cases.

D85 K99 C04 L06 B08 C08 I09

Seq. Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē

3d1 -11 (50) -11.0 -11 (50) -11.0 -11 (50) -11.0 -11 (50) -11.0 -11 (50) -11.0 -11 (50) -11.0 -11 (50) -11.0

3d2 -13 (50) -13.0 -13 (50) -13.0 -13 (37) -12.7− -13 (50) -13.0 -13 (49) -13.0 -13 (43) -12.8− -13 (50) -13.0

3d3 -9 (50) -9.0 -9 (50) -9.0 -9 (41) -8.8− -9 (50) -9.0 -9 (50) -9.0 -9 (49) -9.0 -9 (50) -9.0

3d4 -18 (49) -18.0 -18 (43) -17.8− -18 (8) -16.2− -18 (38) -17.6− -18 (27) -17.3− -18 (16) -16.8− -18 (37) -17.6−
3d5 -33 (4) -31.1 -32 (7) -30.1− -31 (3) -27.9− -34 (1) -30.3− -33 (1) -30.0− -30 (2) -26.8− -33 (1) -30.1−
3d6 -31 (13) -29.6 -31 (3) -28.8− -29 (5) -26.4− -31 (5) -29.0− -31 (2) -28.4− -31 (2) -27.7− -31 (7) -28.9−
3d7 -32 (1) -29.2 -32 (1) -28.5− -30 (1) -25.5− -32 (3) -28.2− -32 (1) -27.3− -31 (1) -23.8− -30 (8) -28.1−
3d8 -40 (2) -36.2 -39 (2) -35.5 -36 (1) -31.2− -39 (1) -34.5− -40 (1) -33.5− -35 (1) -29.9− -40 (1) -35.1−
3d9 -52 (1) -48.3 -51 (3) -48.0 -49 (1) -44.5− -50 (5) -47.2− -50 (3) -46.3− -49 (4) -44.8− -51 (4) -47.6

3d10 -56 (1) -50.2 -52 (6) -48.0− -49 (1) -43.7− -55 (1) -48.6− -52 (1) -45.6− -50 (2) -41.6− -54 (1) -49.2−
3d11 -45 (1) -41.4 -45 (1) -39.6− -40 (1) -35.4− -44 (2) -39.5− -43 (1) -37.1− -40 (1) -32.8− -45 (1) -39.5−
3d12 -57 (2) -50.5 -54 (2) -48.1− -50 (1) -41.4− -54 (1) -48.2− -50 (3) -43.0− -42 (1) -35.7− -54 (2) -48.1−
3d13 -47 (1) -40.6 -45 (1) -39.2− -40 (1) -31.8− -45 (2) -38.6− -42 (1) -36.4− -38 (1) -29.0− -44 (4) -39.0−
3d14 -55 (1) -49.4 -53 (2) -47.0− -49 (1) -38.2− -55 (1) -45.8− -47 (1) -39.5− -47 (1) -33.1− -57 (1) -46.4−
3d15 -61 (1) -53.8 -59 (1) -52.0 -50 (1) -40.1− -58 (3) -50.0− -55 (1) -44.7− -48 (1) -37.0− -57 (1) -49.0−

O-RMSE 15.71% 17.72% 25.74% 18.38% 21.49% 27.88% 18.19%
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C08, whose results were significantly worse than those of the conventional function D85 in most of

the cases. A quite different scenario can be observed regarding the three-dimensional test cases. It

can be seen from Table 3.4 that the conventional function D85 scored the best average performance

for all the considered test cases. The statistical analysis indicates that function D85 significantly

outperformed all the alternative energy formulations in the vast majority of the cases. Among the

alternative functions, the best results were obtained by K99, followed by functions I09 and L06.

Finally, the worst overall behavior was presented by functions B08, C04 and particularly C08.

The obtained results confirm that an effective evaluation scheme is essential in order to guide

the search process towards high quality conformations. For most parameter configurations of the

ILS algorithm, the best results were obtained using alternative energy functions which provide a fine-

grained discrimination. Nevertheless, a particular acceptance criterion (IEQ, in this case) increased

the performance of the ILS algorithm when using the conventional energy function, D85. Using such

an acceptance criterion, the results of function D85 were statistically superior compared to those

obtained by the different alternative functions. This suggests that it is possible to take advantage of

the low degree of discrimination provided by the conventional energy formulation of the HP model.

3.4 Discussion and conclusions

The conventional energy function of the HP model is known to provide a very poor discrimination

among potential conformations. Nevertheless, an effective evaluation scheme is an essential com-

ponent of metaheuristics, being the responsible for steering the search process towards promising

regions of the solution space. Therefore, alternative formulations of the energy function have been

proposed in the literature to cope with this issue. This chapter presented the results of a comparative

study where seven different formulations of the HP model’s energy function were considered.

The first step in this study was concerned with the analysis of the degree of discrimination that

each of the considered energy functions provides. Through such an analysis, it was possible to

confirm the poor discrimination capabilities of the conventional energy function of the HP model,

D85, which has been the main motivation for exploring alternative energy formulations. All the
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alternative functions were found to provide a more fine-grained discrimination. From the obtained

results, the most discriminative functions are K99 and B08, followed by C08 and I09, in this order.

The HP-compatibility property was defined and investigated for each of the alternative energy

functions. This important property refers to the capability of an alternative energy function to

preserve a rank ordering among potential conformations which is consistent with the original objective

function of the HP model. The obtained results suggest (but does not prove) that functions K99 and

I09 feature this property. Very competitive results in this regard were also obtained by function L06.

However, this was not the case for functions C04, B08 and particularly C08, which obtained the worst

results in the conducted experiment. Alternative energy functions which are not HP-compatible may

not be able to guide the search process properly since they can potentially introduce false optima.

The effectiveness of the studied energy functions to guide the search process was examined

using a best improvement local search (BILS) algorithm. The conventional energy function D85

exhibited a low performance for this experiment. In most of the adopted test cases, however, the

worst performance of the algorithm was obtained when using the alternative function C08. Also,

functions B08 and C04 showed a poor search performance for most of the instances. In contrast,

the alternative functions I09, L06 and K99 consistently presented a very promising behavior.

In order to further explore the suitability of the studied energy functions, a more sophisticated

metaheuristic algorithm, called the iterated local search (ILS), was implemented. In most of the

cases, the findings obtained using the ILS were similar to those obtained in the previous experiment

using the BILS algorithm. Among the alternative energy functions, K99, I09 and L06 consistently

exposed a promising behavior, while functions B08, C04 and particularly C08 presented the worst

overall performance in this test. On the other side, the results obtained for the conventional function

D85 suggest that, using a proper acceptance criterion, it is possible to take advantage of the neutrality

that the low discrimination of this function injects into the fitness landscape.

From this study, it is possible to derive some general conclusions. First, intensity of discrimination

does not necessarily imply effectiveness at guiding the search process. Even when functions K99,

B08, C08 and I09 were all identified to provide a strong discrimination, only K99 and I09 presented

a promising search behavior. In contrast, functions B08 and C08 showed a poor search performance
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in most of the cases. Such a poor performance can be explained by the fact that functions B08

and C08 are not HP-compatible. Function C04 is also not HP-compatible; the low discrimination

capabilities of C04 gives further explanation to the reduced search performance obtained when using

this function. Finally, function L06 obtained very competitive results in terms of both, degree of

discrimination and HP-compatibility. As a consequence, function L06 consistently competed at the

top of the ranking regarding search performance together with functions K99 and I09. Therefore,

the degree of discrimination and the HP-compatibility property were found to be useful as a means

of explaining the success or failure of the studied energy functions at guiding the search process.

The conventional energy function D85 presented a limited search performance for the BILS

algorithm and for most parameter configurations of the ILS. This confirms the relevance of exploring

alternative, more fine-grained evaluation schemes for the HP model. There exists evidence in the

literature, however, which suggests that the neutrality of the fitness landscape can be exploited in

order to design more competitive search algorithms [39, 154–156, 228, 231, 242]. The performance

that function D85 achieved when using some parameter configurations of the ILS provides additional

support to this idea. Furthermore, Chapter 4 demonstrates that, by introducing even more neutrality

into the fitness landscape, it is possible to deal effectively with multimodality. Therefore, future

work will focus on investigating how to benefit from a fine-grained discrimination, at the same

time that the inherent neutrality of the HP model can be exploited. Finally, an interesting research

direction involves the evaluation of how some characteristics of the fitness landscape (e.g., neutrality,

ruggedness [182, 228, 236]) change when using the different energy functions (as it is evaluated in

Chapters 4 and 5 in the context of other different problem transformations). Such an analysis would

certainly be helpful to further support the findings of the study presented in this chapter.





4
Addressing the multimodality of

the HP model’s fitness landscapes

through multi-objectivization

4.1 Introduction

The term multi-objectivization was originally coined by Knowles et al. to refer to the process of

reformulating a single-objective optimization problem in terms of two or more objective functions, i.e.,

as a multi-objective problem [119]. It is commonly assumed that the higher the number of objective

functions, the more difficult a problem is; and this is usually the case [72–75, 97, 118]. A single-

objective to multi-objective transformation, however, has served as the basis for the development of

more competitive search algorithms. A number of successful applications of multi-objectivization have

been reported in the literature [202]. This transformation can be either based on the addition of new

supplementary objectives [18,105], or it can be based on the decomposition of the original objective

function of the problem [85,119], see Section 2.2.3. In either case, multi-objectivization may result in

69
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fundamental changes to the problem’s fitness landscape. Since the performance of search algorithms

is dictated by their interaction with the underlying fitness landscape [236], multi-objectivization can

thus significantly impact on the ability of these algorithms to solve a given optimization task.

This chapter explores for the first time the multi-objectivization of the HP model of the protein

structure prediction problem. The originally single-objective HP model is restated in an alternative

multi-objective form by decomposing the conventional energy (objective) function of the problem into

two separate objectives. Three different strategies to perform such a decomposition are investigated:

the parity decomposition (PD), the locality decomposition (LD) and the H-subsets decomposition

(HD). As discussed further in Section 4.2, decomposition introduces plateaus of incomparable so-

lutions, an effect that can be exploited in order to overcome search difficulties such as that of

becoming trapped in local optima [85, 119]. In this way, this study inquires into the suitability of

multi-objectivization for dealing with the multimodality of the HP model’s fitness landscapes.

The remainder of this chapter proceeds as follows. Related work is reviewed in Section 4.2.

In Section 4.3, the PD, LD and HD formulations of the HP model are introduced. Section 4.4

presents a thorough analysis of the potential effects of the problem transformation. It is investigated

how multi-objectivization influences the comparability relation among solutions, and how such an

alteration in the comparability of solutions impacts on an essential property of the fitness landscape:

neutrality. Then, a detailed comparative study is presented in Section 4.5, where the three multi-

objectivization proposals for the HP model are evaluated with respect to each other and with respect

to the conventional single-objective problem formulation. Such a comparative study concentrates

on search performance and two different metaheuristic algorithms are considered, namely, a single-

solution-based algorithm and a population-based algorithm. Finally, Section 4.6 discusses the main

findings and conclusions of this study, as well as highlights some possible directions for future research.

4.2 Related work

Recently, a considerable number of successful applications of multi-objectivization have been re-

ported in the literature. For a recent review on applications of multi-objectivization, the reader can



4. Addressing multimodality through multi-objectivization 71

be referred to [202]. Multi-objectivization has been largely studied in the context of well-known

combinatorial problems such as the traveling salesman problem [103, 105, 119, 139]; the job-shop

scheduling problem [105,137]; the bin packing problem [201,205]; the vehicle routing problem [235];

and the shortest path and minimum spanning tree problems [171]. Also, multi-objectivization has

found interesting applications in the fields of mobile communications [200, 204, 207]; computational

mechanics [82]; computer vision [233]; power system operation planning [222]; underwater sensor

networks [243]; structural topology optimization [208]; computer aided manufacturing [36]; classifier

parameter tuning [181]; robotics [166]; and data mining [102]. Multi-objectivization has been found

to be useful also for multimodal [60], large scale [206] and constrained optimization [195]. Finally,

multi-objectivization has also been proposed to deal with problems from the field of bioinformatics,

such as those related to gene regulatory networks [220] and, as in the present research, to protein

structure prediction [8,50–52,55,84,174,213,217]. Note, however, that previous multi-objectivization

studies to deal with the protein structure prediction problem focus on detailed energy models. It was

not until the present study that this concept is applied to the particular HP model of this problem.

The study reported in this chapter concentrates on the decomposition approach to multi-

objectivization. As formally described in Section 2.2.3, this approach involves restating the single-

objective problem in terms of two or more objective functions, such that the sum of all the new

objectives equals the original optimization criterion of the problem. It has been demonstrated that

the only possible effect of decomposition is to introduce plateaus in the search landscape [85]. That

is, originally comparable solutions may become incomparable (mutually nondominated in terms of

the Pareto-dominance relation) with regard to the new multi-objectivized problem formulation. Such

an effect can be potentially exploited as a means of escaping from local optima [85, 119].

4.3 Multi-objectivization of the HP model

Three different multi-objectivization schemes for the HP model are proposed and analyzed in this

chapter: the parity decomposition, the locality decomposition and the H-subsets decomposition.

As the name of these approaches suggests, the three multi-objectivization proposals are based on
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the decomposition of the original energy (objective) function of the HP model. Decomposition, as

discussed in Section 4.2, has the potential effect of introducing incomparability among candidate

solutions. In this way, these alternative multi-objective formulations of the problem can be useful as

a means of accepting degrading moves (i.e., the replacement of a solution with an inferior one) and,

thus, can be implemented as a mechanism to prevent search algorithms from becoming trapped in

local optima. The parity, locality and H-subsets decompositions are described in detail in Sections

4.3.1, 4.3.2 and 4.3.3, respectively.

4.3.1 Parity decomposition

In the two-dimensional square and three-dimensional cubic lattices, which are the two variants of the

HP model covered by this research project, adjacencies (topological contacts) are only possible be-

tween amino acids whose positions in the protein sequence are of opposite parity (this is illustrated in

Figure 4.1). Based on this fact, a two-objective formulation of the HP model, f(x) = [f1(x), f2(x)]T ,

is defined over the set of all potential feasible protein conformations x ∈ XF :

f1(x) =
∑
ai,aj

e(ai, aj), for i ≡ 0 (mod 2), i < j; (4.1)

f2(x) =
∑
ai,aj

e(ai, aj), for i ≡ 1 (mod 2), i < j; (4.2)

where both f1(x) and f2(x) are to be minimized and e(ai, aj) represents the conventional energy

contributions of the HP model as defined in Section 2.3.3.1. That is, the objective function f1

accounts only for H-H topological contacts between pairs of amino acids ai, aj, where i, the se-

quence position of amino acid ai, is even (i < j). On the contrary, f2 is defined for those cases

where such the i-th sequence position is odd. Note that the sum of the two new alternative ob-

jectives equals the conventional energy function of the HP model presented in Section 2.3.3.1 (i.e.,

E(x) = f1(x) + f2(x) for all x ∈ XF), which is in accordance with the decomposition approach for

multi-objectivization, see Section 2.2.3. Figure 4.1 presents the optimal conformation for the test
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Figure 4.1: Parity decomposition. Interactions on the lattice are only possible between amino acids
whose sequence positions are of opposite parity. In this example conformation, f1 = 0 and f2 = −9.

protein sequence 2d4 on the two-dimensional square lattice. In the particular case of this conforma-

tion, the values for the objective functions are f1 = 0 and f2 = −9.

4.3.2 Locality decomposition

In this multi-objectivization scheme, the conventional energy function of the HP model is decomposed

based on the locality notion of amino acid interactions. An H-H topological contact between

amino acids ai and aj can be considered to represent either a local or a nonlocal interaction.

This classification depends upon whether the sequence distance between ai and aj (i.e., |j − i|)

is within a given maximum δ, see Figure 4.2. From this, a two-objective problem formulation,

f(x) = [f1(x), f2(x)]T , is defined for every potential feasible protein conformation x ∈ XF :

f1(x) =
∑
ai,aj

e(ai, aj), for j − i ≤ δ, i < j; (4.3)

f2(x) =
∑
ai,aj

e(ai, aj), for j − i > δ, i < j; (4.4)

where functions f1(x) and f2(x) are both to be minimized and e(ai, aj) denotes the conventional

energy contributions defined in Section 2.3.3.1. Thus, the objective function f1 is defined for all
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Figure 4.2: Locality decomposition (δ = 7). This structure presents seven local and two nonlocal
H-H interactions. Therefore, in the particular case of this example, f1 = −7 and f2 = −2.

the local interactions, whereas function f2 accounts for the nonlocal ones. The evaluation of the

protein conformation provided as an example in Figure 4.2, under this alternative formulation, leads

to objective values f1 = −7 and f2 = −2. Note that E(x) = f1(x) + f2(x) for all x ∈ XF , which

is consistent with the decomposition approach for multi-objectivization, as defined in Section 2.2.3.

It is worthy to mention that parameter δ plays a decisive role for the behavior of this proposal.

Therefore, the influence of varying this parameter needs to be investigated. All odd values for δ in

the range [3, 21] are evaluated in this study (refer to Sections 4.5.1.1 and 4.5.2.1 for details).1

4.3.3 H-subsets decomposition

In the H-subsets decomposition, all H amino acids in the protein sequence are first assigned to one of

two possible groups, H1 or H2. Groups H1 and H2 are to be referred to as the H-subsets, and such

an assignment of H amino acids to these groups is to be called the H-subsets formation process.

Figure 4.3 illustrates one of different H-subsets formation strategies which are explored in this study

(described later at the end of this section). Once the H-subsets have been formed, an alternative

1In the two-dimensional square and the three-dimensional cubic lattices, a topological contact can occur if and
only if the sequence distance between the amino acids is odd and at least equal to 3.
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Figure 4.3: H-subsets decomposition. The H-subsets formation process based on the FIX strategy.

two-objective formulation f(x) = [f1(x), f2(x)]T of the problem can be defined as follows (x ∈ XF):

f1(x) =
∑

ai,aj∈H1

e(ai, aj) +
∑

ai,aj∈H2

e(ai, aj), (4.5)

f2(x) =
∑

ai∈H1,aj∈H2

e(ai, aj), (4.6)

where f1(x) and f2(x) are both minimization functions and e(ai, aj) denotes the conventional energy

contributions of the HP model (Section 2.3.3.1). In this way, function f1 accounts for H-H topo-

logical contacts where the two amino acids belong to the same H-subset, either H1 or H2. On the

contrary, f2 is defined for H-H topological contacts between amino acid pairs where each amino acid

belongs to a different H-subset. Notice that E(x) = f1(x) + f2(x) for all x ∈ XF , which adheres to

the definition of the decomposition approach for multi-objectivization, as provided in Section 2.2.3.

Given the assignment of H amino acids to the H-subsets depicted in Figure 4.3, the structure

exemplified in Figure 4.4 presents four H-H topological contacts defined between amino acids be-

longing to the same H-subset, while the remaining five H-H interactions occur between amino acids

from different H-subsets. In this particular example, the objective values are f1 = −4 and f2 = −5.

The H-subsets formation process plays a major role for this decomposition proposal. Different

strategies can be adopted in order to accomplish this task; three of them are considered in this study

(these strategies are analyzed in Sections 4.5.1.2 and 4.5.2.2):

• FIX: the first half of H amino acids in S are assigned to H1, all others to H2, as shown in

Figure 4.3 (for an odd number of H amino acids, the one in the middle is assigned randomly);
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Figure 4.4: H-subsets decomposition. In this example, four H-H topological contacts are defined
between amino acids from the same H-subset, while the other five are given between amino acids
from different H-subsets. Therefore, f1 = −4 and f2 = −5.

• RND: each H amino acid can be assigned to H1 or to H2 with equal probability;

• DYNk: it is based on the above described RND strategy. However the H-subsets are dynami-

cally and independently recomputed after k iterations of the search algorithm without achieving

an improvement. Different values for k are explored, k ∈ {0, 10, 20, 30}, where k = 0 refers

to the recomputation of the H-subsets at each iteration of the algorithm.

4.4 Effects of multi-objectivization

This section is devoted to investigating the effects that can be achieved by multi-objectivization.

Although three different multi-objectivization schemes for the HP model are proposed in this research

work, only the locality decomposition (defined in Section 4.3.2), using a value of δ = 7, is considered

in this section due to the high computational demands of the performed analyses. The locality

decomposition has been selected to illustrate the effects of multi-objectivization because, as it will

be shown in subsequent sections of this chapter, this approach provides a quite promising behavior.

For convenience, hereafter the locality decomposition will be simply referred to as the multi-objective

(MO) formulation of the problem. Similarly, two (relatively) small test instances, sequences 2d4 and
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3d1, are investigated in this section (refer to Section 2.4.1 for details).2 It is expected, however, that

other different multi-objectivization proposals and test cases can be explored with similar results.

As stated in Section 2.3.3.1, the quality of a candidate solution in the HP model is evaluated

in terms of an energy function, E, defined as the negative of the total number of H-H topological

contacts that the encoded protein structure presents, HHtc. Nevertheless, the use of positive rather

than negative values, as well as the adoption of the term fitness (to be maximized) rather than that

of energy (to be minimized), is considered more appropriate for the analysis here reported. Therefore,

in the remainder of this section the fitness of a solution x, Fitness(x), will assume the value of

Fitness(x) = HHtc(x) = −E(x). (4.7)

It is worthy to mention at this point that the term fitness is used in this study to refer to the quality

of solutions under the conventional single-objective (SO) evaluation scheme of the HP model.3 In

addition, it is important to briefly introduce the concept of a fitness class; a solution x ∈ XF will

be said to belong to the fitness class c if it presents a fitness value of Fitness(x) = c.

The analyses conducted in this section are based on an initial set of sampled solutions. Hence,

the implemented sampling methodology is first introduced in Section 4.4.1. In Section 4.4.2, it is

investigated how multi-objectivization influences the comparability relation among solutions. Finally,

Section 4.4.3 evaluates the extent to which such an alteration in the comparability of solutions can

be translated into fundamental changes to the fitness landscape structure of the problem.

4.4.1 Sampling of initial solutions

The implemented sampling strategy was conceived by taking into account the following consider-

ations: (i) a sample S of M different feasible solutions for the given problem instance are to be

generated; (ii) the M generated solutions are to be, if possible, evenly distributed over the different

2Notwithstanding, given the absolute moves encoding described in Section 2.3.3.3, the size of the search space for
these (relatively) small test instances is enormous, namely 419 for sequence 2d4, and 619 for sequence 3d1.

3Although alternative multi-objective formulations of the HP model are investigated in this study, the goal remains
always to solve the original single-objective problem.
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available fitness classes (all fitness classes should be well represented in the collected sample); and

finally, (iii) the diversity among solutions belonging to the same fitness class should be maximized.

Algorithm 3 outlines the adopted sampling strategy. The procedure starts by initializing the

sample set S and by identifying the set of all possible fitness classes for the given problem instance,

FC (lines 1 and 2 in Algorithm 3). Iteratively, a search algorithm is executed and all solutions

that this algorithm reaches during the search process are kept in U (line 4). Then, the subset Uc

of solutions in U belonging to each possible fitness class c ∈ FC is identified (line 6). Finally, the

solution x̂ ∈ Uc that best contributes to increasing the diversity in S, if any, is included in the sample

(lines 7 to 9). This process continues until the required sample has been completed.

Algorithm 3 Sampling of the initial solution sets.
Input: M
Output: S

1: S ← ∅
2: FC ← {Fitness(x) | x ∈ XF}
3: while |S| < M do
4: U ← search algorithm()
5: for all c ∈ FC do
6: Uc ← {x ∈ U | Fitness(x) = c}
7: x̂← arg maxx∈Uc diversity(x,S)
8: if diversity(x̂,S) > 0 then
9: S ← S ∪ {x̂}

10: end if
11: end for
12: end while

Any metaheuristic algorithm could be adopted as the embedded search method. An Iterated Local

Search (ILS) algorithm [146,147,157], based on the SO problem formulation, was used in this study.

The implemented ILS was described in detail in Section 3.3.4, where the best performing parameter

settings for this algorithm were also identified. Such best ILS settings identified in Section 3.3.4

were considered in the present study. Due to its distinctive exploration behavior, the ILS method can

potentially reach a different local optimum at each iteration. Each time the ILS was invoked during

the sampling procedure, this algorithm was allowed to run for a total of 5×105 solution evaluations.
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The diversity contribution estimates have been partially based on the diversification mechanism

proposed by Chira [31]. Instead of measuring diversity in genotype (encoding) space, in [31] diversity

was computed from the contact fingerprint of candidate solutions. The contact fingerprint for a

solution is given by the binary vector cf , where each component cfi ∈ {0, 1} indicates whether a

particular pair of amino acids in the encoded structure defines a topological contact or not. Vector

cf considers as many components as the total number of amino acid pairs which can potentially

form a topological contact.4 The use of the contact fingerprint rather than the encoding of solutions

certainly fosters the development of more effective diversity promotion mechanisms. This can be

explained by the fact that very different encodings may represent the same protein structure (after

rotation or reflection, i.e., the so-called isomorphic conformations [91,210]). It is important to note,

however, that significantly different structures may also present the same contact fingerprint vector

if they share the same set of topological contacts. This has motivated the use of a more fine-grained

version of this approach, which is referred to in this study as the distance fingerprint. The distance

fingerprint for a given solution is defined by vector df , each of whose components dfi measures the

distance between the lattice coordinates of a particular pair of amino acids. The Manhattan distance

was employed for this sake. A total of
(
`
2

)
− 2` + 3 components describe the distance fingerprint

vector df (i.e., only amino acid pairs (ai, aj) such that |j− i| ≥ 3 require to be considered). Finally,

the diversity contribution for a new candidate x with respect to the already collected sample S,

diversity(x,S), has been computed as the minimum Hamming distance (Hd) between the distance

fingerprint vector of x and that of any x′ ∈ S with the same fitness value as x. Formally,

diversity(x,S) = min{Hd(df(x),df(x′)) | x′ ∈ S ∧ Fitness(x) = Fitness(x′)}. (4.8)

The size of the sample was set to M = 1, 000 for both the 2d4 and 3d1 instances. By following

the above described sampling methodology, it is (ideally) expected to generate sample sets such that

about M/|FC| different solutions represent each possible fitness class c ∈ FC. As shown in Table

4.1, this was the case of the sample set constructed for the three-dimensional instance 3d1, where a

4 For an amino acid pair (ai, aj) to form a topological contact, i and j need to be of opposite parity and |j−i| ≥ 3.
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Table 4.1: Details of the sample sets generated for instances 2d4 and 3d1. Instance 2d4 involves 10
different fitness classes, while instance 3d1 involves 12.

Fitness class

0 1 2 3 4 5 6 7 8 9 10 11 Total

Sequence 2d4 119 118 119 119 119 119 119 119 47 2 - - 1, 000

Sequence 3d1 84 83 83 83 83 83 83 84 84 84 83 83 1, 000

total of 83 or 84 different solutions were produced for each of the |FC| = 12 available fitness classes.

Note, however, that not all fitness classes for some of the instances can be equally sampled because

of the funnel-like energy landscape which characterizes the HP model [62]. As detailed in Table 4.1,

only a reduced number of solutions with a high fitness value (fitness classes 8 and 9) were obtained

when sampling the search space of instance 2d4. Therefore, a greater number of representatives for

the remaining fitness classes were accepted in order to complete the M required solutions.

4.4.2 Incomparability of solutions

The three multi-objectivization proposals described in Section 4.3 are all of them based on the

decomposition of the original objective function of the HP model. As stated in Section 4.2, the only

possible effect that can be achieved through decomposition is that originally comparable solutions

may become incomparable (nondominated in terms of the Pareto-dominance relation) under the new

multi-objective formulation of the problem. Consider the example provided in Figure 4.5. In this

figure, conformation x1 (to the left) presents 9 H-H topological contacts, while conformation x2 (to

the right) involves only 3. These originally comparable solutions (i.e., x1 is clearly superior to x2)

have become mutually nondominated when comparing them under the multi-objective formulation

defined by the locality decomposition (δ = 7). The goal of this section is not only to illustrate such

a potential effect of decomposition, but also to explore the extent to which solutions belonging to

different fitness classes can become incomparable as a consequence of this problem transformation.
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Locality decomposition (δ = 7)
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Figure 4.5: This figure illustrates how a pair of originally comparable solutions x1 (left) and x2 (right),
with Fitness(x1) = 9 and Fitness(x2) = 3, can become incomparable by multi-objectivization.
The objective values obtained by the locality decomposition (δ = 7) are shown for both x1 and x2.

A sample set of M = 1, 000 different candidate solutions was generated by implementing the

methodology detailed in Section 4.4.1. Then, all possible pairwise comparisons among the sampled

solutions were performed. From this, it was computed the ratio of the number of incomparable

solution pairs found to the total number of pairwise comparisons carried out; this measure is to

be referred to as the incomparability ratio (IR). IR is thus defined in the range [0, 1], and IR = 1

indicates that all the evaluated solution pairs were found to be incomparable. This experiment was

replicated for both the conventional single-objective HP model formulation, SO, and the alternative

multi-objective formulation, MO.5 The comparison of solutions under the MO formulation relies on

the Pareto-dominance relation and the locality decomposition. Both the 2d4 and 3d1 instances

were considered. The obtained results are summarized in Table 4.2. As it can be seen from this

table, 70, 616 out of the
(
1,000
2

)
= 499, 500 total pairs of sampled solutions for instance 2d4 became

incomparable when evaluated under the MO formulation. This represents an IR increase of 0.14

with regard to the conventional SO formulation. Similarly, multi-objectivization increased the IR

measure by 0.13 when focusing on the 3d1 instance. Such an increase of 0.13 results from the

63, 760 comparable solution pairs for which the original preference relation has been suppressed.

5 By definition, only solutions having the same fitness value are incomparable under the SO problem formulation.
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Table 4.2: Incomparability ratio (IR) presented by the studied SO and MO formulations. For both
the 2d4 and 3d1 test instances, a total of

(
1,000
2

)
= 499, 500 solution pairs have been evaluated.

SO MO Increase (MO−SO)

Sequence 2d4 0.11 (57, 132) 0.26 (127, 748) 0.14 (70, 616)

Sequence 3d1 0.08 (41, 168) 0.21 (104, 928) 0.13 (63, 760)
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Figure 4.6: Incomparability ratio (IR) computed separately for each possible pair of fitness classes.
Two-dimensional 2d4 instance (left) and three-dimensional 3d1 instance (right). In the plots, IR
values are highlighted with colors; the darker the color, the higher the IR value.

Finally, the results obtained using the MO formulation are broken down in Figure 4.6 in order to

gain further insights into the likelihood of incomparability taking place among the different fitness

classes of the considered test instances. Figure 4.6 shows the IR measure computed separately for

each possible pair of fitness classes (i.e., fitness classes with respect to the conventional SO formu-

lation). Heat maps in this figure are symmetric along the diagonal. From this figure, it is possible

to see that multi-objectivization makes incomparability possible even for pairs of solutions which

are distant with respect to their fitness values. For example, incomparability has been introduced

between fitness classes 3 and 9 of instance 2d4. A similar scenario can be found with regard to

fitness classes 4 and 10 from the collected sample for sequence 3d1. Note, however, that the closer

the fitness classes for the selected solution pairs, the higher the indicated IR values (in the plots, the

highest IR values appear close to the diagonal). This can be understood by the fact that the increase

in the fitness distance between a pair of solutions increases also the probability for one of these
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solutions to be dominated (in the Pareto sense) by the other under the alternative multi-objectivized

formulation. Finally, it should be observed that in the case of both the 2d4 and 3d1 instances, no

solution at fitness class 0 became incomparable with respect to any other solution from a higher

fitness class. This is due to the fact that any solution x1 with Fitness(x1) = 0, f1(x1) = 0 and

f2(x1) = 0 after applying decomposition, will always be dominated by any other solution x2 with

Fitness(x2) > 0, no matter how Fitness(x2) is decomposed into the new set of objectives.

4.4.3 Fitness landscape analysis

As discussed in Section 4.4.2, multi-objectivization by decomposition exerts an influence on the

comparability relation over the search space, in such a way that solutions from different fitness

classes may become incomparable when evaluated under the new multi-objective formulation of the

problem. This notion of incomparability is equivalent to that of neutrality used in the context of

fitness landscapes. Two solutions are said to be neutral (i.e., incomparable) if either they share the

same fitness value (single-objective case), or they are Pareto-nondominated with respect to each

other (multi-objective case), see Section 2.2.4. Hence, the potential effect of multi-objectivization,

previously described in terms of introducing incomparability among solutions, will be referred in this

section to as that of increasing the neutrality in the fitness landscape. This section is intended to

contribute in understanding and, to some extent, quantifying such an effect of multi-objectivization

on the fitness landscapes of the HP model.

As detailed in Section 2.2.4, three important components define a fitness landscape: (X ,N , ξ).

While the search space X and the neighborhood structure N were kept constant in this study,6 ξ

has been varied from the conventional single-objective (SO) evaluation scheme of the HP model to

the alternative multi-objective (MO) evaluation scheme based on the locality decomposition (δ = 7)

and the Pareto-dominance relation. By analyzing and comparing the landscapes induced by the

SO and MO evaluation schemes, it will then be possible to evaluate the extent to which multi-

6X is given by the implemented absolute moves encoding (described in Section 2.3.3.3). Likewise, N (x) is defined
by all solutions which can be reached through a single change in the encoding of x. Thus, |N (x)| = 3(`− 1) and
|N (x)| = 5(`− 1) in the two- and three-dimensional cases, ` denoting the length of the protein sequence.
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objectivization has impacted on essential characteristics of the problem, those related to neutrality.

Neutrality is here investigated by focusing on different properties of neutral networks (NNs); since

neutral fitness landscapes, as those in the HP model, are known to be mainly described by their

NNs [155]. Nevertheless, NNs in a neutral fitness landscape can be of a considerable size, so that

their exhaustive exploration becomes computationally prohibitive even for relatively small problem

instances. In the literature, NNs are usually sampled through neutral walks, i.e., series of (neutral)

neighboring solutions. In this study, however, an alternative approach was taken, as described below.

Given a sample set S of M different candidate solutions, collected following the methodology

previously detailed in Section 4.4.1, the neutral network NN(x) for each solution x ∈ S has been

partially computed based on the pNN() procedure outlined in Algorithm 4. As shown in this

algorithm, NN(x) is constructed recursively in a depth-first manner by allowing this procedure to

reach a maximum defined depth level (maxDepth). The initially given solution x is assumed to

be at depth level 0, so that depthLevel = 0 is used in the first call to pNN(). At each call to

the pNN() method, NN(x) is first initialized to the graph containing no edges and including the

provided solution x as the only node (line 1 in Algorithm 4). If the maximum allowed depth level has

not been reached (line 2), the sub-network NN(x′) for every neutral neighbor x′ of x is obtained

from a subsequent execution of the pNN() method (by giving x′ as the new starting point and by

increasing the value of depthLevel, see line 4). The resulting sub-network NN(x′) is then merged

with the parent network NN(x) by means of a graph union operation, here denoted as
⋃

(line 5).7

Finally, edge (x,x′) is included in the edge set of NN(x) in order to establish the linkage between

NN(x) and the NN(x′) sub-network. This strategy of partially computing the NN for a given

solution x, is equivalent to traversing all possible neutral walks departing from x, by restricting the

length of the walks to the maximum defined depth level (maxDepth).

The 2d4 and 3d1 test instances have been considered for this analysis, and the size of the initial

sample sets was fixed to M = 1, 000 in both cases. Thus, a total of 1, 000 (potentially different)

NNs for each of the instances have been explored by using both, the SO and MO evaluation schemes,

7Given two graphs G1 = (V1, E1) and G2 = (V2, E2), the graph union operation G1

⋃
G2 produces a third graph

G3 = (V3, E3) such that V3 = V1 ∪ V2 and E3 = E1 ∪ E2.
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Algorithm 4 pNN() - Partial NN computation

Input: x, depthLevel, maxDepth
Output: NN(x)

1: NN(x)← (V , E) : V = {x}, E = ∅
2: if depthLevel < maxDepth then
3: for all x′ ∈ Nn(x) do
4: NN(x′)← pNN(x′, depthLevel + 1,maxDepth)
5: NN(x)← NN(x)

⋃
NN(x′)

6: E ← E ∪ {(x,x′)}
7: end for
8: end if

as the bases for neutrality verification. In this way, changing the problem formulation from SO to

MO will be reflected as an alteration in the properties of the sampled NNs. In the remainder of

this section, the neutral network for a given solution x will be either referred to as NNSO(x) or

NNMO(x), depending on whether the neutrality relation among solutions was determined based on

the SO or MO evaluation schemes during the network computation. Finally, in order to overcome

the high computational cost of the conducted analysis, the maximum allowed depth level was set to

maxDepth = 10 and maxDepth = 7 for the 2d4 and 3d1 test sequences, respectively.8

4.4.3.1 Average neutrality ratio

As a means of evaluating the increase on neutrality caused by multi-objectivization, the average

neutrality ratio (ANR) of the sampled NNs is investigated. The ANR is defined as the mean of

the neutrality ratios (as defined in Section 2.2.4) considering all solutions in a NN [227, 228]. This

measure assumes values in the range [0, 1], where 1 corresponds to the highest neutrality. Figure

4.7 contrasts the ANR values obtained when using the SO and MO formulations (i.e., the ANR

values computed from NNSO(x) and NNMO(x), for all x ∈ S). In this figure, the ANR values

appear organized according to the fitness class of the solution given as the starting point for the

NN sampling. In addition, the mean of the ANR values in each fitness class is indicated for both

the SO and MO formulations. From Figure 4.7, a general tendency can be perceived with regard to

8Despite the use of such low maxDepth values, the resulting NNs were considerably large, see Section 4.4.3.2.
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Figure 4.7: Average neutrality ratio (ANR) of the sampled neutral networks. Two-dimensional 2d4
instance (left) and three-dimensional 3d1 instance (right).

the neutrality of the HP model’s fitness landscapes. The ANR rapidly decreases with the increase

in fitness. That is, while poor quality solutions (with low fitness values) are usually surrounded by

a considerable number of neutral neighbors, leading to large NNs (see Section 4.4.3.2), solutions at

the highest fitness classes tend to be more isolated and enclosed by infeasible states. The reader is

referred to Sections 5.4.2.1 and 5.4.2.2 for further discussion on this issue. In most fitness classes,

it is evident from the plots that there was a slight increase in the ANR measure as a consequence

of using the MO formulation (fitness classes 2 to 7 of instance 2d4, and fitness classes 3 to 11 of

instance 3d1). It is important to note that no increase in the ANR is possible for NNs at fitness

class 0. This is due to the fact that, as discussed in Section 4.4.2, a solution at this fitness class

can not become neutral with respect to any other solution at a higher fitness class. After multi-

objectivization, any solution x with Fitness(x) = 0 will still be considered inferior (dominated in

the Pareto sense) with regard to any solution x′ with Fitness(x′) > 0. Thus, NNs for solutions at

fitness class 0 will be exactly the same regardless of whether they are computed based on the SO or

MO formulation (this applies also for subsequent analyses presented in Sections 4.4.3.2 and 4.4.3.3).

4.4.3.2 Size of the neutral networks

Despite the minor increases in the average neutrality ratio (ANR) obtained by the use of a multi-

objective problem formulation, a small variation in the neutrality degree of solutions can still con-
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Figure 4.8: Size of the sampled neutral networks (NS). Two-dimensional 2d4 instance (left) and
three-dimensional 3d1 instance (right).

tribute significantly to increasing the size (number of solutions) of a NN. For each sampled solution

x ∈ S of instances 2d4 and 3d1, the size of the computed NNSO(x) and NNMO(x) networks is an-

alyzed in this section through Figure 4.8. The results are presented separately for each fitness class,

and the arithmetic mean in each of the cases is also indicated. The plots, given in a logarithmic

(base 10) scale, expose the high neutrality that characterizes the fitness landscapes in the HP model.

Even when the sampling of NNs was restricted in this study by setting a maximum allowed depth

level, as stated in Section 4.4.3, it is possible to see from the plots that NNs at fitness class 0 involve

above 106 and around 108 solutions for the 2d4 and 3d1 instances, respectively. From Figure 4.8, it

is also possible to confirm that, as suggested in Section 4.4.3.1, the size of the NNs is usually larger

for lower fitness classes, but neutrality tends to decrease as higher quality solutions are considered.

An important increase in the size of the NNs can be observed in most of the cases due to the use

of the MO formulation. As the plots indicate, NNs computed based on the MO formulation can be

several orders of magnitude larger than those computed based on the SO formulation.

To go further in this analysis, the neutral network size ratio (NSR) is defined in this study as the

ratio of the size of NNSO(x) to that of NNMO(x). In fact, NNMO(x) will always be a supergraph

containing all nodes and edges of NNSO(x), but including also those nodes and edges which result

from the neutrality introduced by the multi-objectivization. Thus, NNMO(x) will have at least the

same size as NNSO(x), so that NSR is defined in the range [0, 1] and NSR = 1 indicates that no

change in the NN size was achieved when varying the problem formulation. Figure 4.9 shows the
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Figure 4.9: Neutral network size ratio (NSR). Two-dimensional 2d4 instance (left) and three-
dimensional 3d1 instance (right).

NSR for all the sampled NNs along with the mean values calculated for each of the fitness classes.

Multi-objectivization led to an important rise in the size of the explored NNs for most fitness classes

of the 2d4 instance. The sharpest increase in the NN size can be observed at fitness class 3, for

which the lowest average NSR value has been scored. In average, the size of NNSO(x) is only about

65% of the size of NNMO(x) when Fitness(x) = 3. The impact of using the MO formulation

becomes more evident when focusing on the 3d1 instance. The average NSR values for most fitness

classes are below 0.5. This evinces that NNMO(x) at least doubled the size of NNSO(x) in the

vast majority of the cases. Finally, it is possible to note from the results of both the 2d4 and 3d1

instances that a considerable number of very low NSR values (close to 0) have been accounted for,

indicating a highly significant increase in the size of the corresponding NNs.

4.4.3.3 Connectivity between neutral networks

The observed increments with regard to the size of the NNs, as analyzed in Section 4.4.3.2, can

be understood as the result of allowing neutral connections to be established between NNs. While

in the single-objective case all solutions in a NN share, by definition, the same fitness value, in a

multi-objectivization scenario such a strict definition of a NN can no longer be supported. That is,

given the adopted notion of neutrality for the multi-objective case, which is based on the Pareto-

dominance relation (see Section 2.2.4), a NN constructed using as the basis the MO formulation
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Figure 4.10: Neutral walk, based on the MO formulation, from a solution x1 with Fitness(x1) = 5
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obtained by means of the LD multi-objectivization (δ = 7), are presented for each solution.

may involve solutions from varying fitness classes, thus connecting the corresponding NNs. Consider

two NNs, NN1 and NN2, such that the fitness of NN1 is Fitness(NN1) = A and the fitness

of NN2 is Fitness(NN2) = B, A 6= B. If, as a result of using the MO formulation, at least a

solution x1 from NN1 comes to be neutral with respect to a neighboring solution x2 which belongs

to NN2, then this neutral connection between NN1 and NN2 will merge the two NNs together into

a single NN where both the fitness classes A and B are represented. To further illustrate these ideas,

refer to the example provided in Figure 4.10. This figure presents a series of neutral moves between

neighboring solutions, i.e., a neutral walk, based on the MO formulation. The neutrality that the MO

formulation introduced between these solutions led to the formation of neutral connections between

three different NNs, namely NN(x1) at fitness class 5, NN(x2,x3) at fitness class 4 and NN(x4)

at fitness class 6. In this way, the four solutions, x1, x2, x3 and x4, and all solutions belonging to

their respective NNs, became part of a single larger NN as a consequence of multi-objectivization.

From the above introduced notion of neutral connections, it becomes relevant for this study to

investigate the extent to which neutral connections took place, between the different fitness classes,

during the performed sampling of NNs. Figure 4.11 summarizes the results obtained for the 2d4 and

3d1 instances. The NNs constructed for each fitness class c were analyzed (i.e., c is the fitness of the

initially given solution for the NN computation), and the plots indicate whether neutral connections
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Figure 4.11: Neutral connections established between the different fitness classes. Two-dimensional
2d4 instance (left) and three-dimensional 3d1 instance (right).

were identified between these NNs and NNs at each other possible fitness class c′. The total number

of neutral connections found of each type, if any, is shown in parentheses. Diagonals in these plots

are used only as a reference (i.e., all NNs connect to themselves at their corresponding fitness classes)

to illustrate the single-objective case, so that all other connections not appearing along the diagonal

are due to the landscape transformation. As an example, Figure 4.11 indicates, regarding sequence

2d4, that only 16 out of the 118 sampled NNs for fitness class 1 formed neutral connections to

NNs at fitness class 6. Through this analysis it is then possible to gain an insight into the diversity

of fitness classes that a NN, computed based on the MO formulation, may involve. Figure 4.11

highlights that a significant number of neutral connections were originated by multi-objectivization.

On the one hand, NNs from fitness classes 2 to 6 of instance 2d4 presented neutral connections to

all fitness classes between 1 and 7 (at least one connection in each of the cases can be observed

from the plot). Note also that only a few neutral connections, all of them to inferior fitness classes,

were produced from NNs at fitness classes 7 and 8. No NNs at fitness class 9 connected to others.

On the other hand, a higher number of neutral connections were generated with regard to the 3d1

test instance. Neutral connections were established, in one direction or the other, between almost all

pairs of fitness classes. That is, even though the NNs computed for fitness classes 2 to 5 did not form

connections to fitness class 11, multiple connections from class 11 to all such lower fitness classes

were created. This points out the fact that inferior fitness classes are easier to reach than the superior

ones (because of the funnel-like search landscape that characterizes the studied problem [62]).
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Figure 4.12: Neutral connections formed in relation to the depth level reached during the NNs sam-
pling. Fitness class 5 of instance 2d4 (left) and fitness class 10 of instance 3d1 (right). Connections
to the respective fitness classes (5 and 10) occurred at depth level 0 (starting point of the sampling).

A neutral connection from a fitness class c to a fitness class c′ indicates that, given an arbitrary

solution x with Fitness(x) = c, a neutral walk departing from x could potentially lead to a solution

x′ with Fitness(x′) = c′. Nevertheless, as Figure 4.11 suggests, the more distant the fitness classes

c and c′, the lower the likelihood that these classes can connect to each other through a neutral

walk (in the plots, higher number of neutral connections are shown closer to the diagonal). Such

a behavior is certainly accentuated if the length of the walks is bounded (as it was done in this

study by allowing a maximum depth level to be reached during the NNs computation). In addition,

although (relatively) distant fitness classes can directly connect to each other, i.e., in a single step

of the neutral walk, the increase in the fitness distance between a pair of solutions decreases the

probability for these solutions to become incomparable after multi-objectivization, as analyzed at the

end of Section 4.4.2. Thus, the connection between distant fitness classes is more likely to occur

through a series of intermediate states. This point can be better explained by considering Figure

4.12. As an example, this figure considers fitness class 5 for instance 2d4, and fitness class 10 for

instance 3d1, in order to illustrate how the neutral connections to the different fitness classes arose

as each allowed depth level was reached during the NNs computation.9 The mean depth level at

which connections to the different fitness classes were produced is also provided. It is possible to

see from the plots that neutral connections to different fitness classes were given directly at depth

9 Similar results were obtained for the different fitness classes of the considered test instances.
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level 1. Classes {2, 3, 4, 6} were directly connected from NNs at fitness class 5 of instance 2d4.

Similarly, classes {4, 6, 7, 8, 9, 11} were connected in a single neutral step from NNs at fitness class

10 of instance 3d1. Note, however, that the mean depth level values in these plots confirm the

above suggested tendency, that the distance between fitness classes is closely related to the number

of neutral steps that will be usually required to connect different NNs.

Finally, it is important to address the question of how the formation of neutral connections may

impact on the behavior of a search algorithm. As it has been seen, multi-objectivization can affect

the neutrality relation for a given solution x in two possible directions: (i) x becoming neutral with

respect to an inferior solution, i.e., connection to a lower fitness class; or (ii) x becoming neutral

with respect to a superior solution, i.e., connection to a higher fitness class. In the former scenario,

multi-objectivization can be thought of as enhancing the mobility of the search algorithm. By

connecting to lower fitness classes, the algorithm is allowed to traverse landscape areas which were

originally inaccessible under the conventional SO evaluation scheme. In the neutral walk illustrated

in Figure 4.10, for example, to move from fitness class 5 (x1) to fitness class 6 (x4) it was required to

accept a degrading move to fitness class 4 (x2 and x3). In this way, the movement through inferior

solutions constitutes the basis for a potential strategy to escape from local optima. It should be

noted, therefore, that the design of the search algorithm will play a critical role for achieving success

through the problem transformation. The new defined neutral paths can only be exploited if the

algorithm is designed so as to accept moves between neutral solutions (or, in the words of Barnett,

if the algorithm is able to crawl the NNs [6]). The formation of neutral connections to superior

fitness classes, the later scenario, can be analyzed from two different perspectives. On the one hand,

these connections (indeed all neutral connections in general) reduce what is called selective pressure

in the context of evolutionary optimization [5], which can boost the exploration behavior of an

algorithm. On the other hand, these connections can be interpreted as an important loss in gradient

information. Rather than benefiting from multi-objectivization, for instance, a search algorithm based

on a strictly-better acceptance criterion could easily stagnate due to its inability to perform a proper

discrimination. By relaxing the comparability relation among solutions, thus, multi-objectivization

may also hinder the ability of an algorithm to identify a promising search direction.
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4.5 Search performance

The aim of this section is to investigate the influence that multi-objectivization can exert on the search

behavior of metaheuristic algorithms. To this end, the three proposed multi-objectivization schemes,

based on the parity (PD), locality (LD) and H-subsets (HD) decompositions, are evaluated and

compared with respect to the conventional single-objective (SO) formulation of the HP model. Two

different metaheuristics are considered, namely, a single-solution-based algorithm and a population-

based algorithm. The corresponding analyses are presented in Sections 4.5.1 and 4.5.2.

4.5.1 Analysis for a single-solution-based algorithm

In this section, a basic single-solution-based evolutionary algorithm (EA), the so-called (1+1) EA, is

used for inquiring into the impact that multi-objectivization can have on search performance. The

general structure of the implemented (1+1) EA is sketched in Algorithm 5. In this algorithm, an

initial parent individual x is first generated at random. At each generation, an offspring x′ is created

by randomly and independently mutating x at each encoding position with probability pm. The new

individual x′ is rejected only if it is strictly worse than the parent individual x, otherwise x′ is accepted

as the starting point for the next generation. Such an acceptance criterion will be either based on a

single-objective discrimination between x and x′, based on the conventional SO formulation of the

HP model, or it will be based on the Pareto-dominance relation when using the alternative PD, LD

and HD multi-objective formulations of the problem. In this way, the performance variations to be

observed in the (1+1) EA will be attributed to the change in the problem’s formulation.

Algorithm 5 Basic (1+1) evolutionary algorithm.

1: choose x ∈ XF uniformly at random
2: repeat
3: x′ ← mutate(x)
4: if x′ not worse than x then
5: x← x′

6: end if
7: until < stop condition >
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In the multi-objective optimization context, the use of a nondominated solution archive is usually

assumed essential for driving the search process effectively [117, 144]. Therefore, a variant of the

(1+1) EA is also considered with the purpose of evaluating the impact of archiving on the behavior

of the proposed multi-objective formulations of the HP model. The archiving (1+1) EA, as detailed

in Algorithm 6, uses an external archive to store the nondominated solutions (in the Pareto sense)

found along the evolutionary process. It is important to realize that the implemented archiving

strategy does not lead to a population-based search method. The nondominated solutions archive

influences only the acceptance criterion of the algorithm, but no genetic material from this archive is

exploited during optimization. The archiving-based acceptance criterion affects the behavior of the

algorithm in such a way that the offspring x′ is only accepted if it is not dominated by any individual

in the archive. If accepted, x′ is included in the archive and all individuals dominated by x′, and

those mapping to the same objective vector f(x′), are removed.10 Note also that archiving makes

sense only in multi-objective scenarios, so that no results are to be reported on the application of

the archiving (1+1) EA to the conventional SO problem formulation.

Algorithm 6 Archiving (1+1) evolutionary algorithm.

1: choose x ∈ XF uniformly at random
2: A ← {x}
3: repeat
4: x′ ← mutate(x)
5: if @x̂ ∈ A : x̂ ≺ x′ then
6: A ← {x̂ ∈ A : x′ ⊀ x̂ ∧ f(x̂) 6= f(x′)} ∪ {x′}
7: x← x′

8: end if
9: until < stop condition >

In both the basic and the archiving variants of the (1+1) EA, individuals encode protein con-

formations using an internal coordinates representation based on absolute moves (as described in

Section 2.3.3.3). Moreover, only individuals encoding feasible protein conformations are considered

during the search process (infeasible individuals are always discarded, see Section 5.6.1.1). The initial

feasible individuals are generated using a backtracking procedure [42]. In all the cases, the mutation

10 It is important to remark that the size of the external archive has not been bounded in this algorithm.



4. Addressing multimodality through multi-objectivization 95

 

 

SO LD, basic (1+1) EA LD, archiving (1+1) EA

3 5 7 9 11 13 15 17 19 21

25

26

27

28

29

30

31

32

O
−

R
M

S
E

 (
%

)

δ

 2D 

3 5 7 9 11 13 15 17 19 21
20

22

24

26

28

30

32

34

O
−

R
M

S
E

 (
%

)

δ

 3D 

Figure 4.13: Locality decomposition. Evaluating the impact of varying parameter δ on the perfor-
mance of the (1+1) EA. Two-dimensional (left) and three-dimensional (right) test cases.

probability was fixed to pm = 1
`−1 , where `−1 denotes the length of the individuals encoding. Finally,

a maximum number of 5 × 105 solution evaluations was adopted as the stopping condition, and a

total of 100 independent executions were performed for all two- and three-dimensional instances.

The remainder of this section is organized as follows. The proposed LD and HD formulations are

sensitive to the adjustment of some parameters. Therefore, the influence of varying such parameters

is first evaluated in Sections 4.5.1.1 and 4.5.1.2. Then, the effects of using the archiving strategy

within the (1+1) EA are explored in Section 4.5.1.3. Finally, a detailed comparative analysis among

the four studied formulations of the HP model (SO, PD, LD and HD) is presented in Section 4.5.1.4.

4.5.1.1 Settings for the locality decomposition

Given the importance of parameter δ for the behavior of the proposed LD formulation, the proper

adjustment of this parameter needs to be investigated. Figure 4.13 presents the overall root mean

square error, O-RMSE (Section 2.4.2), scored by LD for 10 different values of δ. Results are

provided for both the basic and the archiving variants of the (1+1) EA. In addition, the results of

the conventional SO formulation are shown as a baseline. It is evident from Figure 4.13 that an

important increase in performance has been obtained by using LD. For the different values of δ, LD

reached the best results when using the basic, non-archiving variant of the algorithm. However, even
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Figure 4.14: H-subsets decomposition. Evaluating different H-subsets formation strategies. Results
for the (1+1) EA. Two-dimensional (left) and three-dimensional (right) test cases.

using the archiving (1+1) EA, LD performed better in all cases compared to the SO formulation. It

can be seen from the plots that the lowest O-RMSE values were scored at around δ = 7. Note also

that the performance of the algorithms gradually declined with the increasing value of δ. Therefore,

the distance parameter δ was set to 7 for further analyses presented in Sections 4.5.1.3 and 4.5.1.4.

4.5.1.2 Settings for the H-subsets decomposition

An important issue for the proposed HD formulation is how the H-subsets formation process is

carried out. Different strategies have been described in Section 4.3.3: FIX, RND and DYNk, for

k ∈ {0, 10, 20, 30}. Figure 4.14 indicates the overall root mean square error (O-RMSE) achieved by

the HD formulation when using these strategies. Both the basic and the archiving variants of the

(1+1) EA are considered. The performance of the SO formulation is also shown as a reference. From

Figure 4.14 it is possible to note that, regardless of the H-subsets formation strategy and the variant

of the (1+1) EA used, the proposed HD performed better in all the cases when compared with

respect to the conventional SO formulation. The lowest O-RMSE values were obtained when using

the DYNk strategy. This suggests that the effect of decomposition for allowing algorithms to escape

from local optima can be further enhanced by changing the search landscape dynamically throughout

the evolutionary process. For the two-dimensional instances, no important differences in performance
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Figure 4.15: Evaluating the effects of using the archiving strategy within the (1+1) EA on the
behavior of the proposed PD, LD and HD methods. Two-dimensional (left) and three-dimensional
(right) test cases. The performance of the SO formulation is shown as a baseline.

could be observed when varying k. Regarding the three-dimensional case, the algorithms showed a

slight positive response to the increase in the value of k. Based on these observations, the DYNk

strategy, with k = 30, was adopted for the experiments presented in Sections 4.5.1.3 and 4.5.1.4.

4.5.1.3 The impact of archiving

This section analyzes whether or not implementing the archiving strategy can be beneficial to the

performance of the proposed multi-objectivization schemes. Figure 4.15 contrasts the performance

of the basic and the archiving variants of the (1+1) EA (in terms of the O-RMSE measure) when

using the three multi-objective proposals (PD, LD and HD). Also, the results of the basic (1+1) EA

when applying the conventional SO formulation of the HP model are presented as a reference.

From Figure 4.15, it can be seen first that an important increase in performance was obtained

through multi-objectivization. The PD, LD and HD multi-objective proposals, either using the basic

or the archiving (1+1) EA, scored better results when compared with respect to the SO formulation.

HD reached the lowest O-RMSE values at solving the two-dimensional instances. In contrast, the

LD formulation performed the best in the three-dimensional case when using the basic (1+1) EA.

Although competitive, the performance of PD, LD and HD was negatively affected by the use

of the archiving strategy within the (1+1) EA. Better results were obtained in all the cases by us-
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ing the basic, non-archiving variant of the algorithm. This is contrary to what can be expected

in multi-objective optimization, where archiving is assumed to be essential for converging towards

a set of trade-offs among the conflicting problem objectives [117, 144]. Nevertheless, in spite of

being alternatively modeled and treated as a multi-objective problem, the HP model is actually a

single-objective optimization problem. Maintaining an approximation set of nondominated solutions

becomes not as important in this scenario since, by definition, the goal remains to solve the original

single-objective problem. The performance decrease originated from the use of the archiving strategy

can also be explained by the fact that archiving induces the opposite effect than that of decomposi-

tion. As pointed out by Handl et al., the effect of decomposition may be partially reversed through

archiving [85]. Whereas decomposition introduces plateaus of incomparable solutions, archiving can

make some parts of these plateaus (again) inaccessible (this depends upon what solutions are in the

archive). Therefore, the benefits of multi-objectivization for allowing algorithms to escape from local

optima could potentially be mitigated by means of archiving. In this way, archiving was found to be

obstructive rather than beneficial for the three proposed multi-objectivization schemes.

4.5.1.4 Comparative analysis

This section compares in detail the four studied evaluation schemes for the HP model (SO, PD,

LD and HD). The use of the proposed LD and HD formulations requires the adjustment of some

parameters. The influence that varying these parameters has on the search performance of the (1+1)

EA was first analyzed in Sections 4.5.1.1 and 4.5.1.2. In addition, it was found in Section 4.5.1.3

that better results were obtained in all the cases when using the basic (1+1) EA, rather than the

archiving variant of this algorithm. Therefore, the best identified parameter settings for LD and HD,

as well as the basic (1+1) EA, were adopted for the analysis conducted in this section.

Tables 4.3 and 4.4 detail the obtained results for all two- and three-dimensional test instances. For

each of the instances, these tables show the best obtained energy value (Eb), the number of performed

executions where this solution quality was reached (ν) and the arithmetic mean of the scored energy

values (Ē). Also, the overall relative root mean square error (O-RMSE) is presented at the bottom

of the tables in order to evaluate the general performance of the different formulations analyzed.
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Table 4.3: Results scored by the basic (1+1) EA when using the four studied formulations of the
HP model: SO, PD, LD and HD. Two-dimensional test cases.

SO PD LD HD

Seq. ` E∗ Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē

2d1 18 -4 -4 (4) -2.72 -4 (6) -2.74 -4 (3) -2.73 -4 (4) -2.79

2d2 18 -8 -8 (19) -6.91 -8 (32) -7.15 -8 (35) -7.27 -8 (94) -7.93

2d3 18 -9 -8 (16) -7.06 -8 (62) -7.59 -9 (3) -7.52 -9 (62) -8.62

2d4 20 -9 -9 (9) -7.01 -9 (9) -7.34 -9 (16) -7.59 -9 (66) -8.55

2d5 20 -10 -9 (3) -7.02 -10 (2) -7.23 -9 (1) -7.13 -10 (4) -7.92

2d6 24 -9 -8 (16) -6.90 -9 (1) -6.94 -9 (3) -7.42 -9 (8) -7.51

2d7 25 -8 -7 (32) -5.90 -8 (6) -5.95 -8 (8) -6.27 -8 (26) -6.78

2d8 36 -14 -13 (1) -10.04 -13 (1) -10.36 -13 (5) -10.79 -13 (1) -11.29

2d9 48 -23 -18 (6) -14.44 -19 (3) -15.70 -21 (1) -16.71 -21 (3) -18.57

2d10 50 -21 -18 (2) -13.88 -18 (1) -14.22 -19 (1) -15.52 -20 (1) -17.06

2d11 60 -36 -30 (2) -24.58 -32 (1) -25.97 -33 (1) -28.32 -33 (3) -30.33

2d12 64 -42 -29 (1) -24.21 -30 (1) -25.54 -32 (1) -27.12 -32 (7) -29.21

2d13 85 -53 -41 (1) -34.13 -42 (1) -35.08 -44 (1) -38.59 -47 (1) -41.56

2d14 100 -48 -41 (1) -31.28 -39 (4) -32.97 -39 (4) -35.38 -43 (2) -37.65

2d15 100 -50 -40 (1) -31.95 -40 (3) -33.37 -42 (1) -35.83 -40 (19) -38.31

O-RMSE 31.28% 28.60% 25.12% 19.12%

Table 4.4: Results scored by the basic (1+1) EA when using the four studied formulations of the
HP model: SO, PD, LD and HD. Three-dimensional test cases.

SO PD LD HD

Seq. ` E∗ Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē

3d1 20 -11 -11 (65) -10.59 -11 (87) -10.84 -11 (99) -10.99 -11 (100) -11.00

3d2 24 -13 -13 (28) -11.59 -13 (50) -12.09 -13 (89) -12.89 -13 (100) -13.00

3d3 25 -9 -9 (71) -8.66 -9 (77) -8.77 -9 (96) -8.96 -9 (100) -9.00

3d4 36 -18 -18 (12) -15.43 -18 (23) -16.22 -18 (68) -17.42 -18 (88) -17.84

3d5 46 -35 -30 (2) -24.36 -30 (2) -25.94 -33 (1) -28.60 -31 (2) -28.48

3d6 48 -31 -29 (2) -23.18 -29 (3) -24.84 -31 (1) -27.64 -30 (1) -27.27

3d7 50 -34 -25 (6) -21.07 -27 (1) -22.92 -29 (1) -25.27 -29 (1) -24.78

3d8 58 -44 -35 (1) -27.71 -36 (1) -30.09 -38 (1) -33.64 -35 (6) -32.60

3d9 60 -55 -48 (1) -38.14 -48 (1) -41.11 -47 (8) -44.72 -49 (1) -45.02

3d10 64 -59 -45 (1) -36.20 -46 (2) -38.84 -50 (2) -45.46 -48 (3) -43.28

3d11 67 -56 -40 (1) -30.98 -42 (1) -33.70 -41 (3) -37.94 -40 (2) -36.90

3d12 88 -72 -48 (2) -37.29 -54 (1) -41.39 -53 (3) -48.46 -50 (1) -45.33

3d13 103 -58 -41 (1) -30.68 -42 (1) -32.52 -43 (1) -37.09 -40 (2) -36.26

3d14 124 -75 -48 (1) -35.45 -48 (4) -38.28 -52 (1) -46.44 -48 (2) -43.42

3d15 136 -83 -51 (2) -38.58 -53 (1) -43.98 -59 (1) -50.27 -56 (1) -48.66

O-RMSE 33.21% 28.66% 20.85% 21.66%
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Table 4.5: Statistical analysis for comparing the performance of the (1+1) EA when using the four
studied HP model’s formulations.

Two-dimensional instances Three-dimensional instances
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Overall

PD/SO + + + + + + + + + + + + + + + + + + + + + + + 23+ 0−

LD/SO + + + + + + + + + + + + + + + + + + + + + + + + + + + + 28+ 0−

HD/SO + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 29+ 0−

LD/PD + + + + + + + + + + + + + + + + + + + + + + + + + 25+ 0−

HD/PD + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 29+ 0−

HD/LD + + + + + + + + + + + + + + + + − − − − − − − − − 16+ 9−

Additionally, the best (lowest) average energy for each of the instances and the best (lowest) O-

RMSE values have been shaded in these tables. As shown in Table 4.3, the proposed HD multi-

objectivization reached the best average performance for all the 15 two-dimensional instances. This

is reflected as an O-RMSE decrease of (31.28− 19.12) = 12.16% with respect to the conventional

SO formulation of the HP model. It can also be noted that LD and PD presented a lower average

energy than the SO formulation in all the cases, improving the O-RMSE measure by 6.16% and

by 2.68%, respectively. The proposed LD formulation achieved the lowest average energy for 10

out of the 15 three-dimensional instances, see Table 4.4. The best results for the remaining test

instances were obtained by using HD. In general, the results of the multi-objective PD, LD and HD

formulations are found to be quite competitive. These approaches improved the O-RMSE measure

by 4.55%, 12.36% and 11.55% with respect to the conventional SO formulation, respectively.

Finally, Table 4.5 outlines how the four different formulations compare statistically with respect

to each other in all the test cases. Each row in this table compares two formulations, say A and

B, which is denoted as “A/B”. If a significant performance difference exists between A and B for

a particular instance, the corresponding cell is marked either + or − depending on whether such a

difference favors A or not. Empty cells indicate that there was not a statistically important difference

between the compared approaches. The rightmost column presents the overall results of this analysis.

Out of a total of 30 test instances, it can be seen from Table 4.5 that the multi-objective PD, LD

and HD approaches significantly outperformed the conventional SO formulation in 23, 28 and 29 of



4. Addressing multimodality through multi-objectivization 101

the cases, respectively. By comparing among the proposed multi-objectivizations, the results of LD

for 25 of the instances were statistically superior to those obtained by PD. Compared with respect to

PD, HD significantly increased the performance of the algorithm for all but one of the test sequences

(2d1). Finally, HD was found to perform significantly better than LD in 16 of the instances, while

there was a significant difference in favor of LD for 9 of the three-dimensional test cases.

4.5.2 Results for a population-based algorithm

This section explores the extent to which multi-objectivization can impact on the behavior of a basic

genetic algorithm (GA). The basic structure of the implemented GA is presented in Algorithm 7.

First, an initial parent population P of size N is randomly generated. At each generation, the fittest

individuals in P are selected for mating (selection-for-variation). Then, a children population P ′ is

created by applying the genetic operators to the selected parents P̂ . Finally, the parent and children

populations are combined and the best individuals are selected to survive in order to form the new

parent population (selection-for-survival). The selection process of the GA, which is responsible

for guiding the search, will depend upon the problem formulation to be used. On the one hand, when

using the conventional SO formulation, selection is to be driven by the energy value of the candidate

individuals. On the other hand, when applying the GA to the proposed multi-objective formulations

(PD, LD and HD), the discrimination among individuals is to be based on nondominated sorting and

crowding distance, as in the Non-dominated Sorting Genetic Algorithm II, NSGA-II [59]. Hence, the

change in the problem formulation will be determinant for the behavior of this algorithm.

Algorithm 7 Genetic algorithm.

1: choose P ⊂ XF : |P| = N uniformly at random
2: while < stop condition > do
3: P̂ ← selection-for-variation(P)
4: P ′ ← variation(P̂)
5: P ← selection-for-survival(P ∪ P ′)
6: end while

Roughly, the functioning of the nondominated sorting procedure is as follows (Figure 4.16). The

nondominated individuals are initially identified and isolated into the first nondominated layer, L1.
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Figure 4.16: Functioning of the nondominated sorting procedure [59]. Individuals are organized into
nondominated fronts, or layers, based on the Pareto-dominance relation (minimization assumed).

From the remainder of the population, the now nondominated solutions are identified and assigned to

the second nondominated layer, L2. This process is repeated until each individual in the population

is classified. At the selection-for-survival stage, individuals are selected layer by layer, starting

from L1, until completing the required number of individuals. Whenever the number of individuals in

the layer under consideration exceeds the available capacity of the population, the crowding distance

measure is used as a secondary discrimination criterion. This allows to promote population diversity.11

In the GA, protein conformations are encoded using an internal coordinates representation based

on absolute moves (Section 2.3.3.3). Binary tournament selection was employed as mating strategy.

The implemented genetic operators are as follows. One-point crossover is applied according to a

given probability pc. In mutation, each encoding position is randomly and independently perturbed

with probability pm. Only individuals encoding feasible protein conformations are accepted during

the search process. Refer to Section 5.6.1.1 for further details on the treatment given to infeasible

individuals. The initial feasible populations are generated through the backtracking strategy reported

in [42]. In all cases, a maximum number of 5× 105 solution evaluations was defined as the stopping

condition and the reported results were computed over a total of 100 independent GA executions.

11 The crowding distance is a measure of the density of individuals. This measure is computed locally as the
proximity between neighboring points in the objective space [59].
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Figure 4.17: Locality decomposition. Evaluating the impact of varying the distance parameter δ on
the performance of the GA. Two-dimensional (left) and three-dimensional (right) test cases.

The remainder of this section is organized as follows. Sections 4.5.2.1 and 4.5.2.2 are concerned

with the proper adjustment of parameters for the proposed LD and HD formulations. In Section

4.5.2.3, the four studied formulations of the HP model are evaluated under different settings for the

implemented GA. Finally, a detailed comparative analysis is presented in Section 4.5.2.4.

4.5.2.1 Settings for the locality decomposition

This section inspects how changing the value of the LD’s distance parameter δ can affect the

performance of the implemented GA. As indicated in Section 4.3.2, a total of 10 values for δ are

explored. Figure 4.17 presents the overall root mean square error (O-RMSE) obtained by the GA

when using the different considered values for δ.12 Results of the SO formulation are shown as a

baseline. The best performance of the GA on the two-dimensional instances was obtained when

using δ = 7, while δ = 5 provided the best behavior for the three-dimensional case. These settings

have been adopted for the analyses presented later in Sections 4.5.2.3 and 4.5.2.4. The performance

of the GA tended to decrease as δ was increased. Note, however, that the proposed LD improved

the results with respect to the conventional SO formulation regardless of the value chosen for δ.

12 For each considered δ value, the O-RMSE presented in Figure 4.17 corresponds to the best performance obtained
when evaluating a set of different parameter configurations of the GA, see Section 4.5.2.3.
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Figure 4.18: H-subsets decomposition. Evaluating different H-subsets formation strategies. Results
for the GA. Two-dimensional (left) and three-dimensional (right) test cases.

4.5.2.2 Settings for the H-subsets decomposition

In the HD formulation, H amino acids are first organized into the H1 and H2 groups, the H-subsets.

Different strategies to perform this task are investigated in this study: FIX, RND and DYNk, for

k ∈ {0, 10, 20, 30}; refer to Section 4.3.3 for details. Figure 4.18 displays how the performance of

the GA (measured in terms of the O-RMSE) was affected by the use of these H-subsets formation

strategies.13 The performance of the conventional SO formulation is presented as a reference. Only

minor variations on the GA’s performance can be observed as a consequence of using the different

H-subsets formation strategies. It can be seen, however, that the performance of the algorithm tends

to improve when applying the DYNk strategy, particularly when focusing on the three-dimensional

test cases. This suggests that dynamically changing the problem formulation enhances the ability

of multi-objectivization for allowing the GA to escape from local optima, so that a positive effect is

achieved in terms of the efficient exploration of the search landscape. In all the cases, the proposed

HD formulation decreased the O-RMSE with regard to the SO formulation. The DYNk strategy with

k = 30 was adopted for later experiments reported in Sections 4.5.2.3 and 4.5.2.4.

13For each H-subsets formation strategy, the O-RMSE value presented in Figure 4.18 corresponds to the best
performance obtained when evaluating different parameter configurations of the GA, see Section 4.5.2.3.



4. Addressing multimodality through multi-objectivization 105

0.8 0.9 1.0 0.8 0.9 1.0 0.8 0.9 1.0 0.8 0.9 1.0 0.8 0.9 1.0 0.8 0.9 1.0

12

14

16

18

20

22

24

26

O
−

R
M

S
E

 (
%

)

 

 

1/(ℓ-1) 2/(ℓ-1) 3/(ℓ-1) 1/(ℓ-1) 2/(ℓ-1) 3/(ℓ-1)

 p
c

 p
m

 2D 

Duplicates allowed

Duplicates removed

SO PD LD HD

0.8 0.9 1.0 0.8 0.9 1.0 0.8 0.9 1.0 0.8 0.9 1.0 0.8 0.9 1.0 0.8 0.9 1.0

22

24

26

28

30

32

34

O
−

R
M

S
E

 (
%

)

 

 

1/(ℓ-1) 2/(ℓ-1) 3/(ℓ-1) 1/(ℓ-1) 2/(ℓ-1) 3/(ℓ-1)

 p
c

 p
m

 3D 

Duplicates allowed

Duplicates removed

SO PD LD HD

Figure 4.19: Evaluating the SO, PD, LD and HD formulations under different parameter settings for
the implemented GA. Two-dimensional (left) and three-dimensional (right) test cases.

4.5.2.3 Settings for the genetic algorithm

Different parameter settings for the GA are evaluated to identify the most appropriate conditions

for the compared approaches. Three values for the recombination and mutation probabilities were

considered: pc ∈ {0.8, 0.9, 1.0} and pm ∈ { 1
`−1 ,

2
`−1 ,

3
`−1}. Also, the effects of preventing duplicate

individuals (clones) from the population are analyzed. Thus, a total of 18 parameter configurations

for the GA are investigated. The population size was fixed to N = 100 in all the cases.

Figure 4.19 presents the overall root mean square error (O-RMSE) obtained by the four studied

formulations of the HP model when using the different GA settings. From the plots, it can be noted

that the proposed PD, LD and HD multi-objectivizations performed better than the conventional SO

formulation for all the different parameter configurations of the GA. It is also possible to see that

LD and HD scored better results than PD in most of the cases. The lowest O-RMSE value for both

the two- and the three-dimensional instances was obtained by using the LD formulation, although

the superiority of LD over HD becomes more evident when focusing on the three-dimensional case.

Note, however, that HD tends to perform better than LD if duplicate individuals are allowed to

remain in the population. Some general observations can be made regarding the behavior of the GA.

On the one hand, the algorithm seemed not to be seriously affected when varying the recombination

probability. On the other hand, the GA responded positively to the increased mutation rate, being
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pm = 3
`−1 the value which provided the best performance in all the cases. Finally, the results were

significantly improved in all the cases when duplicate individuals were removed from the population.

For the detailed analysis presented in Section 4.5.2.4, the settings which allowed each of the

compared formulations to reach the lowest O-RMSE value were selected. Specifically, duplicates re-

moval was enabled and the mutation probability was set to pm = 3
`−1 in all cases. The recombination

probability was set to (i) two-dimensional case: pc = 0.9 for SO and PD, pc = 1.0 for LD and HD;

and (ii) three-dimensional case: pc = 0.8 for SO and LD, pc = 1.0 for PD, pc = 0.9 for HD.

4.5.2.4 Comparative analysis

This section presents a detailed comparative analysis among the four studied evaluation schemes

for the HP model. The results reported in this section consider the best parameter adjustment for

the proposed LD and HD formulations, as investigated in Sections 4.5.2.1 and 4.5.2.2, and the best

performing GA settings for each of the compared approaches, as derived in Section 4.5.2.3.

The results for all two- and three-dimensional test cases are provided in Tables 4.6 and 4.7. The

information in these tables is organized in the same manner as in Tables 4.3 and 4.4 described in

Section 4.5.1.4. Table 4.6 indicates that the use of the proposed PD, LD and HD multi-objective

formulations improved the average performance of the GA for most of the two-dimensional instances.

In most cases, the lowest average energy values were obtained by using the LD and HD formulations.

LD and HD allowed the GA to reach also the lowest O-RMSE values, decreasing this measure by

about 1.8% with respect to the SO formulation. The benefits of multi-objectivization are more

perceptible from Table 4.7. The three multi-objective proposals exceeded, or at least met (all the

four compared methods scored an unbeatable performance when facing instance 3d2), the results

scored by the conventional SO formulation at solving the three-dimensional test cases. The most

remarkable performance was presented by the proposed LD formulation, which reported the lowest

average energy value for all but one of the three-dimensional instances. PD, LD and HD improved

the O-RMSE measure by 1.41%, 2.77% and 1.75% with regard to the SO formulation, respectively.

Table 4.8 illustrates how the four studied HP model’s formulations are statistically compared

with respect to each other in all the adopted test instances. The interpretation of this table is the



4. Addressing multimodality through multi-objectivization 107

Table 4.6: Results scored by the GA when using the studied SO, PD, LD and HD formulations.
Two-dimensional test cases.

SO PD LD HD

Seq. ` E∗ Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē

2d1 18 -4 -4 (89) -3.89 -4 (94) -3.94 -4 (96) -3.96 -4 (96) -3.96

2d2 18 -8 -8 (100) -8.00 -8 (100) -8.00 -8 (100) -8.00 -8 (100) -8.00

2d3 18 -9 -9 (97) -8.97 -9 (97) -8.97 -9 (98) -8.98 -9 (100) -9.00

2d4 20 -9 -9 (100) -9.00 -9 (100) -9.00 -9 (100) -9.00 -9 (100) -9.00

2d5 20 -10 -10 (90) -9.80 -10 (99) -9.98 -10 (99) -9.98 -10 (100) -10.00

2d6 24 -9 -9 (86) -8.86 -9 (91) -8.91 -9 (92) -8.92 -9 (89) -8.89

2d7 25 -8 -8 (68) -7.65 -8 (56) -7.52 -8 (85) -7.84 -8 (80) -7.80

2d8 36 -14 -14 (1) -11.22 -13 (9) -11.30 -13 (15) -11.53 -13 (17) -11.54

2d9 48 -23 -21 (7) -17.92 -22 (2) -18.29 -21 (10) -18.22 -21 (11) -18.30

2d10 50 -21 -21 (1) -17.99 -21 (3) -18.15 -21 (4) -18.24 -21 (4) -18.42

2d11 60 -36 -32 (11) -29.14 -33 (7) -30.11 -34 (1) -30.05 -33 (3) -29.91

2d12 64 -42 -35 (4) -30.31 -36 (1) -31.15 -37 (3) -31.77 -36 (1) -30.82

2d13 85 -53 -47 (1) -40.96 -49 (1) -41.88 -48 (2) -41.99 -47 (2) -41.69

2d14 100 -48 -40 (3) -35.04 -41 (1) -35.74 -42 (2) -35.78 -42 (1) -35.34

2d15 100 -50 -41 (2) -35.91 -42 (1) -37.07 -42 (1) -36.80 -42 (2) -36.78

O-RMSE 14.38% 13.10% 12.57% 12.56%

Table 4.7: Results scored by the GA when using the studied SO, PD, LD and HD formulations.
Three-dimensional test cases.

SO PD LD HD

Seq. ` E∗ Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē

3d1 20 -11 -11 (99) -10.99 -11 (100) -11.00 -11 (100) -11.00 -11 (100) -11.00

3d2 24 -13 -13 (100) -13.00 -13 (100) -13.00 -13 (100) -13.00 -13 (100) -13.00

3d3 25 -9 -9 (95) -8.95 -9 (99) -8.99 -9 (99) -8.99 -9 (100) -9.00

3d4 36 -18 -18 (28) -16.44 -18 (33) -16.58 -18 (41) -16.78 -18 (37) -16.68

3d5 46 -35 -31 (2) -27.24 -31 (1) -27.59 -32 (2) -27.84 -33 (1) -27.44

3d6 48 -31 -30 (1) -26.12 -30 (2) -26.74 -31 (1) -27.00 -31 (1) -26.58

3d7 50 -34 -31 (1) -26.60 -30 (8) -26.93 -31 (3) -27.46 -30 (9) -26.77

3d8 58 -44 -37 (2) -32.01 -39 (1) -32.42 -38 (2) -33.33 -38 (3) -32.77

3d9 60 -55 -48 (1) -41.85 -50 (1) -42.42 -48 (3) -43.54 -51 (1) -43.02

3d10 64 -59 -53 (1) -45.31 -52 (3) -46.59 -54 (3) -48.28 -53 (1) -46.74

3d11 67 -56 -40 (3) -35.79 -42 (2) -36.56 -44 (1) -37.42 -43 (1) -36.75

3d12 88 -72 -50 (1) -42.88 -53 (1) -44.69 -54 (1) -46.24 -54 (1) -44.24

3d13 103 -58 -41 (1) -33.32 -41 (1) -33.88 -39 (6) -34.80 -40 (2) -34.79

3d14 124 -75 -51 (1) -39.12 -51 (1) -41.33 -50 (2) -42.73 -52 (1) -41.95

3d15 136 -83 -51 (3) -42.94 -57 (1) -44.45 -53 (3) -45.61 -56 (1) -45.35

O-RMSE 24.63% 23.22% 21.86% 22.88%
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Table 4.8: Statistical analysis for comparing the performance of the GA when using the four studied
HP model’s formulations.
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Overall

PD/SO + + + + + + + + + + + 11+ 0−

LD/SO + + + + + + + + + + + + + + + + + + + 19+ 0−

HD/SO + + + + + + + + + + + + + + + + 16+ 0−

LD/PD + + + + + + + + + + 10+ 0−

HD/PD + + 2+ 0−

HD/LD − − − − 0+ 4−

same as for Table 4.5 described at the end of Section 4.5.1.4. The statistical analysis reveals that

the improvements achieved by PD, LD and HD were significant with respect to the conventional SO

formulation in 11, 19 and 16 of the adopted test cases, respectively. It can also be noted from Table

4.8 that the advantages of multi-objectivization tend to become more evident as the size of the

problem (sequence length) increases. HD performed statistically better than PD in only 2 out of the

30 instances (2d7 and 3d13). Finally, LD presented the best overall behavior, scoring significantly

better results in 10 and 4 of the instances when compared with respect to PD and HD, respectively.

4.6 Discussion and conclusions

Multi-objectivization concerns the restatement of a single-objective problem in an alternative multi-

objective form, which can facilitate the process of finding a solution to the original problem. This

concept represents a current and promising research direction which has led to the development

of more competitive search mechanisms. In this chapter, multi-objectivization was applied to the

particular case of study of this research project, the HP model for protein structure prediction. Three

different multi-objectivization schemes for the HP model were proposed, all of them based on the

decomposition of the conventional objective function of the problem. The first approach, called

the parity decomposition (PD), relies on the fact that topological interactions on the lattice are

only possible between amino acids whose sequence positions are of opposite parity. In the second
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proposal, the locality decomposition (LD), the decomposition of the HP model’s objective is carried

out by segregating local from nonlocal amino acid interactions. Such a locality notion relates to

the sequence distance between the interacting amino acids. Finally, in the H-subsets decomposition

(HD) hydrophobic amino acids are first organized into different groups, the H-subsets. Then, the HP

model’s energy function is decomposed based on the correspondence of amino acids to the H-subsets.

The study presented in this chapter has been divided into two main parts. The first part was

devoted to the investigation of the potential effects of multi-objectivization, as a means of gain-

ing insight into how this transformation can influence the behavior of search algorithms. When

multi-objectivization is achieved through the decomposition of the original objective function of

the problem, as considered in this study, incomparability among candidate solutions can be intro-

duced [85]. That is, originally comparable solutions may become incomparable when evaluated under

the new multi-objective formulation of the problem. As a first step in understanding and quantifying

such an effect, it was explored the extent to which incomparability may arise between different fitness

classes. To this end, a large set of sampled solution pairs were evaluated, out of which a considerable

number became incomparable as a consequence of the problem transformation. It was also found

that the more distant the fitness classes for a given pair of solutions, the lower the likelihood that

the comparability relation between these solutions can be affected by multi-objectivization.

Introducing incomparability among solutions can be alternatively understood as increasing the

neutrality of the fitness landscape. Therefore, a detailed fitness landscape analysis was conducted to

investigate how multi-objectivization impacts on such an important problem characteristic. A large

number of neutral networks (NNs) were sampled, and the main findings achieved during their analysis

can be summarized as follows. By rising the neutrality degree of solutions, multi-objectivization

led to the formation of neutral connections between NNs from different fitness classes. That is,

when originally comparable neighboring solutions become incomparable by multi-objectivization, their

corresponding NNs are merged together into larger connected neutral areas of the landscape.

The aforementioned effects of multi-objectivization may lead to different implications from the

perspective of a search algorithm. On the one hand, the introduction of neutrality into the fitness

landscape can be reflected as an enhancement in the exploration behavior of algorithms. That is, by
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reducing the so-called selective pressure [5], an algorithm can be allowed to move through inferior

fitness classes as a means of escaping from local optima. On the other hand, the increase in neutrality

can also be understood as an important loss in gradient information, so that multi-objectivization

may prevent search algorithms from identifying promising directions in some of the cases.

Understanding the potential effects and consequences of multi-objectivization could lead to the

design of more effective search algorithms. To the best of the author’s knowledge, in most of

the reported applications of multi-objectivization the original evaluation scheme of the problem is

completely replaced by the alternative multi-objectivized one. This corresponds also to the approach

assumed in the second part of this study, as it will be discussed later in this section. While the

complete replacement of the evaluation scheme has reported very promising results in the literature,

the above analysis suggests that a better strategy may involve applying multi-objectivization only

under certain conditions during the search process; e.g., when stagnation at a local optimum has

been detected. Such a strategy could benefit from the potential effects of multi-objectivization as a

means of escaping from local optima, at the same time that the gradient information is preserved in

order to drive the search process in an effective manner. In the context of the HP model for protein

structure prediction, a high degree of neutrality is inherently induced by the conventional evaluation

scheme, as it was observed along the conducted analysis. Thus, another interesting approach may

consist of alternating the use of multi-objectivization with the use of some other problem formulation

specifically designed to cope with neutrality; such as the alternative energy functions evaluated in

Chapter 3. Exploring these kind of strategies related to the partial (rather than total) use of multi-

objectivization can be seen as a promising direction for future research.

The second part of this chapter analyzed the advantages of multi-objectivization in terms of

the performance of search algorithms. The three proposed multi-objectivization schemes for the HP

model were compared and evaluated with respect to the conventional single-objective formulation of

the problem. Two different evolutionary algorithms (EAs) were considered, namely, a basic (1+1)

EA and a genetic algorithm (GA). In this way, both single-solution-based and population-based

search methods have been covered in this analysis. As a result, the use of alternative multi-objective

formulations of the problem significantly increased the average performance of the implemented EAs
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in most of the conducted experiments. The obtained results not only demonstrate the effectiveness

of the proposed multi-objectivization schemes for the HP model, but also give further support to

the suitability of multi-objectivization to address the multimodality challenge of fitness landscapes.

In this study, only basic EAs were considered. From the obtained results, however, it is expected

that the proposed multi-objectivization schemes for the HP model can be used to improve also the

performance of established state-of-the-art algorithms for solving this problem. This issue needs to

be thoroughly investigated in order to derive more general conclusions.

To the best of the author’s knowledge, the proposed PD, LD and HD formulations represent

the first efforts on the use of multi-objective optimization methods to address the particular HP

model of the protein structure prediction problem. In addition, no previous work has been reported

where the potential effects of multi-objectivization are investigated through the explicit sampling

and evaluation of the characteristics of the fitness landscape (in this case by focusing on neutrality).

Although such an analysis focused on a particular case of study, most of the findings regarding the

fitness landscape transformation can be generalized to other problem domains. In this way, by using

the HP model of the PSP problem as an example, this research work is expected to contribute to

the general understanding of multi-objectivization.





5
Handling infeasible protein conformations

by multi-objective optimization

5.1 Introduction

Evolutionary computation methods and other metaheuristic algorithms have been successfully used

to solve complex optimization problems which arise in a diversity of scientific and engineering appli-

cations. Often, however, optimization involves not only to reach the best value for a given objective

function (or set of objective functions), but also to satisfy a certain set of predefined requirements

called constraints. Therefore, additional mechanisms need to be implemented within these algorithms

in order to search effectively through this kind of constrained solution spaces.

In the HP model of the protein structure prediction problem, as it is discussed in detail in Section

2.3.3.2, a feasible protein conformation is defined as an embedding of the protein chain on a given

lattice, such that this embedding presents connectivity and self-avoidance. The connectivity property

is implicitly satisfied by using an internal coordinates representation of the protein conformations,

either based on absolute or relative moves (as described in Section 2.3.3.3). One of the main sources

113
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of difficulty in this problem, however, lies in the fact that using the existing problem representations

a significant portion of the solution space encodes infeasible (non-self-avoiding) protein structures.

Hence, it is important to devise effective mechanisms for handling the self-avoidance constraint. Two

main research directions have been adopted to cope with this issue. On the one hand, the search can

be confined to the space of only feasible, self-avoiding protein conformations. On the other hand,

infeasible protein conformations can also be taken into consideration throughout the optimization

process. From the literature, however, it is not possible to identify a clear consensus on which of the

two directions, i.e., to avoid or to consider infeasible conformations, could lead to the development

of more efficient metaheuristic algorithms for solving this problem [42, 57, 66, 122, 192].

Premised upon the belief that infeasible conformations can provide valuable information for guid-

ing the search process, this research work inquires into the use of multi-objective optimization as an

alternative constraint-handling strategy for the HP model. Particularly, the self-avoidance constraint

of the HP model is treated as a supplementary optimization criterion. Therefore, this originally

constrained single-objective problem is transformed into an unconstrained multi-objective problem.1

Using such an alternative multi-objective formulation, infeasible solutions can become incomparable

with respect to feasible ones, having thus better opportunities for participating during the search

process. In the literature, this effect of considering infeasible protein conformations during optimiza-

tion has been achieved by implementing a penalty strategy [57,113,122,142,177]. In contrast to the

penalty approach, which represents also one of the most widely used techniques in the constraint-

handling literature, the multi-objective method, in essence, does not require the fine-tuning of param-

eters such as the penalty factors;2 in the penalty strategy, finding the right balance between objective

function and penalty values has been regarded to be a difficult optimization problem itself [161,186].

In the first part of this chapter, a detailed analysis is conducted in order to investigate the potential

effects of the problem transformation from the perspective of the fitness landscape. More specifically,

it is evaluated how the use of the multi-objective problem formulation impacts on neutrality, an

1 The process of restating a single-objective problem as a multi-objective problem is usually referred to as multi-
objectivization in the specialized literature [119], as discussed previously in Section 2.2.3 and Chapter 4.

2 As it will be seen later in this chapter, however, the multi-objective constraint-handling strategy may also require
additional parameters or the combination with other mechanisms for biasing purposes.
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important property of the fitness landscape. Such an analysis is expected to contribute to the

general understanding of the functioning of the multi-objective constraint-handling technique. It has

been argued that the multi-objective approach to constraint-handling could be rather ineffective if

a search bias towards the feasible region is not introduced [188]. Therefore, the second part of this

chapter is concerned with the study of different mechanisms which can be employed for providing

the multi-objective strategy with such a search bias. Finally, the third and last part of this research

work explores the suitability of the multi-objective method by focusing on the performance of search

algorithms. A comparative analysis is presented where the multi-objective approach is evaluated with

respect to two commonly adopted techniques from the specialized literature; namely, the use of a

rejecting strategy where only feasible solutions are considered, and the use of a penalty strategy.

Both single-solution-based and population-based algorithms have been utilized along this analysis.

The remainder of this chapter is structured as follows. Related work is reviewed in Section 5.2.

The proposed multi-objective constraint-handling technique is described in Section 5.3. Section 5.4

presents the analysis with regard to the fitness landscape transformation. The search bias issue is

addressed in Section 5.5. The comparative study which focuses on performance is covered in Section

5.6. Finally, Section 5.7 discusses the main findings and presents the conclusions of this study.

5.2 Related work

In the literature, two basic directions have been taken to address the self-avoidance constraint which

relates to the feasibility of protein conformations in the HP model. On the one hand, the search

can concentrate on the feasible space; that is, considering only solutions encoding self-avoiding

conformations. This is usually accomplished either (i) by adapting the variation operators to iterate

until new feasible conformations are generated, i.e., infeasible conformations are always rejected

[31,33,49,53,66,224]; (ii) by using specialized operators which are closed on the feasible space, i.e.,

always transforming feasible conformations into other feasible conformations [42,128,219]; or (iii) by

implementing repairing procedures in order to convert from infeasible to feasible conformations [29,

42,106,192]. These three constraint-handling strategies can be referred to as the rejecting, preserving
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and repairing strategies, respectively, according to the classification presented by Talbi [218]. A

combination of different strategies can also be adopted. In [31, 33], for example, the crossover

operator was adapted to reject infeasible conformations, while mutation was based on the specialized

pull move transformation proposed in [128]. On the other hand, infeasible conformations can also

be allowed to participate during the search process. This is commonly achieved by implementing a

penalty strategy, where the energy value of a candidate conformation suffers a decrease according

to the number of collisions (overlaps) in encoded protein structure [57, 113, 122, 142, 177].

It has been argued that the path from one compact feasible conformation to another, can be

significantly shorter if the search is allowed to proceed through the space of infeasible conformations

[122]. This has been, perhaps, the main motivation for applying penalty strategies when solving the

HP model of the PSP problem. An example of this scenario was given by Krasnogor et al. [122].

Also, the authors provided some guidelines on how to design an appropriate penalty function for the

HP model. Nevertheless, no experimental results were reported to support these recommendations.

In [66], Duarte-Flores and Smith compared between the performance of two variants of a genetic

algorithm (GA). The first GA implemented a rejecting strategy, iterating crossover and mutation

until feasible offspring were generated. The second GA used a penalty function adhering to the

guidelines provided by Krasnogor et al. [122]. As a result, a better performance was observed from

the use of the first variant of the GA, where infeasible conformations were always discarded.

Using a GA, Cotta compared the use of a penalty function with respect to two alternative

constraint-handling approaches [42]. In the first, referred to as the feasible-space approach, the

crossover and mutation operators were adapted to produce only feasible offspring. In the second

alternative, infeasible offspring were accepted as the output of variation operators, but they were

subsequently processed using a repairing procedure. Both the two alternative approaches were based

on a backtracking algorithm. As reported in [42], better results were obtained in most of the cases

using the penalty method when compared to the feasible-space approach. In contrast, the best

overall performance of the implemented GA was obtained by using the repairing procedure.

Almeida et al. [57] explored the influence of allowing infeasible conformations on the performance

of an immune-based algorithm (IA). In a first variant of the IA, only feasible conformations were
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permitted. In a second variant of the IA, infeasible individuals were accepted during the initialization

process and when new random individuals were required as a consequence of applying the aging op-

erator (infeasible individuals were penalized). However, in both variants of the IA the hypermutation

and hypermacromutation operators were adapted to produce only feasible conformations; infeasi-

ble mutations were always rejected. The inclusion of infeasible conformations slightly increased the

performance of the IA in most of the cases, while significantly reducing the computational effort.

Santos and Diéguez [192] evaluated the advantages of incorporating a repairing strategy into their

differential evolution (DE) algorithm. In an initial DE implementation, all infeasible conformations

were simply penalized and assigned a fitness value of 0. In a second DE variant, two different repairing

operators were implemented; the first working on the amino acid coordinates (phenotype space),

and the second acting on the conformation encoding (genotype space). These repairing operators,

however, were not based on a backtracking strategy as those explored by Cotta [42]; whenever the

position of the colliding amino acids could not be repaired, the infeasible conformations were allowed

to remain in the population. The reported results indicate that the use of the repairing operators

improved the search performance of the proposed DE algorithm.

Summarizing, there is not strong evidence in the literature (from the author’s point of view)

regarding whether it can be better to allow or to prevent infeasible protein conformations from being

considered during the search process. Rather, from the above described works, it is possible to note

that very different and, to some extent, contradictory results have been reported in this respect. One

of the aims of the present study is to contribute in providing further insight into this matter.

Finally, it is important to remark that the use of multi-objective optimization concepts for handling

constraints is not a novel idea. For recent reviews on this topic, the reader can be referred to

[161, 202]. Nevertheless, it was not until the research work reported in this chapter, to the best of

the author’s knowledge, that the multi-objective approach to constraint-handling is applied to the

particular HP model of the protein structure prediction problem.
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5.3 Constraint-handling by multi-objective optimization

It is the author’s belief that considering infeasible protein conformations during optimization can boost

the performance of metaheuristics for solving PSP under the HP model (arguments on this respect

have also been given in the literature [122]). Therefore, it is important to devise new constraint-

handling mechanisms, which allow these algorithms to exploit the vast amount of infeasibility that

the HP model involves, as a means of steering the search process in a more effective manner.

The use of multi-objective optimization is here explored as an alternative constraint-handling

strategy for the HP model. The HP model is restated in multi-objective form by incorporating an

additional objective function which accounts for the problem constraints. In this way, this originally

constrained single-objective optimization problem is transformed into a unconstrained multi-objective

one. More formally, a two-objective formulation of the problem, f(x) = [f1(x), f2(x)]T , is defined

as follows (x ∈ X ):

f1(x) = E(x), (5.1)

f2(x) = Collisions(x), (5.2)

where the objective functions f1(x) and f2(x) are both to be minimized; E(x) represents the conven-

tional energy (objective) function of the HP model, as defined in Section 2.3.3.1; and Collisions(x)

denotes the total number of colliding amino acid pairs (ai, aj) such that both ai and aj were mapped

to the same lattice coordinates in the protein structure encoded by x.

Using the above described multi-objective formulation of the HP model, all feasible solutions

x ∈ XF will feature a value of f2(x) = 0. Thus, the original characteristics of the feasible areas of

the fitness landscape are preserved. That is, the Pareto-dominance relation induces the conventional

rank ordering among feasible solutions based on the original optimization objective (f1). Moreover,

since feasible solutions present the best possible value in f2, an infeasible solution (with f2 > 0) will

never be preferred over a feasible solution under the multi-objective formulation. In general, however,
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this alternative formulation of the problem will lead to the explicit consideration of trade-offs between

the two defined criteria, f1 and f2. An infeasible conformation x1 may become incomparable, i.e.,

nondominated in the Pareto sense, with respect to a feasible conformation x2. This depends upon

how x1 and x2 compare to each other with regard to the primary objective function f1. Therefore, the

multi-objective approach for handling constraints allows infeasible protein conformations to compete

against feasible ones, being potentially accepted and exploited during the search process.

5.4 Fitness landscape transformation

Whereas infeasible solutions are usually regarded and treated as inferior, or even as inadmissible

solutions during the search process, such a distinction between feasible and infeasible solutions is not

captured when handling constraints by multi-objective optimization. As discussed in Section 5.3, the

multi-objective strategy for handling constraints allows infeasible solutions to become incomparable,

under certain conditions, with respect to feasible ones. Such an effect originated from the problem

transformation leads to an increase in the neutrality of the fitness landscape. That is, given a

feasible solution x ∈ XF , some of the surrounding infeasible solutions may become incomparable

(i.e., neutral) with regard to x, thus becoming members of its neutral neighborhood, Nn(x).

In this section, an analysis is conducted with the aim of investigating the extent to which the

use of the multi-objective constraint-handling strategy impacts on the neutrality property of fitness

landscapes in the HP model. A fitness landscape is defined by a triplet (X ,N , ξ), as described

in detail in Section 2.2.4. Two variants of the evaluation scheme ξ have been considered: the

conventional single-objective (SO) formulation of the problem, and the alternative multi-objective

(MO) formulation that handles constraints. In this way, by analyzing and comparing the landscapes

induced by these two different evaluation schemes, it will be possible to assess and to gain further

understanding of the effects that the studied problem transformation involves.3

3 Both X and N were fixed during the analysis here presented. X is defined by the relative moves encoding
described in Section 2.3.3.3. N (x) is given by all possible single-variable perturbations of x. Thus, |N (x)| = 2(`− 2)
and |N (x)| = 4(`− 2) in the two- and three-dimensional lattices, respectively.
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Table 5.1: Details of the sample sets generated for instances 2d4 and 3d1. Instance 2d4 involves 10
different fitness classes, while instance 3d1 involves 12.

Fitness class

0 1 2 3 4 5 6 7 8 9 10 11 Total

Sequence 2d4 119 119 119 119 119 118 118 119 48 2 - - 1, 000

Sequence 3d1 84 83 83 84 83 84 83 83 83 84 83 83 1, 000

The analysis presented in this section draws inspiration from the previous study reported in Section

4.4, where the effects of another alternative single-objective to multi-objective transformation of the

problem were examined. Such as in Section 4.4, the term fitness is used in this section for referring

to the quality of (feasible) candidate solutions under the conventional SO evaluation scheme of the

HP model.4 The fitness of a solution x ∈ XF is given by the total number of H-H topological

contacts that its encoded protein structure presents, Fitness(x) = HHtc(x). Similarly, x is said to

belong to the fitness class c, if it holds that Fitness(x) = c. The remaining of this section proceeds

as follows. The implemented sampling methodology and the adopted settings are first described in

Section 5.4.1. Then, the results of the performed analysis are discussed in Section 5.4.2.

5.4.1 Sampling methodology and settings

Due to the high computational costs involved, and given also the space requirements for reporting

results, this analysis has focused on two (relatively) small problem instances: the 2d4 and 3d1 test

sequences for the two- and three-dimensional lattices, respectively (see Section 2.4.1).5 It is expected,

however, that similar results can be obtained by replicating this analysis to other different problem

instances. The performed analysis relies on an initial sample of solutions for each of the considered

test cases. These samples have been collected following the methodology described previously in

Chapter 4 (refer to Section 4.4.1). The size of the sample was fixed to M = 1, 000 for both the 2d4

and 3d1 instances. Details of the obtained sample sets are provided in Table 5.1.

4Although an alternative multi-objective formulation of the HP model is implemented as a constraint handling
strategy, the goal remains always to solve the original single-objective problem.

5 The search space (based on the used relative moves encoding) is, however, vast: 318 for 2d4, and 518 for 3d1.
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Fitness landscapes have been explored in this study by partially computing the neutral network

(NN) of all the sampled solutions. The implemented methodology for the partial computation of

the NNs has been described in detail in Section 4.4.3. The maximum allowed depth level in this

procedure was set to maxDepth = 5 (for both the 2d4 and 3d1 instances) in order to alleviate the

computational burden. The NN of the sampled solutions has been computed by using both, the

SO and MO evaluation schemes, as the bases for neutrality verification. In this way, changing the

problem formulation from SO to MO reflects as an alteration in the properties of the obtained NNs.

In the remainder of this section, the NN for a given solution x will be either referred to as NNSO(x)

or NNMO(x), depending on whether it has been computed based on the SO or MO evaluation

schemes. It is important to note that under the SO evaluation scheme all infeasible solutions are

assumed to be inferior to any feasible one, so that NNSO(x) comprises only feasible states. In

contrast, NNMO(x) may also involve infeasible nodes; this is because using the MO formulation of

the problem an infeasible solution may become part of the neutral neighborhood, and therefore of

the NN, for a feasible solution, as discussed in the preamble of Section 5.4.

5.4.2 Results

This section presents the results of the fitness landscape analysis performed in order to investigate the

effects of implementing the MO constraint-handling strategy. In Section 5.4.2.1, this is investigated

in terms of how the problem transformation impacted on the neutrality degree of solutions. This

is captured by means of the average neutrality ratio. Then, Section 5.4.2.2 evaluates the extent to

which such an alteration on the neutrality degree of solutions lead to the increase in the size of the

NNs. Finally, the increase in the size of the NNs are explained in Section 5.4.2.3 as a result of the

connectivity that the problem transformation establishes between different NNs.

5.4.2.1 Average neutrality and infeasibility ratios

In this section, the average neutrality ratio (ANR) is explored as a first step in analyzing the degree to

which neutrality is affected by the studied problem transformation. The ANR measure was previously
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Figure 5.1: Average neutrality (ANR) and infeasibility (AIR) ratio of the sampled neutral networks.
Two-dimensional 2d4 instance (left) and three-dimensional 3d1 instance (right).

defined in Section 4.4.3.1. The ANR measure was computed for all the sampled NNSO and NNMO

networks, so that it will be possible to contrast the neutrality that the two different evaluation

schemes (SO and MO) produce. In addition, the average infeasibility ratio (AIR) is investigated for

the SO problem formulation. AIR is defined analogously to ANR, but calculated from the number of

infeasible (rather than neutral) neighbors of solutions in the NN.6 The obtained results are presented

in Figure 5.1, where the mean ANR and AIR values appear organized (in the x-axis of the plots)

based on the fitness class of the sampled solution used as the starting point for the NN computation.

From the ANR and AIR values obtained through the use of the SO formulation (“ANR SO” and

“AIR SO” curves in the plots, respectively), it is possible to highlight some general tendencies with

regard to the neutrality and infeasibility of the HP model’s fitness landscapes. On the one hand, the

poorer the quality of a solution, the greater tends to be the number of neutral mutations that the

solution can produce. This is suggested by the high ANR values scored for the lowest fitness classes,

which rapidly decreased with the increase in fitness. These results confirm previous findings discussed

in Section 4.4.3.1. On the other hand, infeasibility becomes more abundant as superior fitness classes

are considered. Solutions at the best fitness classes are usually surrounded by infeasible neighbors;

as the obtained AIR values indicate, between 40% and 50% of the neighborhood for solutions at the

best fitness classes is composed of infeasible states. The above observations can be explained by the

6It is worthwhile to remember that the MO evaluation scheme does not distinguish between feasible and infeasible
solutions. Hence, the AIR measure applies only to the SO formulation of the problem.
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Figure 5.2: Size of the sampled neutral networks (NS). Two-dimensional 2d4 instance (left) and
three-dimensional 3d1 instance (right).

fact that fitness, given in terms of the number of H-H topological contacts in this case, is directly

related to the compactness of the encoded protein conformations. The higher the fitness value, the

more compact the encoded protein structure tends to be. Hence, it is reasonable to conjecture that

most perturbations to the encoding of a compact conformation could lead either to an infeasible

solution, or to a less folded state of the protein chain which worsens the fitness. Finally, the use of

the MO formulation of the problem reports an important increase in the ANR measure, with respect

to the SO formulation, for all fitness classes of the two considered test instances. By introducing

incomparability between feasible and infeasible solutions, a substantial fraction of the infeasibility

has been translated into landscape neutrality as a consequence of the problem transformation.

5.4.2.2 Size of the neutral networks

This section investigates how the change in the problem formulation has impacted on the size (number

of solutions) of the NNs. Figure 5.2 reports the size of each computed NNSO and NNMO network,

as well as the arithmetic mean for the different fitness classes. Notice that results in the plots are

presented in a logarithmic (base 10) scale. Figure 5.2 reveals that fitness landscapes in the HP

model are characterized by a vast amount of the neutrality, as it has also been pointed out in Section

4.4.3.2. Even though a low maximum allowed depth level (maxDepth = 5) was defined during the

NN sampling, using the SO formulation the NNs at fitness class 0 are composed of about 105 and

106 solutions for the 2d4 and 3d1 instances, respectively. The high neutrality which can be found at



124 5.4. Fitness landscape transformation

0 1 2 3 4 5 6 7 8 9

40

50

60

70

80

90

fitness class

in
fe

a
s
ib

le
 s

o
lu

ti
o
n
s
 (

%
)

 

 

 2d4 mean

0 1 2 3 4 5 6 7 8 9 10 11
0

20

40

60

80

fitness class

in
fe

a
s
ib

le
 s

o
lu

ti
o
n
s
 (

%
)

 

 

 3d1 mean

Figure 5.3: Percentage of infeasible solutions in the NNs sampled using the MO formulation. Instance
2d4 (left) and instance 3d1 (right).

low fitness classes leads to the formation of large NNs. On the contrary, solutions at the best fitness

classes tend to be more isolated and enclosed by infeasible states. The increase in the neutrality

ratios originated from the use of the MO formulation, as analyzed in Section 5.4.2.1, has led to a

significant rise in the size of the sampled NNs. NNs computed based on the MO formulation can be

several orders of magnitude larger than those computed based on the SO formulation. This behavior

becomes more evident as higher fitness classes are considered. It is important to realize that, given

a solution x, NNMO(x) will always be a supergraph (presenting at least the size) of NNSO(x). It is

worth mentioning that only slight variations in the size of NNMO networks can be perceived from the

plots across the different fitness classes. Finally, it becomes relevant for this study the question of to

what extent the sampled NNMO networks are composed of infeasible solutions. Figure 5.3 addresses

this question. Despite that a feasible solution was given in all the cases as the starting point for the

NNs exploration, the bulk of NNMO networks consists of infeasible states. According to Figure 5.3,

between 70% and 80% of the nodes, in average, were found to be infeasible when focusing on the

two-dimensional instance (respectively, between 50% and 70% for the three-dimensional case).

5.4.2.3 Connectivity between neutral networks

The introduction of neutrality into the fitness landscape leads to the formation of neutral connections

between NNs. As defined in Section 4.4.3.3, a neutral connection between NN1 and NN2 implies
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that, as a result of the problem transformation, (at least) a solution x1 from NN1 became part of

the neutral neighborhood of another solution x2 which belongs to NN2. Through such a neutral

connection, NN1 and NN2 are merged together into a larger NN involving all nodes and edges of

the original networks (plus the new edge(s) giving rise to the neutral connection).

In the particular context of the landscape transformation induced by the studied MO constraint-

handling strategy, a neutral connection between two NNs can occur, if and only if, one of the

two networks is feasible and the other infeasible (incomparability can only be introduced between

a feasible and an infeasible state, see Section 5.3). Note, however, that two feasible NNs can be

merged through a succession of neutral connections. More precisely, the linkage between two feasible

networks NN1 and NNk can be given in the form of a sequence 〈NN1, NN2, . . . , NNk−1, NNk〉,

such that each NNi is neutrally connected to NNi+1, 1 ≤ i < k, k ≥ 3, and at least NN2 and

NNk−1 are infeasible. In general, a minimum number of m− 1 infeasible NNs need to be traversed

in order to connect m feasible NNs. To support these ideas, an example is provided in Figure 5.4.

This figure illustrates a neutral walk, based on the MO formulation, from a feasible solution x1 with

Fitness(x1) = 3, to another feasible solution x6 with Fitness(x6) = 9 (the global optimum for

instance 2d4).7 In this example, the feasible NN(x1) and NN(x6) networks have been connected

by establishing intermediate neutral connections to (and between) four other different NNs; namely,

the infeasible networks NN(x2), NN(x3) and NN(x5), and the feasible network NN(x4). The six

solutions (x1 to x6), and all solutions in their respective NNs, become members of the same NN

under the MO evaluation scheme. Therefore, the observed increase in the size of the sampled NNs is

not exclusively due to the addition of a significant number of infeasible nodes, as analyzed in Section

5.4.2.2, but is also a result of the combination with other feasible NNs. It should thus be noted

that, as in the example, NNs resulting from the use of the MO formulation may involve solutions at

different fitness classes (in the original problem formulation) and varying degrees of infeasibility.

To elaborate further on this matter, this section analyzes how the use of the MO formulation

during the performed sampling produced neutral connections between NNs from distinct fitness

classes. For each fitness class c, the plots in Figure 5.5 indicate whether and how many of the NNs

7 It is important to remember that both f1 and f2 are to be minimized, and that f1(x) = E(x) = −Fitness(x).
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Figure 5.4: Neutral walk, based on the MO formulation, connecting six different solutions for instance
2d4. The encoding (based on relative moves) and objective values are provided for each solution.

computed for solutions at this fitness class formed neutral connections to NNs at each other possible

fitness class c′. More detailed information about the interpretation of these plots can be found in

Section 4.4.3.3. It is important to clarify that only connections to feasible NNs have been accounted

for in this analysis. It can be seen from the figure that neutral connections were created between

almost each possible pair of fitness classes of the adopted instances. As the only exceptions, no

connections to fitness class 9 were identified when sampling the NNs for fitness classes 1 and 2 of

instance 2d4. More connections appear indicated below (rather than above) the diagonals in the

plots. Indeed, the vast majority of the sampled NNs for the different fitness classes formed neutral

connections to NNs at all other lower fitness classes. As suggested in Section 4.4.3.3, inferior fitness

classes are easier to reach than the superior ones because of the funnel-like search landscape of the
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Figure 5.5: Neutral connections formed between fitness classes. Two-dimensional 2d4 instance (left)
and three-dimensional 3d1 instance (right).

problem [62]. Despite the use of a considerably low value for parameter maxDepth during the NN

sampling procedure, namely maxDepth = 5, such a reduced number of allowed neutral steps was

still enough to establish connections between even the most distant fitness classes. That is, Figure

5.5 reveals that 1 out of the 119 explored NNs at fitness class 0 of instance 2d4, the worst fitness

class, reached the optimum solution at fitness class 9. Note also that the 2 computed NNs from

fitness class 9 connected to fitness class 0. A similar behavior can be observed with regard to instance

3d1. Figure 5.5 shows that 3 out of the 84 NNs from fitness class 0 merged with NNs at the best

fitness class, i.e., 11, and that a total of 74 connections between these fitness classes occurred in

the opposite direction. All such connections were achieved after a maximum number of maxDepth

successive neutral moves from the solution given as the starting point for the NNs computation.

Although neutral connections were established between NNs at distant fitness classes, as discussed

above, it is possible to see from Figure 5.5 that the number of neutral connections tends to decrease

as the distance between fitness classes increases (higher numbers of neutral connections are shown

close to the diagonal). Therefore, the distance in fitness relates to the likelihood that two NNs can

connect. This is particularly true when the number of allowed intermediate neutral connections is

bounded (as it was done in this study with the use of parameter maxDepth). Similar observations

have been previously made within the context of the analysis conducted in Section 4.4.3.3.
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The formation of neutral connections between two feasible networks NN1 and NN2 can be

understood as the definition of (previously nonexistent) neutral paths bridging the corresponding

regions of the feasible space. By allowing movement across infeasible areas, any solution x1 from

NN1 could potentially be reached through a neutral walk departing at an arbitrary solution x2

belonging to NN2. On the one hand, this can be particularly relevant when dealing with problems

which present multiple disconnected feasible regions. On the other hand, even in connected feasible

spaces, the length of the shortest path between two feasible solutions can be significantly greater if

this path considers only feasible intermediate states [122]. In the example provided in Figure 5.4, the

feasible solutions x1 and x6 differ exactly in d = 5 encoding positions. By exhaustive enumeration,

it was found that all the d! = 120 possible shortest paths (of length d) connecting x1 and x6 involve

infeasible solutions.8 Therefore, the shortest feasible path between this pair of solutions is necessarily

longer (of length greater than d). It is worth mentioning that 11 out of the 120 shortest paths between

x1 and x6 represent neutral paths under the studied MO problem formulation (one of them illustrated

in Figure 5.4). In a related analysis reported in [66], Duarte-Flores and Smith computed all possible

shortest paths from a set of near-optimal solutions to the global optimum of a particular HP model’s

instance on the triangular lattice. As a result, only about 12% (on average) of the explored paths

were found to be strictly feasible. The fact that most of the shortest paths between feasible regions

traverse infeasible areas emphasizes the advantages of using the MO constraint-handling strategy.

Furthermore, a path within the boundaries of the feasible space may require the explicit movement

towards inferior fitness classes, especially when this path connects different basins of attraction.9

The alternative fitness landscape induced by the MO strategy may potentially define neutral paths

between basins of attraction, which can be exploited as a means of escaping from local optima.

8More specifically, 24 out of these 120 shortest paths involve 2 infeasible solutions, other 48 paths include 3
infeasible solutions, and all the 4 intermediate points are infeasible for the remaining 48 paths.

9The basin of attraction of a local optimum x, involves all the areas of the fitness landscape which lead (or tend
to lead) directly to x when optimizing based on gradient information.
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5.5 Introducing a search bias

By defining trade-offs between the quality and feasibility of candidate solutions, the multi-objective

(MO) approach to handle constraints allows for the exploitation of useful information from infeasible

areas of the fitness landscape. Despite the potential advantages of the MO strategy in terms of

the landscape transformation, as analyzed at the end of Section 5.4.2.3, its lack of a proper search

bias may also lead to detrimental effects on the ability of search algorithms for locating promising

regions of the feasible space. More specifically, if a bias towards the feasible region is not introduced,

a significant fraction of the computational effort can be invested in evaluating infeasible solutions.

Depending on the particular characteristics of the problem under consideration, an unbiased search

based on the MO method could even fail to reach any feasible solution at all [188].

In this section, the importance of coupling the MO constraint-handling strategy to an effective

biasing mechanism is investigated. Three different biasing methods for the MO strategy are to be

evaluated in terms of how their implementation impacts on the performance of search algorithms.

A basic single-solution-based evolutionary algorithm (EA), called the (1+1) EA, and a basic genetic

algorithm (GA), a population-based technique, have been considered.10 Details of these algorithms

and the adopted settings are provided in Sections 5.6.2 and 5.6.3. The analyses with regard to the

three considered biasing approaches are separately presented in Sections 5.5.1, 5.5.2 and 5.5.3.

5.5.1 Archiving

In evolutionary multi-objective optimization, maintaining a repository with the current approximation

of the Pareto-optimal set, and thus of the Pareto front, is usually assumed to be a crucial issue

[117,144]. Hereafter, this kind of nondominated solutions repository is to be called archive, and the

way this archive is constructed, updated and utilized during the search process will be referred to as

the archiving strategy. This section analyzes the extent to which an archiving strategy can influence

the behavior of the implemented (1+1) EA when using the MO constraint-handling technique.

10 It is important to note that some of the studied biasing methods are only suitable, and thus are only analyzed
here, either for (1+1) EA or for the GA.



130 5.5. Introducing a search bias

0

20

40

60

80

R
M

S
E

 (
%

)

 

 
2
d
1
 

2
d
2
 

2
d
3
 

2
d
4
 

2
d
5
 

2
d
6
 

2
d
7
 

2
d
8
 

2
d
9
 

2
d
1

0
 

2
d
1

1
 

2
d
1

2
 

2
d
1

3
 

2
d
1

4
 

2
d
1

5
 

 2D 

Basic (1+1) EA

Archiving (1+1) EA

0

20

40

60

80

R
M

S
E

 (
%

)

 

 

3
d
1
 

3
d
2
 

3
d
3
 

3
d
4
 

3
d
5
 

3
d
6
 

3
d
7
 

3
d
8
 

3
d
9
 

3
d
1

0
 

3
d
1

1
 

3
d
1

2
 

3
d
1

3
 

3
d
1

4
 

3
d
1

5
 

 3D 

Basic (1+1) EA

Archiving (1+1) EA

Figure 5.6: RMSE obtained by the basic and archiving variants of the (1+1) EA when using the MO
strategy. Two-dimensional (left) and three-dimensional test instances (right).

Rather than functioning as a source of genetic material, i.e., as a population, in the archiving

(1+1) EA the archive is used only with the aim of introducing a bias in the selection process. In order

to be accepted, a new candidate individual must represent a competitive trade-off between the two

defined optimization objectives. This is determined by comparing the new individual with respect to

the whole Pareto front approximation stored in the archive. In this way, although (strictly speaking)

an explicit bias towards the feasible region is not being applied, archiving restricts the movement of

the algorithm, allowing it to concentrate on promising regions, either feasible or infeasible, of the

fitness landscape. This archiving variant of the (1+1) EA is described in detail in Section 4.5.1.

Figure 5.6 contrasts the performance of the basic and archiving variants of the (1+1) EA, using

the MO strategy, for all two- and three-dimensional test instances. Results are reported in terms

of the relative root mean square error, RMSE, computed over a total of 31 independent executions

of each experiment. In all the cases, the two algorithms were run for a maximum number of 106

solution evaluations. As it can be seen from the plots, the use of the archiving strategy within the

(1+1) EA has led to a significant improvement in the RMSE measure for all the 30 adopted test

cases (lower RMSE is preferred). It is also possible to observe that the benefits of archiving tend to

become more evident as the size of the problem (length of the input protein sequence) increases.

From the above discussed results, archiving has been found to be essential for guiding the search

process effectively when the MO constraint-handling strategy is implemented. In the words of Handl
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et al. [85]: “this way of using an archive yields a negative efficiency preserving strategy, i.e., it

prevents degradation of solutions. We say there is degradation if the current solution is replaced

at some later iteration by one that it dominates. Such degradation prevents convergence and can

lead to endless cycling between solutions that are not mutually incomparable”. Without archiving,

therefore, the (1+1) EA based on the MO strategy may drift through the search landscape, moving

away from or moving towards the feasible region in a bias-free manner.

Finally, it should be noted that archiving strategies can also be used in the context of population-

based methods (where archives are usually referred to as secondary populations). The considered

GA, however, relies on an elitist selection scheme which inherently preserves in the population the

current Pareto front approximation (or at least part of it due to the fixed population size). Thus,

the biasing effects obtained through archiving are implicitly incorporated in such an algorithm.

5.5.2 Feasibility rules

One of the simplest, yet effective and widely used constraint-handling methods, consists in defining a

set of rules on which the discrimination among individuals is to be based. This approach is commonly

referred to as the use of feasibility rules in the specialized literature [151, 160, 161, 167, 244]. The

popularity of this method stems not only from its parameter-free nature, but also from its ability

to be combined with other constraint-handling mechanisms, as reviewed in [161]. One of the most

representative works on this topic was reported by Deb [58], where it was proposed a GA implementing

a binary tournament selection operator which relies on the following three criteria:

1. If comparing between two feasible solutions, the one with

the best objective function value is to be preferred.

2. If comparing between two infeasible solutions, the one with

the lowest infeasibility degree is to be preferred.

3. If comparing between a feasible and an infeasible solution,

the feasible one is to be preferred.
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The first criterion can be generalized to the case where solutions presenting the same degree of

constraint violation are considered. This more general case involves the comparison between feasible

individuals, as in the original rule, but covers also the case where two infeasible individuals with the

same infeasibility degree are being compared. Such a later scenario has not been accounted for in the

originally proposed set of rules [158]. This extended version of the first criterion is implicitly satisfied

when handling constraints by multi-objective (MO) optimization. The MO approach, however, lacks

the bias towards the feasible region that the second and third discrimination criteria represent.

This section explores how the use of simple feasibility rules based on the MO method can help

in guiding the search process effectively in the implemented GA.11 More specifically, the preference

relation between two solutions x1,x2 ∈ X will depend on the following three criteria:

1. If x1 ≺ x2, then solution x1 is to be preferred.

2. If x2 ≺ x1, then solution x2 is to be preferred.

3. Otherwise, i.e., x1 ⊀ x2 and x2 ⊀ x1, the solution with the lowest

degree of constraint violation (lowest f2 value) is to be preferred.

That is, individuals will be first compared based on the Pareto-dominance relation. Whenever no

preferences can be imposed by using the Pareto-dominance relation, the degree of infeasibility of the

solutions will be adopted as a secondary discrimination criterion. The implementation of these rules

required the adaptation of both the selection-for-variation and selection-for-survival processes

of the GA. On the one hand, in selection-for-variation the binary tournament selection operator

was simply equipped with the new defined set of rules. On the other hand, the selection-for-

survival process is performed by means of nondominated sorting [59]. As treated more extensively

in the preamble of Section 4.5.2, the nondominated sorting procedure works by defining layers of

nondominated individuals, which are then iteratively included (from the best down to the worst layer)

until completing the new GA population. If this iterative selection procedure faces a nondominated

layer containing more individuals than the number of free slots in the population, the secondary

11 Implementing this approach within the (1+1) EA results in over-penalization; once a feasible solution is reached,
infeasible solutions would not be considered anymore. Thus, the conducted analysis focuses only on the GA.
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Figure 5.7: Introducing a search bias in the GA by using feasibility rules. RMSE obtained for all the
two-dimensional (left) and three-dimensional test instances (right).

criterion based on infeasibility degrees is applied in order to choose the remaining survivors. Since

only the last considered nondominated layer is discriminated based on such an infeasibility-based

criterion, a significant portion of the infeasible individuals could potentially be selected.12 This

reduces the selection pressure and, thus, can contribute in overcoming premature convergence, a

problem usually related to the use of the feasibility rules approach for handling constraints [161].

The performance of the GA using the MO constraint-handling strategy was evaluated with and

without incorporating the above described infeasibility-based secondary criterion. In addition, a third

variant of the GA was considered where such a secondary discrimination criterion is based on the

original objective function, and not on the infeasibility degrees. In this way, it will be possible to

analyze not only the importance of having a search bias, but also the effects that can be achieved if

this bias favors either one or the other of the two optimization objectives defined by the MO strategy.

Figure 5.7 presents the obtained results, in terms of the RMSE, for all two- and three-dimensional

test cases.13 In all the experiments, a maximum number of 106 evaluations was used as the stopping

condition and 31 repetitions were performed. The introduction of a search bias towards the feasible

region allowed the GA to score the best RMSE values in most of the cases. Although no important

differences can be appreciated for the smallest problem instances, the advantages of introducing this

12 The number of selected feasible individuals will always match the number of considered nondominated layers.
This is because there can be at most one feasible solution per nondominated set computed based on the MO strategy.

13 For each of the instances, the results presented in Figure 5.7 correspond to the lowest RMSE values obtained by
evaluating a set of different parameter configurations of the GA, refer to Section 5.6.3.1 for details.
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bias are more clear when focusing on the hardest ones (rightmost part of the plots). It is interesting

to observe from the figure that, rather than benefiting optimization, biasing the search according

to the original objective has impacted negatively on the performance of the GA. Realize that in

a set of nondominated solutions, computed based on the MO strategy, there can be at most one

feasible solution; all other solutions within the set are infeasible and, by definition, strictly better

than the feasible member with regard to the original objective. Therefore, the discrimination of

nondominated individuals based solely on the original objective will favor those individuals which,

despite showing a prominent behavior for this criterion, represent the poorest trade-offs in terms of

infeasibility. Consequently, the search process can be guided away from the feasible space.

5.5.3 Proportional bias

In multi-objective optimization, introducing a bias can be understood as the articulation of preferences

to capture the relative importance of the different optimization criteria. Consider a two-objective

problem, denoted by the objective vector f(x) = [f1(x), f2(x)]T . If f2 was determined to be a more

important objective function than f1, it can be hypothesized that the addition of noise to f1, a noise

which is proportional and directly dependent on f2, would produce a biasing effect in order to favor

f2 during the search process. That is, the incorporation of noise into f1 relaxes the selection pressure

with regard to this objective, since the real contribution of f1 to guiding the search is reduced.

Moreover, by relating the injected noise with function f2, the selection pressure with respect to f2

is strengthened, yielding a bias. From this reasoning, the above multi-objective problem, where f2

is assumed to be the highest priority objective, can alternatively be stated in terms of the objective

vector f ′(x) = [f ′1(x), f ′2(x)]T , such that

f ′1(x) = f1(x) + ω

(
f2(x)

fmax2

)
(fmax1 − fmin1 ), (5.3)

f ′2(x) = f2(x), (5.4)
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where fmax1 and fmin1 are the maximum and minimum known values for function f1 (since the

beginning of the search), and fmax2 is the maximum known value for function f2.14 In (5.3), factor

(fmax1 − fmin1 ) represents the maximum known difference between f1 values, so that by using this

value it would be possible to alter the preference relation between any pair of solutions with regard

to f1. Factor
(
f2(x)
fmax
2

)
allows the incorporated noise to be proportional to the scored f2 performance;

i.e., this factor tends to 1 as worse f2 values are considered (minimization assumed). Therefore, the

better the solution in objective f2, the lower the perturbation to its f1 value. Finally, the bias strength

ω is a user defined parameter introduced with the aim of evaluating the impact of further controlling

the magnitude of the applied noise. Using this strategy, two different solutions that are incomparable

(nondominated) with respect to their original f objective vectors, could be discriminated (in favor of

the best f2 performance) if compared based on their alternative objective vectors f ′. This strategy

can thus be implemented within an optimization algorithm in order to set a search bias.

This section tests the ability of the above described strategy to provide the multi-objective (MO)

constraint-handling approach with an effective search bias. The objective function f2 in the MO

problem formulation, which accounts for the degree of constraint violation, is to be defined as

the most important criterion in order to bias the search towards the feasible region. It should be

emphasized that, under the studied MO formulation, the use of this proportional biasing mechanism

will only affect infeasible individuals; i.e., it holds that f2(x) = 0 for all feasible individuals x ∈ XF ,

so that no noise can be added to their f1 values. In contrast to Sections 5.5.1 and 5.5.2, the analysis

here presented focuses on the two implemented search algorithms, namely the (1+1) EA and the GA.

In these algorithms, the alternative objective vectors f ′ of all individuals are to be computed at each

iteration to serve as the basis for driving selection. A large set of values in the range [0, 2] have been

explored for the bias strength parameter ω, where ω = 0 indicates that no bias is to be applied. In all

the cases, the algorithms were run for a total of 106 solution evaluations, 31 independent executions

were performed, and results are to be evaluated in terms of the O-RMSE measure.

14 Alternatively, fmax
1 , fmin

1 and fmax
2 could be computed from the current population or Pareto front approxima-

tion. These values could even be fixed if this problem-dependent information is known a priori.
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Figure 5.8: Introducing a proportional bias in the MO strategy. O-RMSE obtained by the basic and
archiving (1+1) EA for the two-dimensional (left) and three-dimensional test instances (right).

The results for the (1+1) EA are shown in Figure 5.8. In addition to the basic (1+1) EA, the

evaluation of the proportional biasing mechanism covers also the archiving variant of the (1+1)

EA, as described and analyzed in Section 5.5.1. Hence, the archiving (1+1) EA studied in this

section integrates two different biasing methods (i.e., archiving and the proportional bias). Figure

5.8 confirms the need for an effective biasing strategy when the handling of constraints is approached

by multi-objective optimization. Without a bias (ω = 0), the basic (1+1) EA scored considerably

high O-RMSE values for both the two- and the three-dimensional test instances. Note, however,

that the performance of this algorithm was gradually improved with the increasing value of ω. The

best performance for the basic (1+1) EA was reached at ω = 1.6 for the two-dimensional instances,

and ω = 1.7 for three-dimensional case. The O-RMSE measure was decreased by more than 23%

in both cases with respect to the corresponding results at ω = 0. Due to the implicit bias that the

archiving (1+1) EA involves, the rewards of implementing the proportional biasing strategy were not

as remarkable as those for the basic version of this algorithm. Nevertheless, most of the explored ω

values allowed the archiving (1+1) EA to achieve slight but still appreciable decreases in the O-RMSE.

While the basic (1+1) EA performed the best for high ω values (ω > 1.5), a less strength of the

proportional bias was required when using the self-biasing archiving (1+1) EA (whose performance

deteriorated for the highest ω values). The archiving (1+1) EA showed its best performance when

using a value of ω = 1.3 (two-dimensional case), and ω = 0.9 (three-dimensional case).
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Figure 5.9: Introducing a proportional bias in the MO strategy. O-RMSE obtained by the GA for
the two-dimensional (left) and three-dimensional test instances (right).

Finally, Figure 5.9 presents the obtained results with regard to the GA.15 The incorporation of the

proportional biasing mechanism has led to a significant enhancement in the performance of the GA.

The behavior of the GA exhibits a clear tendency to improve with the increase in the bias strength

parameter ω. It is interesting to note, however, that once the best O-RMSE values were reached at

ω = 1.6 and ω = 1.5 (for the two- and three-dimensional cases, respectively), this tendency changes

and the GA’s performance begins to decline for higher ω values. From this, and given that the

above analyzed (1+1) EA suffered a performance decrease when using the highest ω values as well,

it is possible to say that the excessive bias could also be detrimental to the search efficiency. In

this particular context, the increase in ω tends to lead to over-penalization. Therefore, defining the

proper amount of search bias could be a non-trivial, problem- and algorithm-dependent task.

5.6 Impact on search performance

This section investigates the suitability of the multi-objective optimization (MO) strategy for handling

constraints in the HP model. To this end, the MO strategy is evaluated and compared with respect

to two different constraint-handling approaches usually adopted in the specialized literature, namely,

the rejection of infeasible protein conformations and the application of penalties. These approaches

15 For each considered ω value, the O-RMSE in Figure 5.9 corresponds to the best performance obtained by
evaluating a set of different parameter configurations for the GA; details provided in Section 5.6.3.1.
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are to be referred in this section to as the reject (RJ) and penalty function (PF) strategies and are

described in detail in 5.6.1. As discussed in Section 5.5, introducing a proper search bias is crucial

for the success of the MO strategy. This issue is further addressed in this section by evaluating the

different biasing mechanisms studied in Section 5.5 with respect to each other. The comparative

analysis presented in this section focuses on the impact that the various studied constraint-handling

methods have on the performance of search algorithms. Two different evolutionary algorithms (EAs)

have been considered, namely, a basic single-solution-based EA and a population-based EA. The

corresponding analyses are covered in Sections 5.6.2 and 5.6.3.

5.6.1 Baseline constraint-handling methods

The purpose of this section is to describe the two constraint-handling strategies for the HP model

which have been taken as a baseline in this study. The first strategy, described in Section 5.6.1.1, is

based on the rejection of solutions encoding infeasible protein conformations. The second considered

approach is based on the application of penalties and is detailed in Section 5.6.1.2.

5.6.1.1 Reject strategy

A basic reject strategy (RJ) is considered where only feasible protein conformations are accepted

during the search process. A single-solution-based evolutionary algorithm (EA), the (1+1) EA, and

a genetic algorithm (GA) are used in this study; refer to Sections 5.6.2 and 5.6.3 for details. In order

to implement the RJ strategy, the variation operators of these algorithms were adapted as follows. In

the (1+1) EA, once mutation is to be applied to a particular encoding position (determined based on

a given probability), all possible perturbations to this position are evaluated in random order until a

feasible conformation is obtained. If no change in this position leads to a feasible conformation, the

original value is restored. The GA uses a one-point crossover operator. In this operator, all possible

crossover points are explored in random order until feasible children are produced; otherwise, either

one or both of the parents are copied unchanged. The mutation operator of the GA was adapted

in the same manner as described above for the (1+1) EA. Note that such a persistent application
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of the variation operators involves an additional computational effort (i.e., a significant number of

infeasible individuals could potentially be verified and discarded without consuming objective function

evaluations, on which the stopping criterion of the implemented algorithms relies). Furthermore, the

RJ strategy requires the algorithms to be provided with initial feasible individuals. The backtracking

procedure proposed in [42] was used for generating such initial feasible individuals.

The above described RJ strategy is equivalent to the one analyzed by Duarte-Flores and Smith

within a GA [66]. Similar strategies have also been adopted in the context of different search meta-

heuristics. For example, the hypermutation and hypermacromutation mechanisms, as implemented in

some immune system-based algorithms for the HP model reported in the literature, operate in a sim-

ilar feasibility-preserving fashion. These operators iteratively apply a series of mutations to the input

solution and infeasible solutions encountered during this process are always discarded [49, 53, 57].

5.6.1.2 Penalty function

A constraint-handling strategy based on the use of a penalty function (PF) has been considered

in this study. In the PF strategy, the energy (objective) value of a candidate solution is penalized

according to the number of collisions that the encoded protein conformation presents. More formally,

PSP under the HP model is restated as the problem of minimizing an alternative objective function

f(x) defined as follows (x ∈ X ):

f(x) = E(x) + ρ× ζ × Collisions(x), (5.5)

where E(x) denotes the conventional energy function of the HP model introduced in Section 2.3.3.1.

Collisions(x) refers to the total number of amino acid pairs (ai, aj) in x such that ai and aj

collide at the same lattice position (as used also in the proposed MO strategy, see Section 5.3).

Finally, the value of ζ is to be large enough that, assuming a penalty weight of ρ = 1, it holds that

f(xi) ≤ 0,∀xi ∈ XF while f(xj) > 0, ∀xj ∈ X \ XF . By defining the penalty weight ρ within the

range [0, 1], it will then be possible to move from an under-penalization scenario (ρ = 0), where

comparisons are only based on the original objective function of the problem, to an over-penalization
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Figure 5.10: Impact of varying the penalty weight (ρ) of the PF method on the (1+1) EA’s perfor-
mance. Two- (left) and three-dimensional (right) instances.
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Figure 5.11: Impact of varying the penalty weight (ρ) of the PF method on the performance of the
GA. Two- (left) and three-dimensional (right) instances.

scenario (ρ = 1), where the penalty term dominates discrimination [187]. In this study, ζ was set to

ζ = 2`H + 2 for the two-dimensional square lattice and ζ = 4`H + 2 for the three-dimensional cubic

lattice. These values represent upper bounds on the number of H-H topological contacts that can

be formed in the corresponding lattices and have also been considered in [122]. It should be noted

that ζ depends on the total number of hydrophobic amino acids in the protein sequence, `H .

With the aim of investigating the importance of the penalty weight ρ, and also to enable a more

reliable comparative analysis in Sections 5.6.2 and 5.6.3, different settings for this parameter are here

explored. Figures 5.10 and 5.11 show the performance scored by the (1+1) evolutionary algorithm
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(EA) and the genetic algorithm (GA) when using the PF method with a series of different ρ values

in the range [0, 1]. Performance is expressed in terms of the O-RMSE measure, computed over a

total of 31 independent repetitions for each experiment. In general, the worst behavior of both the

(1+1) EA and the GA was exhibited when no penalties were applied (ρ = 0).16 Figure 5.10 indicates

that ρ = 0.15 allowed the (1+1) EA to achieve its best performance at solving the two-dimensional

instances, and all considered ρ values in the range [0.15, 1] produced the best results for the three-

dimensional case. Regarding the GA, it is possible to observe from Figure 5.11 that the lowest

O-RMSE values were reached by using ρ = 0.15 and ρ = 0.05 for the two- and three-dimensional

test instances, respectively. The best performing settings for the PF method, as described above,

have been considered during the comparative analysis conducted in Sections 5.6.2 and 5.6.3.

5.6.2 Analysis for a single-solution-based algorithm

A basic single-solution-based evolutionary algorithm (EA), the so-called (1+1) EA, has been imple-

mented in order to assess the impact of using the studied constraint-handling methods. Five different

constraint-handling approaches are considered, the reject (RJ) and penalty function (PF) strategies

taken as the baseline, and three variants of the proposed multi-objective (MO) technique originated

from the use of the biasing mechanisms analyzed in Section 5.5: (i) MO+AR, where archiving is

used to bias the search process; (ii) MO+PB, where a proportional bias is introduced; and (iii)

MO+AR+PB, which combines both the archiving and the proportional biasing mechanisms.

The functioning of the (1+1) EA has been previously described through Algorithm 5 in Section

4.5.1. In this algorithm, the acceptance criterion, and thus the discrimination among candidate

individuals, depends upon the constrain-handling strategy to be applied. On the one hand, it can

be based on the one-dimensional objective (energy) value of the candidate conformations, either

including penalties or not (PF and RJ approaches, respectively). On the other hand, acceptance

will be based on the Pareto-dominance relation when applying the MO strategy. In this way, the

search behavior and performance of this algorithm will be determined by each of the different studied

16In Figures 5.10 and 5.11, the results obtained when using the lowest considered ρ values (leftmost data) have
not been displayed in order to highlight details in the most relevant part of the plots.
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techniques. Also, the archiving variant of the (1+1) EA, on which the MO+AR and MO+AR+PB

approaches rely (see Sections 5.5.1 and 5.5.3), is further described in Section 4.5.1.

In all the cases, an internal coordinates representation based on the relative moves encoding has

been implemented.17 Details on this representation are provided in Section 2.3.3.3. The mutation

probability was fixed to pm = 1
`−2 , where `− 2 denotes the length of the individuals encoding.

Finally, a maximum number of 106 solution evaluations was adopted as the stopping condition. The

proportional biasing mechanism, which leads to the MO+PB and MO+AR+PB strategies, requires

the adjustment of the bias strength parameter, ω. Similarly, the PF method requires the fine-tuning

of the penalty weight, ρ. The analysis conducted in this section considers the best performing settings

for these parameters, as they were respectively derived in Section 5.5.3 and 5.6.1.2.

5.6.2.1 Comparative analysis

Figure 5.12 shows the online (throughout the search) performance achieved by the (1+1) EA when

using the studied constraint-handling approaches. Performance is expressed in terms of the overall

relative root mean square error, O-RMSE, computed from 100 independent executions of each

experiment.18 Results are reported in steps of 50, 000 solution evaluations until completing the

maximum number of 106 evaluations defined as the stopping condition. From these figures, it is

possible to see that the lowest O-RMSE values, in both the two- and the three-dimensional test cases,

were reached by using MO+AR+PB. Therefore, the use of archiving together with the introduction

of a proportional bias constitutes a more effective biasing strategy when compared to the separate use

of these mechanisms. MO+PB presented a more accelerated convergence than MO+AR at the first

stages of the search. This can be explained by the fact that, given that MO+AR does not explicitly

bias the search towards the feasible region (as discussed in Section 5.5.1), this method invests more

effort in exploring infeasible states. It is worth noting, however, that such an investment has paid

17 The use of relative rather than absolute moves to represent protein conformations provides an advantage in terms
of constraint-handling. As detailed in Section 2.3.3.3, using relative moves all possible solution encodings represent
one-step self-avoiding conformations. This is the motivation for using such an encoding scheme in this chapter.

18 Notice that, while previous analyses considering different parameter settings for the compared approaches were
based on 31 repetitions of the experiments, detailed analyses using the best performing settings are based on 100
repetitions in order to compare more representative performance samples.
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Figure 5.12: O-RMSE scored by the (1+1) EA as the search process progressed. Two-dimensional
(left) and three-dimensional (right) instances.

off; the slope in the corresponding curve is more pronounced, indicating that MO+AR exhibits a

greater tendency to improve. This allowed MO+AR to score the second best O-RMSE values at the

end of the search process. Finally, PF provided a more competitive behavior for the (1+1) EA when

compared to the use of RJ, which obtained the poorest overall performance.

To further compare the studied constraint-handling approaches, Tables 5.2 and 5.3 detail the

results for all two- and three-dimensional test instances at the end of the search process (after 106

solution evaluations). The results for each of the instances are given in terms of the best obtained

energy value (Eb), the number of performed executions where this solution was found (ν), and the

arithmetic mean (Ē). In addition, the O-RMSE measure is provided at the bottom of the tables. The

lowest average energy obtained for each of the instances, as well as the best O-RMSE values, appears

shaded in these tables. As it can be seen from the tables, the use of the three multi-objective

strategies improved the average performance of the algorithm in the vast majority of the cases with

respect to the RJ and PF methods. An interesting behavior can be observed with regard to the

MO+AR and MO+PB approaches. While MO+AR tends to perform better than MO+PB for the

shortest test sequences, MO+PB scored more competitive results for the largest ones. This suggests

that, by not explicitly introducing a search bias, MO+AR yields a broader exploration. Nevertheless,

an explicit and more effective bias seems to be required if the hardness of the problem instances

increases. Note, however, that MO+AR was found when analyzing Figure 5.12 to present a greater
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Table 5.2: Results obtained by the (1+1) EA when using the studied constraint-handling strategies.
Two-dimensional test cases.

RJ PF MO+AR MO+PB MO+AR+PB

Seq. ` E∗ Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē

2d1 18 -4 -4 (6) -2.62 -4 (54) -3.54 -4 (100) -4.00 -4 (86) -3.86 -4 (100) -4.00

2d2 18 -8 -7 (65) -6.62 -8 (54) -7.54 -8 (84) -7.84 -8 (83) -7.83 -8 (86) -7.86

2d3 18 -9 -8 (50) -7.46 -9 (43) -8.42 -9 (70) -8.70 -9 (18) -8.18 -9 (86) -8.86

2d4 20 -9 -8 (16) -6.67 -9 (64) -8.60 -9 (98) -8.97 -9 (33) -8.29 -9 (95) -8.95

2d5 20 -10 -8 (32) -7.24 -10 (39) -8.99 -10 (86) -9.86 -10 (44) -9.10 -10 (58) -9.55

2d6 24 -9 -9 (1) -7.03 -9 (46) -8.45 -9 (83) -8.83 -9 (33) -8.30 -9 (69) -8.69

2d7 25 -8 -8 (1) -5.68 -8 (15) -7.01 -8 (43) -7.41 -8 (24) -7.19 -8 (50) -7.49

2d8 36 -14 -12 (7) -9.82 -13 (10) -11.28 -14 (1) -11.36 -13 (8) -11.34 -14 (2) -11.58

2d9 48 -23 -19 (2) -14.88 -20 (2) -16.79 -23 (1) -17.69 -20 (2) -17.41 -21 (2) -17.83

2d10 50 -21 -19 (1) -14.78 -21 (1) -16.49 -20 (6) -17.04 -21 (1) -17.46 -21 (2) -17.77

2d11 60 -36 -32 (1) -26.12 -32 (3) -28.20 -34 (1) -27.81 -32 (2) -28.75 -33 (2) -28.81

2d12 64 -42 -31 (1) -24.00 -31 (7) -26.04 -33 (1) -26.25 -32 (3) -28.13 -33 (2) -26.68

2d13 85 -53 -41 (1) -34.50 -44 (1) -37.75 -45 (1) -35.54 -45 (1) -39.03 -46 (1) -38.78

2d14 100 -48 -38 (1) -29.69 -41 (2) -34.55 -41 (1) -32.90 -40 (1) -34.74 -42 (1) -34.78

2d15 100 -50 -40 (1) -31.30 -40 (1) -34.70 -40 (1) -32.60 -41 (2) -35.73 -42 (3) -36.23

O-RMSE 31.08% 19.93% 17.43% 17.95% 15.65%

Table 5.3: Results obtained by the (1+1) EA when using the studied constraint-handling strategies.
Three-dimensional test cases.

RJ PF MO+AR MO+PB MO+AR+PB

Seq. ` E∗ Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē

3d1 20 -11 -11 (58) -10.43 -11 (93) -10.92 -11 (100) -11.00 -11 (95) -10.95 -11 (99) -10.99

3d2 24 -13 -13 (13) -11.07 -13 (54) -12.37 -13 (94) -12.94 -13 (43) -12.16 -13 (77) -12.74

3d3 25 -9 -9 (58) -8.42 -9 (97) -8.97 -9 (100) -9.00 -9 (98) -8.98 -9 (100) -9.00

3d4 36 -18 -18 (14) -15.24 -18 (25) -16.08 -18 (46) -16.97 -18 (23) -16.37 -18 (57) -17.27

3d5 46 -35 -28 (2) -24.06 -30 (3) -25.33 -32 (1) -27.30 -30 (1) -25.80 -31 (2) -26.89

3d6 48 -31 -28 (2) -22.70 -29 (1) -24.00 -30 (1) -26.04 -30 (1) -24.71 -29 (7) -25.49

3d7 50 -34 -27 (1) -21.15 -27 (3) -22.19 -30 (1) -24.68 -28 (2) -23.17 -28 (2) -23.87

3d8 58 -44 -33 (3) -26.74 -34 (3) -28.75 -37 (1) -29.76 -34 (7) -29.97 -37 (1) -30.50

3d9 60 -55 -46 (2) -38.30 -47 (3) -40.67 -48 (2) -40.00 -48 (1) -41.13 -49 (2) -42.01

3d10 64 -59 -45 (2) -34.88 -47 (1) -36.44 -48 (1) -38.86 -50 (1) -39.01 -50 (1) -38.78

3d11 67 -56 -38 (3) -30.62 -41 (1) -32.22 -40 (2) -33.30 -41 (1) -33.60 -42 (1) -33.97

3d12 88 -72 -46 (1) -36.44 -49 (1) -37.15 -47 (5) -38.96 -48 (1) -40.15 -51 (1) -40.14

3d13 103 -58 -39 (1) -29.25 -38 (2) -29.67 -39 (1) -29.70 -39 (1) -33.10 -40 (1) -31.01

3d14 124 -75 -45 (2) -33.32 -46 (2) -34.11 -46 (1) -34.29 -52 (1) -39.28 -50 (1) -36.26

3d15 136 -83 -51 (1) -37.66 -51 (1) -37.94 -50 (1) -38.11 -51 (1) -43.41 -51 (2) -40.42

O-RMSE 34.76% 31.00% 27.94% 28.05% 27.36%
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Table 5.4: Statistical significance analysis for comparing the performance of the (1+1) EA when
implementing the different analyzed constraint-handling approaches.

Two-dimensional instances Three-dimensional instances
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Overall

PF / RJ + + + + + + + + + + + + + + + + + + + + + + + + + + 26+ 0−

MO+AR / RJ + + + + + + + + + + + + + + + + + + + + + + + + + + + 27+ 0−

MO+PB / RJ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 30+ 0−

MO+AR+PB / RJ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 30+ 0−

MO+AR / PF + + + + + + + + + − − − + + + + + + + + + + 19+ 3−

MO+PB / PF + + − − − + + + + + + + + + + + + + + + 17+ 3−

MO+AR+PB / PF + + + + + + + + + + + + + + + + + + + + + + + + + + 26+ 0−

MO+PB / MO+AR − − − − − − + + + + + − − − − − − + + + + 9+ 12−

MO+AR+PB / MO+AR + − − + + + + + − + − − + + + + 11+ 5−

MO+AR+PB / MO+PB + + + + + + + − + + + + + − − − 12+ 4−

tendency to improve as the search process progresses. The MO+AR strategy could thus be expected

to meet or even exceed the results of MO+PB for the largest test cases if the algorithm is allowed

to run for a higher number of solution evaluations. The best overall performance was exposed by

the MO+AR+PB method. By combining the advantages of the two different biasing mechanisms,

MO+AR+PB decreased the O-RMSE measure by 15.43% and 4.28% with respect to RJ and PF in

the two-dimensional instances, respectively, and by 7.4% and 3.64% in the three-dimensional case.

Finally, Table 5.4 complements the information provided in Tables 5.2 and 5.3 in order to highlight

whether the performance differences between the studied approaches were statistically significant or

not. Each row in this table compares two strategies, say A and B, which is denoted as “A / B”. If a

significant performance difference exists between A and B for a particular instance, the corresponding

cell is either marked + or marked − depending on whether such a difference was in favor of, or

against A. Unmarked cells indicate that there was not a statistically important difference between A

and B. The rightmost column of the table summarizes the results of this analysis. As shown in Table

5.4, PF and MO+AR significantly outperformed RJ in 26 and 27 of the instances. Both MO+PB and

MO+AR+PB achieved a statistically significant performance increase with regard to RJ for all the

30 adopted test sequences. The MO+AR, MO+PB and MO+AR+PB strategies scored significantly
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better results than PF in 19, 17 and 26 instances, respectively. Nevertheless, MO+AR and MO+PB

were each significantly surpassed by PF in 3 of the two-dimensional test cases. By comparing among

the multi-objective strategies, it is first possible to confirm that MO+PB was statistically superior

to MO+AR in 9 of the largest (hardest) test cases, while significantly inferior to MO+AR for 12 of

the smallest (easiest) ones. Finally, the table indicates that MO+AR+PB significantly improved the

performance for 11 and 12 of the instances with respect to MO+AR and MO+PB, but there were

still important differences favoring MO+AR and MO+PB respectively in 5 and 4 of the cases.

5.6.3 Analysis for a population-based algorithm

As the population-based method, the genetic algorithm (GA) described in detail in Section 4.5.2

has been considered. The implementation of the different constraint-handling strategies influences

the selection process (at both the selection-for-variation and the selection-for-survival stages),

which is a major determinant of the GA’s behavior. Hence, by evaluating the performance of the

GA, it will be possible to inquire into the advantages of using the four studied constraint-handling

approaches: the reject (RJ) and penalty function (PF) methods adopted as a reference, and the

multi-objective approaches introducing a search bias by means of feasibility rules (MO+FR) and

proportional biasing (MO+PB). When using the RJ and PF methods, selection is to be based on a

single-objective discrimination among candidate individuals. In contrast, when applying the MO+FR

and MO+PB strategies, the Pareto-dominance relation is used to impose a partial order among

individuals. The nondominated sorting procedure is used at the selection-for-survival stage, as it

is implemented within the Non-dominated Sorting Genetic Algorithm II, NSGA-II [59]. This procedure

is outlined in Section 4.5.2. Originally, NSGA-II uses also the so-called crowding distance measure

as a secondary discrimination criterion in order to promote population diversity [59]. In this study,

however, this measure has not been incorporated to avoid attributing the performance that the GA

achieves through the use of the multi-objective strategies to such a diversification mechanism.

An internal coordinates representation based on relative moves has been adopted (Section 2.3.3.3).

The implemented mating strategy and variation operators are the same as used in Section 4.5.2. It is
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worthy to mention that preliminary testing was conducted in order to explore the effects of prevent-

ing duplicate individuals from the population. As a result, the performance of the different analyzed

constraint-handling methods was significantly improved in all the cases when duplicate individuals

were removed from the population; this mechanism was enabled for all the reported experiments.

Finally, a maximum number of 106 evaluations was used as the termination criterion.

The four studied constraint-handling strategies are first evaluated in Section 5.6.3.1 under dif-

ferent parameter settings for the GA. The purpose of such an initial evaluation is to identify the

most appropriate GA conditions for each of the approaches, to be adopted during the more detailed

comparative analysis presented later in Section 5.6.3.2.

5.6.3.1 Settings for the genetic algorithm

The RJ, PF, MO+FR and MO+PB strategies are evaluated under different GA conditions. Three

recombination and mutation probabilities were considered: pc ∈ {0.8, 0.9, 1.0}, pm ∈ { 1
`−2 ,

2
`−2 ,

3
`−2}.

Thus, a total of 9 configurations of the implemented GA are investigated. The population size was

fixed to N = 100 in all the cases and a total of 31 repetitions for each experiment were performed.

Figure 5.13 plots the O-RMSE scored by the four studied constraint-handling approaches when using

the different GA settings. The PF and MO+PB strategies require the tuning of the penalty weight

(ρ) and the bias strength (ω) parameters, respectively. For each evaluated configuration of the GA,

the results of PF and MO+PB reported in Figure 5.13 correspond to the best O-RMSE obtained by

considering a diverse set of values for the respective parameters (see Section 5.5.3 and 5.6.1.2).

It is evident from Figure 5.13 that both MO+FR and MO+PB achieved lower O-RMSE values in

all cases when compared with respect to RJ and PF. The MO+PB strategy tends to perform better

than MO+FR for most GA settings, particularly when focusing on the two-dimensional instances.

Finally, the plots indicate that the use of PF yields better results in comparison to the use of RJ in

most cases. In general, no clear tendency in the GA’s performance can be distinguished with respect

to the variation in the recombination probability. It is possible to observe, however, that regardless

of the constraint-handling strategy used the GA responded positively to the increased mutation rate.
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Figure 5.13: Evaluating the studied constraint-handling mechanisms under different parameter set-
tings for the implemented GA. Two-dimensional (left) and three-dimensional (right) test instances.

For further analyses presented in Section 5.6.3.2, the settings for the GA which allowed each

of the compared approaches to reach the lowest O-RMSE value have been selected. The selected

recombination probabilities are as follows: (i) two-dimensional instances, pc = 0.8 for RJ, MO+FR

and MO+PB, and pc = 1.0 for PF; (ii) three-dimensional instances, pc = 0.8 for RJ and PF, and

pc = 1.0 for MO+FR and MO+PB. The mutation probability was set to pm = 3
`−2 in all the cases.

5.6.3.2 Comparative analysis

A detailed comparative analysis among the RJ, PF, MO+FR and MO+PB strategies is presented

in this section. In the experimentation here reported, the best performing parameter settings for

PF and MO+PB are considered; refer to Section 5.5.3 and 5.6.1.2 for details. Likewise, the best

performing GA conditions for each of the compared approaches were adopted (Section 5.6.3.1).

Figure 5.14 shows the online convergence (measured in terms of the O-RMSE) presented by the

GA when using the different constraint-handling approaches. The progress in the search is reported in

slots of 50, 000 solution evaluations until reaching the maximum allowed number of 106 evaluations.

This figure is quite revealing in several respects. First, it is possible to note from the plots that the

best results at the end of the search process were obtained by using the multi-objective strategies

(MO+FR and MO+PB), in both the two- and the three-dimensional test cases. The RJ method,

which exhibited the worst performance at the end, scored the best O-RMSE values at the beginning
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Figure 5.14: O-RMSE scored by the implemented GA as the search process progressed. Two-
dimensional (left) and three-dimensional (right) test instances.

of the search. Thus, the use of RJ enabled a faster convergence towards moderate-quality individuals.

Given that PF, MO+FR and MO+PB invest an additional amount of effort in evaluating infeasible

protein conformations, these strategies require more time (i.e., they consume more objective function

evaluations) to locate promising regions of the solution space. By allowing the algorithm to move

through infeasible states, however, these methods are more likely to reach better results at the end

of the optimization process; as it can be perceived from the slope in the corresponding convergence

curves. Finally, although MO+FR and MO+PB competed with the best O-RMSE values at the end,

it is important to observe that MO+FR showed a significantly inferior performance at the first stages

of the search (indeed the poorest performance among all the four compared techniques). This is

because the bias introduced in MO+FR is not as restrictive as that involved in MO+PB and PF, so

that MO+FR dedicates more resources to the exploration of infeasible regions of the landscape.

Tables 5.5 and 5.6 detail the above presented results of the GA after 106 solution evaluations. The

interpretation of these tables is the same as for Tables 5.2 and 5.3, refer to Section 5.6.2. Both the

MO+FR and MO+PB strategies reached a better average energy for most of the instances, thereby

lowering the O-RMSE, in comparison with RJ and PF. While MO+PB scored the best O-RSME

value for the two-dimensional instances, MO+FR obtained the lowest value for this measure in the

three-dimensional case. Even though no definite conclusions can be drawn regarding the superiority

of the multi-objective methods with respect to each other, it is possible to see from the tables that
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Table 5.5: Details of the results obtained by the implemented GA when using the studied constraint-
handling strategies. Two-dimensional test cases.

RJ PF MO+FR MO+PB

Seq. ` E∗ Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē

2d1 18 -4 -4 (98) -3.98 -4 (100) -4.00 -4 (100) -4.00 -4 (100) -4.00

2d2 18 -8 -8 (100) -8.00 -8 (100) -8.00 -8 (100) -8.00 -8 (100) -8.00

2d3 18 -9 -9 (100) -9.00 -9 (100) -9.00 -9 (99) -8.99 -9 (100) -9.00

2d4 20 -9 -9 (99) -8.99 -9 (100) -9.00 -9 (100) -9.00 -9 (100) -9.00

2d5 20 -10 -10 (97) -9.94 -10 (100) -10.00 -10 (100) -10.00 -10 (100) -10.00

2d6 24 -9 -9 (93) -8.93 -9 (86) -8.86 -9 (94) -8.94 -9 (96) -8.96

2d7 25 -8 -8 (57) -7.57 -8 (82) -7.82 -8 (95) -7.95 -8 (90) -7.90

2d8 36 -14 -14 (2) -11.76 -14 (2) -12.11 -14 (4) -11.95 -14 (3) -12.27

2d9 48 -23 -22 (2) -18.90 -22 (2) -18.96 -22 (7) -19.67 -22 (6) -19.58

2d10 50 -21 -21 (15) -19.19 -21 (15) -19.17 -21 (33) -20.14 -21 (31) -19.77

2d11 60 -36 -33 (3) -30.10 -34 (2) -30.78 -35 (1) -31.37 -34 (2) -30.90

2d12 64 -42 -39 (1) -33.34 -38 (1) -32.47 -37 (1) -31.49 -38 (2) -32.82

2d13 85 -53 -48 (2) -42.96 -47 (3) -43.04 -49 (2) -43.20 -48 (1) -43.59

2d14 100 -48 -40 (2) -35.70 -41 (2) -36.46 -43 (1) -37.12 -43 (1) -37.02

2d15 100 -50 -43 (2) -37.61 -44 (1) -38.09 -44 (2) -39.47 -43 (1) -38.91

O-RMSE 11.61% 10.62% 9.75% 9.62%

Table 5.6: Details of the results obtained by the implemented GA when using the studied constraint-
handling strategies. Three-dimensional test cases.

RJ PF MO+FR MO+PB

Seq. ` E∗ Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē

3d1 20 -11 -11 (100) -11.00 -11 (100) -11.00 -11 (100) -11.00 -11 (100) -11.00

3d2 24 -13 -13 (100) -13.00 -13 (98) -12.98 -13 (98) -12.96 -13 (97) -12.96

3d3 25 -9 -9 (98) -8.98 -9 (99) -8.99 -9 (100) -9.00 -9 (100) -9.00

3d4 36 -18 -18 (32) -16.54 -18 (31) -16.57 -18 (35) -16.84 -18 (40) -16.79

3d5 46 -35 -32 (1) -27.78 -34 (1) -28.45 -32 (4) -28.92 -32 (1) -28.34

3d6 48 -31 -30 (1) -26.94 -31 (1) -27.18 -31 (1) -27.39 -30 (4) -27.45

3d7 50 -34 -31 (2) -27.91 -31 (1) -27.75 -32 (1) -27.40 -31 (1) -27.78

3d8 58 -44 -38 (2) -33.30 -38 (1) -33.07 -41 (1) -34.52 -38 (2) -33.72

3d9 60 -55 -49 (2) -43.61 -49 (1) -44.02 -50 (1) -44.45 -49 (1) -44.60

3d10 64 -59 -53 (1) -47.02 -53 (1) -47.15 -51 (2) -45.63 -52 (3) -47.54

3d11 67 -56 -42 (2) -37.71 -44 (1) -37.78 -44 (3) -38.68 -44 (1) -38.28

3d12 88 -72 -52 (4) -44.75 -50 (5) -44.97 -54 (1) -47.30 -53 (1) -46.36

3d13 103 -58 -40 (1) -34.36 -43 (1) -33.76 -40 (5) -35.35 -41 (1) -35.16

3d14 124 -75 -53 (1) -41.34 -50 (2) -41.38 -51 (1) -43.56 -53 (1) -43.08

3d15 136 -83 -53 (1) -44.44 -54 (2) -44.69 -55 (1) -46.94 -55 (2) -46.28

O-RMSE 22.42% 22.24% 21.08% 21.27%
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Table 5.7: Statistical analysis for comparing the performance of the GA when using the different
constraint-handling approaches analyzed.

Two-dimensional instances Three-dimensional instances
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Overall

PF / RJ + + + − + + 5+ 1−

MO+FR / RJ + + + + − + + + + − + + − + + + + + 15+ 3−

MO+PB / RJ + + + + + + + + + + + + + + + 15+ 0−

MO+FR / PF + + + + − + + + + − + + + + + 13+ 2−

MO+PB / PF + + + + + + + + + + 10+ 0−

MO+PB / MO+FR + − − + − − + − 3+ 5−

MO+FR achieved a better Ē value in most cases. Finally, despite the poorer overall performance

of RJ, this strategy outperformed the other three approaches at solving one of the two-dimensional

instances (2d12) and a couple of the three-dimensional test cases (3d2 and 3d7).

Table 5.7 outlines the results of the statistical significance analysis and is interpreted as described

in Section 5.6.2 with regard to Table 5.4. As it can be observed from Table 5.7, no significant

performance differences between the four compared approaches were found when dealing with the

smallest test instances. The four studied methods scored similarly competitive results. PF was

significantly superior to RJ in 5 of the instances, but significantly inferior at solving the 2d12 instance.

Both MO+FR and MO+PB significantly increased the performance of the GA in 15 of the test cases

with respect to RJ. In addition, these multi-objective strategies statistically outperformed PF in 13

and 10 instances. Nonetheless, MO+FR presented a significantly lower performance in 3 and 2 of

the test cases in comparison to RJ and PF, respectively. Finally, there was a statistically significant

difference between the multi-objective strategies for 8 of the instances; in 3 out of these cases such

a significant difference favors MO+PB, while it favors MO+FR in the 5 remaining cases.
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5.7 Discussion and conclusions

The multi-objective (MO) approach to constraint-handling has been investigated in the context of

the HP model for protein structure prediction (PSP), a highly constrained optimization problem.

The HP model was reformulated as an unconstrained multi-objective problem by treating constraints

as an additional objective function. Rather than discriminating feasible from infeasible solutions,

the MO strategy defines trade-offs between quality (original objective function) and feasibility. This

gives infeasible solutions the opportunity to be considered and exploited during optimization.

In the first part of this study, a thorough fitness landscape analysis was conducted in order to

evaluate the effects that the (single-objective to multi-objective) problem transformation involves. As

a result, it was found that a significant portion of the infeasibility translates into landscape neutrality.

Under the MO problem formulation, it is possible for an infeasible solution to become part of the

neutral neighborhood of a feasible solution. This has prompted an important increase in the neutrality

degree of solutions and, consequently, in the size of the neutral networks (NNs). Such a landscape

transformation has led to the establishment of neutral connections between feasible and infeasible

NNs. Through a series of neutral connections, however, it is possible to bridge different regions of

the feasible space, potentially belonging to diverse fitness classes (this can be especially useful when

dealing with disjoint feasible spaces). By being allowed to traverse (originally inaccessible) infeasible

areas, a search algorithm can thus exploit these neutral connections in the form of new neutral paths

to navigate the landscape. The new defined neutral paths can not only be shorter than the existing

feasible paths, but can also play a central role in helping the algorithm to escape from local optima.

Despite the aforementioned advantages that the alternative multi-objective landscape entails,

an excessive increase in neutrality may also prevent a search algorithm from moving in the correct

direction. The conducted landscape analysis not only reported a considerable growth in the size

of the NNs due to the use of the MO problem formulation. It was also found that these NNs are

mainly composed of infeasible solutions. Without a proper search bias, therefore, the computational

resources can be exhausted by exploring uninteresting areas of the solution space (as it was also

pointed out by Runarsson and Yao [188]). From the fitness landscape perspective, providing the
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MO strategy with a search bias can be understood as the removal of part of the neutrality that

this strategy originally introduces. The goal becomes, thus, to benefit from having access to the

infeasible areas of the landscape, at the same time that most of the effort is invested in exploiting

promising search directions. The second part of this chapter studied the effectiveness of different

mechanisms for biasing the search towards the feasible region, which can be coupled to the MO

constraint-handling strategy. Three different biasing mechanisms were evaluated; namely, the use of

an archiving strategy, the incorporation of a secondary discrimination criterion (use of feasibility rules),

and the application of a proportional bias dependent on the degree of constraint violation. On the

one hand, the results of such an evaluation confirmed the need for performing a well-biased search

when using the MO strategy. The behavior of the considered search algorithms was significantly

improved with the implementation of all the three studied biasing approaches. On the other hand,

it was also possible to observe that a very strong bias could lead to override the positive effects of

the landscape transformation. Thus, the task of identifying the most appropriate amount of bias for

a particular problem and search algorithm, could be not as straightforward as might be thought.

In the last part of this study, the MO constraint-handling strategy was further explored by carry-

ing out a comparative analysis where two different approaches from the literature were considered;

namely, a rejecting strategy (RJ) where the search is confined to the space of only feasible conforma-

tions, and a penalty function (PF) where infeasible solutions are penalized according to the number

of conflicts they present. The different strategies were evaluated in terms of the performance of

basic evolutionary algorithms. As a result, the use of the MO strategy significantly improved the

performance of the implemented algorithms when compared with respect to both the RJ and PF

methods. This highlights the suitability of the proposed MO approach. It was also found that PF

scored better results in most cases with regard to the RJ strategy. The fact that both MO and PF

performed better than the RJ strategy, and that RJ requires a considerable amount of additional

computational resources, gives further support to the belief that considering infeasible protein con-

formations may contribute to the design of more competitive algorithms for solving the HP model

of the PSP problem; this has been a subject of concern in the specialized literature.



154 5.7. Discussion and conclusions

To the best of the author’s knowledge, the results of this research project represent the first efforts

on the use of multi-objective optimization methods to face the constraint-handling requirement which

arises when dealing with the HP model of the PSP problem. Basic evolutionary algorithms have been

used in this study for evaluating the suitability of this approach. From the obtained results, it is

expected that the MO strategy can be incorporated as a means of improving the performance of

established state-of-the-art algorithms for solving this problem. This issue needs to be investigated

in order to derive more general conclusions. Furthermore, the present study explored for the first

time, as far as the author is aware, the potential effects of implementing the MO constraint-handling

strategy through a fitness landscape analysis. Although such an analysis focused on a particular

case of study, the HP model of the PSP problem, similar effects to those observed with regard to

the landscape transformation can be expected from the use of the MO strategy in other problem

domains. Therefore, the performed analysis contributes to the general understanding of the MO

approach for handling constraints.



6
Conclusions and future work

This thesis project was concerned with the analysis and design of alternative evaluation schemes to

face the main optimization challenges involved with the prediction of protein structures under the HP

model. These challenges relate to the neutrality, multimodality and infeasibility that characterizes

the fitness landscapes of this hard combinatorial problem. The present document has reported all

the efforts made and the results obtained during the development of this research work. The purpose

of this concluding chapter is to summarize the main achieved findings and contributions, as well as

to discuss some possible directions that can be taken in order to extend this research.

6.1 Main findings and contributions

Neutrality

• Chapter 3 presented a comparative study of several alternative energy functions proposed in the

literature with the primary aim of addressing the neutrality of the HP model. The discrimination

capabilities, the consistency with the original problem’s definition, and the effectiveness of the

different functions to guide the search process, were the focus of the performed study.
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• The results of the conducted analysis indicate that both, the discrimination potential and the

compatibility with the problem, are two major factors determining the ability of an evaluation

function to drive effectively the search process. Functions excelling on the two mentioned

criteria consistently presented a promising behavior, improving the performance of search al-

gorithms with respect to the conventional problem formulation. Finally, it was observed that,

through a proper algorithm design, it is also possible to take advantage of the inherent neu-

trality of the HP model’s fitness landscape. This provides further support to previous findings

on this respect that have been recently reported in the literature [39, 154–156, 228, 231, 242].

• To the best of the author’s knowledge, this is the first reported comparative analysis of alter-

native evaluation schemes for the HP model.

• Preliminary results of this research work have been published in the following specialized inter-

national conferences:

– IEEE Congress on Evolutionary Computation, CEC. New Orleans, LA, USA. 2011 [68].

– International Conference on Bioinformatics & Computational Biology, BIOCOMP.

Las Vegas, NV, USA. 2011 [77].

Also, the full study, as presented in Chapter 3, has been recently published in the Journal of

Computer Science and Technology (JCST) [71].

Multimodality

• Chapter 4 explored the suitability of multi-objectivization for dealing with multimodality. Multi-

objectivization was accomplished by means of the decomposition of the original energy function

of the HP model. Three different multi-objective formulations of the problem were proposed.

The effects of the problem transformation were analyzed in detail, and the advantages of the

multi-objective formulations in terms of the performance of search algorithms were investigated

by comparing with respect to the conventional single-objective formulation of the HP model.
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• Multi-objectivization introduces incomparability among solutions, increasing the neutrality of

the fitness landscape. Neutral connections are established, which merges neutral networks into

larger connected areas of neutrality. On the one hand, this enhances the exploration behavior

of search algorithms, allowing them to move through inferior fitness classes as a means of

escaping from local optima. On the other hand, this effect translates into the loss of gradient

information, which may prevent algorithms from identifying promising directions. Therefore,

this understanding of multi-objectivization could guide the design of more effective algorithms.

• The three proposed multi-objectivization schemes were found to significantly increase the aver-

age performance of search algorithms with regard to the conventional single-objective problem

formulation. In this way, the effectiveness of the proposed approaches was demonstrated and

further support was given to the suitability of multi-objectivization to address multimodality.

• According to the performed revision of the literature, this research reports for the first time the

application of multi-objective optimization methods to the particular HP model of the protein

structure prediction problem. In addition, no previous work has been found where the effects

of multi-objectivization are investigated through the explicit sampling and evaluation of the

fitness landscape. The findings of such an analysis are generalizable to other problem domains,

contributing, thus, to advance the general understanding of multi-objectivization.

• The research work reported in Chapter 4 has led to three publications in the following inter-

national conferences:

– European Conference on Evolutionary Computation in Combinatorial Optimization,

EvoCOP. Málaga, Spain. 2012 [70].

– Genetic and Evolutionary Computation Conference, GECCO.

Philadelphia, PA, USA. 2012 [78].

– International Conference on Parallel Problem Solving From Nature, PPSN.

Taormina, Italy. 2012 [69].
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Also, the full study has been recently submitted to the special issue on Evolutionary Multi-

objective Optimization of The European Journal of Operational Research (EJOR) [76].

Infeasibility

• In Chapter 5, the use of multi-objective optimization as a constraint-handling strategy for the

HP model was proposed. By treating constraints as an additional objective function, the HP

model was restated as an unconstrained multi-objective problem. The impact of the problem

transformation on the fitness landscape was analyzed. Also, the relevance of introducing a

proper search bias when using this strategy was explored. Finally, the suitability of the multi-

objective approach was evaluated in terms of its ability to effectively guide the search process.

• The multi-objective approach to handle constraints allows for the consideration of trade-offs

between quality and feasibility, so that it is possible to traverse (and to exploit useful information

from) infeasible areas of the fitness landscape. An important fraction of infeasibility translates

into neutrality. The introduced neutrality defines new, potentially shorter paths to move

through the landscape, which can also be exploited as a means of escaping from local optima.

• The lack of search bias can lead to the investment of a considerable amount of computational

effort in evaluating infeasible solutions. Through the use of different biasing mechanisms, it

was possible to impact favorably on the ability of the multi-objective strategy to guide the

search process. This highlights the relevance of introducing a bias; but defining the proper

amount of bias to be applied could be a non-trivial, problem- and algorithm-dependent task.

• The effectiveness of the multi-objective strategy was demonstrated through a comparative

analysis with respect to commonly adopted techniques from the literature. The use of the multi-

objective strategy significantly improved the performance of the implemented algorithms. The

obtained results support also the belief that considering infeasible solutions during optimization

may contribute to the design of more competitive metaheuristics for solving the HP model.
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• This research work produced the first efforts with regard to the use of multi-objective opti-

mization for handling the constraints of the HP model, to the author’s knowledge. Also, this

is the first time that a fitness landscape analysis has been conducted with the aim of inves-

tigating the effects of the multi-objective constraint-handling strategy. Although focused on

the particular case of study of this research, such an analysis is expected to contribute to the

general understanding of the functioning of the multi-objective constraint-handling technique.

• Preliminary results of this work have been presented in the international conference IEEE

Congress on Evolutionary Computation (CEC), held in Cancún, México, in 2013 [79]. Also,

the full study presented in Chapter 5 has been recently submitted and is currently under review

as a candidate for publication in the Computers & Operations Research (COR) Journal [67].

General comments

Chapters 3, 4 and 5 presented encapsulated efforts to face a very specific difficulty (neutrality,

multimodality and infeasibility, respectively) with regard to the design of metaheuristic algorithms

for predicting protein structures under the HP model. The isolated nature and lack of integration of

these efforts can be seen as the main weakness of this thesis. Hence, to address such a weakness

should be considered as an imperative future research direction, as discussed further in Section 6.2.

Nevertheless, it has been possible during the development of this project to identify some well-

defined connections between the studies reported in the different chapters of this document. These

connections can be summarized as follows. Chapter 3 explored the use of fine-grained evaluation

schemes to break the neutrality of the fitness landscape. A fine-grained discrimination was found to

effectively improve the performance of search algorithms by facilitating convergence in the direction of

local optima. However, breaking neutrality also results in a more rugged landscape, which increases

multimodality. Therefore, a fine-grained evaluation scheme will usually need to be accompanied

by an effective mechanism to escape from local optima if success is to be achieved in terms of

global convergence. Whereas Chapter 3 sought to reduce the neutrality of the landscape, it was

precisely through the addition of even more neutrality that the multi-objective formulations proposed
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in Chapters 4 and 5 succeeded in dealing with multimodality and infeasibility. The multi-objective

formulations of the HP model, both, the ones investigated in Chapter 4 and the one analyzed in

Chapter 5, transform the fitness landscape of the problem in such a way that new neutral paths are

introduced. In both cases, the introduced neutral paths can be exploited as a means of escaping from

local optima, contributing thus to cope with multimodality. While the new neutral paths produced by

the transformations studied in Chapter 4 were all defined within the feasible region, the neutral paths

analyzed in Chapter 5 traverse infeasible areas of the landscape. Neutral paths traversing infeasible

landscape areas can potentially be shorter than paths confined to the feasible space, which can

further contribute to increase the search efficiency of metaheuristics for solving the studied problem.

6.2 Future work

Potential extensions to this research work can be broadly described as follows:

• It seems important to complement the understanding of the alternative energy functions studied

in Chapter 3, by evaluating how they impact on the characteristics of the fitness landscape;

such as it was done in Chapters 4 and 5 to investigate other problem transformations.

• In Chapters 4 and 5, detailed fitness landscape analyses were carried out with the aim of

inquiring into the effects of using alternative multi-objective formulations of the HP model

(either to deal with multimodality or to handle infeasibility). The conducted analyses focused

on neutrality. Extending these analyses to evaluate the problem transformation from the

perspective of other different landscape properties, e.g., ruggedness [230], can certainly be

seen as a relevant research direction that will contribute to build a more comprehensive picture.

• The fitness landscape analyses presented in Chapters 4 and 5 contribute to the general un-

derstanding of the studied single-objective to multi-objective transformations. That is, the

achieved understanding is generalizable in the sense that similar effects to those observed can
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be expected from the application of these particular transformations to other different opti-

mization problems. It seems important, however, to replicate these analyses to problems from

other different application domains in order to further support the acquired understanding.

• As discussed at the end of Section 6.1, isolated efforts have been made in this thesis in order to

cope with the neutrality, multimodality and infeasibility of the HP model’s fitness landscapes.

Despite the fruitfulness of such isolated efforts, it remains open the question of how all these

efforts can be integrated and exploited to handle simultaneously the multiple challenges that

this problem poses. This represents a worthy subject for future research. Potential directions

to be followed in this regard include:

– The design of self-adaptive mechanisms which can alternate between the different evalu-

ation schemes in response to the particular conditions at each stage of the optimization.

– The implementation of the proposed multi-objective evaluation schemes (either those

studied in Chapters 4 or the one reported in Chapter 5) within a supplementary local search

operator that can be incorporated into any other algorithm operating with a different

evaluation scheme (e.g., the fine-grained evaluation functions considered in Chapter 3).

– The design of new alternative evaluation schemes for the HP model which can deal

effectively with all the three issues (i.e., neutrality, multimodality and infeasibility).

• Finally, it would be interesting to explore whether the multi-objective evaluation schemes

proposed in Chapters 4 and 5 can be incorporated as a means of improving the performance

of established state-of-the-art algorithms for solving the HP model of the protein structure

prediction problem; either by replacing the original evaluation scheme that these algorithms

implement, or coupled within a supplementary local search mechanism (as described above).
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[45] Custódio, F., Barbosa, H., and Dardenne, L. Investigation of the Three-dimensional

Lattice HP Protein Folding Model Using a Genetic Algorithm. Genetics and Molecular Biology

27, 4 (2004), 611–615. (cited on pages 4, 33, 40, 42, 43, and 48)
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[144] López-Ibáñez, M., Knowles, J., and Laumanns, M. On Sequential Online Archiving

of Objective Vectors. In Evolutionary Multi-Criterion Optimization, vol. 6576 of Lecture Notes

in Computer Science. Springer Berlin / Heidelberg, Ouro Preto, Brazil, 2011, pp. 46–60.

(cited on pages 94, 98, and 129)

[145] Louis, S., and Rawlins, G. Pareto Optimality, GA-easiness and Deception. In

International Conference on Genetic Algorithms. Morgan Kaufmann, 1993, pp. 118–123.

(cited on page 11)
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