
PONTIFICIA UNIVERSIDAD CATÓLICA DE VALPARAÍSO
FACULTAD DE INGENIERÍA

ESCUELA DE INGENIERÍA INFORMÁTICA

MULTI-ARMED BANDIT FOR SELECTION OF
BINARIZATION SCHEME IN

METAHEURISTICS.

PABLO AGUSTÍN ÁBREGO CALDERÓN

INFORME FINAL DE TESIS
PARA OPTAR AL GRADO PROFESIONAL

MAGÍSTER EN INFORMÁTICA Y
TÍTULO DE INGENIERÍA CIVIL INFORMÁTICA

DICIEMBRE, 2022

Pontificia Universidad Católica de Valparaíso
Facultad de Ingeniería

Escuela de Ingeniería Informática

MULTI-ARMED BANDIT FOR SELECTION OF
BINARIZATION SCHEMES IN

METAHEURISTICS

PABLO AGUSTÍN ÁBREGO CALDERÓN

Profesor Guía: Broderick Crawford Labrín

Profesor Co-referente: Eduardo Rodríguez Tello

Carrera: Ingeniería Civil Informática
Grado: Magíster en Ingeniería Informática

Diciembre, 2022

2

Resumen

Multi-armed bandit (MAB) es un conocido algoritmo de aprendizaje por
refuerzo que ha demostrado un gran rendimiento para los sistemas de re-
comendación y otras áreas. Los resultados presentados en diversas investi-
gaciones nos motivan a trabajar con este algoritmo para el soporte en difer-
entes etapas dentro de los algoritmos de optimización. Por otra parte, los
algoritmos metaheurísticos han ganado mucha popularidad debido a su gran
rendimiento resolviendo problemas complejos, con espacios de búsqueda in-
abarcables. Black Widow Optimizer (BWO) es un novedoso algoritmo evo-
lutivo, inspirado en el comportamiento de la araña viuda negra en su proceso
reproductivo, que ha dado grandes resultados. Pendulum Search Algorithm
(PSA) es una metaheurística de reciente creación inspirada en el movimiento
armónico de un péndulo. Sus principales limitaciones son resolver proble-
mas de optimización combinatorial, caracterizados por utilizar variables en
el dominio discreto. Para superar esta limitación, se propone utilizar una
técnica de binarización en dos pasos, que ofrece un gran número de combi-
naciones posibles que llamamos esquemas. Para ello utilizamos MAB como
un algoritmo que aprende y recomienda un esquema de binarización durante
la ejecución de las iteraciones (online). Con los experimentos realizados se
demuestra que ofrece mejores resultados en la resolución del Problema de
Cobertura de Conjuntos (SCP) que utilizando un esquema de binarización
fijo.

Palabras clave: Multi-armed bandit - Reinforcement learning -
Binarization schemes - Pendulum Search Algorithm - Black Widow
Optimizer - Set Covering Problem

i

Abstract

Multi-armed bandit (MAB) is a well-known reinforcement learning algo-
rithm that has shown great performance for recommendation systems and
other areas. The results presented in various investigations motivate us to
work with this algorithm for support at different stages within the optimiza-
tion algorithms. On the other hand, metaheuristic algorithms have gained
a lot of popularity due to their great performance solving complex prob-
lems, with endless search spaces. Black Widow Optimizer (BWO) is a novel
evolutionary algorithm, inspired by the behavior of the black widow spider
in its reproductive process, which has delivered great results. Pendulum
Search Algorithm (PSA) is a recently created metaheuristic inspired by the
harmonic motion of a pendulum. Its main limitations is to solve combinato-
rial optimization problems, characterized by using variables in the discrete
domain. To overcome this limitation, it is propose to use a two-step bina-
rization technique, which offers a large number of possible options that we
call scheme. For this, we use MAB as an algorithm that learns and recom-
mends a binarization schemes during the execution of the iterations (online).
With the experiments carried out, it is shown that it delivers better results
in solving the Set Covering Problem (SCP) than using a fixed binarization
scheme.

Keywords: Multi-Armed Bandit - Reinforcement Learning - Bi-
narization Schemes - Pendulum Search Algorithm - Black Widow
Optimizer - Set Covering Problem

ii

Contents

1 Introduction 1
1.1 Objective . 3
1.2 Specific Objectives . 3

2 Related works 4
2.1 Metaheuristics . 4

2.1.1 Evolutionary algorithms 5
2.1.2 Binarization techniques 6
2.1.3 Transfer function . 7
2.1.4 Binarization function 8

2.2 Exploration and exploitation 8
2.3 Black Widow Optimization 10

2.3.1 Initial population . 10
2.3.2 Procreate . 12
2.3.3 Cannibalism . 12
2.3.4 Mutation . 13
2.3.5 Parameters . 13

2.4 Sine Cosine Algorithm . 14
2.5 Pendulum Search Algorithm 15
2.6 Machine learning . 15
2.7 Multi-armed bandit . 17

2.7.1 Epsilon greedy . 17
2.7.2 Upper Confidence Bound 18
2.7.3 Dynamic Version . 19

3 Research Methodology 21

4 First proposal 23
4.1 Set covering problem . 23

4.1.1 Mathematical model 23
4.1.2 Repair of infeasible solutions 24

4.2 Binary Black Widow Optimization 25
4.2.1 Cross-over proposal . 25
4.2.2 Mutation proposal . 26
4.2.3 Population proposal 27

4.3 Dynamic Multi-armed Bandit for binarization schemes selection 27
4.3.1 DMAB Flowchart . 29
4.3.2 BBWO+DMAB Flowchart 31

iii

4.4 Proposed pseudo-code . 33
4.5 Design of the experiments . 35
4.6 Preliminary Results . 37

4.6.1 DMAB-BBWO results 42
4.7 Discussion . 45

5 Second proposal 49
5.1 Binary Pendulum Search Algorithm 49
5.2 MAB-BPSA . 49
5.3 Design of experiments . 51
5.4 Experimental results . 52

6 Conclusion 60

iv

Lista de Tablas y Figuras

1 EA Flowchart . 6
2 BWO Flowchart [26] . 10
3 Mutation . 13
4 Multi-armed bandit . 18
5 Research methodology diagram 22
6 Example SCP instance . 23
7 Arithmetic Crossover Example 25
8 Order-based Crossover Example 26
9 DMAB flowchart . 29
10 BBWO flowchart . 31
11 Convergence of 4.1 and 5.3 instances by binarization function 40
12 Convergence of 6.2 and b.1 instances by binarization function 41
13 Convergence of 4.1 and 5.3 instances by agent policy 43
14 Convergence of 6.2 and b.1 instances by agent policy 44
15 Average number of selections with Random policy 45
16 Average number of selections with ε-greedy policy 46
17 Average number of selections with UCB-1 policy 47
18 40 binarization schemes . 50
19 Fitness convergence and Zoom for instance 41 54
20 Fitness convergence and Zoom for instance 51 54
21 Fitness convergence and Zoom for instance d1 55
22 Fitness convergence and Zoom for instance nre1 55
23 Average number of selections on instance 41 57
24 Average number of selections on instance 51 58
25 Average number of selections on instance c1 58
26 Average number of selections on instance d1 59

v

1 Introduction

Seeking better results is the main objective for many areas of the industry
and has been a challenge since the beginning of human history [55]. For
this reason, optimization research is so important, and has gained popular-
ity in the last decades [50]. Operations research focuses its efforts on finding
the best solution, which minimizes or maximizes a pre-established function.
Each problem is mathematically modeled with a set of variables and differ-
ent restrictions that allow limiting the possible values that these can take.
In this way, a search field for possible solutions is generated, which in many
cases, when the problem is very large, could take a machine years to go
through completely [55]. In this situation, two major optimization methods
arise: the exact methods and the approximate methods. The first one, make
it possible to guarantee an optimal global value in the search field, that is,
they go through all the possible solutions and find the best one, while the
latter propose good solutions without having to make such an effort. We
will focus on the second case.

In the approximate methods, there is a type of algorithm called heuris-
tics, which manage to find good solutions in a reasonable time, without
completely going through the search field [10]. If this algorithm is designed
to solve a specific problem or an instance of it, we are talking about a specific
heuristic algorithm, while if the algorithm is capable of solving various types
of problems without the need to make major changes in its logical structure,
we are talking about metaheuristic algorithms. The versatility offered by
this second technique makes us opt for it in this thesis.

Metaheuristic algorithms can be classified according to the type of de-
cisions that are made when exploring the search field. Based on this, de-
terministic metaheuristics arise, which from an initial state always reach the
same final solution; and stochastic metaheuristics, which apply random rules
in its process of searching for new solutions, making it very complex to arrive
from an initial solution to the same final solution. This second type of meta-
heuristics generates problems when the domain of the problem variables are
discrete, since random calculations normally return continuous values. That
is why, to solve discrete problems, a technique is needed that allows us to
take the result of the stochastic operator to the discrete domain, and more
specifically, to the binary domain [13]. For this, there are various techniques
which can directly affect the quality of the solutions found, making an algo-
rithm more or less efficient. This is why the selection of the scheme to use

1

is essential for the design of good algorithms, that maintain a good balance
between exploration and exploitation, and thus avoid problems of premature
convergence or exploration that does not reach optimal values.

Moreover, the development of machine learning in computer science has
made great contributions to various areas of engineering, and operations
research was no exception. The use of these techniques in various optimiza-
tion processes have catapulted the performance of the previously described
algorithms. That is why for this work, an another reinforcement learning
algorithm will be implemented to improve the performance in the selection
of binarization schemes of metaheuristic algorithms in order to obtain bet-
ter results in the optimization of combinatorial problems [32]. For this,
the Multi-Armed Bandit (MAB) algorithm will be developed, binarizing the
Black Widow Optimizer (BWO) and Pendulum Search Algorithm (PSA).
The proposed solution is assessed using the well-known Set Covering Prob-
lem (SCP) as a test case.

This document continues with an introduction of related work in section
2, then in section 3 the research methodology is explained, to continue with
the presentation of the proposals in sections 4 and 5. Each of these sections
present an explanation of the algorithm, the different experiments carried
out and their results. To finish the work, section 6 presents a discussion
and conclusion summarizing all the results obtained and proposing possible
future work.

2

1.1 Objective

The main goal of this research is to improve the selection of binarization
schemes of metaheuristic using a reinforcement learning technique, in order
to obtain better results in the optimization of combinatorial problems.

1.2 Specific Objectives

• Implement the Multi-armed bandit algorithm.

• Implement a collection of binarization schemes to transform the con-
tinuos metaheuristic into a binary domain.

• Integrate the Multi-armed bandit algorithm with the metaheuristic to
define the binarization scheme selection mechanism

• Improve the trade-off between exploration and exploitation of the search
field.

• Analyze the performance of the proposed solution and compare the
results with other binarization techniques.

3

2 Related works

In this section, the concept of metaheuristic with its different paradigms
and variations will be described, to continue with an introduction of differ-
ent techniques of machine learning (ML) and their possible applications on
optimization algorithms.

2.1 Metaheuristics

An optimization problem can be defined with a series of mathematical el-
ements in common: an objective function, which is sought to maximize or
minimize; a set of decision variables, which will define the solution, and a set
of constraints that limit the possible values of the variables and define the
available search space [55]. Based on this, one of the criteria for classifying
optimization problems is the domain in which their variables are defined,
whether continuous, discrete, or a combination of them. Other criteria can
be the presence of constraints, the number of objective functions, or whether
they are static or dynamic [10]. In this work we will focus on the discrete
domain, and more specifically, binary.

One of the first optimization problems is the well-known Traveling Sales-
man Problem (TSP), which consists of traveling through a certain number
of cities in the shortest possible distance. To solve it, exact algorithms can
be used, such as branch and bound [7, 48], which manages to find global
optima for small instances, since the number of possible combinations, with-
out knowing the distribution of the cities, is n!, so for n = 100 it would
take longer than the lifetime of the universe, even using the most powerful
computers in the world [55]. It is in this situation where more intelligent
ways of finding good solutions in a reasonable time must be sought.

Metaheuristics are approximate optimization algorithms, that is, they
deliver good solutions in reasonable times without having to go through the
search field, and therefore, they do not ensure that each solution delivered
is the best (global optimum) for the defined instance of the problem. [50].
For that reason, the main use of metaheuristic algorithms is to solve com-
plex problems, such as NP-Hard. One of their main benefits, and one of the
reasons why they have become so popular in the last few decades, is that
they can be used to fix a large number of problems without making major
changes to [10].

4

Metaheuristic algorithms can be classified into two groups, according to
the number of solutions present at the beginning of their execution.

• Single-solution based search: Characterized by starting with a sin-
gle solution, which is modified to find other solutions in the search
space. Here stand out Simulated Annealing [53], Tabu Search [24],
among others.

• Population-based search: They are characterized by starting with
a set of solutions, called the initial population, and new solutions are
sought based on the interaction between them. Four kinds of algo-
rithms arise from here: swarm, which are inspired by the social behav-
ior that occurs in the interaction between members of a community,
such as particle swarms [43], Ant Colonies[19], Bee Colony[33], Gray
Wolf [38], Blue Whale [37], among others; evolutionary techniques, in-
spired by Darwin’s theory of evolution such as Genetic Algorithms [27];
Physics-based techniques, inspired by physical rules such as Black Hole
[25]; and Human-related techniques such as Mine Blast Algorithm [46].

2.1.1 Evolutionary algorithms

One of the earliest search methods is evolutionary algorithms (EA), which
use natural selection and Darwin’s theory of evolution [16] as an abstraction
of searching for new and better individuals. They are stochastic algorithms
that, unlike the deterministic ones, for the same input, different outputs can
be obtained. Within the family of population-based algorithms, evolutionary
algorithms are the most popular among them [50]. In general terms, it is
characterized by having the structure presented in the figure

From here arises the class of genetic algorithms [17], mainly associated
with a binary representation, where some operators must be defined:

• Selection: Function that defines how the individuals of the population
that will be used for the reproduction stage, will be selected. The most
used method is the roulette method, where each individual is assigned
a probability based on their fitness.

• Crossover: Function that defines how the parent individuals will be
combined to generate their offspring. A type of crossover is performed
by points, which selects n cutoff points where the solutions are sepa-
rated and combined, maintaining the value of each variable. Another is
arithmetic, which weights each parent variable and adds them together.

5

Figure 1: EA Flowchart

• Mutation: This function defines how a solution is going to modify
itself. It is characterized by making small changes in the individual in
question. The most common is to select the variable to mutate and
add a random number to it.

Depending on the mathematical operation used to select part of the pop-
ulation, to perform the crossover and the mutation, we can differentiate the
different proposed algorithms [50]. In this work, the Black Widow Optimizer
[26] algorithm will be used, which proposes a third step in the search for bet-
ter solutions, called cannibalism, which allows filtering the members of the
population to performing the other steps only with the best individuals.

2.1.2 Binarization techniques

In the crossover stage of reproduction, there is the challenge that the result
of the operation is valid within the constraints of the problem, so there is
concern when we want to maintain new binary variables (0 ≤ x ≤ 1|x ∈ Z).
The problem arises when using an arithmetic crossover, which randomly
weights each pair of parent variables, generating solutions with continuous
variables. Crowford et. al. at [12] gather and describe a series of techniques
that allow variables to be taken from the continuous domain to the discrete

6

binary. In this thesis we will focus on the two-step technique, which consists
of a first transfer phase, where the variables are taken to a continuous domain
bounded between 0 and 1, and then move on to a second phase where each
variable is binarized worth.

2.1.3 Transfer function

In [54] they present several ways to solve this problem applied to the PSO
algorithm, which uses a function that transforms each variable in the solution
into a value between 0 and 1 associated with the probability that said variable
is equal to 0 or 1. The function is called transfer function, which Mirjalili and
Lewis later formalize in [36] presenting two types of functions and different
variants of each one of them. The names of each function came from the
way in which these functions are graphed.

Name Function

S1 T (djw) =
1

1 + e−2djw

S2 T (djw) =
1

1 + e−djw

S3 T (djw) =
1

1 + e
−d

j
w

2

S4 T (djw) =
1

1 + e
−d

j
w

3

Table 1: S-shape transfer functions

Name Function

V1 T (djw) =
∣∣∣erf (√

π
2 djw

)∣∣∣ =
∣∣∣√2
π

∫ √
π
2

x

0 e−t2dt

∣∣∣
V2 T (djw) =

∣∣∣tanh(djw)∣∣∣
V3 T (djw) =

∣∣∣∣∣ djw√
1+

(
diw

)2

∣∣∣∣∣
V4 T (djw) =

∣∣∣ 2πarctan(
π
2d

j
w

)∣∣∣
Table 2: V-shape transfer functions

7

2.1.4 Binarization function

Crawford et. al. at [12] they compile the various ways in which the lit-
erature binarizes continuous variables to solve combinatorial problems. In
this way, they present 5 binarization functions that take the output of the
transfer function (0 ≤ x ≤ 1|x ∈ R) and take it to a binary discrete domain
(0 ≤ x ≤ 1|x ∈ Z).

Name Function

D1: Standard Xj
new =

{
1 if rand ≤ T

(
djw

)
0 otherwise

D2: Complement Xj
new =

{
Complement

(
Xj

w

)
if rand ≤ T

(
djw

)
0 otherwise

D3: Static Xj
new =


0 if T

(
djw

)
≤ α

Xj
w if α < T

(
djw

)
≤ 1

2(1 + α)

1 if T
(
djw

)
≥ 1

2(1 + α)

D4: Elitist Xj
new =

{
Xj

Best if rand < T
(
djw

)
0 otherwise

D5: Elitist Roulette Xj
new =

{
P [Xj

w = δj] = f(δ)∑
δ∈X f(δ) if α < T

(
djw

)
P [Xj

w = 0] = 1 otherwise

Table 3: Binarization Function

2.2 Exploration and exploitation

The biggest challenge that exists in the design and implementation of a
metaheuristic algorithm is the balance that it obtains between its ability to
explore and exploit the search space [40]. For this reason it is important to
numerically parameterize these characteristics with some formula.

• Exploration: It is the ability of an algorithm to find solutions in areas

8

where it has not been searched, far from the solutions already explored.

• Exploitation: Contrary to the previous one, it is the ability to in-
tensify the search around a good solution, without escaping from the
current search zone.

As you can see, in order to parameterize these characteristics, it is neces-
sary to define a distance parameter between each solution or individual in the
population. This distance is known as the diversity measure. In [40], the use
of an equation called dimension-wise diversity is considered measurement,
presented in equation (2) and used later in the calculation of the percentage
of exploration and exploitation. More measures of diversity can be found in
[11].

Divj =
1

n

n∑
i=1

|median(xj)− xji | (1)

Div =
1

m

m∑
j=1

Divj (2)

where median(xj) represents the median of dimension j of the entire
population x, and xi represents each individual of the population. n and
m represents the size of the population and the dimension of the problem,
respectively.

Then, having defined the way to calculate the distance between each
individual, in [40] they present us a way to calculate the percentage of ex-
ploration and exploitation, present in the Eq. (3) and (4), in such a way that
the measure of diversity remained independent, that is, that we can modify
this formula without affecting the calculation of the percentage.

XPL% =

(
Div

Divmax

)
× 100 (3)

XPT% =

(
|Div −Divmax|

Divmax

)
× 100 (4)

where XPL% and XPT% represents the percentage of exploration and
exploration, respectively, and Divmax is the maximum value of Div.

9

2.3 Black Widow Optimization

This metaheuristic is an evolutionary algorithm, which has had great results
in applications in the field of engineering [3]. It is inspired by the peculiar
reproduction of black widow spiders. This consists of a first stage of mating
and then one of cannibalism between the female and the male, and between
the new children. The algorithm will be described in detail below.

Figure 2 shows the life cycle or flowchart of the Black Widow (BWO)
metaheuristic, as shown in [26].

Figure 2: BWO Flowchart [26]

2.3.1 Initial population

For the generation of the initial population, it is necessary to define the values
of the variables to form a suitable structure for the solution. Unlike other
genetic algorithms, where each variable represents a gene, and each solution

10

a chromosome, in BWO each variable represents a chromosome, and each
solution a spider [26]. The defined structure will be called "Widow" and will
be considered as a one-dimensional vector

Widow = [x1, x2, · · · , xNvar−1, xNvar]

xi → Chromosome

To generate the initial population, its size and an array of size Nvar are
provided, which contains a tuple that defines the range in which the value
of each variable can be generated.

Definition 1 Let Bounds be a vector of size Nvar and Widow a spider from
the initial population:

Bounds = [(lb1, ub1), (lb2, ub2), · · · , (lbNvar, ubNvar)]

Widow = [x1, x2, · · · , xNvar−1, xNvar]

such that:

lbi ≤ xi ≤ ubi

If the Bounds vector is not specified, the following is assumed by default:

−1 ≤ xi ≤ 1

To fulfill this condition, the value generated to the variable is defined as
follows:

xi = (rand) ∗ (ubi − lbi) + lbi

where rand is a random value between 0 and 1 uniformly distributed,
generating random values between lb and ub.

To know if the solution found is good compared to the others, the fitness
of Widow is calculated, which is obtained through an objective function that
is defined for the problem.

Fitness(Aptitude) = f(widow) = f(x1, x2, · · · , xNvar)

11

2.3.2 Procreate

In the procreation stage, the aim is to obtain a new individual, a candidate
to be a better solution, from the chromosomes of its parents. For this process
we will define an operator (×) and a vector α, which will help us find the
offspring.

Definition 2 Let A and X be vectors of size n, we define the operations ×
and ∼, such that:

A×X = [a1x1 , a2x2 , · · · , anxn] (5)

and
Ã = [1− a1, 1− a2, · · · , 1− an] (6)

We also define a vector α of size Nvar, where each value is random number
between 0 and 1.

Now we use them for offspring generation, with the following equations.

Y1 = α×X1 + α̃×X2 (7)

Y2 = α×X2 + α̃×X1 (8)

where X1 and X2 are random selected parents, and Y1 and Y2, the two
new sons. As can be seen, α defines the proportion that the chromosomes of
each of the parents will have.

2.3.3 Cannibalism

The cannibalism stage of the metaheuristic consists of 2 phases, explained
below.

• Sexual cannibalism: The female eats the male. The female and male
can be recognized by their fitness value. The one with the best fitness
survives.

• Siblings cannibalism: Strong spiders eat weak ones. A cannibalism
classification (CR) is established, according to which the number of
survivors is determined.

12

2.3.4 Mutation

In the mutation stage, a number of individuals is chosen according to the
mutation rate, where each of the chosen solutions randomly exchanges two
elements of the matrix, the figure 3 shows the exchange process among the
chosen solutions.

Figure 3: Mutation

2.3.5 Parameters

Some fundamental parameters for the use of the BWO metaheuristic are the
following:

Ratio of procreation (PP): Determines how many individuals should
participate in the procreation. By controlling the production of several off-
spring, it provides greater diversification and gives more opportunities to
explore the search space more precisely.

Cannibalism rate (CR): Determine how many individuals will sur-
vive after the sibling cannibalism. Deletes individuals with worse fitness.
This filter makes it possible to explore and exploit only the best individuals.

Mutation rate (PM): The appropriate value can guarantee the bal-
ance between exploration and exploitation. Determine how many individuals
the mutation will be applied to (Fig. 3) It allows to control the transfer of
search agents from the global to the local scenario and drive them towards
the best solution.

The adjustment of these parameters could directly affect the performance
of the algorithm.

13

2.4 Sine Cosine Algorithm

This metaheuristic is a physical-based algorithm which proposes to find bet-
ter solutions using a mathematical model based on the sine and cosine func-
tions, together with some parameters that will adjust the exploratory or
exploitative behavior of the algorithm. Like BWO, Sine Cosine Algorithm
(SCA) is a population algorithm designed to solve continuous optimization
problems [35]. Each individual in the population represents a point on a
circle, where the center is the best solution found, also called destination.
According to the functions defined in the equations (9) - (11) each individual
will move towards or away from the optimum.

Xt+1
i,j = Xt

i,j + r1 · sin (r2) · |r3P t
j −Xt

i,j | (9)

Xt+1
i,j = Xt

i,j + r1 · cos (r2) · |r3P t
j −Xt

i,j | (10)

Xt+1
i,j =

{
equation (9) , r4 < 0.5
equation (10) , r4 ≥ 0.5

(11)

In the 3 equations, Xt
i,j corresponds to the variable of dimension j of the

individual i in the iteration t (t+1 in the following iteration), and P t
j is the

j-ith dimension of the best solution found up to the iteration t.

To incorporate the stochastic component into the equations, 4 random
parameters are defined. The first one, r1, indicates the direction in which
the individual will move in the next iteration, r2 indicates the amplitude
that the movement will have, r3 indicates the weight that the best solution
will have and r4 defines what equation will be used in each iteration. The
equations are defined below:

r1 = a − t
a

T
(12)

r2 = 2 · π · rand [0, 1] (13)

r3 = 2 · rand [0, 1] (14)

r4 = rand [0, 1] (15)

where a is a constant that we can adjust, t corresponds to the current
iteration, while T corresponds to the maximum number of iterations that
will be carried out in the execution of the algorithm.

14

2.5 Pendulum Search Algorithm

One of the problems that a metaheuristic can have is known as premature
convergence. This problem consists of reaching an optimal value in very
early iterations, known as local optimum, which makes it very difficult to
find a better solution in subsequent iterations. Solving this problem is a
challenge that is often faced with a small perturbation in the individuals of
the population, for example the mutation in BWO. SCA uses the behavior
of the sine and cosine functions to get closer to the optimum, along with
the parameter r1 that generates a linear downward movement over time [1].
Despite this, it has been seen that this characteristic of the algorithm does
not solve premature convergence.

Pendulum Search Algorithm (PSA) tries to solve this problem thanks
to the harmonic movement of a pendulum, which, unlike SCA, decides ex-
ponentially. This exponential function would enhance the exploration and
exploitation balance [2]. It was recently introduced by Nor Azlina and Ka-
marulzaman [1] to solve continuous optimization problems.

The search agents are initialized randomly and their position is updated
using equation 16.

Xt
i,j = Xt

i,j + pendti,j · (Besttj −Xt
i,j) (16)

where Xt
i,j is the position of the i-th solution in the j-th dimension in t-th

iteration, Besttj it is the position of the best solution in the j− th dimension
in the t − th iteration and pendti,j is a parameter which is calculated as
follows:

pendti,j = 2 · e(−t/tmax) · cos(2 · π · rand) (17)

where t is the current iteration, tmax is the maximum number of itera-
tions and rand is a random number between [0,1].

2.6 Machine learning

In [39] define Machine Learning (ML) as computational methods that use
previous experience to improve the performance of some behavior or to make
more precise predictions, understanding experience as information from the
past that is made available to the learning agent. Some examples of prob-
lems that can be solved using ML are classification problems, regression,
clustering, ranking, among others.

15

Depending on the way in which the machine obtains the information,
the type of information that is obtained, and the way in which its learning
is evaluated, different paradigms arise within ML [39], witch the following
stand out.

• Supervised learning: learning is done with a first phase of training,
where a supervisor gives the machine the input (features) and its re-
spective expected output (labels), for later in the training, with only
the input, the machine is capable to generate the corresponding label.
It is mainly used for classification and regression problems.[39].

• Unsupervised learning: It is also carried out in a training phase
and a testing phase, but in the first one the expected output is not
delivered, but only with the input the machine is able to find patterns
and group the delivered records according to their features.[47].

• Reinforcement learning: It is characterized by having its training
and testing phase at the same time. Learning consists of the agent
performing actions that generate a stimulus from its environment. This
signal is known as a reward and the objective is to maximize its value
with the following actions to be carried out. The information available
to learn grows as learning progresses.[49]

Reinforcement learning algorithms are characterized by having a series
of elements in common, which allow a better understanding of the entire
learning process. They described below.[49]

• Agent: This element refers to the section of the algorithm that learns
the desired behavior. It is the agent who performs an action and who
receives external reward according to each action performed.

• Environment: It refers to what surrounds the agent and with whom
he interacts. The state of the environment changes with each action
performed by the agent, generating a signal perceived by it.

• Reward: Each action that the agent performs in its environment has
an associated numerical reward, either positive or negative. This value
is the one that the agent must learn to maximize throughout the exe-
cution of the algorithm.

• Policy: It is the brain of the agent. It is the one who decides what
action the agent is going to perform in the next iteration. It makes the

16

decision based on the rewards it has received throughout the iterations
carried out during the execution of the algorithm.

• Value function: It is the mathematical model that the policy uses to
make the decision of what action to perform in each iteration.

2.7 Multi-armed bandit

This technique is a reinforcement learning algorithm, presented as an idea
for the first time in 1952 by Herber Robbins in [44], where the design of
statistical experiments where the size of the sample grows as the experiment
is developed is explained .

The metaphor of this technique puts us in the situation of a casino, where
we have a series of slot machines, of which the probability of success is un-
known, nor is the reward that will be obtained in each game. In this way,
we must test each of them until we know their behavior and use a strategy
that allows us to maximize the gain at the end of the experiment. Another
common objective in this kind of experiment is to minimize the difference
between what is obtained and the maximum value expected (known as the
regret value) [6, 42]. Based on this, the exploration - exploitation dilemma
is presented, where we must negotiate between activating the arm that has
the best rewards, and trying the others to find possible better rewards [5].

Depending on the value function to be used in the algorithm, the differ-
ent variations that this technique will have are defined. [49].

Fig. 4 shows a graphical representation of the RL elements applied to
MAB.

2.7.1 Epsilon greedy

This method uses a simple average as the value function and defines a vari-
able ε to determine the probability that an arm is randomly selected in an
iteration t.

We will define the estimated value of an action a at iteration t as Qt(a).

Qt(a)
.
=

∑t−1
i=1 Ri · 1Ai=a∑t−1

i=1 1Ai=a

(18)

17

Figure 4: Multi-armed bandit

where Ri is the reward obtained in iteration i, Ai is the arm selected
in iteration i and 1predicate defines a variable that will be one only if the
predicate is true and 0 otherwise. If the denominator of the fraction equals
zero, then a default value for Qt(a) will be selected, such as 0, or another
value depending on where we want the optimal value to start. We also define
the greedy action of the t iteration as:

At
.
= argmaxaQt(a) (19)

where argmaxa corresponds to the action a that maximizes the value of
Qt. The variable ε mentioned above is defined as:

ε = P
(
At

.
= rand(0, k)

)
(20)

where k corresponds to the number of arms available in the running in-
stance. This variable allows us to explore the possible reward that the other
arms deliver, but it does so in a static way, that is, without using previous
information from the learning process.

2.7.2 Upper Confidence Bound

To improve the exploration process of the previous algorithm, this technique
(UCB) solves the case in which the average rewards are equal between two
arms, it will reward the one that has been triggered a smaller number of
times, favoring the exploration of the instantiated arms. It does this by
defining At as:

18

At
.
= argmaxa

[
Qt(a) + c

√
ln t

Nt(a)

]
(21)

where Nt(a) corresponds to the number of times arm a has been actuated
up to time t (the denominator in Eq. (18)), ln t is the natural logarithm of
t , and the constant c > 0 controls the degree of exploration that the algo-
rithm will have. The higher the value, the more importance it will give to
the factor that follows it.

As can be seen, this reinforcement learning technique is an optimization
problem in itself, which seeks to maximize the reward obtained by activating
the arms.

2.7.3 Dynamic Version

Understanding all of the above, the literature shows that there are cases
where an arm can start to perform worse. With the models reviewed so far,
it would take a long time for the algorithm to stop recommending the arm
with the highest average reward [15]. It is also likely to take more iterations
than defined in the run of the experiment, meaning that the arm with the
best performance will never be found. For this situation, a dynamic version
of the algorithm is presented, which allows restarting the learning algorithm
when it finds some atypical behavior in some iteration.

This modification consists of performing a test in each iteration that
consists of verifying if the given reward generates a standard deviation that
is very different from the average deviation. Two values are defined for this.

avgDeva(t) =
t∑

i=1

(ra,i − ra,i + δ) (22)

maxDeva(t) = maxa {avgDeva(i), i = 1...t} (23)

where ra,i corresponds to the reward obtained by activating arm a in iter-
ation i, and ra,i to the average reward of arm a accumulated up to iteration
i. A delta is also defined as a deviation tolerance parameter. To know when
an iteration returns an outlier, a λ parameter is defined that will allow us to
approve or reject the test in question.

maxDeva(t)− avgDeva(t) > λ (24)

19

If the equation 24 is true, then everything learned by the MAB[56] al-
gorithm will be reset. This may sound like an extreme measure, but the
literature shows that it is the fastest way to get back to learning [15].

20

3 Research Methodology

In the course of this work, several stages were passed, which will be described
below.

During the first phase of this research (phase 0), a review of the liter-
ature and state of the art on machine learning and reinforcement learning
algorithms is carried out, to propose Multi-Armed Bandit as a selector al-
gorithm. Then optimization issues, metaheuristics, combinatorial problems,
among others, were investigated to propose a final algorithm.

Moving on to the development phase (phase 1), each software component
were implemented separately and independently and then assembled as if it
were a puzzle. This allowed us to work with a cleaner code, granting more
control when modifying each of the components and making it easier to ex-
periment with different configurations.

In the experimentation phase, a trial and error logic was proposed, for
which many adjustments were made based on the results obtained in each
experimentation iteration. In the first place, it went through an assembly
phase (phase 2), which consisted of grouping the components developed in
phase 1 in order to put them to the test with the resolution of the Set Cover-
ing Problem. Then, in the evaluation phase, the results are obtained (phase
3), what is obtained is verified and the necessary changes are made in case
they are not as expected or do not allow us to draw major conclusions. Figure
5 shows a flowchart that represents the step by step of the methodology used.

In the first iterations of the tweak and test cycle, few experiments were
performed for each configuration, but enough to be able to make decisions
about it, and make the corresponding changes. As the assembly of com-
ponents was improved and a concise proposal was reached, the number of
experiments increased in order to make more accurate decisions about the
algorithm. From this logic, two large phases occurred, which contemplated
changes in the metaheuristics and design of the experiments carried out, re-
sulting in two software proposals with many differences between them. These
proposals are explained in sections 4 and 5.

21

Phase 0: Research
Problem definition and literature

research

Phase 1: Develop
(1.1) - Develop MAB as a selector

algorithm

(1.2) - Develop Binarization
schemes

(1.3) - Develop Binary
metaheuristic

Phase 2: Assemble
Use MAB as a binarization scheme
selector in metaheuristics solving

SCP

Phase 3: Evaluation
Run and evaluate the proposal

Expected
results?

Improvement
and

Modification

NO Phase 4: Conclutions
Check results and

conclude

YES

Figure 5: Research methodology diagram

22

4 First proposal

As mentioned in the research methodology, in the experimentation phase
enough changes arose to present two different proposals. The first of these
is explained below.

4.1 Set covering problem

As mentioned in the section 2.1, metaheuristic algorithms are used to solve
NP-Hard problems [22], of which the well-known Set Covering Problem
(SCP) [8] stands out. This consists of covering a set of areas, locating
elements that are capable of covering the area where they are and their
neighbors. Each of these elements has an associated cost, therefore all areas
must be covered, obtaining the lowest cost. Figure 6 shows a small instance
where, by placing the elements in nodes 1 and 4, all the areas are covered.

Figure 6: Example SCP instance

SCP can be modeled to solve applied problems such as aircraft-crew
scheduling [4], truck routing [8], political districting [23], among others.

4.1.1 Mathematical model

Each instance can be modeled as a matrix of m× n where m is the number
of zones to cover and n the elements located, from now on, constraints and
columns respectively. In this way, we will have a binary matrix that will
contain a 1 if a column satisfies a constraint. In addition to this, the instance
includes a cost vector that indicates the cost value associated with selecting
each column. In this way, the objective is to select the columns that exceed
all the constraints, and that generate the lowest cost.

23

Definition 3 Let A = (ai,j) be a binary matrix of M rows (i ∈ I = {1, . . . ,M})
and N columns (j ∈ J = {1, . . . , N}) such that:

ai,j =

{
1, if row i can be covered by column j
0, otherwise

(25)

and C = (cj) a uni-dimensional vector that contains the cost of each
column.

Definition 4 Let X = (xj) (j ∈ J) a uni-dimensional vector that contain
each decision variable.

xj =

{
1, if column j is selected
0, otherwise

(26)

In this way, the best combination of selected columns must be sought to
minimize the cost function. It is presented as follows.

min
Z∈R

Z =
N∑
j=1

cj · xj (27)

This must be done in compliance with the restriction that all rows are
covered and that the decision variables are binary.

s.t.
N∑
j=1

ai,j · xj ≥ 1 ∀ i ∈ I

xj ∈ {0, 1} ∀ j ∈ J

(28)

4.1.2 Repair of infeasible solutions

Throughout the process of searching for new solutions, it is likely that these
solutions do not meet all the constraints posed by the instance. In that case,
a repair process must be resorted to.

For this, the so-called information heuristic is used, which consists of a
function that tells us how strong a solution is [51]. In this case, the function
is defined as the trade-off between the cost of a column and the number of
constraints it fixes. Let ej be the number of new constraints that are satisfied
by adding column j to a solution. With this, our heuristic information hj
is defined as hj = cj/ej [18]. With this value, when fixing a solution, the
column j with the lowest value hj is found and added to the solution.

24

4.2 Binary Black Widow Optimization

The BWO algorithm, since its publication, has been successful in its appli-
cations in production and distribution optimization problems [21], deep con-
volution neural network [41], among others [34, 28, 29]. Despite its success,
its original model presents difficulties in solving combinatorial optimization
problems, precisely because of the crossover model it proposes for its procre-
ation stage, described in the equations(7) and (8), section 2.3.2.

4.2.1 Cross-over proposal

Going into this problem in detail, we are presented with 2 cases: when the
i variables of each parent are equal (1-1 or 0-0), and when they are different
(1-0 or 0- 1). In the first case there is no problem, since regardless of the
value alphai the result will remain intact, that is, the i-th variable of the
new child will be identical to that of its parents. The second case is where
the problems arise, since being different, the values αi and 1−αi will be as-
signed to the new children, removing the variables from the discrete domain.
Figure 7 shows an example of this problem.

Figure 7: Arithmetic Crossover Example

To solve this problem, 2 proposals are presented, used for feature selec-
tion [3], and distribution problems [21]. In [21] it is proposed to modify
the operation used for procreation (arithmetic cross-over), and use an order-
based crossover approach [52], which consists of selecting some variables from
the father and others from the mother to generate the new child, as shown in
figure 8. In [3] instead, it is proposed to add an extra step to the generation
of new solutions, which is the two-step binarization explained in the section

25

2.1.2. First, apply the transfer function S2, corresponding to the sigmoid
function, and then apply the standard binarization.

Figure 8: Order-based Crossover Example

Moreover, the problem of generating new solutions in algorithms that
solve combinatorial optimization problems is the generation of infeasible so-
lutions, that is, solutions that do not meet the intrinsic constraints of the
problem. This is why each generated solution must be reviewed before adding
it to the population. When this problem occurs, the repair of said infeasible
solution must be carried out.

As can be seen in the example presented in figure 7, regardless of the
value of the random variable alpha, the resulting value of the operation
will never go outside the range [0,1]. For this reason, the transfer functions
presented in the section 2.1.2 would not be necessary to be able to binarize
with the binarization functions (section 2.1.2).

4.2.2 Mutation proposal

In the original article [26], a parameter is used in the mutation stage to
define how much population will be mutated. Taking into account that the
cross-over explained in the previous section modifies the variables only in
certain situations, and leaves new children equal to the parents in the event
that these individuals are exactly the same, the mutation process plays an
important role in the search for new solutions. That is why in this thesis
another parameter is proposed that tells us the number of variables that will
be mutated. These randomly selected variables will be swapped for other
variables having the opposite value. For example, if a one is selected, it can
only be changed to a variable with a value of zero. Otherwise, the mutation

26

would not produce any change. The figure shows an example of the operation
performed.

4.2.3 Population proposal

As explained in the original paper of the algorithm, according to the pp pa-
rameter, the population of individuals with whom the reproduction will be
carried out, called pop1, is optimized. With it, the corresponding cross-over
is carried out, generating, for each pair of parents, as many children as the
dimensions of the problem. This creates serious time optimization difficul-
ties when trying to solve the Set Covering Problem. That is why in this
thesis it is proposed to generate npop children (population size), for each
pair of parents. With this change the times are reduced considerably, tak-
ing into account that the smallest instance of OR-Library has 1000 variables.

As for the population resulting from the reproduction and cannibalism
stage (pop2), it is proposed to store the surviving mother (father) and sur-
viving children, and as for the mutation, it is proposed to use the original
population to reproduce pop1. In this way, in each iteration the following
result will be obtained:

• The best parents of the inner iteration (surviving mother)

• Best new guys (surviving sons)

• A small modification of the best parents from the previous iteration.

Next, in figure 10 the flowchart of the BBWO algorithm to be used will
be shown.

4.3 Dynamic Multi-armed Bandit for binarization schemes
selection

To improve the proposal presented in [3], the Dynamic Multi-armed Bandit
(DMAB) algorithm will be used, which will learn to select different binariza-
tion schemes to use in the BBWO metaheuristic, in order to obtain a good
balance between exploration and exploitation of the search field.

In [31], the importance of binarization schemes for the search result, solv-
ing SCP, is analyzed. The authors conclude that it directly affects and give
recommendations of schemes to use in certain instances.

27

As the selected scheme is so important, in this thesis it is proposed to
use a reinforced learning algorithm, specifically Multi-armed Bandit, recog-
nized for its use in recommendation systems [20], to implement a dynamic
binarization model in the metaheuristic BBWO, solving SCP.

An important factor for the success of any reinforcement learning algo-
rithm is the modeling of the reward that will be obtained with each ac-
tion performed. For this investigation, the way in which the reward will
be calculated is with its percentage of fitness improvement delivered by the
metaheuristic, expressed as follows.

r = 100 ·
[
fold − fnew

fold

]
(29)

where fold is the best fitness of the last iteration, and fnew is the best
fitness of the current iteration.

As mentioned in the 2.7 section, there are many ways to choose which
arm to use in each iteration, but based on the literature [56, 45, 9, 15], one
that has given good results is the UCB1 call described in the section 2.7.2.
Also, as an exercise to compare the performance of UCB1, the random value
functions will be developed, which consists of always choosing an arm at
random, and the ε − greedy function explained in the section 2.7.1 . In
addition to the UCB1 value function, the PH-test is presented, which allows
restarting the learning of the agent when it begins to have atypical behav-
ior. The implementation of this test would accelerate learning in those cases.

In this way, as a summary, the Dynamic Multi-armed bandit model to
use is as follows:

• Environment: As mentioned in section 4.2.1, the binarization schemes
will be complained just by the binarization function, giving us a total
of 5 possible ways to binarize our continues variables. For this reason
the arms to be selected in each iteration will be just 5.

• Policy: The policy will be governed by the value function UCB1,
added to the PH-test. The random and ε − greedy functions will be
implemented only for preliminary experiments and future comparisons.

• Reward: The reward will be defined by the fitness improvement per-
centage of each execution of the BBWO algorithm.

Figure 9 shows the Dynamic Multi-armed Bandit (DMAB) model.

28

4.3.1 DMAB Flowchart

Figure 9: DMAB flowchart

The step-by-step explanation of the algorithm is presented below.

1. Based on the fitness of the best solution found in the execution and the
best historical fitness, the reward generated by selecting said scheme
was calculated, using the equation (29).

2. The average reward of the selected scheme is updated.

3. Based on the reward obtained, the PH-test is executed using the equa-
tions (22) and (23).

29

4. If the test is triggered (Eq. 24), the agent’s training is restarted and the
environment is initialized again. Otherwise, the iterations continue.

30

4.3.2 BBWO+DMAB Flowchart

Figure 10: BBWO flowchart

The step-by-step explanation of the algorithm is presented below.

31

1. The instance to use is loaded, brought from OR-Library

2. The initial population is generated, ensuring that each individual com-
plies with the constraints of the problem.

3. The environment composed of the binarization functions (arms) is ini-
tialized. A priori we have 5 of them, but they can vary depending on
what is decided in the experiment stage.

4. Each solution is evaluated and the population is sorted based on the
fitness of each individual.

5. As long as the iterations are less than the maximum, new solutions
will be searched.

6. Based on the procreation ratio (PP), the best individuals are selected
to start procreation between each pair.

7. For each pair of parents, npop new individuals are generated, using the
crossover equations (7-8)

8. Binarization is applied.

9. The feasibility of the new solutions generated is reviewed.

10. For each pair of parents, the one with worse fitness is discarded.

11. Based on the cannibalism ratio (CR), the new offspring with the worst
fitness are discarded. Survivor sons and mother are stored in pop2.

12. Based on the mutation ratio (PM), the individuals to carry out the
mutation are selected from pop1. The result is stored in pop3.

13. The feasibility of the new solutions generated is reviewed.

14. The population pop is updated by adding the 2 resulting populations
pop2 + pop3. To maintain the initial population size, only the best
npop individuals will be kept.

15. The fitness of the population is calculated.

16. DMAB, explained in section 4.3.1 is executed

17. DMAB selects the binarization scheme to use, based on the selected
value function (Eq. 18-21).

18. At the end of the search for solutions, we return the best one found.

32

4.4 Proposed pseudo-code

A summary of the parameters to be used will be presented first.:

• Procreation ratio pp: Defines with how much population the reproduc-
tion will be carried out.

• Cannibalism ratio cr: Define how many children will survive after re-
production.

• Mutation rate pm: Define how many individuals will be mutated.

• Mutated variables vm: Define how many variables will be exchanged
in each individual.

• Population size npop: This size will be maintained throughout the
algorithm.

• itareations maxIter: iterations to execute.

• ε: Probability that the agent chooses a random arm, in the policy
ε-greedy.

• c: UCB-1 policy scan parameter. Gives more weight to arms with
fewer executions.

• λ: Adjust how rigorous the PH-Test will be.

33

Algorithm 1 Binary Black Widow Optimizer
Input: Population X = {x1, x2, ..., xnpop}, params {pp, cr, pm,maxIter}
Output: Updated population X ′ = {x′1, x′2, ..., x′npop} and Xbest

1: Set procreation number Pn → npop ∗ pp
2: Set mutation number Mn → npop ∗ pm
3: Set survivors number Sn → npop ∗ cr
4: Initialize population pop
5: Binarize pop → bpop
6: for t to maxIter do
7: Sort the population according to their fitness
8: Update best solution Xbest

9: Select best Pn individuals and set at pop1
10: for i = 1 to Pn do
11: Procreation (Algorithm 2)
12: Sexual cannibalism: Delete parent with worst fitness from pop1
13: Apply binarization scheme selected by DMAB (Table 3)
14: Repair solutions if the are not feasible. [Section (4.1.2)]
15: Siblings cannibalism: Keep best Sn new individuals.
16: pop2 = best parent + best children
17: end for
18: for i = 1 to Mn do
19: Mutation (Algorithm 3)
20: end for
21: pop = pop2 + pop3: Keep best npop individuals from pop
22: Calculate fitness
23: Update de best solution Xbest

24: Update DMAB (Algorithm 4)
25: end for

34

Algorithm 2 Black Widow Procreation
Input: bpop1 X = {x1, x2, ..., xPn}
Output: New individuals.

1: Select two random parents from bpop1
2: for j to npop/2 do
3: Generate random value α
4: Generate 2 new individuals with Eq. (7) and (8)
5: Save new individuals
6: end for

Algorithm 3 Black Widow Mutation
Input: bpop1 X = {x1, x2, ..., xPn}, vm
Output: Mutated individuals at pop3.

1: Calculate number of variables to swap vm ∗ dimension → vars
2: Select random individual from bpop1 → bp
3: Swap vars random variables from bp
4: Repair bp, if the are not feasible
5: Add mutated individual to bpop3

4.5 Design of the experiments

In a first stage, it was decided to experiment only with the binary version
of Black Widow Optimization, using a fixed binarization function in each
execution, to later compare its behavior with those obtained by executing
the algorithm together with DMAB, offering dynamic binarization.

The firsts tests were carried out to refine and define the design of the
algorithm, its details of operations and configurations. After deciding on
the design, a preliminary parameter adjustment was carried out, with few
and small experiments, to verify its best configuration. The parameters that
remained fixed in these executions were those described in the table 4. The
analysis of these values was as follows. First of all, pp had to be high, since
all the new individuals generated for the next iteration will be obtained from
that percentage of the population, either by cross-over or mutation. Second,
cr was adjusted considering the possible exploration of the algorithm: being
very low, the following iterations would search for values very similar to the
best ones (exploitation). Lastly, as mentioned above, in advanced iterations
the crossover operation stops having as much impact as the individuals in

35

Algorithm 4 Dynamic Multi-armed Bandit
Input: Environment (Bin. functions) BS = {bs1, bs2, ..., bs40} and new

fitness.
1: Generate reward with Eq. (29) from fitness (BBWO output)
2: Update reward mean history
3: Run PH-test with Eq. (22) and (23)
4: if Eq. (24) is True then
5: Restart agent learning. Start from first line
6: else
7: Continue
8: end if

the population are all the same or very similar. This is why the values pm
and vm are adjusted to high values in order to be able to search for new
solutions when the cross-over stops perturbing the population.

npop pp cr pm vm max iter
50 0.8 0.5 0.8 0.1 1000

Table 4: Static parameters

Parallel to these experiments, the algorithm was tested with the dynamic
binarization technique, where the table parameters 4 and the instances were
kept, but the policy used in the DMAB algorithm was varied. First, the
random policy, which selects an arm randomly; second, the ε-greedy policy
(section 2.7.1) using ε = 0.2 as the value; and finally UCB1 (section 2.7.2)
using c = 2 as parameter.

The SCP instances were selected from the OR-Library, which contains
a large number of instances with different characteristics and complexities.
The table 5 shows a detailed description of the different families of instances
they have. The column m corresponds to the number of restrictions that
each instance has, n corresponds to the dimension of the problem, that is,
the number of variables that the solutions have. Cost range refers to the
interval of possible values that the cost of each variable can have. The density
percentage corresponds to the amount of 1 that the coverage matrix has,
explained in the equation (25). Finally, the "Optimal Solution" column tells
us if the optimal solution has already been found for each of the instances.

36

Instance set m n Cost range Density(%) Optimal solution
4 200 1000 [1,100] 2 Known
5 200 2000 [1,100] 2 Known
6 200 1000 [1,100] 5 Known
A 300 3000 [1,100] 2 Known
B 300 3000 [1,100] 5 Known
C 400 4000 [1,100] 2 Known
D 400 4000 [1,100] 5 Known

NRE 500 5000 [1,100] 10 Known
NRF 500 5000 [1,100] 20 Known
NRG 1000 10000 [1,100] 2 Unknown
NRH 1000 10000 [1,100] 5 Unknown

Table 5: Beasley’s OR-library benchmark description. [30]

For the execution of these experiments, 3 different machines with different
characteristics were used. For this reason, an analysis of the execution times
obtained by each configuration could not be carried out. The machines were
as follows:

• Apple Macbook Air: M1 processor 7-core CPU, 8-core GPU and 8GB
of RAM.

• AWS server: t2.micro EC2 instance (1 core CPU 1GB of RAM).

• DigitalOcean Server: Droplets (1 core CPU 1GB of RAM).

4.6 Preliminary Results

For the BBWO analysis with fixed binarization, running each combination
4 times, the following results were obtained, presented in the table 6.

As can be seen, there is a clear better performance in the Elitis and Elitist
Roulette functions, over the others, with the exception of the Complement
function, which equals in instance 53 and wins in instance 41. In any case,
there were few executions to be able to classify a function as the best.

The convergence of each of the instances 4.1 and 5.3 can be seen in
figure 11, and instances 6.2 and b.1 can be seen in figure 12. These results
are related to those present in the table 6, generating a possible correlation

37

Instancia Optimo BF Max Min Mean
41 429 Complement 453.0 444.0 449.75

Elitist 454.0 449.0 452.25
Elitist Roulette 477.0 448.0 457.75
Standard 485.0 455.0 470.40
Static 475.0 466.0 470.25

53 226 Complement 254.0 252.0 253.50
Elitist 260.0 246.0 253.50
Elitist Roulette 265.0 248.0 260.25
Standard 280.0 256.0 266.50
Static 294.0 256.0 282.75

62 146 Complement 165.0 161.0 163.25
Elitist 174.0 167.0 171.25
Elitist Roulette 176.0 155.0 161.25
Standard 186.0 165.0 177.00
Static 187.0 164.0 175.50

b1 69 Complement 92.0 89.0 90.25
Elitist 92.0 83.0 86.75
Elitist Roulette 92.0 79.0 85.75
Standard 131.0 105.0 122.25
Static 350.0 208.0 280.00

Table 6: BBWO results with fixed binarization

38

between the speed of convergence and the best solution found. The Static
and Standard functions had the most difficulty finding an optimal value.

39

Figure 11: Convergence of 4.1 and 5.3 instances by binarization function

40

Figure 12: Convergence of 6.2 and b.1 instances by binarization function

41

4.6.1 DMAB-BBWO results

For the following results, 5 executions were performed for each policy. Look-
ing at the table 7, we can see that, with the executions carried out, there is
not a great relationship between the best results and a specific policy. If we
analyze the convergence that exists in each of the executed instances, there
is also no constant behavior in any of the policies used (Fig 13 - 14).

Instance Optimal Policy Max Min Mean
41 429 ε-greedy 464.0 447.0 454.00

Random 457.0 448.0 452.80
UCB-1 453.0 445.0 450.75

53 226 ε-greedy 286.0 247.0 260.00
Random 263.0 242.0 254.20
UCB-1 264.0 252.0 256.75

62 146 ε-greedy 169.0 158.0 163.75
Random 175.0 160.0 164.80
UCB-1 168.0 162.0 164.50

b1 69 ε-greedy 95.0 80.0 88.00
Random 93.0 89.0 90.00
UCB-1 96.0 82.0 90.25

Table 7: BBWO results with fixed binarization

On the other hand, reviewing the figures 15, 16 and 17, we will be able
to analyze the behavior of each policy in question. They show the aver-
age number of times each binarization function was selected. The Random
policy had an expected behavior, giving each arm a similar number of ex-
ecutions. In the case of the ε-greedy policy, it can be seen how it rewards
the Elitist and Elitist Roulette functions more, which makes sense with the
results obtained in the execution of BBWO with fixed binarization (Table
6). Finally, reviewing the UCB-1 policy, it is interesting to note the same as
in the previous policy, adding to the Complement function, but it is curious
that they are selected a similar number of times. This is due to the fact that
the fitness improvement percentage (reward) is so low in the middle and final
iterations, that the exploratory factor of the policy begins to be taken more
into account, which favors the functions that have been selected less number
of times. This is why in the first iterations Elitist and Elitist Roulette were
selected and then they were equalized when the reward obtained decreased.

42

Figure 13: Convergence of 4.1 and 5.3 instances by agent policy

43

Figure 14: Convergence of 6.2 and b.1 instances by agent policy

44

It is also curious that the PH-test has not been activated once. This may
be due to the λ parameter, or the way it was defined to reward the agent.

Figure 15: Average number of selections with Random policy

4.7 Discussion

Analyzing all the results obtained, we do not find enough evidence to ensure
that using a dynamic binarization technique, such as DMAB, improves the
results when solving the Set Covering Problem with BBWO. This may be
due to many factors that affect this behavior that we will describe below.

First of all, the BWO metaheuristic, designed to solve continuous prob-
lems, presents a cross-over operation that does not allow exploring new solu-
tions when dealing with binary variables and their individuals are the same

45

Figure 16: Average number of selections with ε-greedy policy

46

Figure 17: Average number of selections with UCB-1 policy

47

or very similar. This means that the search for new solutions is impaired
over time, considering that when we approach an optimum, the individuals
in the population are increasingly similar.

Secondly, when solving the SCP with instances of OR-Library, a problem
is generated in the mutation of the algorithm, since, following the original
operation, very few variables are modified in relation to the dimension of the
problem, ranging between 1000 and 10000. This, added to the behavior of
the cross-over, makes it difficult to get out of local optima, or else, a very
slow convergence to an optimal value occurs.

Despite these possible problems present in the metaheuristics, the pro-
posal presented in this thesis seems logical and it is believed that with a
correct adjustment in the operators or parameters values, which directly af-
fect the exploration and exploitation of the search field, better results can
be found.

On the other hand, analyzing the behavior of DMAB, we can see that
it did not offer improvements compared to a fixed binarization technique.
It did deliver faster convergences, in some cases, but not better solutions.
One of the possible problems that could cause this behavior is the way that
rewarding the agent was defined.

There is no doubt that the experiments carried out and presented until
now are not enough to draw great conclusions about the behavior of the dif-
ferent binarization functions, nor of the metaheuristic itself. For this reason,
it was decided to make a second proposal that simplifies some features of
the algorithm, to focus efforts on the performance of MAB as a selector of
binarization schemes. With this second proposal, it will seek to obtain more
accurate conclusions about the behavior of this reinforced learning algorithm
and achieve the objective of this thesis.

48

5 Second proposal

This second proposal was designed based on the problems that arose dur-
ing the development of the previous proposal and after analyzing the results
obtained. The differences between the proposals include changes in the meta-
heuristics and in the design of the experiments. The problem to solve will
continue to be SCP.

5.1 Binary Pendulum Search Algorithm

In this proposal it was decided to use the PSA metaheuristic, which is charac-
terized by having a single mathematical operation that modifies the solutions
of the population, simplifying the search process for new solutions and al-
lowing us to focus our efforts on the work of MAB as a selection algorithm
of binarization schemes.

Like BWO, this metaheuristic was also designed to solve continuous prob-
lems, so we need to go through the two-step binarization process. In this
case, the values that the variables can obtain after the mathematical oper-
ations proposed in the metaheuristics do vary in a range greater than [0,1],
so in this case we must use the transfer functions before the binarization
functions. In total we would have 40 different combinations to be able to
binarize the continuous values of the variables (figure 18).

5.2 MAB-BPSA

As mentioned in the 4.7 section, one of the reasons for modifying the meta-
heuristics was its complexity in solving SCP. By using the instance dimen-
sion to define the number of new children generated, resolving OR-Library
instances leaves the population too large, increasing execution times and, in
some cases, premature convergence.

Also, when verifying that the DMAB PH-Test was not activated on any
execution, it was decided to leave it out of the experiments in order to cap-
ture the behavior of MAB on its own: the less variables you work with, the
more accurate the conclusions obtained will be.

In this way, as a summary, the Multi-armed bandit model to use is as
follows:

49

Figure 18: 40 binarization schemes

• Environment: As mentioned in section 5.1, in this case the binariza-
tion schemes will be complained by the combination of transfer func-
tion and binarization function, giving us a total of 40 possible ways to
binarize our continues variables (figure 18).

• Policy: The policy will be governed by the value function UCB-1.

• Reward: The reward will be defined by the fitness improvement per-
centage of each execution of the BPSA algorithm.

The pseudo-code of the final algorithm is presented in 5. As can be seen,
the logic of the algorithm is simplified, reducing the number of steps and
operations to perform.

50

Algorithm 5 MAB-BPSA
Input: The population X = {X1, X2, ..., Xi}
Output: The updated population X ′ = {X ′

1, X
′
2, ..., X

′
i} and XBest

1: Initialize random population X
2: Evaluate the fitness of each individual in the population X
3: Identify the best individual in the population (XBest)
4: for iteration (t) do
5: for solution (i) do
6: for dimension (j) do
7: Update pendti.j by Eq. (17)
8: Update the position of Xt

i,j using Eq. (16)
9: end for

10: Apply binarization scheme selected by MAB (Tables 1 - 3)
11: Repair solutions if the are not feasible. (Section (4.1.2))
12: end for
13: Evaluate the fitness of each individual in the population X
14: Generate MAB reward with Eq. (29) from fitness
15: Update UCB-1 value to select the next binarization scheme
16: Update XBest

17: end for
18: Return the updated population X ′ where XBest is the best result

5.3 Design of experiments

As mentioned in [31], one of the best binarization schemes is the combi-
nation of the V4 transfer function and the Elitist binarization rule. This
is why we will compare the result of the BPSA execution, configured with
V4-Elitist in all its iterations, versus the MAB-BPSA proposal, binarizing in
each iteration with the technique provided by the MAB algorithm. Unlike
the previous proposal (DMAB-BBWO), only the value function that offers
the best results (of the three presented) according to the literature will be
used: UCB-1 [14].

Regarding the development, first of all, the instances of the SCP prob-
lem were captured from OR-library, from which instances 41, 51, 61, a1,
b1, c1, nre1 and nrf1 were used. In this way we have a good representation
of the different families of instances. More details of each instance in table 5.

Second, the BPSA and MAB algorithms, along with the different bina-

51

Context Param Value

PSA Population 40
Iters 500

MAB c
√
2

Fixed bin. Transfer func. V4
Binary func. Elitist

Table 8: Parameter configuration.

rization techniques, were developed in the Python v3.9 with the NumPy
library to optimize matrix calculations.

Finally, the experiments were carried out on a Macbook Air computer
with an Apple M1 processor, 7-core CPU and 8GB of RAM. Each instance
was executed 31 times independently, enough quantity to have a confidence
idea of the behavior of the algorithm in each one of the instances.

Regarding the configuration of parameters, a population size of 40 in-
dividuals and 500 iterations were used for both tested approaches, 31 inde-
pendent runs were performed and the value for the value c of Eq. 21 is

√
2,

based on the suggestion of [14]. The parameters are summarized in table 8.

5.4 Experimental results

The results obtained are shown in Table 9. This table has ten columns, where
the first one represents the instance of the Set Covering Problem evaluated,
the second one represents the global optimum of instances and the next four
columns are repeated for each algorithm executed. The first of these shows
the best fitness obtained among the thirty-one independent runs, the second
of these shows the average across the thirty-one independent runs, the third
one of these shows the standard deviation of the thirty-one independent
runs, and the fourth one shows the Relative Percentage Deviation (RPD)
between global optimum and the best fitness obtained among the thirty-one
independent runs. RPD is defined as follows:

RPD =
Z − Zopt

Zopt
× 100 (30)

where Z corresponds to the best value found and Zopt the global optimal
value that is expected to be reached.

52

V4-ELIT MAB
Inst. Opt Best Avg-fit Std-dev-fit RPD Best Avg-fit Std-dev-fit RPD
41 429 433 433 0 0.932 433 433 0 0.932
51 253 267 267 0 5.534 257 266.452 2.173 1.581
61 138 141 142.774 1.91 2.174 141 141 0 2.174
a1 253 257 257.065 0.25 1.581 257 257 0 1.581
b1 69 69 69.161 0.374 0 69 69.097 0.301 0
c1 227 230 232.387 1.202 1.322 231 232.645 0.798 1.762
d1 60 60 60.355 0.661 0 60 60.871 0.619 0

nre1 29 29 29 0 0 29 29 0 0
nrf1 14 14 14 0 0 14 14 0 0
Avg. 163.556 166.667 167.194 0.489 1.283 165.667 167.007 0.432 0.892

Table 9: Comparison of fitness between fixed and dynamic binarization.

The following criteria were used to determine the best algorithm:

* Best fitness obtained and RPD: This allows us to see what our
best result was and how far it is from the global optimum.

* Standard Deviation: A low standard deviation indicates the results
obtained with the thirty-one independent runs were close.

* Average between thirty-one independent: An average close to
the optimal value indicates the results obtained with the thirty-one
independent runs the algorithm performed well.

With this in mind, our proposed BPSA with MAB as binarization schemes
selector won in 5 out of 9 instances, tied in 3 out of 9 instances, and only
lost in one instance.

From figure 19 to 22 shows the convergence plots of the best execution of
each algorithm run. The X-axis shows the iterations and the Y-axis shows
the best fitness obtained during the process. The left plot show the complete
range of values, and the right side a zoom-in plot in order to see the behavior
in more detail.

In these two figures, we can see the BPSA with MAB has a slower con-
vergence compared to BPSA with a fixed binarization scheme.

Thus, we can demonstrate that using MAB as a selector of binarization
schemes helps to balance the exploration and exploitation of BPSA and to

53

0 100 200 300 400 500
0

5000

10000

15000

20000

Convergence
V4-ELIT
MAB

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

7000

Zoom
V4-ELIT
MAB

Figure 19: Fitness convergence and Zoom for instance 41

0 100 200 300 400 500

0

5000

10000

15000

20000

25000

30000

Convergence
V4-ELIT
MAB

0 20 40 60 80 100
0

2000

4000

6000

8000

10000

Zoom
V4-ELIT
MAB

Figure 20: Fitness convergence and Zoom for instance 51

54

0 100 200 300 400 500

0

10000

20000

30000

40000

50000

60000

Convergence
V4-ELIT
MAB

0 20 40 60 80 100
0

2500

5000

7500

10000

12500

15000

17500

20000

Zoom
V4-ELIT
MAB

Figure 21: Fitness convergence and Zoom for instance d1

0 100 200 300 400 500

0

20000

40000

60000

80000

Convergence
V4-ELIT
MAB

0 20 40 60 80 100
0

5000

10000

15000

20000

25000

30000

Zoom
V4-ELIT
MAB

Figure 22: Fitness convergence and Zoom for instance nre1

55

V4-ELIT MAB
Instance Avg-time (s) Std-dev-time (s) Avg-time (s) Std-dev-time (s)

41 69.429 4.15 71.727 9.763
51 88.634 4.35 89.497 13.175
61 42.355 3.303 39.683 5.878
a1 204.238 5.852 193.114 17.502
b1 113.087 4.817 123.087 17.13
c1 408.542 10.897 383.78 41.616
d1 218.491 6.603 199.662 20.153

nre1 257.875 7.011 277.048 34.237
nrf1 148.318 5.306 174.743 21.352

average 172.330 5.810 172.482 20.090

Table 10: Comparison of time between fixed and dynamic binarization.

find better solutions.

On the other hand, in figure 24 we can see 3 horizontal bar graphs show-
ing the number of times each actions was selected. The one on the left shows
how they had been selected in the first 50 iterations of the run, then at 200
iterations, and on the right at 500 iterations. In this way we can analyze the
behavior that MAB algorithm had throughout the execution. From figure
24 which shows the average selection of instance 51, it stands out that in the
first iterations, where the algorithm has a greater exploratory component,
the 4 actions that are most selected have as a binarization rule (D2 at table
3) the complement function, while in advanced iterations the actions with
the Elitist or Elitist Roulete function are selected more (D4 and D5 at table
3). This result makes sense with what is described in [31]. A similar behavior
can be observed in figures 23, 25 and 26.

As mentioned above, the use of metaheuristics lies in their efficiency in
delivering good results in reasonable times. The Table 10 shows the execu-
tion times of each proposal, where the first one represents the instance of the
Set Covering Problem evaluated and the next two columns are repeated for
each algorithm executed. The first-one of these shows the average time in
seconds across the thirty-one independent runs, and the second one of these
shows the standard deviation of the thirty-one independent runs.

As can be seen in this table, both proposals have very similar implemen-
tation times. This indicates that there is not a large computational increase

56

when incorporating a machine learning technique such as MAB.

0.0 0.5 1.0 1.5 2.0 2.5

S1-Standard
S1-Complement

S1-Static
S1-Elitist

S1-ElitistRoulette
S2-Standard

S2-Complement
S2-Static
S2-Elitist

S2-ElitistRoulette
S3-Standard

S3-Complement
S3-Static
S3-Elitist

S3-ElitistRoulette
S4-Standard

S4-Complement
S4-Static
S4-Elitist

S4-ElitistRoulette
V1-Standard

V1-Complement
V1-Static
V1-Elitist

V1-ElitistRoulette
V2-Standard

V2-Complement
V2-Static
V2-Elitist

V2-ElitistRoulette
V3-Standard

V3-Complement
V3-Static
V3-Elitist

V3-ElitistRoulette
V4-Standard

V4-Complement
V4-Static
V4-Elitist

V4-ElitistRoulette

First 50 iterations

0.0 2.5 5.0 7.5 10.0 12.5 15.0

200 iterations

0 10 20 30 40

500 iterations

Figure 23: Average number of selections on instance 41

57

0.0 0.5 1.0 1.5 2.0 2.5

S1-Standard
S1-Complement

S1-Static
S1-Elitist

S1-ElitistRoulette
S2-Standard

S2-Complement
S2-Static
S2-Elitist

S2-ElitistRoulette
S3-Standard

S3-Complement
S3-Static
S3-Elitist

S3-ElitistRoulette
S4-Standard

S4-Complement
S4-Static
S4-Elitist

S4-ElitistRoulette
V1-Standard

V1-Complement
V1-Static
V1-Elitist

V1-ElitistRoulette
V2-Standard

V2-Complement
V2-Static
V2-Elitist

V2-ElitistRoulette
V3-Standard

V3-Complement
V3-Static
V3-Elitist

V3-ElitistRoulette
V4-Standard

V4-Complement
V4-Static
V4-Elitist

V4-ElitistRoulette

First 50 iterations

0 2 4 6 8 10 12

200 iterations

0 5 10 15 20 25 30 35

500 iterations

Figure 24: Average number of selections on instance 51

0.0 0.5 1.0 1.5 2.0 2.5 3.0

S1-Standard
S1-Complement

S1-Static
S1-Elitist

S1-ElitistRoulette
S2-Standard

S2-Complement
S2-Static
S2-Elitist

S2-ElitistRoulette
S3-Standard

S3-Complement
S3-Static
S3-Elitist

S3-ElitistRoulette
S4-Standard

S4-Complement
S4-Static
S4-Elitist

S4-ElitistRoulette
V1-Standard

V1-Complement
V1-Static
V1-Elitist

V1-ElitistRoulette
V2-Standard

V2-Complement
V2-Static
V2-Elitist

V2-ElitistRoulette
V3-Standard

V3-Complement
V3-Static
V3-Elitist

V3-ElitistRoulette
V4-Standard

V4-Complement
V4-Static
V4-Elitist

V4-ElitistRoulette

First 50 iterations

0 2 4 6 8 10 12 14

200 iterations

0 10 20 30 40

500 iterations

Figure 25: Average number of selections on instance c1

58

0.0 0.5 1.0 1.5 2.0 2.5 3.0

S1-Standard
S1-Complement

S1-Static
S1-Elitist

S1-ElitistRoulette
S2-Standard

S2-Complement
S2-Static
S2-Elitist

S2-ElitistRoulette
S3-Standard

S3-Complement
S3-Static
S3-Elitist

S3-ElitistRoulette
S4-Standard

S4-Complement
S4-Static
S4-Elitist

S4-ElitistRoulette
V1-Standard

V1-Complement
V1-Static
V1-Elitist

V1-ElitistRoulette
V2-Standard

V2-Complement
V2-Static
V2-Elitist

V2-ElitistRoulette
V3-Standard

V3-Complement
V3-Static
V3-Elitist

V3-ElitistRoulette
V4-Standard

V4-Complement
V4-Static
V4-Elitist

V4-ElitistRoulette

First 50 iterations

0.0 2.5 5.0 7.5 10.0 12.5 15.0

200 iterations

0 10 20 30 40

500 iterations

Figure 26: Average number of selections on instance d1

59

6 Conclusion

This document has presented a brief analysis of the state of the art related to
the area of optimization and machine learning. Along with the explanation
of the proposed solution. In addition, the proposal of the BWO and PSA
algorithm in its binary version is presented in detail, with its due justifica-
tion, in order to solve the Set Covering Problem.

The ease of accessing large computational capacities at reduced costs has
enabled the use of machine learning techniques such as Multi Armed Ban-
dit. The research on hybrid algorithms between metaheuristics and machine
learning with the aim of improving the search process is increasing every year
and the present work is an example of that. In particular, Multi Armed Ban-
dit was successfully incorporated into Pendulum Search Algorithm where it
was used to dynamically and intelligently select binarization schemes.

Preliminary results indicate that BWO had trouble solving SCP and that
MAB did not offer any help in their goal of getting better results. On the
other hand, results indicate that our second proposal (MAB-BPSA) per-
forms better when compared to Pendulum Search Algorithm using a fixed
binarization scheme (V4-Elitist). Better results were obtained by improv-
ing the balance of diversification and intensification in the Pendulum Serach
Algorithm search process. During the diversification process, Multi Armed
Bandit determined that the most exploratory binarization schemes are those
that include the Complement binarization function. In contrast, for the
intensification process, Multi Armed Bandit determined that the most ex-
ploitative binarization schemes are those that include the Elitist or Elitist
Roulette binarization function.

Regarding computation times, the results indicate that there is no great
increase in computation times when comparing V4-Elitist and MAB-BPSA.
This dismisses that incorporating machine learning techniques to metaheuris-
tic algorithms increases the computational time.

With the results described, it can be said that the main objective of
this thesis was met, but there are still many issues to be addressed in order
to obtain good results in other metaheuristic proposals and combinatorial
problems. The current situation in which this research finds itself opens the
way for several future investigations, mainly due to the simplification of the
first proposal. First of all, the correct configuration and implementation of

60

DMAB can offer a wide range of experimentation, applying it to different
metaheuristics (SCA, PSA, among others), which theoretically could offer
good results.

Secondly, another possible issue to be addressed in the future is to im-
prove the design of BWO. New operations can be proposed that reduce
execution times. The changes proposed in this thesis were a great advance
in this work, but it was not possible to arrive at a clean algorithm that is ca-
pable of highlighting some characteristic by solving combinatorial problems.

The third place, when observing the results of the second proposal, where
it was observed how the complement binarization function is used in explo-
ration stages, while Elitist and Elitista Roullete in exploitation stages, it
would be interesting to analyze the diversity measures described in the 2.2
section to be able to empirically measure the exploration and exploitation
capacity of each binarization scheme.

Finally, a characteristic shared by both proposals was the way of re-
warding the MAB agent. A possible problem presented by the improvement
percentage (Eq. 29) is that in the first iterations the reward is much higher
than in advanced iterations, precisely where it is more difficult to improve
in fitness. A possible future investigation would be the normalization of said
reward function, in order to avoid biases generated in the first iterations.

As a last detail to highlight, PSA is a metaheuristic that made the ex-
periments much easier, because it did not have parameters to configure and
because of its simplicity in the movement executions of the individuals, with-
out harming the results obtained. This allows it to be easily used for future
investigations as the default metaheuristic, and thus concentrate on the focus
of said investigation, without worrying about having to adjust parameters
or configure the metaheuristics.

61

References

[1] Nor Azlina Ab. Aziz and Kamarulzaman Ab. Aziz. Pendulum search
algorithm: An optimization algorithm based on simple harmonic mo-
tion and its application for a vaccine distribution problem. Algorithms,
15(6):214, 2022.

[2] Tasiransurini Ab Rahman, Zuwairie Ibrahim, Nor Azlina Ab. Aziz,
Shunyi Zhao, and Nor Hidayati Abdul Aziz. Single-agent finite im-
pulse response optimizer for numerical optimization problems. IEEE
Access, 6:9358–9374, 2018.

[3] Ahmed Al-Saedi. Binary black widow optimization algorithm for feature
selection problems. 2021.

[4] JP Arabeyre, J Fearnley, FC Steiger, and W Teather. The airline crew
scheduling problem: A survey. Transportation Science, 3(2):140–163,
1969.

[5] Jean-Yves Audibert, Rémi Munos, and Csaba Szepesvári. Exploration–
exploitation tradeoff using variance estimates in multi-armed bandits.
Theoretical Computer Science, 410(19):1876–1902, 2009.

[6] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the
multiarmed bandit problem. Machine learning, 47(2):235–256, 2002.

[7] Egon Balas and Paolo Toth. Branch and bound methods for the trav-
eling salesman problem. 1983.

[8] Michel L Balinski and Richard E Quandt. On an integer program for a
delivery problem. Operations research, 12(2):300–304, 1964.

[9] Jany Belluz, Marco Gaudesi, Giovanni Squillero, and Alberto Tonda.
Operator selection using improved dynamic multi-armed bandit. In
Proceedings of the 2015 Annual Conference on Genetic and Evolutionary
Computation, pages 1311–1317, 2015.

[10] Ilhem Boussaïd, Julien Lepagnot, and Patrick Siarry. A survey on op-
timization metaheuristics. Information Sciences, 237:82 – 117, 2013.
Prediction, Control and Diagnosis using Advanced Neural Computa-
tions.

62

[11] Seung-Seok Choi, Sung-Hyuk Cha, and Charles C Tappert. A survey
of binary similarity and distance measures. Journal of systemics, cyber-
netics and informatics, 8(1):43–48, 2010.

[12] Broderick Crawford, Ricardo Soto, Gino Astorga, José García, Carlos
Castro, and Fernando Paredes. Putting continuous metaheuristics to
work in binary search spaces. Complexity, 2017, 2017.

[13] Broderick Crawford, Ricardo Soto, Rodrigo Cuesta, and Fernando Pare-
des. Application of the artificial bee colony algorithm for solving the
set covering problem. The Scientific World Journal, 2014:Article ID
189164, 2014.

[14] Luis DaCosta, Alvaro Fialho, Marc Schoenauer, and Michèle Sebag.
Adaptive operator selection with dynamic multi-armed bandits. In Pro-
ceedings of the 10th annual conference on Genetic and evolutionary com-
putation, pages 913–920, 2008.

[15] Luis DaCosta, Álvaro Fialho, Marc Schoenauer, and Michèle Se-
bag. Adaptive operator selection with dynamic multi-armed bandits.
GECCO ’08, 2008.

[16] Charles Darwin. On the origin of species, 1859, 2016.

[17] Lawrence Davis. Handbook of genetic algorithms. 1991.

[18] Marco Dorigo, Mauro Birattari, and Thomas Stutzle. Ant colony opti-
mization. IEEE computational intelligence magazine, 1(4):28–39, 2006.

[19] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. Ant system:
optimization by a colony of cooperating agents. IEEE Transactions
on Systems, Man, and Cybernetics, Part B (Cybernetics), 26(1):29–41,
1996.

[20] Gangan Elena, Kudus Milos, and Ilyushin Eugene. Survey of multi-
armed bandit algorithms applied to recommendation systems. Interna-
tional Journal of Open Information Technologies, 9(4):12–27, 2021.

[21] Yaping Fu, Yushuang Hou, Zhenghua Chen, Xujin Pu, Kaizhou Gao,
and Ali Sadollah. Modelling and scheduling integration of distributed
production and distribution problems via black widow optimization.
Swarm and Evolutionary Computation, 68:101015, 2022.

63

[22] Michael R. Garey and David S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman amp; Co.,
USA, 1979.

[23] Robert S Garfinkel and George L Nemhauser. The set-partitioning
problem: set covering with equality constraints. Operations Research,
17(5):848–856, 1969.

[24] Fred Glover. Tabu search: A tutorial. Interfaces, 20(4):74–94, 1990.

[25] Abdolreza Hatamlou. Black hole: A new heuristic optimization ap-
proach for data clustering. Information sciences, 222:175–184, 2013.

[26] V. Hayyolalam and A. A. Pourhaji Kazem. Black Widow Optimization
Algorithm: A novel meta-heuristic approach for solving engineering op-
timization problems. Engineering Applications of Artificial Intelligence,
87:1–28, 10 2019.

[27] John H Holland and Judith S Reitman. Cognitive systems based on
adaptive algorithms. Acm Sigart Bulletin, (63):49–49, 1977.

[28] Essam H Houssein, Bahaa El-din Helmy, Diego Oliva, Ahmed A El-
ngar, and Hassan Shaban. A novel black widow optimization algorithm
for multilevel thresholding image segmentation. Expert Systems with
Applications, 167:114159, 2021.

[29] Gang Hu, Bo Du, Xiaofeng Wang, and Guo Wei. An enhanced black
widow optimization algorithm for feature selection. Knowledge-Based
Systems, 235:107638, 2022.

[30] Jose M Lanza-Gutierrez, NC Caballe, Broderick Crawford, Ricardo
Soto, Juan A Gomez-Pulido, and Fernando Paredes. Exploring further
advantages in an alternative formulation for the set covering problem.
Mathematical Problems in Engineering, 2020:Article ID: 5473501, 2020.

[31] Jose M Lanza-Gutierrez, Broderick Crawford, Ricardo Soto, Natalia
Berrios, Juan A Gomez-Pulido, and Fernando Paredes. Analyzing the
effects of binarization techniques when solving the set covering problem
through swarm optimization. Expert Systems with Applications, 70:67–
82, 2017.

[32] José Lemus-Romani, Marcelo Becerra-Rozas, Broderick Crawford, Ri-
cardo Soto, Felipe Cisternas-Caneo, Emanuel Vega, Mauricio Castillo,

64

Diego Tapia, Gino Astorga, Wenceslao Palma, Carlos Castro, and José
García. A novel learning-based binarization scheme selector for swarm
algorithms solving combinatorial problems. Mathematics, 9(22):2887,
Nov 2021.

[33] Xueyan Lu and Yongquan Zhou. A novel global convergence algorithm:
bee collecting pollen algorithm. In International conference on intelli-
gent computing, pages 518–525. Springer, 2008.

[34] Sargol Memar, Amin Mahdavi-Meymand, and Wojciech Sulisz. Predic-
tion of seasonal maximum wave height for unevenly spaced time series
by black widow optimization algorithm. Marine Structures, 78:103005,
2021.

[35] Seyedali Mirjalili. Sca: a sine cosine algorithm for solving optimization
problems. Knowledge-based systems, 96:120–133, 2016.

[36] Seyedali Mirjalili and Andrew Lewis. S-shaped versus v-shaped transfer
functions for binary particle swarm optimization. Swarm and Evolu-
tionary Computation, 9:1–14, 2013.

[37] Seyedali Mirjalili and Andrew Lewis. The whale optimization algorithm.
Advances in engineering software, 95:51–67, 2016.

[38] Seyedali Mirjalili, Seyed Mohammad Mirjalili, and Andrew Lewis. Grey
wolf optimizer. Advances in engineering software, 69:46–61, 2014.

[39] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Founda-
tions of machine learning. The MIT Press, Cambridge, MA, second
edition, 2018.

[40] Bernardo Morales-Castañeda, Daniel Zaldivar, Erik Cuevas, Fernando
Fausto, and Alma Rodríguez. A better balance in metaheuristic al-
gorithms: Does it exist? Swarm and Evolutionary Computation,
54:100671, 2020.

[41] P Mukilan and Wogderess Semunigus. Human object detection: An en-
hanced black widow optimization algorithm with deep convolution neu-
ral network. Neural Computing and Applications, 33(22):15831–15842,
2021.

[42] Vishakha Patil, Ganesh Ghalme, Vineet Nair, and Yadati Narahari.
Achieving fairness in the stochastic multi-armed bandit problem. In
AAAI, pages 5379–5386, 2020.

65

[43] Riccardo Poli, James Kennedy, and Tim Blackwell. Particle swarm
optimization. Swarm intelligence, 1(1):33–57, 2007.

[44] Herbert Robbins and Herbert Robbins. Some aspects of the sequential
design of experiments. Bulletin of the American Mathematical Society,
1952.

[45] Eduardo Rodriguez-Tello, Valentina Narvaez-Teran, and Frederic
Lardeux. Dynamic multi-armed bandit algorithm for the cyclic band-
width sum problem. IEEE Access, 7:40258–40270, 2019.

[46] Ali Sadollah, Ardeshir Bahreininejad, Hadi Eskandar, and Mohd Hamdi.
Mine blast algorithm: A new population based algorithm for solving
constrained engineering optimization problems. Applied Soft Comput-
ing, 13(5):2592–2612, 2013.

[47] Heda Song, Isaac Triguero, and Ender Özcan. A review on the self and
dual interactions between machine learning and optimisation. Progress
in Artificial Intelligence, 8(2):143–165, 2019.

[48] Kenneth Sörensen and Fred Glover. Metaheuristics. Encyclopedia of
operations research and management science, 62:960–970, 2013.

[49] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. The MIT Press, second edition, 2018.

[50] El-Ghazali Talbi. Metaheuristics: from design to implementation, vol-
ume 74. John Wiley & Sons, 2009.

[51] Chun-Hung Tzeng. Heuristic information. In A Theory of Heuristic
Information in Game-Tree Search, pages 51–63. Springer, 1988.

[52] Anant J Umbarkar and Pranali D Sheth. Crossover operators in genetic
algorithms: a review. ICTACT journal on soft computing, 6(1), 2015.

[53] Peter JM Van Laarhoven and Emile HL Aarts. Simulated annealing.
In Simulated annealing: Theory and applications, pages 7–15. Springer,
1987.

[54] Ling Wang, Xiuting Wang, Jingqi Fu, and Lanlan Zhen. A novel proba-
bility binary particle swarm optimization algorithm and its application.
J. Softw., 3(9):28–35, 2008.

[55] Xin-She Yang. Engineering Optimization: An Introduction with Meta-
heuristic Applications. 2010.

66

[56] Álvaro Fialho, Luis Da Costa, Marc Schoenauer, and Michèle Sebag.
Dynamic multi-armed bandits and extreme value-based rewards for
adaptive operator selection in evolutionary algorithms. LION, 2009.

67

	Introduction
	Objective
	Specific Objectives

	Related works
	Metaheuristics
	Evolutionary algorithms
	Binarization techniques
	Transfer function
	Binarization function

	Exploration and exploitation
	Black Widow Optimization
	Initial population
	Procreate
	Cannibalism
	Mutation
	Parameters

	Sine Cosine Algorithm
	Pendulum Search Algorithm
	Machine learning
	Multi-armed bandit
	Epsilon greedy
	Upper Confidence Bound
	Dynamic Version

	Research Methodology
	First proposal
	Set covering problem
	Mathematical model
	Repair of infeasible solutions

	Binary Black Widow Optimization
	Cross-over proposal
	Mutation proposal
	Population proposal

	Dynamic Multi-armed Bandit for binarization schemes selection
	DMAB Flowchart
	BBWO+DMAB Flowchart

	Proposed pseudo-code
	Design of the experiments
	Preliminary Results
	DMAB-BBWO results

	Discussion

	Second proposal
	Binary Pendulum Search Algorithm
	MAB-BPSA
	Design of experiments
	Experimental results

	Conclusion

