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Eduardo Rodriguez-Tello, Jin-Kao Hao, Hillel Romero-Monsivais 
 

Original scientific paper 
This paper investigates the role of evaluation function used by metaheuristics for solving combinatorial optimization problems. Evaluation function (EF) 
is a key component of any metaheuristic algorithm and its design directly influences the performance of such an algorithm. However, the design of more 
discriminating EFs is somewhat overlooked in the literature. We present in this work the first in-depth analysis of the conventional EF for the Minimum 
Linear Arrangement (MinLA) problem. The results from this study highlighted its potential drawbacks and led to useful insight and information which 
guided us to design a new more discerning EF. Its practical usefulness was assessed within three different algorithms: a parameter-free Steepest Descent, 
an Iterated Local Search and a Tabu Search. The analysis of the data produced by these comparisons showed that the performance of the three adopted 
approaches could be boosted by using the proposed more discriminating EF. 
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Poboljšanje učinaka metaheuristike kod MinLA problema primjenom kritičnije funkcije evaluacije 
 

Original scientific paper 
U radu se ispituje uloga funkcije evaluacije u metaheuristici kod rješavanja kombinatornih problema optimizacije. Evaluacijska funkcija (EF) je ključna 
sastavnica svakog metaheurističkog algoritma i njezin dizajn direktno utječe na performansu takvog algoritma. Međutim, u literaturi je dizajn kritičnijih 
EF-a donekle zanemaren. U ovom radu dajemo prvu temeljnu analizu standardne EF za problem Minimum Linear Arrangement (MinLA). Dobiveni 
rezultati su ukazali na moguće nedostatke i dali koristan uvid i informacije potrebne za dizajniranje kritičnije EF. Njezina se praktična korisnost 
procijenila u tri različita algoritma: parameter-free Steepest Descent, Iterated Local Search i Tabu Search. Analiza dobivenih podataka pokazala je da bi se 
performansa ta tri primijenjena pristupa mogla poboljšati primjenom predloženih kritičnijih EF. 
  
Ključne riječi: kombinatorna optimizacija, funkcija evaluacije, problem linearnog uređenja, metaheuristika 
 
 
1 Introduction 

 
In the last two decades, metaheuristics [1] such as 

Genetic Algorithms, Simulated Annealing and Tabu 
Search have become very popular as a class of valuable 
optimization methods for tackling hard combinatorial 
optimization problems. Successful applications with these 
methods are continually reported both in traditional and in 
emerging fields. Metaheuristics are today recognized as 
an indispensable part of the arsenal for difficult 
optimization. 

The success (or failure) of a metaheuristic algorithm 
depends heavily on a set of key components that must be 
designed with care. Neighborhood relation and evaluation 
function are two prominent examples for Stochastic Local 
Search methods [2]. The neighborhood relation defines 
the subspace of the search problem to be explored by the 
method. For a given problem, the definition of the 
neighborhood should structure the search space such that 
it helps the search process to find its ways to good 
solutions. The importance of neighborhood is also 
evidenced by several methods focusing on neighborhood 
relations like Variable Neighborhood Search (VNS) [3], 
Neighborhood Portfolio Search [4] and Progressive 
Neighborhood Search [5]. 

The evaluation function assesses the quality of a 
candidate solution with respect to the optimization 
objective and orients the search method to “navigate” 
through the search space. A good evaluation function is 
expected to be able to distinguish among solutions and 
thus to effectively guide the search method to make the 
most appropriate choice at each of its iterations. Together, 
neighborhood and evaluation function define the so-called 

landscape of the search problem [2, 6, 7] and impact thus 
greatly the efficiency of the search algorithm. 

One common practice in designing metaheuristic 
algorithms is to directly use the initial objective function 
of the optimization problem as the evaluation function. 
However, such a function may not be sufficient to 
effectively guide the search process. Consider for instance 
the more discriminating evaluation functions reviewed in 
Section 5. 

In this paper, we focus on the issue of evaluation 
function and offer an in-depth investigation on the design 
of a more discriminating evaluation function which 
considers additional semantic information of the 
optimization problem. For this purpose, we use the well-
known Minimum Linear Arrangement problem (MinLA) 
as our case study. 

The main contributions of this work can be 
summarized as follows: a) An in-depth analysis of some 
mathematical properties of the classical evaluation 
function for MinLA, called LA, and a new more 
discriminating evaluation function, named Φ; b) An 
extensive experimental comparison between these 
evaluation functions within a Steepest Descent (SD) 
algorithm over a full test-suite composed of the 21 well-
known benchmarks previously used in many studies [8, 9, 
10, 11, 12]; c) A study comparing the number and 
distribution of neutral and improving neighboring 
solutions induced by both evaluation functions; d) An 
analysis of the interaction among five different 
neighborhood relations and the studied evaluation 
functions; e) An assessment of the practical usefulness of 
Φ within two different metaheuristic algorithms, Iterated 
Local Search and Tabu Search; f) A rigorous statistical 
analysis of all the experimental results. The main 
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objective of this investigation is to show that designing 
more discriminating evaluation functions may be a highly 
valuable approach for boosting the performance of 
metaheuristic algorithms which deserves more attention. 

The remainder of this article is organized as follows. 
Section 2 formally introduces the MinLA problem, 
analyzes some characteristics of the basic evaluation 
function LA and shows how these results were used in 
[13] to propose the more informative Φ evaluation 
function. Section 3 shows a first assessment of the 
usefulness of Φ with respect to the conventional LA 
function, with the help of a parameter-free Steepest 
Descent (SD) algorithm. Additional evidence about the 
usefulness of the proposed evaluation function within 
both an Iterated Local Search and a Tabu Search 
algorithm is given in Section 4. Section 5 provides a 
review of some relevant studies related to the issue of 
more discriminating evaluation functions. Finally, Section 
6 summarizes the contributions of this paper and 
highlights the importance of designing alternative 
evaluation functions for metaheuristic algorithms. 
 
2 The MinLA problem and evaluation functions 

 
Let 𝑃𝑃 = (𝑆𝑆, 𝑓𝑓) be a given combinatorial optimization 

problem where 𝑆𝑆 is the search space composed of a set of 
candidate solutions and 𝑓𝑓the objective or cost function of 
problem 𝑃𝑃. For the purpose of this paper, it is important 
to distinguish 𝑓𝑓 from the notion of evaluation function 𝑔𝑔 
(also called fitness function for genetic-like algorithms) 
which is a component of a metaheuristic algorithm. In 
many cases, 𝑔𝑔 can take the form of 𝑓𝑓and many examples 
can be found using such an approach. However, 𝑔𝑔 can 
also be defined by any other function in order to include 
in it additional and useful information. This second 
approach is the topic of this paper. To show how this 
would be possible, we focus on the study of the Minimum 
Linear Arrangement problem (MinLA). 

MinLA was first stated by Harper [14] whose initial 
aim was to design error-correcting codes with minimal 
average absolute errors on certain classes of graphs. Later, 
in the 1970's MinLA was used as an abstract model of the 
placement phase in VLSI layout, where vertices of the 
graph represented modules and edges represented 
interconnections. In this case, the cost of the arrangement 
measures the total wire length [15]. MinLA has also been 
applied as an over-simplified model of some nervous 
activity in the cortex [16]. The MinLA problem also has 
other practical applications, particularly in the following 
areas: bioinformatics [17], single machine job scheduling 
[18], graph drawing [19], software diagram layout [20], to 
mention only some of them. 

 
2.1 The 𝐋𝐋𝐀𝐀 function 

 
MinLA can be stated formally as follows. Let 

𝐺𝐺(𝑉𝑉,𝐸𝐸) be a finite undirected graph, where 𝑉𝑉(|𝑉𝑉| = 𝑛𝑛) 
defines the set of vertices and 𝐸𝐸 ⊆ 𝑉𝑉 ×  𝑉𝑉 = {(𝑖𝑖, 𝑗𝑗)| 𝑖𝑖, 𝑗𝑗 ∈
𝑉𝑉 } is the set of edges. Given an one-to-one function 
𝜑𝜑 ∶ 𝑉𝑉 → {1, … ,𝑛𝑛}, called a linear arrangement or a 
labeling, the total edge length (cost) for 𝐺𝐺 with respect to 
the arrangement 𝜑𝜑 is defined according to Eq. (1). 

LA (𝐺𝐺,𝜑𝜑) = � |𝜑𝜑(𝑢𝑢) −  𝜑𝜑(𝑣𝑣)|
(𝑢𝑢,𝑣𝑣)∈𝐸𝐸

 (1)  

 
Then the MinLA problem consists in finding an 

arrangement (labeling) 𝜑𝜑∗ for a given 𝐺𝐺 so that the total 
edge lengthLA (𝐺𝐺,𝜑𝜑)is minimized: 

 
LA (𝐺𝐺,𝜑𝜑∗) = min{LA (𝐺𝐺,𝜑𝜑) ∶  𝜑𝜑 ∈ ℒ} , (2) 
 
where ℒ represents the set of all the possible labelings. It 
is simple to observe that the set ℒ consists of 𝑛𝑛! possible 
linear arrangements for a graph of order 𝑛𝑛.1 

There exist polynomial time exact algorithms for 
some special cases of MinLA such as trees, rooted trees, 
hypercubes, meshes, outerplanar graphs, and others (see 
[21] for a detailed survey). However, as is the case with 
many graph layout problems, finding the minimum linear 
arrangement is known to be NP-hard for general graphs 
[22]. Therefore, there is a need for heuristics to address 
this problem in reasonable time. Among the reported 
algorithms are: a) heuristics especially developed for 
MinLA, such as the Binary Decomposition Tree heuristic 
[9], the Multi-Scale algorithm [10] and the Algebraic 
Multi-Grid scheme [23]; b) metaheuristics such as 
Simulated Annealing [8, 12] and Memetic Algorithms 
[11, 13]; and c) some combinations of these methods. 
 
2.2 Analyzing the 𝐋𝐋𝐀𝐀 evaluation function 

 
It is important to remark that most of the algorithms 

for the MinLA problem mentioned in the previous 
section, evaluate the quality of a solution (linear 
arrangement) as the change in the objective function 
LA (𝐺𝐺,𝜑𝜑) (let us call it only LA for simplicity). This 
section presents a detailed analysis of certain 
characteristics of LA and highlights the potential 
drawbacks of LA when it is directly used as an evaluation 
function. This analysis has led to useful insight and 
information which guided us to design a more 
discriminating evaluation function introduced in [13]. 

Before beginning this analysis, we introduce two 
important definitions used in our study of labeled graphs. 
Let 𝜑𝜑 be a labeling for a graph 𝐺𝐺(𝑉𝑉,𝐸𝐸) of order 𝑛𝑛. The 
absolute difference between the labels of two adjacent 
vertices 𝑢𝑢, 𝑣𝑣is defined as follows: |𝜑𝜑(𝑢𝑢) −  𝜑𝜑(𝑣𝑣)| = 𝑘𝑘 for 
(𝑢𝑢,𝑣𝑣) ∈ 𝐸𝐸and 0 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 1. 

The appearing frequency 𝑑𝑑𝑘𝑘 of those absolute 
differences with value 𝑘𝑘 produced by 𝜑𝜑 is given by Eq. 
(3). 

 
𝑑𝑑𝑘𝑘 = � 𝑙𝑙𝑢𝑢 𝑣𝑣 ,

(𝑢𝑢,𝑣𝑣)∈𝐸𝐸

 (3) 

 
where (𝑢𝑢, 𝑣𝑣) ∈ 𝐸𝐸 equals 1 if |𝜑𝜑(𝑢𝑢) −  𝜑𝜑(𝑣𝑣)| = 𝑘𝑘, and 0 
otherwise. 

Let 𝐺𝐺(𝑉𝑉,𝐸𝐸) be a finite undirected graph of order n 
and 𝜑𝜑 a labeling. Observe that graph 𝐺𝐺 could potentially 
have 𝑛𝑛(𝑛𝑛 − 1)/2 non-reflexive edges. Given that a 

1 Notice that each of the 𝑛𝑛! linear arrangements may be 
reversed to get the same cost. 
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particular edge can be present or absent in it, the total 
number of possible simple (without loops) labeled graphs 
is expressed in Eq. (4), where ℊs represents the set 
containing those graphs. 

 

|ℊs| = 2
𝑛𝑛(𝑛𝑛 − 1)

2
= 2 �𝑛𝑛2� (4) 

 
In the following analysis, we do not consider the 

graphs with loops because the contribution of those non-
reflexive edges to the total edge length is null. 
Nevertheless, we take into consideration all the possible 
values taken by the function LA, even when LA = 0. 

Suppose a labeled graph with n vertices. In this graph 
the maximum number of absolute differences is 
distributed as follows: 1 with value (𝑛𝑛 − 1), 2 with value 
(𝑛𝑛 − 2), and in general 𝑘𝑘 absolute differences with value 
(𝑛𝑛 − 𝑘𝑘) for all 𝑘𝑘 in [1,𝑛𝑛 − 1]. Then, the LA function can 
be expressed in terms of the graph's appearing frequencies 
𝑑𝑑𝑘𝑘 using Eq. (5).  

 

LA(𝐺𝐺,𝜑𝜑) = �𝑘𝑘𝑑𝑑𝑘𝑘

𝑛𝑛−1

𝑘𝑘=1

 (5) 

 
It is clear then, that LA can take values from 0 (an 

empty graph or composed only by reflexive edges) to the 
value given by Eq. (6). 

 

�𝑘𝑘(𝑛𝑛 − 𝑘𝑘) = 
𝑛𝑛−1

𝑘𝑘=1

𝑛𝑛(𝑛𝑛2 − 1)
6

 (6) 

 
Let ℛLA ⊆ ℊ𝑠𝑠 × ℊ𝑠𝑠 be an equivalence relation [24] 

over the set of all the simple labeled graphs and 𝑥𝑥,𝑦𝑦 ∈
 ℊ𝑠𝑠then 𝑥𝑥 is related to y (𝑥𝑥 ℛLA 𝑦𝑦) if and only if 𝑥𝑥 and 𝑦𝑦 
have a set of appearing frequencies 𝐷𝐷 = {𝑑𝑑1,𝑑𝑑2, … ,𝑑𝑑𝑛𝑛−1} 
which produce the same total edge length LA.2 An 
equivalence class[𝑥𝑥] = {𝑦𝑦 ∈ ℊ𝑠𝑠:𝑥𝑥 ℛLA 𝑦𝑦} ⊆ ℊ𝑠𝑠 then can 
be defined for each possible value of LA. Hence, the total 
number of equivalence classes 𝜀𝜀LA, underLA, in which the 
set ℊ𝑠𝑠 can be partitioned is: 

 

𝜀𝜀LA = 1 +
𝑛𝑛(𝑛𝑛2 − 1)

6
  

 
We observe that that there can exist different labeling 

resulting into the same set of appearing frequencies D 
whose exact number 𝑧𝑧 can be computed using Eq. (7). 

 

𝑧𝑧(𝐷𝐷) = �� 𝑘𝑘
𝑑𝑑𝑛𝑛−𝑘𝑘

�
𝑛𝑛−1

𝑘𝑘=1

 (7) 

 
Notice also that it could exist 𝑝𝑝 different sets of 

appearing frequencies resulting into the same value LA, 
i.e., 𝑃𝑃 = {𝐷𝐷1,𝐷𝐷2, … ,𝐷𝐷𝑝𝑝}. Thus, the cardinality 𝜔𝜔LA(𝑖𝑖)for 
the equivalence class under LA = 𝑖𝑖 can be computed using 
Eq. (8). 

2 Observe that it could be the same graph or two different 
graphs. 

𝜔𝜔LA(𝑖𝑖) = �𝑧𝑧(𝐷𝐷𝑗𝑗)
𝑝𝑝

𝑗𝑗=1

 (8) 

 
According to our observations, the evaluation 

function LA does not distinguish between absolute 
differences with a big value and those with a little value. 
For instance, for the LA function it is equivalent to have an 
absolute difference with value 25 rather than 25 absolute 
differences with value 1 (see Eq. (1)). Therefore, there is 
no possibility of making the distinction between the 
𝜔𝜔LA(𝑖𝑖,𝑃𝑃)simple labeled graphs which belong to the same 
equivalence class LA = 𝑖𝑖. 

 

 
a) Labeling 𝜑𝜑 

 
b) Labeling 𝜑𝜑´ 

Figure 1 Example of two linear arrangements with the same 
value LA = 35 

 
For example, the LA function assigns the same cost 

LA = 35 for the two labelings represented in Fig. 1, for a 
simple graph of order 12. However, a deeper analysis of 
each appearing frequency 𝑑𝑑𝑘𝑘allows us to confirm that the 
labeling 𝜑𝜑´ in Fig. 1b is perhaps more interesting than that 
of Fig. 1a because it is easier to minimize the value of LA 
by reducing one absolute difference with value 10 
(𝑑𝑑10 = 1) in 𝜑𝜑´ rather than five absolute differences with 
value 1 (𝑑𝑑1 = 5) in 𝜑𝜑. Indeed, if we reduced one absolute 
difference with value 10, LA could decrease by 10 units, 
whereas if we can eliminate five absolute differences with 
value 1 (which is more difficult), LA could only reduce its 
value by 5 units. 

Based on this observation, we review in the next 
section an evaluation function for the MinLA problem 
which is more informative. Indeed, it analyzes 
individually each appearing frequency produced by a 
labeling in order to assess its quality. 

 
2.3 The 𝚽𝚽 evaluation function 

 
The function Φ evaluates the quality of a labeling 

considering not only the total edge length (LA) of the 
arrangement, but also additional information induced by 
the appearing frequencies of the graph. Furthermore, it 
maintains the fact that ⌊Φ⌋ results into the same integer 
value produced by Eqs. (1) and (2). 
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For computing Φ, each appearing frequency 𝑑𝑑𝑘𝑘  must 
make a different contribution to the cost of a labeling. 
This contribution is computed by using Eq. (9). 

 

𝑘𝑘 +
1

∏ (𝑛𝑛 + 𝑗𝑗)𝑘𝑘
𝑗𝑗=1

= 𝑘𝑘 +
𝑛𝑛!

(𝑛𝑛 + 𝑘𝑘)!
 (9) 

 
Applying these contributions into Eq. (5) produces 

the following expression: 
 

��𝑘𝑘 +
𝑛𝑛!

(𝑛𝑛 + 𝑘𝑘)!
�

𝑛𝑛−1

𝑘𝑘=1

𝑑𝑑𝑘𝑘  , (10) 

 
and simplifying it, we obtain the Φ evaluation function 
whose first term is the LA function (see Eq. (5)), and the 
second term (a fractional value) is used to discriminate 
labelings having the same total edge length LA. 
 

Φ(𝐺𝐺,𝜑𝜑) = �𝑘𝑘𝑑𝑑𝑘𝑘

𝑛𝑛−1

𝑘𝑘=1

+ �
𝑛𝑛!𝑑𝑑𝑘𝑘

(𝑛𝑛 + 𝑘𝑘)!

𝑛𝑛−1

𝑘𝑘=1

 (11) 

 
As an example, let us consider the labeling 𝜑𝜑 for the 

graph of order 𝑛𝑛 = 12 presented in Fig 1a. For this 
particular linear arrangement LA = 35 and the appearing 
frequencies 𝑑𝑑𝑘𝑘 are: 𝑑𝑑1=5,𝑑𝑑3=1,𝑑𝑑4=2,𝑑𝑑5=2 and 𝑑𝑑9=1. By 
substituting these values in Eq. (11) we get: 

 

Φ(𝐺𝐺,𝜑𝜑) = 35 + 12! (
5

6,2E + 09
+

1
1,3E + 12

+
2

2,0E + 13
+

2
3,5E + 14

+
1

5,1E + 19
) = 35,385 

(12) 

 
On the other hand, if Φ is computed for the linear 

arrangement 𝜑𝜑´ depicted in Fig. 1b, we observe that the 
appearing frequencies 𝑑𝑑𝑘𝑘 are: 𝑑𝑑1=2,𝑑𝑑2=4,𝑑𝑑3=3,𝑑𝑑6=1 and 
𝑑𝑑10=1, which provide a smaller value: 

 

Φ(𝐺𝐺,𝜑𝜑´) = 35 + 12! (
2

6,2E + 09
+

4
8,7E + 10

+
3

1,3E + 12
+

1
6,4E + 15

+
1

1,1E + 21
) = 35,177 

(13) 

 
The main idea behind Φ is to penalize the absolute 

differences having small values, and to favor those with 
values near to the bandwidth𝛽𝛽 of the graph.3 This can be 
clearly observed in Eq. (12), where the Φ function 
penalizes the absolute differences with value 1 (𝑑𝑑1=5) 
more than those with value 3 (𝑑𝑑3=1) by multiplying them 
by a factor of 12!/(6,2E + 09) and 12!/(1,3E +
12), respectively. In this way, Φ will always assign a 
lower cost for a labeling comprising more absolute 
differences with big value like that depicted in Fig. 1b, 

3 Given a labeling function 𝜑𝜑of graph G its bandwidth is: 
𝛽𝛽(𝐺𝐺,𝜑𝜑) = max {|𝜑𝜑(𝑢𝑢) −  𝜑𝜑(𝑣𝑣)|: (𝑢𝑢, 𝑣𝑣) ∈ 𝐸𝐸}. 

because intuitively this labeling has a stronger probability 
to be further improved. 

Indeed, remember that in a simple labeled graph of 
order n, generally there is a maximum number (𝑛𝑛 − 𝑘𝑘) of 
absolute differences with value 𝑘𝑘(𝑘𝑘 ∈  [1,𝑛𝑛 − 1]). 
Consequently, a larger value of an absolute difference 𝑘𝑘 
means a weaker appearing frequency 𝑑𝑑𝑘𝑘. For example, in 
a simple labeled graph of order 𝑛𝑛 = 50 there exist at most 
49 absolute differences with value 1, whereas there is at 
most “one” absolute difference with value 49. It is thus 
simpler to reduce the total edge length for a given labeling 
by modifying the labels at the ends of only one edge, than 
changing the labels of all the vertices joined by the 49 
edges which produce absolute differences with value 1. 
Based on this observation, we have conceived the Φ 
function in such a way that it can give advantage to the 
labelings which have absolute differences with big value. 

 
2.4 Analyzing the 𝚽𝚽 evaluation function 
 

A formal analysis of certain characteristics of the Φ 
evaluation function is presented below. 

Let ℛΦ ⊆ ℊ𝑠𝑠 × ℊ𝑠𝑠be an equivalence relation over the 
set of all the simple labeled graphs. Given two elements 
𝑥𝑥, 𝑦𝑦 ∈ ℊ𝑠𝑠, we say that 𝑥𝑥 is related to 𝑦𝑦  (𝑥𝑥 ℛΦ 𝑦𝑦) if and 
only if both have the same set of appearing 
frequencies 𝐷𝐷 = {𝑑𝑑1,𝑑𝑑2, … ,𝑑𝑑𝑛𝑛−1}(i.e., the same Φ value). 
An equivalence class[𝑥𝑥] = {𝑦𝑦 ∈ ℊ𝑠𝑠: 𝑥𝑥 ℛΦ 𝑦𝑦} ⊆ ℊ𝑠𝑠can be 
then defined for each possible value of Φ.  

Remember that in a simple labeled graph of order 𝑛𝑛, 
there are in general 𝑘𝑘 absolute differences with value 
(𝑛𝑛 − 𝑘𝑘) for all 𝑘𝑘 in [1,𝑛𝑛 − 1]. Then, the appearing 
frequencies take values between 0 and (𝑛𝑛 − 𝑘𝑘). Thus, the 
total number of equivalence classes 𝜀𝜀Φ, under Φ, in which 
the set ℊ𝑠𝑠of all the simple labeled graphs of order 𝑛𝑛 can 
be partitioned is: 

 

𝜀𝜀Φ = �(𝑛𝑛 − 𝑘𝑘) = 𝑛𝑛!
𝑛𝑛−1

𝑘𝑘=1

 (14) 

 
Given that two labelings belong to the same 

equivalence class under Φ if they have the same set of 
appearing frequencies 𝐷𝐷, we can compute the cardinality 
𝜔𝜔Φ(𝑖𝑖,𝐷𝐷) for the equivalence class under Φ = i by using 
Eq. (15). 

 

𝜔𝜔Φ(𝑖𝑖,𝐷𝐷) = �� 𝑘𝑘
𝑑𝑑𝑛𝑛−𝑘𝑘

�
𝑛𝑛−1

𝑘𝑘=1

 (15) 

 
The analysis of the equivalence classes produced by 

Φ, that we have just presented, allows us to draw some 
important conclusions. In particular, we observed the fact 
that Φ divides each equivalence class produced by the LA 
function in subsets (equivalence classes) of smaller size 
which gather labelings sharing the same set of appearing 
frequencies 𝐷𝐷. Thanks to this rational way of 
incrementing the number of equivalence classes, Φ makes 
it possible to distinguish linear arrangements having the 
same value LA. Moreover, Φis coherent with the MinLA 
problem objective which consists in minimizing LA: for 

14                                                                                                                                                                                                                Technical Gazette 22, 1(2015), 11-24 

                                                           



E. Rodriguez-Tello i dr.                                                                  Poboljšanje učinaka metaheuristike kod MinLA problema primjenom kritičnije funkcije evaluacije 
 

two labelings 𝜑𝜑 and 𝜑𝜑´ if Φ(𝜑𝜑) < Φ(𝜑𝜑´), then LA(𝜑𝜑)  ≤
 LA(𝜑𝜑´)(see Eqs. (5) and (11)). 

 
2.5 Comparison of computational complexity between 

𝐋𝐋𝐀𝐀 and 𝚽𝚽 
 
In order to compute the quality of a labeling 𝜑𝜑by 

using the conventional LA evaluation function, all the 
edges in the graph 𝐺𝐺(𝑉𝑉,𝐸𝐸) must be analyzed (seeEq. (1)). 
As a result 𝑂𝑂(|𝐸𝐸|) instructions must be executed. 

To efficiently compute Φ we could precalculate each 
term 𝑘𝑘 + (𝑛𝑛!/(𝑛𝑛 + 𝑘𝑘)!) in Eq. (11) and store them in an 
array 𝑀𝑀 = {𝑚𝑚𝑖𝑖𝑗𝑗}𝑛𝑛×𝑛𝑛.All this needs to execute 2|𝑉𝑉| 
operations, i.e., 𝑂𝑂(|𝑉𝑉|). Then each time that we need to 
calculate the value of Φ the sum ∑ 𝑚𝑚𝑢𝑢𝑣𝑣(𝑢𝑢,𝑣𝑣)∈𝐸𝐸 must be 
computed, which results into the same computational 
complexity as the one required to compute LA. 
Additionally, Φpermits an incremental evaluation of 
neighboring solutions (see Section 3).4 Indeed, suppose 
that the labels of two different vertices (𝑢𝑢, 𝑣𝑣) are 
exchanged, then we should only recompute the |𝐴𝐴(𝑢𝑢)|  +
 |𝐴𝐴(𝑣𝑣)| absolute differences that change, where |𝐴𝐴(𝑢𝑢)| 
and |𝐴𝐴(𝑣𝑣)| represent the number of adjacent vertices to 
𝑢𝑢 and 𝑣𝑣, respectively. As it can be seen this is faster than 
the 𝑂𝑂(|𝐸𝐸|) operations originally required. 

To complement the above analysis, we will present 
bellow experimental evidences confirming the advantage 
of the Φ evaluation function over the LA function and 
show the usefulness of Φ for metaheuristic algorithms. 

 
3 Comparing 𝐋𝐋𝐀𝐀 and 𝚽𝚽 evaluation functions using a 

Steepest Descent algorithm 
 
This section has two main objectives. First, with a 

Steepest Descent algorithm and a set of benchmark 
instances, we compare the performances that can be 
achieved using LA and Φ evaluation functions. Second, to 
explain the observed performance difference, we examine 
in detail the interaction between evaluation function and 
neighborhood relation and analyze the distribution of the 
improving neighbors produced by the evaluation function 
Φ in comparison with LA. 

 
3.1 Steepest Descent algorithm 

 
The choice of the Steepest Descent (SD) algorithm 

for this comparison is fully justified by the fact that SD is 
completely parameter free and thus it allows a direct 
comparison of the two evaluation functions without any 
bias. In addition, the move strategy adopted within the SD 
algorithm permits to study characteristics of the search 
space in which we are interested, such as the number and 
distribution of improving neighbors. The implemented SD 
algorithm has the following features.  

Solution representation and Evaluation Function. For 
a graph 𝐺𝐺 with 𝑛𝑛 vertices, the search space ℒ is composed 
of all 𝑛𝑛!/2 possible linear arrangements. In our SD 
algorithm, a linear arrangement 𝜑𝜑 is represented as a 
permutation of {1,2, . . . ,𝑛𝑛}. More specifically, it is 
defined as an array l of 𝑛𝑛 integers which is indexed by the 

4 Note that LA can also be incrementally computed. 

vertices and whose 𝑖𝑖-th value 𝑙𝑙[𝑖𝑖] denotes the label 
assigned to the vertex 𝑖𝑖. The cost of an arrangement 𝜑𝜑 is 
evaluated by using either the LA or Φ evaluation function. 

Initial Solution. In this implementation the initial 
solution is randomly generated. 

Neighborhood Function. Let 𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝(𝜑𝜑,𝑢𝑢, 𝑣𝑣) be a 
function permitting to exchange the labels of two 
vertices 𝑢𝑢 and 𝑣𝑣 from an arrangement 𝜑𝜑. The 
neighborhood𝒩𝒩1(𝜑𝜑) of an arrangement 𝜑𝜑 can be then 
defined as follows: 
 
𝒩𝒩1(𝜑𝜑)={𝜑𝜑´ ∈ ℒ:𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝(𝜑𝜑,𝑢𝑢, 𝑣𝑣)=𝜑𝜑´,𝑢𝑢, 𝑣𝑣 ∈ 𝑉𝑉,𝑢𝑢 ≠ 𝑣𝑣}  (16) 
 

This neighborhood has the advantage of being small 
and enabling an incremental cost evaluation of 
neighboring solutions. 

SD Move Strategy and Stop Condition. The SD 
algorithm starts from the initial solution 𝜑𝜑 ∈ ℒ and 
repeatedly replaces 𝜑𝜑 with the best solution in its 
neighborhood 𝒩𝒩1(𝜑𝜑), ties are broken randomly. This 
process stops automatically when no better arrangement 
can be found within the neighborhood. 
 
3.2  Computational experiments 

 
This experiment aims at studying the characteristics 

of 𝜑𝜑 and at providing insight into its real working. That is  
why it does not only take into account the final solution 
quality obtained by the algorithms, but also their ability to 
efficiently explore the search space. To attain this 
objective, the SD algorithm presented in Section 3.1 was 
coded in C and named SD-LA and SD-Φ depending on 
which evaluation function is used. This algorithm as well 
as all the other presented in this paper were compiled with 
gcc using the optimization flag -O3, and ran sequentially 
into a CPU Xeon at 2 GHz, 1 GB of RAM with Linux 
operating system. 

The test-suite used in all our experiments is 
composed of the 21 well-known benchmarks originally 
proposed by Petit [8] and used later by many studies [9, 
10, 11, 12]. These instances are divided into six different 
kinds of graphs having between 65 and 9800 vertices and 
are available at the following address: 
http://www.tamps.cinvestav.mx/~ertello/minla.php. 

To assess the performance of the studied algorithms 
(SD-LA and SD-Φ), comparative results are shown on 
these instances. The main criterion used for the 
comparison is the best total edge length found (smaller 
values are better). Computing time is also given for 
indicative purpose. 

 
3.3 Comparison between SD-𝐋𝐋𝐀𝐀 and SD-𝚽𝚽 
 

The methodology used consistently throughout this 
experimentation is the following. First, 10 random 
arrangements were generated for each of the 21 selected 
instances. Then, each random arrangement was used as 
starting solution for 10 independent runs of the studied 
algorithms (SD-LA and SD-Φ) over each selected 
instance. The average results achieved in these 100 
executions are summarized in Tab. 1, where the first 
column indicates the name of the graph. Columns two to 
seven display the total iterations I, the final cost in terms 
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of total edge length C, and the total CPU time T in 
seconds for both SD-LA and SD-Φ. Column eight presents 
the average number of improving neighbors 𝒩𝒩𝐼𝐼  found by 
SD-Φ, at the same iteration where the average number of 
improving neighbors provided by SD-LA equals zero, that 
is when SD-LA stops. Column ΔC shows the percentage 
gain in terms of the average costs reached by SD-Φ 
compared to that produced by SD-LA, i.e. 100 ∗(1 - 
average cost ofSD-Φ / average cost ofSD-LA). 

Additionally, a statistical significance analysis was 
performed for this experiment. First, D'Agostino-
Pearson's omnibus𝐾𝐾2test was used to evaluate the 
normality of data distributions. For normally distributed 
data, either ANOVA or the Welch's t parametric tests were 
used depending on whether the variances across the 
samples were homogeneous (homoskedasticity) or not. 
This was investigated using the Bartlett's test. For non-
normal data, the nonparametric Kruskal-Wallis test was 
adopted. A significance level of 0.05 has been considered. 
The resulting p-value is presented in Column ten of Tab. 
1, where a bold typeface means that there exists a 
statistically significant increase in performance achieved 
by SD-Φ with regard to SD-LA. 

The results presented in Tab. 1 show that the SD-Φ 
algorithm returns better results in 19 out of 21 instances 
(smaller total edge length) than those produced by SD-LA, 
which leads to an average improvement ΔC = 3,33% 
when Φ is used as evaluation function. Notice that the 
search with SD-Φ continues always longer time than with 
SD-LA (compare columns four and seven, labeled T), 
leading to better local optima. SD-LA stops prematurely 
due to its impossibility to distinguish neighboring 
solutions with the same cost (total edge length). It is 
important to remark that in average the CPU time needed 
for one iteration (T/I) of SD-LA and SD-Φ are quite 
comparable: 0,666 seconds for SD-LA and 0,656 seconds 
for SD-Φ. 

The statistical analysis presented in the last column 
(p-value) of Tab. 1 confirms that there exists a statistically 
significant increase in performance achieved by SD-
Φ with regard to SD-LA on 66,66 % of the studied 
instances (14 out of 21). Thus, we can conclude that in 
general SD-Φis more effective than SD-LA. 

The dominance of Φ is better illustrated in Figs. 2a 
and 2b, where the behavior of the studied evaluation 
functions is presented on the random A1 instance (the 
study of other graphs provided similar results). In Fig. 2a 
the abscissa axis represents the number of moves, while 
the ordinate axis indicates the average total edge length. It 
can be observed that SD-Φ obtains always arrangements 
of shorter total edge length than SD-LA with the same 
number of moves. To supplement this observation, Fig. 
2b (see also next section) depicts the evolution of the 
average number of improving neighbors (i.e., having a 
smaller cost than the current solution) with respect to the 
number of moves. One observes that at each iteration, Φ 
offers always more opportunities to select an improving 
neighbor than LA, favoring thus the SD algorithm to find 
better solutions. 
 
3.4  Distribution of improving neighbors produced by 𝐋𝐋𝐀𝐀 

and 𝚽𝚽 
 
In order to understand and explain the results shown 

in Section 3.3, we present a second experiment for a 
deeper analysis. Here, we show the distribution of two 
types of neighbors: neutral neighbors (i.e., having the 
same cost as the current solution) and improving 
neighbors (i.e., having a smaller cost than the current 
solution) associated with LA and Φ. Indeed, the number of 
improving neighbors produced by an evaluation function 
(for a given neighborhood) is an interesting indicator of 
its capacity to allow the search algorithm to effectively 
explore the search space [25]. 

 
 

Table 1Average results achieved in 100 executions of SD-LA and SD-Φ. 

 
SD-LA 

 
SD-Φ % 

 Graph I C T 
 

I C T 𝒩𝒩𝐼𝐼 ΔC p-value 
randomA1 2116,7 946 033,10 41,24  3135,2 941 677,30 56,68 234,7 0,46 1,70E-04 
randomA2 2352,6 6 678 051,60 312,49  3115 6 673 334,30 461,45 289,2 0,07 6,00E-02 
randomA3 2461,1 14 397 879,80 1190,35  2888,3 14 396 580,30 1351,2 327,4 0,01 9,40E-01 
randomA4 2198 1 810 393,50 60  3041,1 1 807 026,10 83,87 250,8 0,19 5,80E-03 
randomG4 2223,1 377 994,30 54,4  2366,2 381 002,30 57,22 255,8 -0,8 7,60E-01 
bintree10 1234,6 51 716,80 16,24  1407,9 51 548,40 18,11 58,2 0,33 6,70E-01 
hc10 1738,9 648 728,10 46,88  1959,9 650 515,30 35,8 361,4 -0,28 6,20E-01 
mesh33x33 2995,4 130 751,30 45,67  8144,9 112 171,40 122,8 305,6 14,21 1,10E-13 
3elt 27 119,40 2 630 144,60 7343,34  52 062,60 2 392 981,00 14 560,78 1150,8 9,02 1,30E-08 
airfoil1 23 567,40 2 184 693,30 5622,94  45 910,10 1 958 983,10 10 386,57 862,7 10,33 1,20E-14 
whitaker3 71 049,90 11 473 102,70 88 118,78  143 499,90 10 377 561,90 163 396,62 1788,1 9,55 3,50E-14 
c1y 1737,9 122 959,20 29,79  2502,2 120 811,90 32,15 147,7 1,75 1,20E-02 
c2y 2141,9 169 434,70 33,99  3079,9 167 127,50 51,97 153,4 1,36 1,90E-01 
c3y 3335,1 282 818,50 186,3  5098,4 275 528,90 234,52 247,2 2,58 1,00E-02 
c4y 3410,7 287 198,80 88,93  5421,9 280 551,40 155,79 249,1 2,31 6,30E-02 
c5y 2811 233 286,10 61,07  4104,1 228 225,70 95,16 160,5 2,17 1,10E-02 
gd95c 70,2 716,3 0,01  82,3 696,70 0,00 14,8 2,74 1,40E-02 
gd96a 2216,7 148 158,30 36,94  3284,5 144 751,30 57,47 190,8 2,3 7,60E-10 
gd96b 94,3 1857,3 0,03  109,1 1783,60 0,00 20,9 3,97 1,40E-02 
gd96c 75,1 692,9 0,01  96,2 656,50 0,00 17,2 5,25 1,40E-02 
gd96d 186,2 4166,3 0,11  257,3 4057,00 0,00 26,4 2,62 1,10E-04 
Average 7387,4 2 027 656,10 4918,55  13 884,10 1 950 836,80 9102,77 338,7 3,34 14+ 
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a) Average total edgelength 

 
b) Average improving neighbors 

Figure 2Performance comparison between the algorithms SD-LA and 
SD-Φ over the random A1 instance 

 
Figs. 3a and 3b show the distribution of all the neutral 

neighbors and improving neighbors produced, after 1500 
iterations, by SD-LA and SD-Φ over the random A1 
instance. The abscissa and ordinate axes indicate the 
vertices exchanged to produce 𝒩𝒩1(𝜑𝜑), while the Z axis 
denotes the evaluation function cost produced. One 
observes that there is a great difference. SD employing 
the Φ evaluation function has many improving neighbors 
to ameliorate its current solution while SD-LA has much 
fewer favorable neighbors. This unfavorable characteristic 
of the LA evaluation function is dramatically accentuated 
as the search process progresses. For instance, observe 
Figs. 3c and 3d, which show also all the neutral and 
improving neighbors at the iteration where SD-LA stops. 
Notice how Φ is able to discriminate all those neutral 
neighbors that would be impossible to distinguish by 
using the classical evaluation function LA. 

 
3.5  Interaction between the neighborhood relation and the 

evaluation function 
 
The neighborhood relation and the evaluation 

function together define the search landscape [6]. It is 
thus important to analyze the interaction between these 
two components. For this purpose, we consider the 
evaluation functions LA and Φ, the neighborhood relation 
𝒩𝒩1(𝜑𝜑) defined in Eq. (16), as well as four other 
neighborhood functions introduced in next subsection. 

 
 

 
a) SD-LAalgorithm 

 

 
b) SD-Φ algorithm 

 

 
c) SD-LAalgorithm 

 

 
d) SD-Φ algorithm 

Figure 3 Comparison between the neutral and improving neighbors 
produced by SD-LA and SD-Φ over the randomA1 instance, a) and b) 

after 1500 iterations, c) and d) at the iteration where SD-LA stops. 
 
3.5.1 Neighborhood relations 

 
The second neighborhood relation analyzed in this 

experiment permits to exchange the label of a vertex 𝑢𝑢 
with those of its adjacent vertices. It is formally defined in 
Eq. (17). 

 
𝒩𝒩2(𝜑𝜑)={𝜑𝜑´ ∈ ℒ: 𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝(𝜑𝜑,𝑢𝑢, 𝑣𝑣)=𝜑𝜑´,𝑢𝑢, 𝑣𝑣 ∈ 𝑉𝑉, 𝑣𝑣 ∈
𝐴𝐴(𝑢𝑢)} , (17) 

 
where 𝐴𝐴(𝑢𝑢) is the set of adjacent vertices of 𝑢𝑢. 
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In order to bring forward the third studied 
neighborhood function some preliminary concepts should 
be presented. Given a vertex 𝑢𝑢 with 𝑑𝑑 adjacent vertices 
whose labels are 𝑙𝑙1, . . . , 𝑙𝑙𝑑𝑑 , they can be sorted so that 
𝑠𝑠1 < 𝑠𝑠2 <. . . < 𝑠𝑠𝑑𝑑, where 𝑠𝑠𝑖𝑖 is called the 𝑖𝑖-th order 
statistic [26]. Then the statistical median of the labels 
currently assigned to the vertices in 𝐴𝐴(𝑢𝑢) is given by Eq. 
(18): 

 

𝑚𝑚𝑚𝑚𝑑𝑑𝑖𝑖𝑠𝑠𝑛𝑛(𝑢𝑢) = �
𝑠𝑠((𝑑𝑑+1)/2)

1
2

(𝑠𝑠(𝑑𝑑/2) + 𝑠𝑠(1+𝑑𝑑/2))
 

If 𝑑𝑑 is odd 
 

If 𝑑𝑑 is even 
(18) 

 
The neighborhood 𝒩𝒩3(𝜑𝜑) of a labeling 𝜑𝜑, presented 

in Eq. (19), employs this concept to find the most suitable 
choice for labeling a vertex 𝑢𝑢 with respect to its adjacent 
vertices. 

 
𝒩𝒩3(𝜑𝜑) = {𝜑𝜑´ ∈ ℒ: 𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝(𝜑𝜑,𝑢𝑢, 𝑣𝑣) = 𝜑𝜑´,𝑢𝑢, 𝑣𝑣

∈ 𝑉𝑉, 𝑣𝑣 ∈ 𝑀𝑀(𝑢𝑢)} (19) 

 
where 𝑀𝑀(𝑢𝑢) is a set containing those vertices whose 
current labels are close to the value 𝑚𝑚𝑚𝑚𝑑𝑑𝑖𝑖𝑠𝑠𝑛𝑛(𝑢𝑢) and that 
is formally defined as follows: 
 
𝑀𝑀(𝑢𝑢) = {𝑣𝑣:𝑚𝑚𝑚𝑚𝑑𝑑𝑖𝑖𝑠𝑠𝑛𝑛(𝑢𝑢) − 2 ≤ 𝜑𝜑(𝑢𝑢)

≤ 𝑚𝑚𝑚𝑚𝑑𝑑𝑖𝑖𝑠𝑠𝑛𝑛(𝑢𝑢) + 2} (20) 

 
The fourth neighborhood relation 𝒩𝒩4(𝜑𝜑) analyzed in 

this experiment is defined in Eq. (21): 
 

𝒩𝒩4(𝜑𝜑) = {𝜑𝜑´ ∈ ℒ: 𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑟𝑟𝑚𝑚(𝜑𝜑, 𝑖𝑖, 𝑗𝑗)  =  𝜑𝜑´, 𝑖𝑖, 𝑗𝑗
∈ 𝐿𝐿, 𝑖𝑖 < 𝑗𝑗} (21) 

 
where 𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑟𝑟𝑚𝑚(𝜑𝜑, 𝑖𝑖, 𝑗𝑗) is the product of (𝑗𝑗 − 𝑖𝑖)𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝 
operations (see Eq. (22)), 𝐿𝐿 = {1,2, . . . ,𝑛𝑛} the set of labels 
of a graph of order 𝑛𝑛, and 𝜑𝜑−1 a function associating to 
each label number 𝑘𝑘 the vertex of the graph which 
contains it. 
 
𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑟𝑟𝑚𝑚(𝜑𝜑, 𝑖𝑖, 𝑗𝑗) = 
𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝�𝜑𝜑,𝜑𝜑−1(𝑖𝑖),𝜑𝜑−1(𝑗𝑗)� ∗ 
𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝�𝜑𝜑,𝜑𝜑−1(𝑖𝑖),𝜑𝜑−1(𝑗𝑗 − 1)� ∗ 
𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝�𝜑𝜑,𝜑𝜑−1(𝑖𝑖),𝜑𝜑−1(𝑗𝑗 − 2)� ∗ … ∗ 
𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝�𝜑𝜑,𝜑𝜑−1(𝑖𝑖),𝜑𝜑−1(𝑖𝑖 + 1)� 

(22) 

 
Finally, the neighborhood function 𝒩𝒩5(𝜑𝜑) is defined 

according to the following expression: 
 

𝒩𝒩5(𝜑𝜑) = {𝜑𝜑´ ∈ ℒ: 𝑖𝑖𝑛𝑛𝑣𝑣𝑚𝑚𝑟𝑟𝑠𝑠𝑖𝑖𝑟𝑟𝑛𝑛(𝜑𝜑,𝑢𝑢, 𝑣𝑣)  
=  𝜑𝜑´,𝑢𝑢, 𝑣𝑣 ∈ 𝑉𝑉,𝑢𝑢 < 𝑣𝑣} (23) 

 
where 𝑖𝑖𝑛𝑛𝑣𝑣𝑚𝑚𝑟𝑟𝑠𝑠𝑖𝑖𝑟𝑟𝑛𝑛(𝜑𝜑,𝑢𝑢, 𝑣𝑣) is the product 
of�𝑣𝑣−𝑢𝑢

2
� 𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝 operations as denoted in Eq. (24). 

 
𝑖𝑖𝑛𝑛𝑣𝑣𝑚𝑚𝑟𝑟𝑠𝑠𝑖𝑖𝑟𝑟𝑛𝑛(𝜑𝜑,𝑢𝑢, 𝑣𝑣) = 
𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝(𝜑𝜑,𝑢𝑢, 𝑣𝑣) ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝(𝜑𝜑,𝑢𝑢 + 1, 𝑣𝑣 − 1) ∗ 
𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝(𝜑𝜑,𝑢𝑢 + 2, 𝑣𝑣 − 2) ∗ … ∗ 

(24) 

𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝 �𝜑𝜑,𝑢𝑢 + �
𝑣𝑣 − 𝑢𝑢

2
� , 𝑣𝑣 − �

𝑣𝑣 − 𝑢𝑢
2

��. 
 
3.5.2 Computational experiments 

 
For these experiments we have used a slightly 

modified version of the SD algorithm presented in Section 
3.1, which implements the best admissible move strategy 
with a restricted number of 2500 neighboring solutions in 
order to reduce the total expended computational time.  

The 21 benchmark instances described in Section 3.2 
were once again used. Similar results were obtained with  
all of them. However, with an aim of synthesizing the 
information, we present them by using only some 
representative graphs. All the results presented in this 
section are based on average data obtained in 100 
independent runs with each of the ten combinations 
between the two evaluation functions and the five 
neighborhood relations. 

The graph in Fig. 4a shows the convergence process, 
in terms of average solution quality achieved by the SD 
algorithm, when each of the ten studied combinations is 
used to solve the random A1 instance. In Figs. 4b to 4f 
each of the five neighborhood relations is analyzed 
individually. The following observations were made from 
these graphs.  

The Φ evaluation function allows, in four out of five 
cases, to improve the results provided by the SD 
algorithm, which highlights that Φ is more effective than 
LA. Indeed, Fig. 4f gives a clear example where a wrong 
choice of the neighborhood relation results into an 
algorithm with a poor performance, even if Φ is a better 
evaluation function than LA. We think that this behavior is 
due to the highly disruptive nature of 𝒩𝒩5(𝜑𝜑). 

With regard to the studied neighborhood relations, we 
have noticed from Figs. 4b to 4f that the best performance 
is reached by SD when the 𝒩𝒩1(𝜑𝜑) neighborhood is used. 
The neighborhoods 𝒩𝒩2(𝜑𝜑), 𝒩𝒩3(𝜑𝜑) and 𝒩𝒩5(𝜑𝜑) produce 
worse solutions than 𝒩𝒩1(𝜑𝜑) and 𝒩𝒩4(𝜑𝜑). 

Finally, if we consider the ten analyzed combinations 
between the two evaluation functions and the five 
neighborhood relations, the best among them is when 𝜑𝜑 
and 𝒩𝒩1(𝜑𝜑) are used simultaneously (reaching an average 
solution quality LA = 946 774,368 (see Tab. 2). The nine 
other combinations provide lower quality solutions. Based 
on the conclusions obtained from the current section, 
below we will present more computational results with 
two more advanced metaheuristic algorithms using as 
neighboring relation 𝒩𝒩1(𝜑𝜑). 

 
4  Comparing 𝐋𝐋𝐀𝐀 and 𝚽𝚽 within other metaheuristics 

 
After having studied the characteristics of Φ by using 

a simple Steepest Descent algorithm, we decided to 
evaluate the practical usefulness of Φ within two well-
known and more elaborated metaheuristics. The results 
obtained from these experimental comparisons are 
provided in the following subsections. 
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Table 2 Performance comparison between ten combinations of neighborhood relations and evaluation functions over the random A1 instance 

 Neighborhood Relation 
Evaluation Function 𝒩𝒩1(𝜑𝜑) 𝒩𝒩2(𝜑𝜑) 𝒩𝒩3(𝜑𝜑) 𝒩𝒩4(𝜑𝜑) 𝒩𝒩5(𝜑𝜑) 

LA 948 504,5 1 140 849,95 1 152 625,260 981 252,890 1 357 232,760 
Φ 94 677,368 1 138 760,122 1 149 234,913 975 584,416 1 358 518,565 

 
4.1 Iterated Local Search algorithm 

 
For the purpose of the first experimental comparison 

of this section we have implemented a basic Iterated 
Local Search (ILS) algorithm [27, 28]. It was kept as 
simple as possible to obtain a clear idea of the evaluation 
function's influence over the performance of this 
metaheuristic algorithm. Our ILS implementation shares 
the following components with the SD algorithm 
presented in Section 3.1: permutation-based 
representation, evaluation functions LA  and Φ, swap 
neighborhood relation 𝒩𝒩1(𝜑𝜑) and random initial solution. 
It applies a local search method (embedded heuristic) to 
an initial solution 𝜑𝜑0 until it finds a local optimum, then 

this solution is perturbed and used as a starting point of 
another round of local search. After each local search the 
new local optimum solution found 𝜑𝜑´´  is accepted as the 
new incumbent solution 𝜑𝜑∗ if and only if its total edge 
length (cost) is better than that of 𝜑𝜑∗. This iterative 
procedure repeats until a given stop condition is met. In 
the case of our ILS algorithm, the search process stops 
when the maximum number of non-improving 
neighboring solutions 𝑚𝑚𝑠𝑠𝑥𝑥𝑚𝑚𝑚𝑚 allowed is reached (see 
Alg. 1).  

A modified version of the SD algorithm presented in 
Section 3.1 was used as embedded heuristic; it 
implements the best admissible move strategy with a 
number of 2500 visited neighboring solutions. The 

  
a) Comparison between the convergence profile of five neighborhood 

relations and two evaluation functions b) LA, 𝒩𝒩1(𝜑𝜑) and Φ,𝒩𝒩1(𝜑𝜑) 

  
c) LA, 𝒩𝒩2(𝜑𝜑) and Φ,𝒩𝒩2(𝜑𝜑) d) LA, 𝒩𝒩3(𝜑𝜑) and Φ,𝒩𝒩3(𝜑𝜑) 

  
e) LA, 𝒩𝒩4(𝜑𝜑) and Φ,𝒩𝒩4(𝜑𝜑) b) LA, 𝒩𝒩5(𝜑𝜑) and Φ,𝒩𝒩5(𝜑𝜑) 

Figure 4 Analysis of the interaction between the neighborhood and evaluation functions and its influence on the performance of a SD algorithm over the 
random A1 instance. 
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perturbation operator employed by our ILS consists in 
applying once the left rotation neighborhood relation 
𝒩𝒩4(𝜑𝜑) analyzed in Section 3.5. 

 
𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰:𝑚𝑚𝑚𝑚𝑖𝑖𝑔𝑔ℎ𝑏𝑏𝑟𝑟𝑟𝑟ℎ𝑟𝑟𝑟𝑟𝑑𝑑 𝑓𝑓𝑢𝑢𝑛𝑛𝑓𝑓𝑟𝑟𝑖𝑖𝑟𝑟𝑛𝑛 𝒩𝒩, 𝑚𝑚𝑣𝑣𝑠𝑠𝑙𝑙𝑢𝑢𝑠𝑠𝑟𝑟𝑖𝑖𝑟𝑟𝑛𝑛 𝑓𝑓𝑢𝑢𝑛𝑛𝑓𝑓𝑟𝑟𝑖𝑖𝑟𝑟𝑛𝑛 𝑓𝑓,  
              𝑚𝑚𝑠𝑠𝑥𝑥𝑖𝑖𝑚𝑚𝑢𝑢𝑚𝑚 𝑛𝑛𝑟𝑟𝑛𝑛 − 𝑖𝑖𝑚𝑚𝑝𝑝𝑟𝑟𝑟𝑟𝑣𝑣𝑖𝑖𝑛𝑛𝑔𝑔 𝑛𝑛𝑚𝑚𝑖𝑖𝑔𝑔ℎ𝑏𝑏𝑟𝑟𝑟𝑟𝑖𝑖𝑛𝑛𝑔𝑔 𝑠𝑠𝑟𝑟𝑙𝑙𝑢𝑢𝑟𝑟𝑖𝑖𝑟𝑟𝑛𝑛𝑠𝑠 𝑚𝑚𝑠𝑠𝑥𝑥𝑚𝑚𝑚𝑚 
𝜑𝜑0 ← 𝐺𝐺𝑚𝑚𝑛𝑛𝑚𝑚𝑟𝑟𝑠𝑠𝑟𝑟𝑚𝑚𝑚𝑚𝑛𝑛𝑖𝑖𝑟𝑟𝑖𝑖𝑠𝑠𝑙𝑙𝑆𝑆𝑟𝑟𝑙𝑙𝑢𝑢𝑟𝑟𝑖𝑖𝑟𝑟𝑛𝑛() 
𝜑𝜑∗ ← 𝐿𝐿𝑟𝑟𝑓𝑓𝑠𝑠𝑙𝑙 𝑆𝑆𝑚𝑚𝑠𝑠𝑟𝑟𝑓𝑓ℎ(𝜑𝜑0) 
𝑚𝑚𝑚𝑚 ← 0 
𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 𝑚𝑚𝑚𝑚 < 𝑚𝑚𝑠𝑠𝑥𝑥𝑚𝑚𝑚𝑚 𝒅𝒅𝒅𝒅 
      𝜑𝜑´ ← 𝑃𝑃𝑚𝑚𝑟𝑟𝑟𝑟𝑢𝑢𝑟𝑟𝑏𝑏𝑠𝑠𝑟𝑟𝑖𝑖𝑟𝑟𝑛𝑛(𝜑𝜑∗) 
     𝜑𝜑´´ ← 𝐿𝐿𝑟𝑟𝑓𝑓𝑠𝑠𝑙𝑙𝑆𝑆𝑚𝑚𝑠𝑠𝑟𝑟𝑓𝑓ℎ(𝜑𝜑´) 
     𝒘𝒘𝒊𝒊 𝑓𝑓(𝜑𝜑´´)  < 𝑓𝑓(𝜑𝜑∗) 𝑰𝑰𝒘𝒘𝒘𝒘𝑰𝑰 
          𝜑𝜑∗ ← 𝜑𝜑´´ 
          𝑚𝑚𝑚𝑚 ← 0 
     𝒘𝒘𝒘𝒘𝒆𝒆𝒘𝒘 
         𝑚𝑚𝑚𝑚 ← 𝑚𝑚𝑚𝑚 + 1 
     𝒘𝒘𝑰𝑰𝒅𝒅 𝒘𝒘𝒊𝒊 
𝒘𝒘𝑰𝑰𝒅𝒅 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 
𝒓𝒓𝒘𝒘𝑰𝑰𝑰𝑰𝒓𝒓𝑰𝑰 𝜑𝜑∗ 

Algorithm 1 Iterated Local Search (ILS) algorithm 
 
4.1.1 Computational experiments 

 
For this experiment the ILS algorithm presented 

above was implemented. Let us call it ILS-LA or ILS-Φ 
according to whether evaluation function LA or Φ is used. 
In all the experiments carried out with this algorithm, the 
same test-suite and computational platform described in 
Section 3.2 were used. In order to guarantee as much as 
possible a fair comparison between both ILS algorithms, 
the same parameters (determined experimentally) were 
employed to compare them: a) initial solution randomly 
generated, b) swap neighborhood relation 𝒩𝒩1(𝜑𝜑) for the 
embedded heuristic, c) left rotation neighborhood relation 
𝒩𝒩4(𝜑𝜑) for the perturbation operator and d) maximum 
non-improving neighboring solutions 𝑚𝑚𝑠𝑠𝑥𝑥𝑚𝑚𝑚𝑚 = 10. Due 

to the random nature of ILS, 100 independent runs were 
executed for each of the selected benchmark instances. 
When averaged results are reported, they are based on 
these 100 executions. 

The results of this experiment are presented in Tab.3. 
Column one depicts the name of the graph. The next six 
columns display the best cost in terms of total edge length 
C, the average cost Avg. and the average CPU time T in 
seconds for both ILS-LA and ILS-Φ respectively. Column 
eight, ΔC, presents the percentage gain in terms of the 
average costs reached by ILS-Φ compared to that 
produced by ILS-LA, i.e. 100 ∗(1 - average cost of SD-Φ / 
average cost of SD-LA). Finally, Column nine lists the p-
value obtained from a statistical significance analysis 
performed for the results of this experiment, according to 
the methodology described in Section 3.3. 

It can be observed from Tab. 3 that ILS-Φ expends a 
slightly higher CPU time than ILS-LA, since it uses an 
average of 16,19 seconds for solving these 21 benchmark 
instances. On the contrary, ILS-LA employs only 12,19 
seconds for this task. However, we can also remark that 
ILS-Φ can take advantage of its longer executions. 
Indeed, it is able to consistently improve the best results 
found by ILS-LA, obtaining in certain instances, like 
bintree10, an important decrease in total edge length (ΔC 
up to 14,99%). Furthermore, the statistical analysis 
presented in the last column of Tab. 3 confirms that this 
increase in performance achieved by ILS-Φ with regard 
to ILS-LA is statistically significant on 80,95% of the 
studied instances (17 out of 21). It allows us to conclude 
that the Φ evaluation function leads to a more effective 
exploration of the search space than LA, since it does 
boost the performance of the proposed ILS algorithm.  

 

 
4.2 Tabu Search algorithm 

 
For the second experimental comparison of the 

studied evaluation functions we have selected the Tabu 
Search (TS) algorithm [29], since it is among the most 

cited and used metaheuristics for solving combinatorial 
optimization problems [30]. 

The pseudo-code of our TS implementation is 
presented in Alg. 2. It starts with a randomly generated 
solution, then it proceeds iteratively to visit a series of 
locally best configurations following the neighborhood 

Table 3 Performance comparison between ILS-LA and ILS-Φ 

 
ILS-LA 

 
ILS-Φ % 

 Graph C Avg. T 
 

C Avg. T ΔC p-value 
randomA1 905 612 925 913,8 5,94  903 334 922 395,6 9,51 0,38 2,70E-02 
randomA2 6 608 842 6 645 370,2 20,92  6 591 274 6 638 897,1 27,40 0,10 1,70E-02 
randomA3 14 294 511 14 350 864,5 40,56  14 282 423 14 345 425,7 47,74 0,04 1,50E-01 
randomA4 1 767 498 1 788 134,5 7,84  1 756 000 1 781 871,0 11,55 0,35 3,30E-05 
randomG4 259 598 356 766,6 4,37  244 432 343 316,6 4,54 3,77 6,20E-02 
bintree10 28 642 35 870,7 4,64  24 412 30 493,1 11,98 14,99 5,70E-23 
hc10 533 912 594 226,7 6,56  525 184 585 474,4 4,73 1,47 9,90E-02 
mesh33x33 59 035 90 808,0 7,59  45 110 79 239,9 14,85 12,74 2,40E-08 
3elt 1 740 660 2 245 592,6 33,81  1 540 158 2 165 033,8 41,28 3,59 1,30E-02 
airfoil1 1 402 825 1 821 485,3 30,3  1 132 536 1 642 201,2 39,43 9,84 1,10E-08 
whitaker3 9 231 695 11 010 927,5 59,36  9 161 792 10 750 209,2 66,66 2,37 3,20E-02 
c1y 87 559 100 558,0 4,73  80 898 96 113,8 8,46 4,42 1,40E-04 
c2y 112 621 135 336,1 5,32  109 764 126 667,0 9,65 6,41 2,30E-09 
c3y 192 372 234 044,5 6,94  189 398 225 294,8 10,32 3,74 2,40E-03 
c4y 175 723 236 348,9 6,98  169 899 211 838,5 12,39 10,37 3,70E-09 
c5y 157 201 187 924,7 6,23  145 286 175 624,7 11,71 6,55 1,80E-07 
gd95c 520 657,4 0,14  516 649,3 0,16 1,22 3,50E-01 
gd96a 127 957 138 367,2 3,12  121 476 132 382,0 6,19 4,33 2,80E-20 
gd96b 1486 1742,3 0,12  1475 1631 0,17 6,39 6,60E-05 
gd96c 524 616,9 0,11  520 576,5 0,27 6,55 8,00E-04 
gd96d 2776 3425,7 0,38  2528 3070,4 1,11 10,37 1,30E-07 
Average 1 794 836,6 1 947 856,3 12,19  1 763 257,9 1 917 066,9 16,19 5,24  17+ 
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function 𝒩𝒩1(𝜑𝜑). At each iteration, a best neighbor 𝜑𝜑´ is 
chosen to replace the current configuration 𝜑𝜑, even if the 
former does not improve the current one. In order to 
explore consecutive local optimal solutions and to avoid 
the occurrence of cycles, TS introduces the notion of tabu 
list. The basic idea is to record the attributes of each 
visited solution and to forbid the algorithm to visit again 
this configuration during the next Tt iterations (Tt is 
called the tabu tenure). 

 
𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰:𝑚𝑚𝑚𝑚𝑖𝑖𝑔𝑔ℎ𝑏𝑏𝑟𝑟𝑟𝑟ℎ𝑟𝑟𝑟𝑟𝑑𝑑 𝑓𝑓𝑢𝑢𝑛𝑛𝑓𝑓𝑟𝑟𝑖𝑖𝑟𝑟𝑛𝑛 𝒩𝒩, 𝑚𝑚𝑣𝑣𝑠𝑠𝑙𝑙𝑢𝑢𝑠𝑠𝑟𝑟𝑖𝑖𝑟𝑟𝑛𝑛 𝑓𝑓𝑢𝑢𝑛𝑛𝑓𝑓𝑟𝑟𝑖𝑖𝑟𝑟𝑛𝑛 𝑓𝑓,  
              𝑚𝑚𝑠𝑠𝑥𝑥𝑖𝑖𝑚𝑚𝑢𝑢𝑚𝑚 𝑛𝑛𝑟𝑟𝑛𝑛 − 𝑖𝑖𝑚𝑚𝑝𝑝𝑟𝑟𝑟𝑟𝑣𝑣𝑖𝑖𝑛𝑛𝑔𝑔 𝑛𝑛𝑚𝑚𝑖𝑖𝑔𝑔ℎ𝑏𝑏𝑟𝑟𝑟𝑟𝑖𝑖𝑛𝑛𝑔𝑔 𝑠𝑠𝑟𝑟𝑙𝑙𝑢𝑢𝑟𝑟𝑖𝑖𝑟𝑟𝑛𝑛𝑠𝑠 𝑚𝑚𝑠𝑠𝑥𝑥𝑚𝑚𝑚𝑚 
𝜑𝜑0 ← 𝐺𝐺𝑚𝑚𝑛𝑛𝑚𝑚𝑟𝑟𝑠𝑠𝑟𝑟𝑚𝑚𝑚𝑚𝑛𝑛𝑖𝑖𝑟𝑟𝑖𝑖𝑠𝑠𝑙𝑙𝑆𝑆𝑟𝑟𝑙𝑙𝑢𝑢𝑟𝑟𝑖𝑖𝑟𝑟𝑛𝑛() 
𝜑𝜑∗ ← 𝜑𝜑  
𝑚𝑚𝑛𝑛𝑖𝑖𝑟𝑟𝑖𝑖𝑠𝑠𝑙𝑙𝑖𝑖𝑧𝑧𝑚𝑚𝐼𝐼𝑠𝑠𝑏𝑏𝑢𝑢𝐿𝐿𝑖𝑖𝑠𝑠𝑟𝑟() 
𝑚𝑚𝑚𝑚 ← 0 
𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 𝑠𝑠𝑟𝑟𝑟𝑟𝑝𝑝 𝑓𝑓𝑟𝑟𝑛𝑛𝑑𝑑𝑖𝑖𝑟𝑟𝑖𝑖𝑟𝑟𝑛𝑛 𝑛𝑛𝑟𝑟𝑟𝑟 𝑚𝑚𝑚𝑚𝑟𝑟 𝒅𝒅𝒅𝒅 
     𝜑𝜑´ ← 𝐶𝐶ℎ𝑟𝑟𝑟𝑟𝑠𝑠𝑚𝑚𝑜𝑜𝑚𝑚𝑠𝑠𝑟𝑟𝐴𝐴𝑑𝑑𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑏𝑏𝑙𝑙𝑚𝑚(𝜑𝜑) 

// {𝜑𝜑´ ∈ 𝒩𝒩(𝜑𝜑)|𝜑𝜑´ 𝑛𝑛𝑟𝑟𝑛𝑛 − 𝑟𝑟𝑠𝑠𝑏𝑏𝑢𝑢 𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑝𝑝𝑖𝑖𝑟𝑟𝑠𝑠𝑟𝑟𝑖𝑖𝑟𝑟𝑛𝑛 𝑓𝑓𝑟𝑟𝑛𝑛𝑑𝑑𝑖𝑖𝑟𝑟𝑖𝑖𝑟𝑟𝑛𝑛 ℎ𝑟𝑟𝑙𝑙𝑑𝑑𝑠𝑠} 
     𝑈𝑈𝑝𝑝𝑑𝑑𝑠𝑠𝑟𝑟𝑚𝑚𝐼𝐼𝑠𝑠𝑏𝑏𝑢𝑢𝐿𝐿𝑖𝑖𝑠𝑠𝑟𝑟𝐴𝐴𝑛𝑛𝑑𝑑𝐴𝐴𝑠𝑠𝑝𝑝𝑖𝑖𝑟𝑟𝑠𝑠𝑛𝑛𝑟𝑟𝑖𝑖𝑟𝑟𝑛𝑛𝐶𝐶𝑟𝑟𝑛𝑛𝑑𝑑𝑖𝑖𝑟𝑟𝑖𝑖𝑟𝑟𝑛𝑛() 
     𝜑𝜑 ← 𝜑𝜑´ 
     𝒘𝒘𝒊𝒊 𝑓𝑓(𝜑𝜑)  < 𝑓𝑓(𝜑𝜑∗) 𝑰𝑰𝒘𝒘𝒘𝒘𝑰𝑰 
          𝜑𝜑∗ ← 𝜑𝜑 
          𝑚𝑚𝑚𝑚 ← 0 
     𝒘𝒘𝒘𝒘𝒆𝒆𝒘𝒘 
         𝑚𝑚𝑚𝑚 ← 𝑚𝑚𝑚𝑚 + 1 
     𝒘𝒘𝑰𝑰𝒅𝒅 𝒘𝒘𝒊𝒊 
     𝒘𝒘𝒊𝒊 𝑚𝑚𝑚𝑚 > 𝑚𝑚𝑠𝑠𝑥𝑥𝑚𝑚𝑚𝑚 𝑰𝑰𝒘𝒘𝒘𝒘𝑰𝑰 𝐷𝐷𝑖𝑖𝑣𝑣𝑚𝑚𝑟𝑟𝑠𝑠𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓𝑠𝑠𝑟𝑟𝑖𝑖𝑟𝑟𝑛𝑛(𝜑𝜑) 
𝒘𝒘𝑰𝑰𝒅𝒅 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 
𝒓𝒓𝒘𝒘𝑰𝑰𝑰𝑰𝒓𝒓𝑰𝑰 𝜑𝜑∗ 

Algorithm 2 Tabu Search (TS) algorithm 
 
In our TS algorithm the neighbor of a given solution 

𝜑𝜑 is obtained by swapping the labels of any pair (𝑖𝑖, 𝑗𝑗) of 
different vertices. When such a move is performed the 
couple of vertices (𝑖𝑖, 𝑗𝑗) is classified tabu for the next Tt 
iterations. Therefore, the vertices 𝑖𝑖 and 𝑗𝑗 cannot be 
exchanged during this period. Nevertheless, a tabu move 
leading to a configuration better than the best 
configuration found so far 𝜑𝜑∗ is always accepted 
(aspiration criterion).  

The tabu tenure Tt for a move, in our TS algorithm, is 
dynamically calculated during the search using the 
approach introduced by Galinier [31] and used later in 
[32]. It is based on the use of a periodic step function PS 
which takes as argument the number of iterations iter. 
Each period of this function is composed of 1500 
iterations divided into 15 intervals [𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖+1 − 1]𝑖𝑖=1,2,…,15 
with 𝑥𝑥1 =  1 and 𝑥𝑥𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 + 100. The value returned by 
PS for a particular iteration iter∈  [𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖+1 − 1] is given 
by (𝑠𝑠𝑖𝑖)𝑖𝑖=1,2,…,15 =  (1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1) ×
𝛼𝛼, where 𝛼𝛼 is a parameter that fixes the minimum tenure 
value. Therefore, the tabu tenure equals 𝛼𝛼 between 
iterations 1 and 99, 2 × 𝛼𝛼 between iterations 100 and 199, 
followed by 𝛼𝛼 again for iterations [200,299] and 4 × 𝛼𝛼 for 
iterations [300,399], etc. This variation scheme is 
periodically repeated by this function after every 1500 
iterations. 

A diversification mechanism was also implemented 
since the above basic TS algorithm could be trapped in 
deep local optima. In our case, the search is judged 
stagnating each time the best solution found so far 𝜑𝜑∗ is 
not further improved after a number NI of consecutive 
iterations. To help the search to escape from such deep 
local optima, we apply a simple perturbation mechanism 
to the current solution to bring diversification into the 

search. The perturbation consists in applying 𝜆𝜆 
consecutive times the left rotation neighborhood relation 
𝒩𝒩4(𝜑𝜑) analyzed in Section 3.5, where 𝜆𝜆 is a parameter 
that fixes the strength of the perturbation. Finally, our TS 
algorithm stops when it ceases to make progress, i.e., 
when MD successive diversification iterations do not 
produce a better solution. 

 
4.2.1 Computational experiments 

 
Two versions of the TS algorithm previously 

presented were implemented. Let us call them TS-LA or 
TS-Φ depending on which evaluation function is 
employed. The following parameters were determined 
experimentally for both TS algorithms, and used 
consistently for this experiment: a) initial solution 
randomly generated, b) swap neighborhood relation 
𝒩𝒩1(𝜑𝜑) with a maximum number of 2500 neighboring 
solutions, c) maximum non-improving neighboring 
solutions maxNI=100, d) minimum tenure value 𝛼𝛼 = 15, 
e) the strength of the diversification operator is 𝜆𝜆 = 2, f) 
maximum non-improving successive diversification 
iterations MD=20. Due to the random nature of the TS 
algorithm, 100 independent runs were executed for each 
of the selected benchmark instances. 

Tab. 4 summarizes the results obtained from this 
experiment. Columns two to seven display the best cost in 
terms of total edge length C, the average cost Avg. and the 
average CPU time T in seconds achieved by TS-LA and 
TS-Φ respectively. Column eight, ΔC, depicts the 
percentage gain in terms of the average costs reached by  
TS-Φ compared to that produced by TS-LA, while column 
nine presents the p-value obtained from a statistical 
significance analysis performed for the results of this 
experiment using the same methodology described in 
Section 3.3. 

The analysis of the data presented in Tab. 4 leads us 
to the following observations. First, we can notice that 
TS-Φ consumes slightly more computing time than TS-LA 
(in average 199,78 vs. 194,85 seconds). Second, we 
clearly remark that TS-Φ consistently returns solutions of 
better quality than TS-LA, since in average TS-Φ provides 
solutions whose total edge lengths are ΔC = 6,15% 
smaller than those produced by TS- LA. For certain 
instances, like whitaker3, the decrease in total edge length 
could be up to ΔC = 31,71. Third, the statistical analysis 
whose results are presented in the last column of Tab. 4 
(p-value) confirms that the increase in performance 
achieved by TS-Φ with respect to TS-LA is statistically 
significant on 80,95% of the studied instances (17 out of 
21). 

Thus, this second experiment confirms that Φ does 
help the TS algorithm to make a more effective search 
than LA. 

It should be clear that given the algorithm-
independent nature of the Φ evaluation function, it can be 
used by other advanced metaheuristics for the MinLA 
problem to boost the search performance. Finally, let us 
mention that Φ is one of the key components that 
contributes to the performance of a highly successful two-
stage SA algorithm presented in [12]. 
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5 Some related works 

 
There are relatively few studies on more 

discriminating evaluation functions for metaheuristics. 
Two notable examples are reported for graph coloring [7] 
and for bin packing [33].  

The Graph Coloring Problem (GCP) consists in 
coloring the vertices of a given graph with a minimal 
number of colors (chromatic number) with the constraint 
that two adjacent vertices receive different colors. For this 
problem, Johnson et al. proposed the evaluation function 
𝑔𝑔 depicted in Eq. (25). In this equation the number of 
colors 𝑘𝑘 is considered variable, 𝑉𝑉𝑖𝑖 represents the set of 
vertices colored with 𝑖𝑖 and 𝐸𝐸𝑖𝑖 (1 ≤  𝑖𝑖 ≤  𝑘𝑘) is the set of 
edges both of whose endpoints (vertices) are in 𝑉𝑉𝑖𝑖. 

 

𝑔𝑔(𝑥𝑥) = −� |𝑉𝑉𝑖𝑖|2
𝑘𝑘

𝑖𝑖=1

+ � 2|𝑉𝑉𝑖𝑖||𝐸𝐸𝑖𝑖|
𝑘𝑘

𝑖𝑖=1

 (25) 

 
Observe that by the first term of Eq. (25), a large 

color set 𝑉𝑉𝑖𝑖 tends to get more vertices than smaller ones, 
and as a side effect of this, the number of colors 𝑘𝑘 is 
minimized. The second term is used to penalize those 
edges having the same colors on the end vertices. Another 
important characteristic is that all the local optima under 
𝑔𝑔 correspond to legal colorings (i.e., 𝐸𝐸𝑖𝑖 = Ø ⩝ 𝑖𝑖). But the 
main advantage of the 𝑔𝑔 evaluation function, compared 
with the objective function 𝑓𝑓 (i.e., the weighted sum of 
𝑘𝑘 and ∑ |𝐸𝐸𝑖𝑖|𝑘𝑘

𝑖𝑖=1 ), is that it can evaluate the gain of a move 
in which the number of colors 𝑘𝑘 is not changed but the 
size of a small 𝑉𝑉𝑖𝑖 is decreased. As it was demonstrated by 
Johnson et al.[7], the use of the 𝑔𝑔 evaluation function 
within a SA algorithm leads to good results, because 𝑔𝑔 is 
more informative than 𝑓𝑓 and helps to better guide the 
search process.  

The Bin Packing Problem consists in packing, within 
a minimum number of bins of a given capacity 𝑄𝑄, a set of 
𝑛𝑛 items 𝐴𝐴 = {𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛}, each having a size 𝑠𝑠(𝑠𝑠𝑖𝑖)  >
 0. In other words, the goal is to pack the items into as 
few bins as possible, i.e., partition them into a minimum 

number 𝑚𝑚 of subsets 𝑜𝑜1,𝑜𝑜2, … ,𝑜𝑜𝑚𝑚 such that for each 
𝑜𝑜𝑗𝑗 ,∑ 𝑠𝑠(𝑠𝑠𝑖𝑖) ≤ 𝑄𝑄𝑎𝑎𝑖𝑖∈𝐵𝐵𝑗𝑗 . The first evaluation function which 
comes to mind is the number of bins used to pack all the 
items, but it is unusable in practice because it is not 
informative to guide an algorithm in the search. 
Falkenauer [33] proposed instead the following evaluation 
function (to maximize): 

 

𝑔𝑔(𝑥𝑥) =
∑ (𝐹𝐹𝑖𝑖/𝑄𝑄)𝑘𝑘𝑚𝑚
𝑖𝑖=1

𝑚𝑚
 , (26) 

 
where 𝑚𝑚 is the number of bins used in the solution 𝑥𝑥, 𝐹𝐹𝑖𝑖 
the sum of sizes of the items packed in the bin 𝑖𝑖 (the fill of 
the bin) and 𝑘𝑘 a constant (𝑘𝑘 > 1), which expresses the 
concentration on the most filled bins in comparison to the 
less filled ones. The larger 𝑘𝑘 is, the more well-filled bins 
will be produced. 

The proposed evaluation function 𝑔𝑔 maximizes the 
average bin efficiency (over all bins) measuring the 
exploitation of a bin's capacity. Thus, it encourages the 
bin efficiency, rather than the overall performance of all 
the bins together. Additionally, 𝑔𝑔 assigns similar (but not 
equal) values to similar solutions, while having the same 
optima as the objective function 𝑓𝑓, producing as 
consequence smoother search landscapes. 

Other recent examples of more discriminating 
evaluation functions can be found in [34, 35].  

 
6  Conclusions and discussions 

 
Evaluation function is one fundamental element of a 

metaheuristic algorithm. By extending a preliminary work 
reported in [13], this paper described an in-depth 
investigation of the notion of evaluation function using a 
well-known graph labeling problem (i.e., the Minimum 
Linear Arrangement problem, MinLA) as a representative 
case of study. 

Some important mathematical properties of the 
conventional MinLA evaluation function LA (i.e., total 
edge length cost) were throughly analyzed. The results 
from this study highlighted the potential drawbacks of 

Table 4 Performance comparison between TS-LA and TS-Φ. 

 
TS-LA  TS-Φ % 

 Graph C Avg. T  C Avg. T ΔC p-value 
randomA1 894048 911156,8 61,53  890615 907896,5 61,21 0,36 4,90E-03 
randomA2 6587805 6629381,6 136,75  6576500 6618055,2 203,02 0,17 1,10E-05 
randomA3 14289228 14331958,2 248,05  14273622 14327253,5 276,79 0,03 1,50E-01 
randomA4 1747516 1774152,9 66,75  1745643 1768267,3 98,34 0,33 1,50E-05 
randomG4 223838 332724,2 26,43  202757 317200,9 15,32 4,67 7,30E-03 
bintree10 18055 24683 73,95  16352 23969,8 106,82 2,89 1,90E-01 
hc10 526468 582513,5 27,53  524320 571831,9 17,19 1,83 1,80E-02 
mesh33x33 33805 55991,9 82,66  32331 46434,3 89,16 17,07 3,20E-07 
3elt 635048 1075592,1 525,06  523352 900929,3 537,95 16,24 1,60E-09 
airfoil1 436307 794070 473,03  433859 682673,2 420,61 14,03 1,50E-07 
whitaker3 2079351 4190127,1 1887,45  1239421 2861347,2 1794,89 31,71 9,80E-25 
c1y 66626 86193,9 59,27  65816 82268,6 86,37 4,55 3,30E-04 
c2y 87939 111234,7 64,31  83883 105144,7 72,02 5,47 1,80E-05 
c3y 146165 184244,1 99,69  140866 173305,5 129,74 5,94 1,40E-06 
c4y 136706 175863,4 112,83  132090 162776,4 62,28 7,44 2,10E-05 
c5y 120029 146903,5 89,96  113807 140538,9 153,65 4,33 1,10E-03 
gd95c 518 624,6 0,49  509 615 0,37 1,53 4,20E-01 
gd96a 113045 122945,1 50,62  111671 121649,6 63 1,05 1,20E-02 
gd96b 1463 1705,6 0,68  1461 1647,4 1,13 3,41 2,20E-01 
gd96c 520 554,8 0,86  519 547,5 0,28 1,33 4,00E-03 
gd96d 2634 3087,7 4,03  2520 2940,5 5,3 4,77 1,20E-04 
Average 1340338,8 1501700,4 194,85  1291043,5 1419871,1 199,78 6,15 17+ 
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using this function to guide the search and enabled us to 
devise a more discriminating evaluation function, namely 
Φ. The basic idea behind Φ is to integrate in the 
evaluation function not only the total edge length of an 
arrangement (LA), but also other semantic information 
induced by the absolute differences between the labels 
assigned to adjacent nodes of the graph. 

The practical usefulness of the evaluation function Φ 
was first assessed with a parameter-free Steepest Descent 
(SD) algorithm using a full test-suite composed of the 21 
well-known benchmarks of the literature [8, 9, 10, 11, 
12]. The results produced by this experiment showed that 
the SD algorithm using Φ as evaluation function (SD-Φ) 
returns for 19 out of 21 instances better results than those 
produced by SD-LA requiring in average a comparable 
CPU time per iteration. The statistical analysis of these 
results confirmed that the increase in performance 
achieved by SD-Φ with regard to SD-LA is statistically 
significant on 66,66% of the studied instances (14 out of 
21).  

In order to get a better understanding of these results 
an experimental analysis of the search landscapes and the 
distributions of improving neighbors induced by these 
two evaluation functions was carried out. It provided 
experimental evidences showing that the superiority of 
Φ over LA, for guiding the search, is due to its ability to 
identify in average a greater number of improving 
neighbors than LA. 

To gain more insights into the real working of the 
studied evaluation functions a second experimental 
comparison between them was carried out employing two 
more elaborated metaheuristics: Iterated Local Search 
(ILS) and Tabu Search (TS). The analysis of the data 
produced by these comparisons showed that the 
performance of the ILS and TS metaheuristics can be 
boosted by using more discriminating evaluation 
functions like Φ. Indeed, ILS-Φ and TS-Φ were able to 
consistently improve the best results produced by ILS-LA 
and TS-LA, respectively. Furthermore, the statistical 
analysis carried out over these results demonstrated that 
the increase in performance achieved by the 
metaheuristics using Φ as evaluation function with 
respect to those employing LA is statistically significant 
on 80,95% of the studied instances (17 out of 21). These 
results allow us to conclude that the Φ evaluation function 
permits the search algorithm using it to make a more 
effective exploration of the search space than LA. 

Even if the current stage of our knowledge does not 
allow us to identify general rules for designing more 
informative evaluation functions, we hope the work 
reported in this paper sheds useful light on the way that 
may be followed. We also expect the results shown in this 
work incite more research on more discriminating 
evaluation functions as an effective mean of boosting the 
performance of metaheuristic algorithms. 
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