
E. Rodriguez-Tello i dr. Poboljšanje učinaka metaheuristike kod MinLA problema primjenom kritičnije funkcije evaluacije

ISSN 1330-3651 (Print), ISSN 1848-6339 (Online)
DOI: 10.17559/TV-20130905130612

BOOSTING THE PERFORMANCE OF METAHEURISTICS FOR THE MINLA PROBLEM
USING A MORE DISCRIMINATING EVALUATION FUNCTION

Eduardo Rodriguez-Tello, Jin-Kao Hao, Hillel Romero-Monsivais

Original scientific paper
This paper investigates the role of evaluation function used by metaheuristics for solving combinatorial optimization problems. Evaluation function (EF)
is a key component of any metaheuristic algorithm and its design directly influences the performance of such an algorithm. However, the design of more
discriminating EFs is somewhat overlooked in the literature. We present in this work the first in-depth analysis of the conventional EF for the Minimum
Linear Arrangement (MinLA) problem. The results from this study highlighted its potential drawbacks and led to useful insight and information which
guided us to design a new more discerning EF. Its practical usefulness was assessed within three different algorithms: a parameter-free Steepest Descent,
an Iterated Local Search and a Tabu Search. The analysis of the data produced by these comparisons showed that the performance of the three adopted
approaches could be boosted by using the proposed more discriminating EF.

Keywords: combinatorial optimization, evaluation function, linear arrangement problem, metaheuristics

Poboljšanje učinaka metaheuristike kod MinLA problema primjenom kritičnije funkcije evaluacije

Original scientific paper
U radu se ispituje uloga funkcije evaluacije u metaheuristici kod rješavanja kombinatornih problema optimizacije. Evaluacijska funkcija (EF) je ključna
sastavnica svakog metaheurističkog algoritma i njezin dizajn direktno utječe na performansu takvog algoritma. Međutim, u literaturi je dizajn kritičnijih
EF-a donekle zanemaren. U ovom radu dajemo prvu temeljnu analizu standardne EF za problem Minimum Linear Arrangement (MinLA). Dobiveni
rezultati su ukazali na moguće nedostatke i dali koristan uvid i informacije potrebne za dizajniranje kritičnije EF. Njezina se praktična korisnost
procijenila u tri različita algoritma: parameter-free Steepest Descent, Iterated Local Search i Tabu Search. Analiza dobivenih podataka pokazala je da bi se
performansa ta tri primijenjena pristupa mogla poboljšati primjenom predloženih kritičnijih EF.

Ključne riječi: kombinatorna optimizacija, funkcija evaluacije, problem linearnog uređenja, metaheuristika

1 Introduction

In the last two decades, metaheuristics [1] such as

Genetic Algorithms, Simulated Annealing and Tabu
Search have become very popular as a class of valuable
optimization methods for tackling hard combinatorial
optimization problems. Successful applications with these
methods are continually reported both in traditional and in
emerging fields. Metaheuristics are today recognized as
an indispensable part of the arsenal for difficult
optimization.

The success (or failure) of a metaheuristic algorithm
depends heavily on a set of key components that must be
designed with care. Neighborhood relation and evaluation
function are two prominent examples for Stochastic Local
Search methods [2]. The neighborhood relation defines
the subspace of the search problem to be explored by the
method. For a given problem, the definition of the
neighborhood should structure the search space such that
it helps the search process to find its ways to good
solutions. The importance of neighborhood is also
evidenced by several methods focusing on neighborhood
relations like Variable Neighborhood Search (VNS) [3],
Neighborhood Portfolio Search [4] and Progressive
Neighborhood Search [5].

The evaluation function assesses the quality of a
candidate solution with respect to the optimization
objective and orients the search method to “navigate”
through the search space. A good evaluation function is
expected to be able to distinguish among solutions and
thus to effectively guide the search method to make the
most appropriate choice at each of its iterations. Together,
neighborhood and evaluation function define the so-called

landscape of the search problem [2, 6, 7] and impact thus
greatly the efficiency of the search algorithm.

One common practice in designing metaheuristic
algorithms is to directly use the initial objective function
of the optimization problem as the evaluation function.
However, such a function may not be sufficient to
effectively guide the search process. Consider for instance
the more discriminating evaluation functions reviewed in
Section 5.

In this paper, we focus on the issue of evaluation
function and offer an in-depth investigation on the design
of a more discriminating evaluation function which
considers additional semantic information of the
optimization problem. For this purpose, we use the well-
known Minimum Linear Arrangement problem (MinLA)
as our case study.

The main contributions of this work can be
summarized as follows: a) An in-depth analysis of some
mathematical properties of the classical evaluation
function for MinLA, called LA, and a new more
discriminating evaluation function, named Φ; b) An
extensive experimental comparison between these
evaluation functions within a Steepest Descent (SD)
algorithm over a full test-suite composed of the 21 well-
known benchmarks previously used in many studies [8, 9,
10, 11, 12]; c) A study comparing the number and
distribution of neutral and improving neighboring
solutions induced by both evaluation functions; d) An
analysis of the interaction among five different
neighborhood relations and the studied evaluation
functions; e) An assessment of the practical usefulness of
Φ within two different metaheuristic algorithms, Iterated
Local Search and Tabu Search; f) A rigorous statistical
analysis of all the experimental results. The main

Tehnički vjesnik 22, 1(2015), 11-24 11

Boosting the performance of metaheuristics for the MinLA problem using a more discriminating evaluation function E. Rodriguez-Tello et al.

objective of this investigation is to show that designing
more discriminating evaluation functions may be a highly
valuable approach for boosting the performance of
metaheuristic algorithms which deserves more attention.

The remainder of this article is organized as follows.
Section 2 formally introduces the MinLA problem,
analyzes some characteristics of the basic evaluation
function LA and shows how these results were used in
[13] to propose the more informative Φ evaluation
function. Section 3 shows a first assessment of the
usefulness of Φ with respect to the conventional LA
function, with the help of a parameter-free Steepest
Descent (SD) algorithm. Additional evidence about the
usefulness of the proposed evaluation function within
both an Iterated Local Search and a Tabu Search
algorithm is given in Section 4. Section 5 provides a
review of some relevant studies related to the issue of
more discriminating evaluation functions. Finally, Section
6 summarizes the contributions of this paper and
highlights the importance of designing alternative
evaluation functions for metaheuristic algorithms.

2 The MinLA problem and evaluation functions

Let 𝑃𝑃 = (𝑆𝑆, 𝑓𝑓) be a given combinatorial optimization

problem where 𝑆𝑆 is the search space composed of a set of
candidate solutions and 𝑓𝑓the objective or cost function of
problem 𝑃𝑃. For the purpose of this paper, it is important
to distinguish 𝑓𝑓 from the notion of evaluation function 𝑔𝑔
(also called fitness function for genetic-like algorithms)
which is a component of a metaheuristic algorithm. In
many cases, 𝑔𝑔 can take the form of 𝑓𝑓and many examples
can be found using such an approach. However, 𝑔𝑔 can
also be defined by any other function in order to include
in it additional and useful information. This second
approach is the topic of this paper. To show how this
would be possible, we focus on the study of the Minimum
Linear Arrangement problem (MinLA).

MinLA was first stated by Harper [14] whose initial
aim was to design error-correcting codes with minimal
average absolute errors on certain classes of graphs. Later,
in the 1970's MinLA was used as an abstract model of the
placement phase in VLSI layout, where vertices of the
graph represented modules and edges represented
interconnections. In this case, the cost of the arrangement
measures the total wire length [15]. MinLA has also been
applied as an over-simplified model of some nervous
activity in the cortex [16]. The MinLA problem also has
other practical applications, particularly in the following
areas: bioinformatics [17], single machine job scheduling
[18], graph drawing [19], software diagram layout [20], to
mention only some of them.

2.1 The 𝐋𝐋𝐀𝐀 function

MinLA can be stated formally as follows. Let

𝐺𝐺(𝑉𝑉,𝐸𝐸) be a finite undirected graph, where 𝑉𝑉(|𝑉𝑉| = 𝑛𝑛)
defines the set of vertices and 𝐸𝐸 ⊆ 𝑉𝑉 × 𝑉𝑉 = {(𝑖𝑖, 𝑗𝑗)| 𝑖𝑖, 𝑗𝑗 ∈
𝑉𝑉 } is the set of edges. Given an one-to-one function
𝜑𝜑 ∶ 𝑉𝑉 → {1, … ,𝑛𝑛}, called a linear arrangement or a
labeling, the total edge length (cost) for 𝐺𝐺 with respect to
the arrangement 𝜑𝜑 is defined according to Eq. (1).

LA (𝐺𝐺,𝜑𝜑) = � |𝜑𝜑(𝑢𝑢) − 𝜑𝜑(𝑣𝑣)|
(𝑢𝑢,𝑣𝑣)∈𝐸𝐸

 (1)

Then the MinLA problem consists in finding an

arrangement (labeling) 𝜑𝜑∗ for a given 𝐺𝐺 so that the total
edge lengthLA (𝐺𝐺,𝜑𝜑)is minimized:

LA (𝐺𝐺,𝜑𝜑∗) = min{LA (𝐺𝐺,𝜑𝜑) ∶ 𝜑𝜑 ∈ ℒ} , (2)

where ℒ represents the set of all the possible labelings. It
is simple to observe that the set ℒ consists of 𝑛𝑛! possible
linear arrangements for a graph of order 𝑛𝑛.1

There exist polynomial time exact algorithms for
some special cases of MinLA such as trees, rooted trees,
hypercubes, meshes, outerplanar graphs, and others (see
[21] for a detailed survey). However, as is the case with
many graph layout problems, finding the minimum linear
arrangement is known to be NP-hard for general graphs
[22]. Therefore, there is a need for heuristics to address
this problem in reasonable time. Among the reported
algorithms are: a) heuristics especially developed for
MinLA, such as the Binary Decomposition Tree heuristic
[9], the Multi-Scale algorithm [10] and the Algebraic
Multi-Grid scheme [23]; b) metaheuristics such as
Simulated Annealing [8, 12] and Memetic Algorithms
[11, 13]; and c) some combinations of these methods.

2.2 Analyzing the 𝐋𝐋𝐀𝐀 evaluation function

It is important to remark that most of the algorithms

for the MinLA problem mentioned in the previous
section, evaluate the quality of a solution (linear
arrangement) as the change in the objective function
LA (𝐺𝐺,𝜑𝜑) (let us call it only LA for simplicity). This
section presents a detailed analysis of certain
characteristics of LA and highlights the potential
drawbacks of LA when it is directly used as an evaluation
function. This analysis has led to useful insight and
information which guided us to design a more
discriminating evaluation function introduced in [13].

Before beginning this analysis, we introduce two
important definitions used in our study of labeled graphs.
Let 𝜑𝜑 be a labeling for a graph 𝐺𝐺(𝑉𝑉,𝐸𝐸) of order 𝑛𝑛. The
absolute difference between the labels of two adjacent
vertices 𝑢𝑢, 𝑣𝑣is defined as follows: |𝜑𝜑(𝑢𝑢) − 𝜑𝜑(𝑣𝑣)| = 𝑘𝑘 for
(𝑢𝑢,𝑣𝑣) ∈ 𝐸𝐸and 0 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 1.

The appearing frequency 𝑑𝑑𝑘𝑘 of those absolute
differences with value 𝑘𝑘 produced by 𝜑𝜑 is given by Eq.
(3).

𝑑𝑑𝑘𝑘 = � 𝑙𝑙𝑢𝑢 𝑣𝑣 ,

(𝑢𝑢,𝑣𝑣)∈𝐸𝐸

 (3)

where (𝑢𝑢, 𝑣𝑣) ∈ 𝐸𝐸 equals 1 if |𝜑𝜑(𝑢𝑢) − 𝜑𝜑(𝑣𝑣)| = 𝑘𝑘, and 0
otherwise.

Let 𝐺𝐺(𝑉𝑉,𝐸𝐸) be a finite undirected graph of order n
and 𝜑𝜑 a labeling. Observe that graph 𝐺𝐺 could potentially
have 𝑛𝑛(𝑛𝑛 − 1)/2 non-reflexive edges. Given that a

1 Notice that each of the 𝑛𝑛! linear arrangements may be
reversed to get the same cost.

12 Technical Gazette 22, 1(2015), 11-24

E. Rodriguez-Tello i dr. Poboljšanje učinaka metaheuristike kod MinLA problema primjenom kritičnije funkcije evaluacije

particular edge can be present or absent in it, the total
number of possible simple (without loops) labeled graphs
is expressed in Eq. (4), where ℊs represents the set
containing those graphs.

|ℊs| = 2
𝑛𝑛(𝑛𝑛 − 1)

2
= 2 �𝑛𝑛2� (4)

In the following analysis, we do not consider the

graphs with loops because the contribution of those non-
reflexive edges to the total edge length is null.
Nevertheless, we take into consideration all the possible
values taken by the function LA, even when LA = 0.

Suppose a labeled graph with n vertices. In this graph
the maximum number of absolute differences is
distributed as follows: 1 with value (𝑛𝑛 − 1), 2 with value
(𝑛𝑛 − 2), and in general 𝑘𝑘 absolute differences with value
(𝑛𝑛 − 𝑘𝑘) for all 𝑘𝑘 in [1,𝑛𝑛 − 1]. Then, the LA function can
be expressed in terms of the graph's appearing frequencies
𝑑𝑑𝑘𝑘 using Eq. (5).

LA(𝐺𝐺,𝜑𝜑) = �𝑘𝑘𝑑𝑑𝑘𝑘

𝑛𝑛−1

𝑘𝑘=1

 (5)

It is clear then, that LA can take values from 0 (an

empty graph or composed only by reflexive edges) to the
value given by Eq. (6).

�𝑘𝑘(𝑛𝑛 − 𝑘𝑘) =
𝑛𝑛−1

𝑘𝑘=1

𝑛𝑛(𝑛𝑛2 − 1)
6

 (6)

Let ℛLA ⊆ ℊ𝑠𝑠 × ℊ𝑠𝑠 be an equivalence relation [24]

over the set of all the simple labeled graphs and 𝑥𝑥,𝑦𝑦 ∈
 ℊ𝑠𝑠then 𝑥𝑥 is related to y (𝑥𝑥 ℛLA 𝑦𝑦) if and only if 𝑥𝑥 and 𝑦𝑦
have a set of appearing frequencies 𝐷𝐷 = {𝑑𝑑1,𝑑𝑑2, … ,𝑑𝑑𝑛𝑛−1}
which produce the same total edge length LA.2 An
equivalence class[𝑥𝑥] = {𝑦𝑦 ∈ ℊ𝑠𝑠:𝑥𝑥 ℛLA 𝑦𝑦} ⊆ ℊ𝑠𝑠 then can
be defined for each possible value of LA. Hence, the total
number of equivalence classes 𝜀𝜀LA, underLA, in which the
set ℊ𝑠𝑠 can be partitioned is:

𝜀𝜀LA = 1 +
𝑛𝑛(𝑛𝑛2 − 1)

6

We observe that that there can exist different labeling

resulting into the same set of appearing frequencies D
whose exact number 𝑧𝑧 can be computed using Eq. (7).

𝑧𝑧(𝐷𝐷) = �� 𝑘𝑘
𝑑𝑑𝑛𝑛−𝑘𝑘

�
𝑛𝑛−1

𝑘𝑘=1

 (7)

Notice also that it could exist 𝑝𝑝 different sets of

appearing frequencies resulting into the same value LA,
i.e., 𝑃𝑃 = {𝐷𝐷1,𝐷𝐷2, … ,𝐷𝐷𝑝𝑝}. Thus, the cardinality 𝜔𝜔LA(𝑖𝑖)for
the equivalence class under LA = 𝑖𝑖 can be computed using
Eq. (8).

2 Observe that it could be the same graph or two different
graphs.

𝜔𝜔LA(𝑖𝑖) = �𝑧𝑧(𝐷𝐷𝑗𝑗)
𝑝𝑝

𝑗𝑗=1

 (8)

According to our observations, the evaluation

function LA does not distinguish between absolute
differences with a big value and those with a little value.
For instance, for the LA function it is equivalent to have an
absolute difference with value 25 rather than 25 absolute
differences with value 1 (see Eq. (1)). Therefore, there is
no possibility of making the distinction between the
𝜔𝜔LA(𝑖𝑖,𝑃𝑃)simple labeled graphs which belong to the same
equivalence class LA = 𝑖𝑖.

a) Labeling 𝜑𝜑

b) Labeling 𝜑𝜑´

Figure 1 Example of two linear arrangements with the same
value LA = 35

For example, the LA function assigns the same cost

LA = 35 for the two labelings represented in Fig. 1, for a
simple graph of order 12. However, a deeper analysis of
each appearing frequency 𝑑𝑑𝑘𝑘allows us to confirm that the
labeling 𝜑𝜑´ in Fig. 1b is perhaps more interesting than that
of Fig. 1a because it is easier to minimize the value of LA
by reducing one absolute difference with value 10
(𝑑𝑑10 = 1) in 𝜑𝜑´ rather than five absolute differences with
value 1 (𝑑𝑑1 = 5) in 𝜑𝜑. Indeed, if we reduced one absolute
difference with value 10, LA could decrease by 10 units,
whereas if we can eliminate five absolute differences with
value 1 (which is more difficult), LA could only reduce its
value by 5 units.

Based on this observation, we review in the next
section an evaluation function for the MinLA problem
which is more informative. Indeed, it analyzes
individually each appearing frequency produced by a
labeling in order to assess its quality.

2.3 The 𝚽𝚽 evaluation function

The function Φ evaluates the quality of a labeling

considering not only the total edge length (LA) of the
arrangement, but also additional information induced by
the appearing frequencies of the graph. Furthermore, it
maintains the fact that ⌊Φ⌋ results into the same integer
value produced by Eqs. (1) and (2).

Tehnički vjesnik 22, 1(2015), 11-24 13

Boosting the performance of metaheuristics for the MinLA problem using a more discriminating evaluation function E. Rodriguez-Tello et al.

For computing Φ, each appearing frequency 𝑑𝑑𝑘𝑘 must
make a different contribution to the cost of a labeling.
This contribution is computed by using Eq. (9).

𝑘𝑘 +
1

∏ (𝑛𝑛 + 𝑗𝑗)𝑘𝑘
𝑗𝑗=1

= 𝑘𝑘 +
𝑛𝑛!

(𝑛𝑛 + 𝑘𝑘)!
 (9)

Applying these contributions into Eq. (5) produces

the following expression:

��𝑘𝑘 +
𝑛𝑛!

(𝑛𝑛 + 𝑘𝑘)!
�

𝑛𝑛−1

𝑘𝑘=1

𝑑𝑑𝑘𝑘 , (10)

and simplifying it, we obtain the Φ evaluation function
whose first term is the LA function (see Eq. (5)), and the
second term (a fractional value) is used to discriminate
labelings having the same total edge length LA.

Φ(𝐺𝐺,𝜑𝜑) = �𝑘𝑘𝑑𝑑𝑘𝑘

𝑛𝑛−1

𝑘𝑘=1

+ �
𝑛𝑛!𝑑𝑑𝑘𝑘

(𝑛𝑛 + 𝑘𝑘)!

𝑛𝑛−1

𝑘𝑘=1

 (11)

As an example, let us consider the labeling 𝜑𝜑 for the

graph of order 𝑛𝑛 = 12 presented in Fig 1a. For this
particular linear arrangement LA = 35 and the appearing
frequencies 𝑑𝑑𝑘𝑘 are: 𝑑𝑑1=5,𝑑𝑑3=1,𝑑𝑑4=2,𝑑𝑑5=2 and 𝑑𝑑9=1. By
substituting these values in Eq. (11) we get:

Φ(𝐺𝐺,𝜑𝜑) = 35 + 12! (
5

6,2E + 09
+

1
1,3E + 12

+
2

2,0E + 13
+

2
3,5E + 14

+
1

5,1E + 19
) = 35,385

(12)

On the other hand, if Φ is computed for the linear

arrangement 𝜑𝜑´ depicted in Fig. 1b, we observe that the
appearing frequencies 𝑑𝑑𝑘𝑘 are: 𝑑𝑑1=2,𝑑𝑑2=4,𝑑𝑑3=3,𝑑𝑑6=1 and
𝑑𝑑10=1, which provide a smaller value:

Φ(𝐺𝐺,𝜑𝜑´) = 35 + 12! (
2

6,2E + 09
+

4
8,7E + 10

+
3

1,3E + 12
+

1
6,4E + 15

+
1

1,1E + 21
) = 35,177

(13)

The main idea behind Φ is to penalize the absolute

differences having small values, and to favor those with
values near to the bandwidth𝛽𝛽 of the graph.3 This can be
clearly observed in Eq. (12), where the Φ function
penalizes the absolute differences with value 1 (𝑑𝑑1=5)
more than those with value 3 (𝑑𝑑3=1) by multiplying them
by a factor of 12!/(6,2E + 09) and 12!/(1,3E +
12), respectively. In this way, Φ will always assign a
lower cost for a labeling comprising more absolute
differences with big value like that depicted in Fig. 1b,

3 Given a labeling function 𝜑𝜑of graph G its bandwidth is:
𝛽𝛽(𝐺𝐺,𝜑𝜑) = max {|𝜑𝜑(𝑢𝑢) − 𝜑𝜑(𝑣𝑣)|: (𝑢𝑢, 𝑣𝑣) ∈ 𝐸𝐸}.

because intuitively this labeling has a stronger probability
to be further improved.

Indeed, remember that in a simple labeled graph of
order n, generally there is a maximum number (𝑛𝑛 − 𝑘𝑘) of
absolute differences with value 𝑘𝑘(𝑘𝑘 ∈ [1,𝑛𝑛 − 1]).
Consequently, a larger value of an absolute difference 𝑘𝑘
means a weaker appearing frequency 𝑑𝑑𝑘𝑘. For example, in
a simple labeled graph of order 𝑛𝑛 = 50 there exist at most
49 absolute differences with value 1, whereas there is at
most “one” absolute difference with value 49. It is thus
simpler to reduce the total edge length for a given labeling
by modifying the labels at the ends of only one edge, than
changing the labels of all the vertices joined by the 49
edges which produce absolute differences with value 1.
Based on this observation, we have conceived the Φ
function in such a way that it can give advantage to the
labelings which have absolute differences with big value.

2.4 Analyzing the 𝚽𝚽 evaluation function

A formal analysis of certain characteristics of the Φ
evaluation function is presented below.

Let ℛΦ ⊆ ℊ𝑠𝑠 × ℊ𝑠𝑠be an equivalence relation over the
set of all the simple labeled graphs. Given two elements
𝑥𝑥, 𝑦𝑦 ∈ ℊ𝑠𝑠, we say that 𝑥𝑥 is related to 𝑦𝑦 (𝑥𝑥 ℛΦ 𝑦𝑦) if and
only if both have the same set of appearing
frequencies 𝐷𝐷 = {𝑑𝑑1,𝑑𝑑2, … ,𝑑𝑑𝑛𝑛−1}(i.e., the same Φ value).
An equivalence class[𝑥𝑥] = {𝑦𝑦 ∈ ℊ𝑠𝑠: 𝑥𝑥 ℛΦ 𝑦𝑦} ⊆ ℊ𝑠𝑠can be
then defined for each possible value of Φ.

Remember that in a simple labeled graph of order 𝑛𝑛,
there are in general 𝑘𝑘 absolute differences with value
(𝑛𝑛 − 𝑘𝑘) for all 𝑘𝑘 in [1,𝑛𝑛 − 1]. Then, the appearing
frequencies take values between 0 and (𝑛𝑛 − 𝑘𝑘). Thus, the
total number of equivalence classes 𝜀𝜀Φ, under Φ, in which
the set ℊ𝑠𝑠of all the simple labeled graphs of order 𝑛𝑛 can
be partitioned is:

𝜀𝜀Φ = �(𝑛𝑛 − 𝑘𝑘) = 𝑛𝑛!
𝑛𝑛−1

𝑘𝑘=1

 (14)

Given that two labelings belong to the same

equivalence class under Φ if they have the same set of
appearing frequencies 𝐷𝐷, we can compute the cardinality
𝜔𝜔Φ(𝑖𝑖,𝐷𝐷) for the equivalence class under Φ = i by using
Eq. (15).

𝜔𝜔Φ(𝑖𝑖,𝐷𝐷) = �� 𝑘𝑘
𝑑𝑑𝑛𝑛−𝑘𝑘

�
𝑛𝑛−1

𝑘𝑘=1

 (15)

The analysis of the equivalence classes produced by

Φ, that we have just presented, allows us to draw some
important conclusions. In particular, we observed the fact
that Φ divides each equivalence class produced by the LA
function in subsets (equivalence classes) of smaller size
which gather labelings sharing the same set of appearing
frequencies 𝐷𝐷. Thanks to this rational way of
incrementing the number of equivalence classes, Φ makes
it possible to distinguish linear arrangements having the
same value LA. Moreover, Φis coherent with the MinLA
problem objective which consists in minimizing LA: for

14 Technical Gazette 22, 1(2015), 11-24

E. Rodriguez-Tello i dr. Poboljšanje učinaka metaheuristike kod MinLA problema primjenom kritičnije funkcije evaluacije

two labelings 𝜑𝜑 and 𝜑𝜑´ if Φ(𝜑𝜑) < Φ(𝜑𝜑´), then LA(𝜑𝜑) ≤
 LA(𝜑𝜑´)(see Eqs. (5) and (11)).

2.5 Comparison of computational complexity between

𝐋𝐋𝐀𝐀 and 𝚽𝚽

In order to compute the quality of a labeling 𝜑𝜑by

using the conventional LA evaluation function, all the
edges in the graph 𝐺𝐺(𝑉𝑉,𝐸𝐸) must be analyzed (seeEq. (1)).
As a result 𝑂𝑂(|𝐸𝐸|) instructions must be executed.

To efficiently compute Φ we could precalculate each
term 𝑘𝑘 + (𝑛𝑛!/(𝑛𝑛 + 𝑘𝑘)!) in Eq. (11) and store them in an
array 𝑀𝑀 = {𝑚𝑚𝑖𝑖𝑗𝑗}𝑛𝑛×𝑛𝑛.All this needs to execute 2|𝑉𝑉|
operations, i.e., 𝑂𝑂(|𝑉𝑉|). Then each time that we need to
calculate the value of Φ the sum ∑ 𝑚𝑚𝑢𝑢𝑣𝑣(𝑢𝑢,𝑣𝑣)∈𝐸𝐸 must be
computed, which results into the same computational
complexity as the one required to compute LA.
Additionally, Φpermits an incremental evaluation of
neighboring solutions (see Section 3).4 Indeed, suppose
that the labels of two different vertices (𝑢𝑢, 𝑣𝑣) are
exchanged, then we should only recompute the |𝐴𝐴(𝑢𝑢)| +
 |𝐴𝐴(𝑣𝑣)| absolute differences that change, where |𝐴𝐴(𝑢𝑢)|
and |𝐴𝐴(𝑣𝑣)| represent the number of adjacent vertices to
𝑢𝑢 and 𝑣𝑣, respectively. As it can be seen this is faster than
the 𝑂𝑂(|𝐸𝐸|) operations originally required.

To complement the above analysis, we will present
bellow experimental evidences confirming the advantage
of the Φ evaluation function over the LA function and
show the usefulness of Φ for metaheuristic algorithms.

3 Comparing 𝐋𝐋𝐀𝐀 and 𝚽𝚽 evaluation functions using a

Steepest Descent algorithm

This section has two main objectives. First, with a

Steepest Descent algorithm and a set of benchmark
instances, we compare the performances that can be
achieved using LA and Φ evaluation functions. Second, to
explain the observed performance difference, we examine
in detail the interaction between evaluation function and
neighborhood relation and analyze the distribution of the
improving neighbors produced by the evaluation function
Φ in comparison with LA.

3.1 Steepest Descent algorithm

The choice of the Steepest Descent (SD) algorithm

for this comparison is fully justified by the fact that SD is
completely parameter free and thus it allows a direct
comparison of the two evaluation functions without any
bias. In addition, the move strategy adopted within the SD
algorithm permits to study characteristics of the search
space in which we are interested, such as the number and
distribution of improving neighbors. The implemented SD
algorithm has the following features.

Solution representation and Evaluation Function. For
a graph 𝐺𝐺 with 𝑛𝑛 vertices, the search space ℒ is composed
of all 𝑛𝑛!/2 possible linear arrangements. In our SD
algorithm, a linear arrangement 𝜑𝜑 is represented as a
permutation of {1,2, . . . ,𝑛𝑛}. More specifically, it is
defined as an array l of 𝑛𝑛 integers which is indexed by the

4 Note that LA can also be incrementally computed.

vertices and whose 𝑖𝑖-th value 𝑙𝑙[𝑖𝑖] denotes the label
assigned to the vertex 𝑖𝑖. The cost of an arrangement 𝜑𝜑 is
evaluated by using either the LA or Φ evaluation function.

Initial Solution. In this implementation the initial
solution is randomly generated.

Neighborhood Function. Let 𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝(𝜑𝜑,𝑢𝑢, 𝑣𝑣) be a
function permitting to exchange the labels of two
vertices 𝑢𝑢 and 𝑣𝑣 from an arrangement 𝜑𝜑. The
neighborhood𝒩𝒩1(𝜑𝜑) of an arrangement 𝜑𝜑 can be then
defined as follows:

𝒩𝒩1(𝜑𝜑)={𝜑𝜑´ ∈ ℒ:𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝(𝜑𝜑,𝑢𝑢, 𝑣𝑣)=𝜑𝜑´,𝑢𝑢, 𝑣𝑣 ∈ 𝑉𝑉,𝑢𝑢 ≠ 𝑣𝑣} (16)

This neighborhood has the advantage of being small
and enabling an incremental cost evaluation of
neighboring solutions.

SD Move Strategy and Stop Condition. The SD
algorithm starts from the initial solution 𝜑𝜑 ∈ ℒ and
repeatedly replaces 𝜑𝜑 with the best solution in its
neighborhood 𝒩𝒩1(𝜑𝜑), ties are broken randomly. This
process stops automatically when no better arrangement
can be found within the neighborhood.

3.2 Computational experiments

This experiment aims at studying the characteristics

of 𝜑𝜑 and at providing insight into its real working. That is
why it does not only take into account the final solution
quality obtained by the algorithms, but also their ability to
efficiently explore the search space. To attain this
objective, the SD algorithm presented in Section 3.1 was
coded in C and named SD-LA and SD-Φ depending on
which evaluation function is used. This algorithm as well
as all the other presented in this paper were compiled with
gcc using the optimization flag -O3, and ran sequentially
into a CPU Xeon at 2 GHz, 1 GB of RAM with Linux
operating system.

The test-suite used in all our experiments is
composed of the 21 well-known benchmarks originally
proposed by Petit [8] and used later by many studies [9,
10, 11, 12]. These instances are divided into six different
kinds of graphs having between 65 and 9800 vertices and
are available at the following address:
http://www.tamps.cinvestav.mx/~ertello/minla.php.

To assess the performance of the studied algorithms
(SD-LA and SD-Φ), comparative results are shown on
these instances. The main criterion used for the
comparison is the best total edge length found (smaller
values are better). Computing time is also given for
indicative purpose.

3.3 Comparison between SD-𝐋𝐋𝐀𝐀 and SD-𝚽𝚽

The methodology used consistently throughout this
experimentation is the following. First, 10 random
arrangements were generated for each of the 21 selected
instances. Then, each random arrangement was used as
starting solution for 10 independent runs of the studied
algorithms (SD-LA and SD-Φ) over each selected
instance. The average results achieved in these 100
executions are summarized in Tab. 1, where the first
column indicates the name of the graph. Columns two to
seven display the total iterations I, the final cost in terms

Tehnički vjesnik 22, 1(2015), 11-24 15

Boosting the performance of metaheuristics for the MinLA problem using a more discriminating evaluation function E. Rodriguez-Tello et al.

of total edge length C, and the total CPU time T in
seconds for both SD-LA and SD-Φ. Column eight presents
the average number of improving neighbors 𝒩𝒩𝐼𝐼 found by
SD-Φ, at the same iteration where the average number of
improving neighbors provided by SD-LA equals zero, that
is when SD-LA stops. Column ΔC shows the percentage
gain in terms of the average costs reached by SD-Φ
compared to that produced by SD-LA, i.e. 100 ∗(1 -
average cost ofSD-Φ / average cost ofSD-LA).

Additionally, a statistical significance analysis was
performed for this experiment. First, D'Agostino-
Pearson's omnibus𝐾𝐾2test was used to evaluate the
normality of data distributions. For normally distributed
data, either ANOVA or the Welch's t parametric tests were
used depending on whether the variances across the
samples were homogeneous (homoskedasticity) or not.
This was investigated using the Bartlett's test. For non-
normal data, the nonparametric Kruskal-Wallis test was
adopted. A significance level of 0.05 has been considered.
The resulting p-value is presented in Column ten of Tab.
1, where a bold typeface means that there exists a
statistically significant increase in performance achieved
by SD-Φ with regard to SD-LA.

The results presented in Tab. 1 show that the SD-Φ
algorithm returns better results in 19 out of 21 instances
(smaller total edge length) than those produced by SD-LA,
which leads to an average improvement ΔC = 3,33%
when Φ is used as evaluation function. Notice that the
search with SD-Φ continues always longer time than with
SD-LA (compare columns four and seven, labeled T),
leading to better local optima. SD-LA stops prematurely
due to its impossibility to distinguish neighboring
solutions with the same cost (total edge length). It is
important to remark that in average the CPU time needed
for one iteration (T/I) of SD-LA and SD-Φ are quite
comparable: 0,666 seconds for SD-LA and 0,656 seconds
for SD-Φ.

The statistical analysis presented in the last column
(p-value) of Tab. 1 confirms that there exists a statistically
significant increase in performance achieved by SD-
Φ with regard to SD-LA on 66,66 % of the studied
instances (14 out of 21). Thus, we can conclude that in
general SD-Φis more effective than SD-LA.

The dominance of Φ is better illustrated in Figs. 2a
and 2b, where the behavior of the studied evaluation
functions is presented on the random A1 instance (the
study of other graphs provided similar results). In Fig. 2a
the abscissa axis represents the number of moves, while
the ordinate axis indicates the average total edge length. It
can be observed that SD-Φ obtains always arrangements
of shorter total edge length than SD-LA with the same
number of moves. To supplement this observation, Fig.
2b (see also next section) depicts the evolution of the
average number of improving neighbors (i.e., having a
smaller cost than the current solution) with respect to the
number of moves. One observes that at each iteration, Φ
offers always more opportunities to select an improving
neighbor than LA, favoring thus the SD algorithm to find
better solutions.

3.4 Distribution of improving neighbors produced by 𝐋𝐋𝐀𝐀

and 𝚽𝚽

In order to understand and explain the results shown

in Section 3.3, we present a second experiment for a
deeper analysis. Here, we show the distribution of two
types of neighbors: neutral neighbors (i.e., having the
same cost as the current solution) and improving
neighbors (i.e., having a smaller cost than the current
solution) associated with LA and Φ. Indeed, the number of
improving neighbors produced by an evaluation function
(for a given neighborhood) is an interesting indicator of
its capacity to allow the search algorithm to effectively
explore the search space [25].

Table 1Average results achieved in 100 executions of SD-LA and SD-Φ.

SD-LA

SD-Φ %

 Graph I C T

I C T 𝒩𝒩𝐼𝐼 ΔC p-value
randomA1 2116,7 946 033,10 41,24 3135,2 941 677,30 56,68 234,7 0,46 1,70E-04
randomA2 2352,6 6 678 051,60 312,49 3115 6 673 334,30 461,45 289,2 0,07 6,00E-02
randomA3 2461,1 14 397 879,80 1190,35 2888,3 14 396 580,30 1351,2 327,4 0,01 9,40E-01
randomA4 2198 1 810 393,50 60 3041,1 1 807 026,10 83,87 250,8 0,19 5,80E-03
randomG4 2223,1 377 994,30 54,4 2366,2 381 002,30 57,22 255,8 -0,8 7,60E-01
bintree10 1234,6 51 716,80 16,24 1407,9 51 548,40 18,11 58,2 0,33 6,70E-01
hc10 1738,9 648 728,10 46,88 1959,9 650 515,30 35,8 361,4 -0,28 6,20E-01
mesh33x33 2995,4 130 751,30 45,67 8144,9 112 171,40 122,8 305,6 14,21 1,10E-13
3elt 27 119,40 2 630 144,60 7343,34 52 062,60 2 392 981,00 14 560,78 1150,8 9,02 1,30E-08
airfoil1 23 567,40 2 184 693,30 5622,94 45 910,10 1 958 983,10 10 386,57 862,7 10,33 1,20E-14
whitaker3 71 049,90 11 473 102,70 88 118,78 143 499,90 10 377 561,90 163 396,62 1788,1 9,55 3,50E-14
c1y 1737,9 122 959,20 29,79 2502,2 120 811,90 32,15 147,7 1,75 1,20E-02
c2y 2141,9 169 434,70 33,99 3079,9 167 127,50 51,97 153,4 1,36 1,90E-01
c3y 3335,1 282 818,50 186,3 5098,4 275 528,90 234,52 247,2 2,58 1,00E-02
c4y 3410,7 287 198,80 88,93 5421,9 280 551,40 155,79 249,1 2,31 6,30E-02
c5y 2811 233 286,10 61,07 4104,1 228 225,70 95,16 160,5 2,17 1,10E-02
gd95c 70,2 716,3 0,01 82,3 696,70 0,00 14,8 2,74 1,40E-02
gd96a 2216,7 148 158,30 36,94 3284,5 144 751,30 57,47 190,8 2,3 7,60E-10
gd96b 94,3 1857,3 0,03 109,1 1783,60 0,00 20,9 3,97 1,40E-02
gd96c 75,1 692,9 0,01 96,2 656,50 0,00 17,2 5,25 1,40E-02
gd96d 186,2 4166,3 0,11 257,3 4057,00 0,00 26,4 2,62 1,10E-04
Average 7387,4 2 027 656,10 4918,55 13 884,10 1 950 836,80 9102,77 338,7 3,34 14+

16 Technical Gazette 22, 1(2015), 11-24

E. Rodriguez-Tello i dr. Poboljšanje učinaka metaheuristike kod MinLA problema primjenom kritičnije funkcije evaluacije

a) Average total edgelength

b) Average improving neighbors

Figure 2Performance comparison between the algorithms SD-LA and
SD-Φ over the random A1 instance

Figs. 3a and 3b show the distribution of all the neutral

neighbors and improving neighbors produced, after 1500
iterations, by SD-LA and SD-Φ over the random A1
instance. The abscissa and ordinate axes indicate the
vertices exchanged to produce 𝒩𝒩1(𝜑𝜑), while the Z axis
denotes the evaluation function cost produced. One
observes that there is a great difference. SD employing
the Φ evaluation function has many improving neighbors
to ameliorate its current solution while SD-LA has much
fewer favorable neighbors. This unfavorable characteristic
of the LA evaluation function is dramatically accentuated
as the search process progresses. For instance, observe
Figs. 3c and 3d, which show also all the neutral and
improving neighbors at the iteration where SD-LA stops.
Notice how Φ is able to discriminate all those neutral
neighbors that would be impossible to distinguish by
using the classical evaluation function LA.

3.5 Interaction between the neighborhood relation and the

evaluation function

The neighborhood relation and the evaluation

function together define the search landscape [6]. It is
thus important to analyze the interaction between these
two components. For this purpose, we consider the
evaluation functions LA and Φ, the neighborhood relation
𝒩𝒩1(𝜑𝜑) defined in Eq. (16), as well as four other
neighborhood functions introduced in next subsection.

a) SD-LAalgorithm

b) SD-Φ algorithm

c) SD-LAalgorithm

d) SD-Φ algorithm

Figure 3 Comparison between the neutral and improving neighbors
produced by SD-LA and SD-Φ over the randomA1 instance, a) and b)

after 1500 iterations, c) and d) at the iteration where SD-LA stops.

3.5.1 Neighborhood relations

The second neighborhood relation analyzed in this

experiment permits to exchange the label of a vertex 𝑢𝑢
with those of its adjacent vertices. It is formally defined in
Eq. (17).

𝒩𝒩2(𝜑𝜑)={𝜑𝜑´ ∈ ℒ: 𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝(𝜑𝜑,𝑢𝑢, 𝑣𝑣)=𝜑𝜑´,𝑢𝑢, 𝑣𝑣 ∈ 𝑉𝑉, 𝑣𝑣 ∈
𝐴𝐴(𝑢𝑢)} , (17)

where 𝐴𝐴(𝑢𝑢) is the set of adjacent vertices of 𝑢𝑢.

Tehnički vjesnik 22, 1(2015), 11-24 17

Boosting the performance of metaheuristics for the MinLA problem using a more discriminating evaluation function E. Rodriguez-Tello et al.

In order to bring forward the third studied
neighborhood function some preliminary concepts should
be presented. Given a vertex 𝑢𝑢 with 𝑑𝑑 adjacent vertices
whose labels are 𝑙𝑙1, . . . , 𝑙𝑙𝑑𝑑 , they can be sorted so that
𝑠𝑠1 < 𝑠𝑠2 <. . . < 𝑠𝑠𝑑𝑑, where 𝑠𝑠𝑖𝑖 is called the 𝑖𝑖-th order
statistic [26]. Then the statistical median of the labels
currently assigned to the vertices in 𝐴𝐴(𝑢𝑢) is given by Eq.
(18):

𝑚𝑚𝑚𝑚𝑑𝑑𝑖𝑖𝑠𝑠𝑛𝑛(𝑢𝑢) = �
𝑠𝑠((𝑑𝑑+1)/2)

1
2

(𝑠𝑠(𝑑𝑑/2) + 𝑠𝑠(1+𝑑𝑑/2))

If 𝑑𝑑 is odd

If 𝑑𝑑 is even
(18)

The neighborhood 𝒩𝒩3(𝜑𝜑) of a labeling 𝜑𝜑, presented

in Eq. (19), employs this concept to find the most suitable
choice for labeling a vertex 𝑢𝑢 with respect to its adjacent
vertices.

𝒩𝒩3(𝜑𝜑) = {𝜑𝜑´ ∈ ℒ: 𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝(𝜑𝜑,𝑢𝑢, 𝑣𝑣) = 𝜑𝜑´,𝑢𝑢, 𝑣𝑣

∈ 𝑉𝑉, 𝑣𝑣 ∈ 𝑀𝑀(𝑢𝑢)} (19)

where 𝑀𝑀(𝑢𝑢) is a set containing those vertices whose
current labels are close to the value 𝑚𝑚𝑚𝑚𝑑𝑑𝑖𝑖𝑠𝑠𝑛𝑛(𝑢𝑢) and that
is formally defined as follows:

𝑀𝑀(𝑢𝑢) = {𝑣𝑣:𝑚𝑚𝑚𝑚𝑑𝑑𝑖𝑖𝑠𝑠𝑛𝑛(𝑢𝑢) − 2 ≤ 𝜑𝜑(𝑢𝑢)

≤ 𝑚𝑚𝑚𝑚𝑑𝑑𝑖𝑖𝑠𝑠𝑛𝑛(𝑢𝑢) + 2} (20)

The fourth neighborhood relation 𝒩𝒩4(𝜑𝜑) analyzed in

this experiment is defined in Eq. (21):

𝒩𝒩4(𝜑𝜑) = {𝜑𝜑´ ∈ ℒ: 𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑟𝑟𝑚𝑚(𝜑𝜑, 𝑖𝑖, 𝑗𝑗) = 𝜑𝜑´, 𝑖𝑖, 𝑗𝑗
∈ 𝐿𝐿, 𝑖𝑖 < 𝑗𝑗} (21)

where 𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑟𝑟𝑚𝑚(𝜑𝜑, 𝑖𝑖, 𝑗𝑗) is the product of (𝑗𝑗 − 𝑖𝑖)𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝
operations (see Eq. (22)), 𝐿𝐿 = {1,2, . . . ,𝑛𝑛} the set of labels
of a graph of order 𝑛𝑛, and 𝜑𝜑−1 a function associating to
each label number 𝑘𝑘 the vertex of the graph which
contains it.

𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑟𝑟𝑚𝑚(𝜑𝜑, 𝑖𝑖, 𝑗𝑗) =
𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝�𝜑𝜑,𝜑𝜑−1(𝑖𝑖),𝜑𝜑−1(𝑗𝑗)� ∗
𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝�𝜑𝜑,𝜑𝜑−1(𝑖𝑖),𝜑𝜑−1(𝑗𝑗 − 1)� ∗
𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝�𝜑𝜑,𝜑𝜑−1(𝑖𝑖),𝜑𝜑−1(𝑗𝑗 − 2)� ∗ … ∗
𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝�𝜑𝜑,𝜑𝜑−1(𝑖𝑖),𝜑𝜑−1(𝑖𝑖 + 1)�

(22)

Finally, the neighborhood function 𝒩𝒩5(𝜑𝜑) is defined

according to the following expression:

𝒩𝒩5(𝜑𝜑) = {𝜑𝜑´ ∈ ℒ: 𝑖𝑖𝑛𝑛𝑣𝑣𝑚𝑚𝑟𝑟𝑠𝑠𝑖𝑖𝑟𝑟𝑛𝑛(𝜑𝜑,𝑢𝑢, 𝑣𝑣)
= 𝜑𝜑´,𝑢𝑢, 𝑣𝑣 ∈ 𝑉𝑉,𝑢𝑢 < 𝑣𝑣} (23)

where 𝑖𝑖𝑛𝑛𝑣𝑣𝑚𝑚𝑟𝑟𝑠𝑠𝑖𝑖𝑟𝑟𝑛𝑛(𝜑𝜑,𝑢𝑢, 𝑣𝑣) is the product
of�𝑣𝑣−𝑢𝑢

2
� 𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝 operations as denoted in Eq. (24).

𝑖𝑖𝑛𝑛𝑣𝑣𝑚𝑚𝑟𝑟𝑠𝑠𝑖𝑖𝑟𝑟𝑛𝑛(𝜑𝜑,𝑢𝑢, 𝑣𝑣) =
𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝(𝜑𝜑,𝑢𝑢, 𝑣𝑣) ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝(𝜑𝜑,𝑢𝑢 + 1, 𝑣𝑣 − 1) ∗
𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝(𝜑𝜑,𝑢𝑢 + 2, 𝑣𝑣 − 2) ∗ … ∗

(24)

𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝 �𝜑𝜑,𝑢𝑢 + �
𝑣𝑣 − 𝑢𝑢

2
� , 𝑣𝑣 − �

𝑣𝑣 − 𝑢𝑢
2

��.

3.5.2 Computational experiments

For these experiments we have used a slightly

modified version of the SD algorithm presented in Section
3.1, which implements the best admissible move strategy
with a restricted number of 2500 neighboring solutions in
order to reduce the total expended computational time.

The 21 benchmark instances described in Section 3.2
were once again used. Similar results were obtained with
all of them. However, with an aim of synthesizing the
information, we present them by using only some
representative graphs. All the results presented in this
section are based on average data obtained in 100
independent runs with each of the ten combinations
between the two evaluation functions and the five
neighborhood relations.

The graph in Fig. 4a shows the convergence process,
in terms of average solution quality achieved by the SD
algorithm, when each of the ten studied combinations is
used to solve the random A1 instance. In Figs. 4b to 4f
each of the five neighborhood relations is analyzed
individually. The following observations were made from
these graphs.

The Φ evaluation function allows, in four out of five
cases, to improve the results provided by the SD
algorithm, which highlights that Φ is more effective than
LA. Indeed, Fig. 4f gives a clear example where a wrong
choice of the neighborhood relation results into an
algorithm with a poor performance, even if Φ is a better
evaluation function than LA. We think that this behavior is
due to the highly disruptive nature of 𝒩𝒩5(𝜑𝜑).

With regard to the studied neighborhood relations, we
have noticed from Figs. 4b to 4f that the best performance
is reached by SD when the 𝒩𝒩1(𝜑𝜑) neighborhood is used.
The neighborhoods 𝒩𝒩2(𝜑𝜑), 𝒩𝒩3(𝜑𝜑) and 𝒩𝒩5(𝜑𝜑) produce
worse solutions than 𝒩𝒩1(𝜑𝜑) and 𝒩𝒩4(𝜑𝜑).

Finally, if we consider the ten analyzed combinations
between the two evaluation functions and the five
neighborhood relations, the best among them is when 𝜑𝜑
and 𝒩𝒩1(𝜑𝜑) are used simultaneously (reaching an average
solution quality LA = 946 774,368 (see Tab. 2). The nine
other combinations provide lower quality solutions. Based
on the conclusions obtained from the current section,
below we will present more computational results with
two more advanced metaheuristic algorithms using as
neighboring relation 𝒩𝒩1(𝜑𝜑).

4 Comparing 𝐋𝐋𝐀𝐀 and 𝚽𝚽 within other metaheuristics

After having studied the characteristics of Φ by using

a simple Steepest Descent algorithm, we decided to
evaluate the practical usefulness of Φ within two well-
known and more elaborated metaheuristics. The results
obtained from these experimental comparisons are
provided in the following subsections.

18 Technical Gazette 22, 1(2015), 11-24

E. Rodriguez-Tello i dr. Poboljšanje učinaka metaheuristike kod MinLA problema primjenom kritičnije funkcije evaluacije

Table 2 Performance comparison between ten combinations of neighborhood relations and evaluation functions over the random A1 instance

 Neighborhood Relation
Evaluation Function 𝒩𝒩1(𝜑𝜑) 𝒩𝒩2(𝜑𝜑) 𝒩𝒩3(𝜑𝜑) 𝒩𝒩4(𝜑𝜑) 𝒩𝒩5(𝜑𝜑)

LA 948 504,5 1 140 849,95 1 152 625,260 981 252,890 1 357 232,760
Φ 94 677,368 1 138 760,122 1 149 234,913 975 584,416 1 358 518,565

4.1 Iterated Local Search algorithm

For the purpose of the first experimental comparison

of this section we have implemented a basic Iterated
Local Search (ILS) algorithm [27, 28]. It was kept as
simple as possible to obtain a clear idea of the evaluation
function's influence over the performance of this
metaheuristic algorithm. Our ILS implementation shares
the following components with the SD algorithm
presented in Section 3.1: permutation-based
representation, evaluation functions LA and Φ, swap
neighborhood relation 𝒩𝒩1(𝜑𝜑) and random initial solution.
It applies a local search method (embedded heuristic) to
an initial solution 𝜑𝜑0 until it finds a local optimum, then

this solution is perturbed and used as a starting point of
another round of local search. After each local search the
new local optimum solution found 𝜑𝜑´´ is accepted as the
new incumbent solution 𝜑𝜑∗ if and only if its total edge
length (cost) is better than that of 𝜑𝜑∗. This iterative
procedure repeats until a given stop condition is met. In
the case of our ILS algorithm, the search process stops
when the maximum number of non-improving
neighboring solutions 𝑚𝑚𝑠𝑠𝑥𝑥𝑚𝑚𝑚𝑚 allowed is reached (see
Alg. 1).

A modified version of the SD algorithm presented in
Section 3.1 was used as embedded heuristic; it
implements the best admissible move strategy with a
number of 2500 visited neighboring solutions. The

a) Comparison between the convergence profile of five neighborhood

relations and two evaluation functions b) LA, 𝒩𝒩1(𝜑𝜑) and Φ,𝒩𝒩1(𝜑𝜑)

c) LA, 𝒩𝒩2(𝜑𝜑) and Φ,𝒩𝒩2(𝜑𝜑) d) LA, 𝒩𝒩3(𝜑𝜑) and Φ,𝒩𝒩3(𝜑𝜑)

e) LA, 𝒩𝒩4(𝜑𝜑) and Φ,𝒩𝒩4(𝜑𝜑) b) LA, 𝒩𝒩5(𝜑𝜑) and Φ,𝒩𝒩5(𝜑𝜑)

Figure 4 Analysis of the interaction between the neighborhood and evaluation functions and its influence on the performance of a SD algorithm over the
random A1 instance.

Tehnički vjesnik 22, 1(2015), 11-24 19

Boosting the performance of metaheuristics for the MinLA problem using a more discriminating evaluation function E. Rodriguez-Tello et al.

perturbation operator employed by our ILS consists in
applying once the left rotation neighborhood relation
𝒩𝒩4(𝜑𝜑) analyzed in Section 3.5.

𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰:𝑚𝑚𝑚𝑚𝑖𝑖𝑔𝑔ℎ𝑏𝑏𝑟𝑟𝑟𝑟ℎ𝑟𝑟𝑟𝑟𝑑𝑑 𝑓𝑓𝑢𝑢𝑛𝑛𝑓𝑓𝑟𝑟𝑖𝑖𝑟𝑟𝑛𝑛 𝒩𝒩, 𝑚𝑚𝑣𝑣𝑠𝑠𝑙𝑙𝑢𝑢𝑠𝑠𝑟𝑟𝑖𝑖𝑟𝑟𝑛𝑛 𝑓𝑓𝑢𝑢𝑛𝑛𝑓𝑓𝑟𝑟𝑖𝑖𝑟𝑟𝑛𝑛 𝑓𝑓,
 𝑚𝑚𝑠𝑠𝑥𝑥𝑖𝑖𝑚𝑚𝑢𝑢𝑚𝑚 𝑛𝑛𝑟𝑟𝑛𝑛 − 𝑖𝑖𝑚𝑚𝑝𝑝𝑟𝑟𝑟𝑟𝑣𝑣𝑖𝑖𝑛𝑛𝑔𝑔 𝑛𝑛𝑚𝑚𝑖𝑖𝑔𝑔ℎ𝑏𝑏𝑟𝑟𝑟𝑟𝑖𝑖𝑛𝑛𝑔𝑔 𝑠𝑠𝑟𝑟𝑙𝑙𝑢𝑢𝑟𝑟𝑖𝑖𝑟𝑟𝑛𝑛𝑠𝑠 𝑚𝑚𝑠𝑠𝑥𝑥𝑚𝑚𝑚𝑚
𝜑𝜑0 ← 𝐺𝐺𝑚𝑚𝑛𝑛𝑚𝑚𝑟𝑟𝑠𝑠𝑟𝑟𝑚𝑚𝑚𝑚𝑛𝑛𝑖𝑖𝑟𝑟𝑖𝑖𝑠𝑠𝑙𝑙𝑆𝑆𝑟𝑟𝑙𝑙𝑢𝑢𝑟𝑟𝑖𝑖𝑟𝑟𝑛𝑛()
𝜑𝜑∗ ← 𝐿𝐿𝑟𝑟𝑓𝑓𝑠𝑠𝑙𝑙 𝑆𝑆𝑚𝑚𝑠𝑠𝑟𝑟𝑓𝑓ℎ(𝜑𝜑0)
𝑚𝑚𝑚𝑚 ← 0
𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 𝑚𝑚𝑚𝑚 < 𝑚𝑚𝑠𝑠𝑥𝑥𝑚𝑚𝑚𝑚 𝒅𝒅𝒅𝒅
 𝜑𝜑´ ← 𝑃𝑃𝑚𝑚𝑟𝑟𝑟𝑟𝑢𝑢𝑟𝑟𝑏𝑏𝑠𝑠𝑟𝑟𝑖𝑖𝑟𝑟𝑛𝑛(𝜑𝜑∗)
 𝜑𝜑´´ ← 𝐿𝐿𝑟𝑟𝑓𝑓𝑠𝑠𝑙𝑙𝑆𝑆𝑚𝑚𝑠𝑠𝑟𝑟𝑓𝑓ℎ(𝜑𝜑´)
 𝒘𝒘𝒊𝒊 𝑓𝑓(𝜑𝜑´´) < 𝑓𝑓(𝜑𝜑∗) 𝑰𝑰𝒘𝒘𝒘𝒘𝑰𝑰
 𝜑𝜑∗ ← 𝜑𝜑´´
 𝑚𝑚𝑚𝑚 ← 0
 𝒘𝒘𝒘𝒘𝒆𝒆𝒘𝒘
 𝑚𝑚𝑚𝑚 ← 𝑚𝑚𝑚𝑚 + 1
 𝒘𝒘𝑰𝑰𝒅𝒅 𝒘𝒘𝒊𝒊
𝒘𝒘𝑰𝑰𝒅𝒅 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘
𝒓𝒓𝒘𝒘𝑰𝑰𝑰𝑰𝒓𝒓𝑰𝑰 𝜑𝜑∗

Algorithm 1 Iterated Local Search (ILS) algorithm

4.1.1 Computational experiments

For this experiment the ILS algorithm presented

above was implemented. Let us call it ILS-LA or ILS-Φ
according to whether evaluation function LA or Φ is used.
In all the experiments carried out with this algorithm, the
same test-suite and computational platform described in
Section 3.2 were used. In order to guarantee as much as
possible a fair comparison between both ILS algorithms,
the same parameters (determined experimentally) were
employed to compare them: a) initial solution randomly
generated, b) swap neighborhood relation 𝒩𝒩1(𝜑𝜑) for the
embedded heuristic, c) left rotation neighborhood relation
𝒩𝒩4(𝜑𝜑) for the perturbation operator and d) maximum
non-improving neighboring solutions 𝑚𝑚𝑠𝑠𝑥𝑥𝑚𝑚𝑚𝑚 = 10. Due

to the random nature of ILS, 100 independent runs were
executed for each of the selected benchmark instances.
When averaged results are reported, they are based on
these 100 executions.

The results of this experiment are presented in Tab.3.
Column one depicts the name of the graph. The next six
columns display the best cost in terms of total edge length
C, the average cost Avg. and the average CPU time T in
seconds for both ILS-LA and ILS-Φ respectively. Column
eight, ΔC, presents the percentage gain in terms of the
average costs reached by ILS-Φ compared to that
produced by ILS-LA, i.e. 100 ∗(1 - average cost of SD-Φ /
average cost of SD-LA). Finally, Column nine lists the p-
value obtained from a statistical significance analysis
performed for the results of this experiment, according to
the methodology described in Section 3.3.

It can be observed from Tab. 3 that ILS-Φ expends a
slightly higher CPU time than ILS-LA, since it uses an
average of 16,19 seconds for solving these 21 benchmark
instances. On the contrary, ILS-LA employs only 12,19
seconds for this task. However, we can also remark that
ILS-Φ can take advantage of its longer executions.
Indeed, it is able to consistently improve the best results
found by ILS-LA, obtaining in certain instances, like
bintree10, an important decrease in total edge length (ΔC
up to 14,99%). Furthermore, the statistical analysis
presented in the last column of Tab. 3 confirms that this
increase in performance achieved by ILS-Φ with regard
to ILS-LA is statistically significant on 80,95% of the
studied instances (17 out of 21). It allows us to conclude
that the Φ evaluation function leads to a more effective
exploration of the search space than LA, since it does
boost the performance of the proposed ILS algorithm.

4.2 Tabu Search algorithm

For the second experimental comparison of the

studied evaluation functions we have selected the Tabu
Search (TS) algorithm [29], since it is among the most

cited and used metaheuristics for solving combinatorial
optimization problems [30].

The pseudo-code of our TS implementation is
presented in Alg. 2. It starts with a randomly generated
solution, then it proceeds iteratively to visit a series of
locally best configurations following the neighborhood

Table 3 Performance comparison between ILS-LA and ILS-Φ

ILS-LA

ILS-Φ %

 Graph C Avg. T

C Avg. T ΔC p-value
randomA1 905 612 925 913,8 5,94 903 334 922 395,6 9,51 0,38 2,70E-02
randomA2 6 608 842 6 645 370,2 20,92 6 591 274 6 638 897,1 27,40 0,10 1,70E-02
randomA3 14 294 511 14 350 864,5 40,56 14 282 423 14 345 425,7 47,74 0,04 1,50E-01
randomA4 1 767 498 1 788 134,5 7,84 1 756 000 1 781 871,0 11,55 0,35 3,30E-05
randomG4 259 598 356 766,6 4,37 244 432 343 316,6 4,54 3,77 6,20E-02
bintree10 28 642 35 870,7 4,64 24 412 30 493,1 11,98 14,99 5,70E-23
hc10 533 912 594 226,7 6,56 525 184 585 474,4 4,73 1,47 9,90E-02
mesh33x33 59 035 90 808,0 7,59 45 110 79 239,9 14,85 12,74 2,40E-08
3elt 1 740 660 2 245 592,6 33,81 1 540 158 2 165 033,8 41,28 3,59 1,30E-02
airfoil1 1 402 825 1 821 485,3 30,3 1 132 536 1 642 201,2 39,43 9,84 1,10E-08
whitaker3 9 231 695 11 010 927,5 59,36 9 161 792 10 750 209,2 66,66 2,37 3,20E-02
c1y 87 559 100 558,0 4,73 80 898 96 113,8 8,46 4,42 1,40E-04
c2y 112 621 135 336,1 5,32 109 764 126 667,0 9,65 6,41 2,30E-09
c3y 192 372 234 044,5 6,94 189 398 225 294,8 10,32 3,74 2,40E-03
c4y 175 723 236 348,9 6,98 169 899 211 838,5 12,39 10,37 3,70E-09
c5y 157 201 187 924,7 6,23 145 286 175 624,7 11,71 6,55 1,80E-07
gd95c 520 657,4 0,14 516 649,3 0,16 1,22 3,50E-01
gd96a 127 957 138 367,2 3,12 121 476 132 382,0 6,19 4,33 2,80E-20
gd96b 1486 1742,3 0,12 1475 1631 0,17 6,39 6,60E-05
gd96c 524 616,9 0,11 520 576,5 0,27 6,55 8,00E-04
gd96d 2776 3425,7 0,38 2528 3070,4 1,11 10,37 1,30E-07
Average 1 794 836,6 1 947 856,3 12,19 1 763 257,9 1 917 066,9 16,19 5,24 17+

20 Technical Gazette 22, 1(2015), 11-24

E. Rodriguez-Tello i dr. Poboljšanje učinaka metaheuristike kod MinLA problema primjenom kritičnije funkcije evaluacije

function 𝒩𝒩1(𝜑𝜑). At each iteration, a best neighbor 𝜑𝜑´ is
chosen to replace the current configuration 𝜑𝜑, even if the
former does not improve the current one. In order to
explore consecutive local optimal solutions and to avoid
the occurrence of cycles, TS introduces the notion of tabu
list. The basic idea is to record the attributes of each
visited solution and to forbid the algorithm to visit again
this configuration during the next Tt iterations (Tt is
called the tabu tenure).

𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰:𝑚𝑚𝑚𝑚𝑖𝑖𝑔𝑔ℎ𝑏𝑏𝑟𝑟𝑟𝑟ℎ𝑟𝑟𝑟𝑟𝑑𝑑 𝑓𝑓𝑢𝑢𝑛𝑛𝑓𝑓𝑟𝑟𝑖𝑖𝑟𝑟𝑛𝑛 𝒩𝒩, 𝑚𝑚𝑣𝑣𝑠𝑠𝑙𝑙𝑢𝑢𝑠𝑠𝑟𝑟𝑖𝑖𝑟𝑟𝑛𝑛 𝑓𝑓𝑢𝑢𝑛𝑛𝑓𝑓𝑟𝑟𝑖𝑖𝑟𝑟𝑛𝑛 𝑓𝑓,
 𝑚𝑚𝑠𝑠𝑥𝑥𝑖𝑖𝑚𝑚𝑢𝑢𝑚𝑚 𝑛𝑛𝑟𝑟𝑛𝑛 − 𝑖𝑖𝑚𝑚𝑝𝑝𝑟𝑟𝑟𝑟𝑣𝑣𝑖𝑖𝑛𝑛𝑔𝑔 𝑛𝑛𝑚𝑚𝑖𝑖𝑔𝑔ℎ𝑏𝑏𝑟𝑟𝑟𝑟𝑖𝑖𝑛𝑛𝑔𝑔 𝑠𝑠𝑟𝑟𝑙𝑙𝑢𝑢𝑟𝑟𝑖𝑖𝑟𝑟𝑛𝑛𝑠𝑠 𝑚𝑚𝑠𝑠𝑥𝑥𝑚𝑚𝑚𝑚
𝜑𝜑0 ← 𝐺𝐺𝑚𝑚𝑛𝑛𝑚𝑚𝑟𝑟𝑠𝑠𝑟𝑟𝑚𝑚𝑚𝑚𝑛𝑛𝑖𝑖𝑟𝑟𝑖𝑖𝑠𝑠𝑙𝑙𝑆𝑆𝑟𝑟𝑙𝑙𝑢𝑢𝑟𝑟𝑖𝑖𝑟𝑟𝑛𝑛()
𝜑𝜑∗ ← 𝜑𝜑
𝑚𝑚𝑛𝑛𝑖𝑖𝑟𝑟𝑖𝑖𝑠𝑠𝑙𝑙𝑖𝑖𝑧𝑧𝑚𝑚𝐼𝐼𝑠𝑠𝑏𝑏𝑢𝑢𝐿𝐿𝑖𝑖𝑠𝑠𝑟𝑟()
𝑚𝑚𝑚𝑚 ← 0
𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 𝑠𝑠𝑟𝑟𝑟𝑟𝑝𝑝 𝑓𝑓𝑟𝑟𝑛𝑛𝑑𝑑𝑖𝑖𝑟𝑟𝑖𝑖𝑟𝑟𝑛𝑛 𝑛𝑛𝑟𝑟𝑟𝑟 𝑚𝑚𝑚𝑚𝑟𝑟 𝒅𝒅𝒅𝒅
 𝜑𝜑´ ← 𝐶𝐶ℎ𝑟𝑟𝑟𝑟𝑠𝑠𝑚𝑚𝑜𝑜𝑚𝑚𝑠𝑠𝑟𝑟𝐴𝐴𝑑𝑑𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑏𝑏𝑙𝑙𝑚𝑚(𝜑𝜑)

// {𝜑𝜑´ ∈ 𝒩𝒩(𝜑𝜑)|𝜑𝜑´ 𝑛𝑛𝑟𝑟𝑛𝑛 − 𝑟𝑟𝑠𝑠𝑏𝑏𝑢𝑢 𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑝𝑝𝑖𝑖𝑟𝑟𝑠𝑠𝑟𝑟𝑖𝑖𝑟𝑟𝑛𝑛 𝑓𝑓𝑟𝑟𝑛𝑛𝑑𝑑𝑖𝑖𝑟𝑟𝑖𝑖𝑟𝑟𝑛𝑛 ℎ𝑟𝑟𝑙𝑙𝑑𝑑𝑠𝑠}
 𝑈𝑈𝑝𝑝𝑑𝑑𝑠𝑠𝑟𝑟𝑚𝑚𝐼𝐼𝑠𝑠𝑏𝑏𝑢𝑢𝐿𝐿𝑖𝑖𝑠𝑠𝑟𝑟𝐴𝐴𝑛𝑛𝑑𝑑𝐴𝐴𝑠𝑠𝑝𝑝𝑖𝑖𝑟𝑟𝑠𝑠𝑛𝑛𝑟𝑟𝑖𝑖𝑟𝑟𝑛𝑛𝐶𝐶𝑟𝑟𝑛𝑛𝑑𝑑𝑖𝑖𝑟𝑟𝑖𝑖𝑟𝑟𝑛𝑛()
 𝜑𝜑 ← 𝜑𝜑´
 𝒘𝒘𝒊𝒊 𝑓𝑓(𝜑𝜑) < 𝑓𝑓(𝜑𝜑∗) 𝑰𝑰𝒘𝒘𝒘𝒘𝑰𝑰
 𝜑𝜑∗ ← 𝜑𝜑
 𝑚𝑚𝑚𝑚 ← 0
 𝒘𝒘𝒘𝒘𝒆𝒆𝒘𝒘
 𝑚𝑚𝑚𝑚 ← 𝑚𝑚𝑚𝑚 + 1
 𝒘𝒘𝑰𝑰𝒅𝒅 𝒘𝒘𝒊𝒊
 𝒘𝒘𝒊𝒊 𝑚𝑚𝑚𝑚 > 𝑚𝑚𝑠𝑠𝑥𝑥𝑚𝑚𝑚𝑚 𝑰𝑰𝒘𝒘𝒘𝒘𝑰𝑰 𝐷𝐷𝑖𝑖𝑣𝑣𝑚𝑚𝑟𝑟𝑠𝑠𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓𝑠𝑠𝑟𝑟𝑖𝑖𝑟𝑟𝑛𝑛(𝜑𝜑)
𝒘𝒘𝑰𝑰𝒅𝒅 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘
𝒓𝒓𝒘𝒘𝑰𝑰𝑰𝑰𝒓𝒓𝑰𝑰 𝜑𝜑∗

Algorithm 2 Tabu Search (TS) algorithm

In our TS algorithm the neighbor of a given solution

𝜑𝜑 is obtained by swapping the labels of any pair (𝑖𝑖, 𝑗𝑗) of
different vertices. When such a move is performed the
couple of vertices (𝑖𝑖, 𝑗𝑗) is classified tabu for the next Tt
iterations. Therefore, the vertices 𝑖𝑖 and 𝑗𝑗 cannot be
exchanged during this period. Nevertheless, a tabu move
leading to a configuration better than the best
configuration found so far 𝜑𝜑∗ is always accepted
(aspiration criterion).

The tabu tenure Tt for a move, in our TS algorithm, is
dynamically calculated during the search using the
approach introduced by Galinier [31] and used later in
[32]. It is based on the use of a periodic step function PS
which takes as argument the number of iterations iter.
Each period of this function is composed of 1500
iterations divided into 15 intervals [𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖+1 − 1]𝑖𝑖=1,2,…,15
with 𝑥𝑥1 = 1 and 𝑥𝑥𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 + 100. The value returned by
PS for a particular iteration iter∈ [𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖+1 − 1] is given
by (𝑠𝑠𝑖𝑖)𝑖𝑖=1,2,…,15 = (1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1) ×
𝛼𝛼, where 𝛼𝛼 is a parameter that fixes the minimum tenure
value. Therefore, the tabu tenure equals 𝛼𝛼 between
iterations 1 and 99, 2 × 𝛼𝛼 between iterations 100 and 199,
followed by 𝛼𝛼 again for iterations [200,299] and 4 × 𝛼𝛼 for
iterations [300,399], etc. This variation scheme is
periodically repeated by this function after every 1500
iterations.

A diversification mechanism was also implemented
since the above basic TS algorithm could be trapped in
deep local optima. In our case, the search is judged
stagnating each time the best solution found so far 𝜑𝜑∗ is
not further improved after a number NI of consecutive
iterations. To help the search to escape from such deep
local optima, we apply a simple perturbation mechanism
to the current solution to bring diversification into the

search. The perturbation consists in applying 𝜆𝜆
consecutive times the left rotation neighborhood relation
𝒩𝒩4(𝜑𝜑) analyzed in Section 3.5, where 𝜆𝜆 is a parameter
that fixes the strength of the perturbation. Finally, our TS
algorithm stops when it ceases to make progress, i.e.,
when MD successive diversification iterations do not
produce a better solution.

4.2.1 Computational experiments

Two versions of the TS algorithm previously

presented were implemented. Let us call them TS-LA or
TS-Φ depending on which evaluation function is
employed. The following parameters were determined
experimentally for both TS algorithms, and used
consistently for this experiment: a) initial solution
randomly generated, b) swap neighborhood relation
𝒩𝒩1(𝜑𝜑) with a maximum number of 2500 neighboring
solutions, c) maximum non-improving neighboring
solutions maxNI=100, d) minimum tenure value 𝛼𝛼 = 15,
e) the strength of the diversification operator is 𝜆𝜆 = 2, f)
maximum non-improving successive diversification
iterations MD=20. Due to the random nature of the TS
algorithm, 100 independent runs were executed for each
of the selected benchmark instances.

Tab. 4 summarizes the results obtained from this
experiment. Columns two to seven display the best cost in
terms of total edge length C, the average cost Avg. and the
average CPU time T in seconds achieved by TS-LA and
TS-Φ respectively. Column eight, ΔC, depicts the
percentage gain in terms of the average costs reached by
TS-Φ compared to that produced by TS-LA, while column
nine presents the p-value obtained from a statistical
significance analysis performed for the results of this
experiment using the same methodology described in
Section 3.3.

The analysis of the data presented in Tab. 4 leads us
to the following observations. First, we can notice that
TS-Φ consumes slightly more computing time than TS-LA
(in average 199,78 vs. 194,85 seconds). Second, we
clearly remark that TS-Φ consistently returns solutions of
better quality than TS-LA, since in average TS-Φ provides
solutions whose total edge lengths are ΔC = 6,15%
smaller than those produced by TS- LA. For certain
instances, like whitaker3, the decrease in total edge length
could be up to ΔC = 31,71. Third, the statistical analysis
whose results are presented in the last column of Tab. 4
(p-value) confirms that the increase in performance
achieved by TS-Φ with respect to TS-LA is statistically
significant on 80,95% of the studied instances (17 out of
21).

Thus, this second experiment confirms that Φ does
help the TS algorithm to make a more effective search
than LA.

It should be clear that given the algorithm-
independent nature of the Φ evaluation function, it can be
used by other advanced metaheuristics for the MinLA
problem to boost the search performance. Finally, let us
mention that Φ is one of the key components that
contributes to the performance of a highly successful two-
stage SA algorithm presented in [12].

Tehnički vjesnik 22, 1(2015), 11-24 21

Boosting the performance of metaheuristics for the MinLA problem using a more discriminating evaluation function E. Rodriguez-Tello et al.

5 Some related works

There are relatively few studies on more

discriminating evaluation functions for metaheuristics.
Two notable examples are reported for graph coloring [7]
and for bin packing [33].

The Graph Coloring Problem (GCP) consists in
coloring the vertices of a given graph with a minimal
number of colors (chromatic number) with the constraint
that two adjacent vertices receive different colors. For this
problem, Johnson et al. proposed the evaluation function
𝑔𝑔 depicted in Eq. (25). In this equation the number of
colors 𝑘𝑘 is considered variable, 𝑉𝑉𝑖𝑖 represents the set of
vertices colored with 𝑖𝑖 and 𝐸𝐸𝑖𝑖 (1 ≤ 𝑖𝑖 ≤ 𝑘𝑘) is the set of
edges both of whose endpoints (vertices) are in 𝑉𝑉𝑖𝑖.

𝑔𝑔(𝑥𝑥) = −� |𝑉𝑉𝑖𝑖|2
𝑘𝑘

𝑖𝑖=1

+ � 2|𝑉𝑉𝑖𝑖||𝐸𝐸𝑖𝑖|
𝑘𝑘

𝑖𝑖=1

 (25)

Observe that by the first term of Eq. (25), a large

color set 𝑉𝑉𝑖𝑖 tends to get more vertices than smaller ones,
and as a side effect of this, the number of colors 𝑘𝑘 is
minimized. The second term is used to penalize those
edges having the same colors on the end vertices. Another
important characteristic is that all the local optima under
𝑔𝑔 correspond to legal colorings (i.e., 𝐸𝐸𝑖𝑖 = Ø ⩝ 𝑖𝑖). But the
main advantage of the 𝑔𝑔 evaluation function, compared
with the objective function 𝑓𝑓 (i.e., the weighted sum of
𝑘𝑘 and ∑ |𝐸𝐸𝑖𝑖|𝑘𝑘

𝑖𝑖=1), is that it can evaluate the gain of a move
in which the number of colors 𝑘𝑘 is not changed but the
size of a small 𝑉𝑉𝑖𝑖 is decreased. As it was demonstrated by
Johnson et al.[7], the use of the 𝑔𝑔 evaluation function
within a SA algorithm leads to good results, because 𝑔𝑔 is
more informative than 𝑓𝑓 and helps to better guide the
search process.

The Bin Packing Problem consists in packing, within
a minimum number of bins of a given capacity 𝑄𝑄, a set of
𝑛𝑛 items 𝐴𝐴 = {𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛}, each having a size 𝑠𝑠(𝑠𝑠𝑖𝑖) >
 0. In other words, the goal is to pack the items into as
few bins as possible, i.e., partition them into a minimum

number 𝑚𝑚 of subsets 𝑜𝑜1,𝑜𝑜2, … ,𝑜𝑜𝑚𝑚 such that for each
𝑜𝑜𝑗𝑗 ,∑ 𝑠𝑠(𝑠𝑠𝑖𝑖) ≤ 𝑄𝑄𝑎𝑎𝑖𝑖∈𝐵𝐵𝑗𝑗 . The first evaluation function which
comes to mind is the number of bins used to pack all the
items, but it is unusable in practice because it is not
informative to guide an algorithm in the search.
Falkenauer [33] proposed instead the following evaluation
function (to maximize):

𝑔𝑔(𝑥𝑥) =
∑ (𝐹𝐹𝑖𝑖/𝑄𝑄)𝑘𝑘𝑚𝑚
𝑖𝑖=1

𝑚𝑚
 , (26)

where 𝑚𝑚 is the number of bins used in the solution 𝑥𝑥, 𝐹𝐹𝑖𝑖
the sum of sizes of the items packed in the bin 𝑖𝑖 (the fill of
the bin) and 𝑘𝑘 a constant (𝑘𝑘 > 1), which expresses the
concentration on the most filled bins in comparison to the
less filled ones. The larger 𝑘𝑘 is, the more well-filled bins
will be produced.

The proposed evaluation function 𝑔𝑔 maximizes the
average bin efficiency (over all bins) measuring the
exploitation of a bin's capacity. Thus, it encourages the
bin efficiency, rather than the overall performance of all
the bins together. Additionally, 𝑔𝑔 assigns similar (but not
equal) values to similar solutions, while having the same
optima as the objective function 𝑓𝑓, producing as
consequence smoother search landscapes.

Other recent examples of more discriminating
evaluation functions can be found in [34, 35].

6 Conclusions and discussions

Evaluation function is one fundamental element of a

metaheuristic algorithm. By extending a preliminary work
reported in [13], this paper described an in-depth
investigation of the notion of evaluation function using a
well-known graph labeling problem (i.e., the Minimum
Linear Arrangement problem, MinLA) as a representative
case of study.

Some important mathematical properties of the
conventional MinLA evaluation function LA (i.e., total
edge length cost) were throughly analyzed. The results
from this study highlighted the potential drawbacks of

Table 4 Performance comparison between TS-LA and TS-Φ.

TS-LA TS-Φ %

 Graph C Avg. T C Avg. T ΔC p-value
randomA1 894048 911156,8 61,53 890615 907896,5 61,21 0,36 4,90E-03
randomA2 6587805 6629381,6 136,75 6576500 6618055,2 203,02 0,17 1,10E-05
randomA3 14289228 14331958,2 248,05 14273622 14327253,5 276,79 0,03 1,50E-01
randomA4 1747516 1774152,9 66,75 1745643 1768267,3 98,34 0,33 1,50E-05
randomG4 223838 332724,2 26,43 202757 317200,9 15,32 4,67 7,30E-03
bintree10 18055 24683 73,95 16352 23969,8 106,82 2,89 1,90E-01
hc10 526468 582513,5 27,53 524320 571831,9 17,19 1,83 1,80E-02
mesh33x33 33805 55991,9 82,66 32331 46434,3 89,16 17,07 3,20E-07
3elt 635048 1075592,1 525,06 523352 900929,3 537,95 16,24 1,60E-09
airfoil1 436307 794070 473,03 433859 682673,2 420,61 14,03 1,50E-07
whitaker3 2079351 4190127,1 1887,45 1239421 2861347,2 1794,89 31,71 9,80E-25
c1y 66626 86193,9 59,27 65816 82268,6 86,37 4,55 3,30E-04
c2y 87939 111234,7 64,31 83883 105144,7 72,02 5,47 1,80E-05
c3y 146165 184244,1 99,69 140866 173305,5 129,74 5,94 1,40E-06
c4y 136706 175863,4 112,83 132090 162776,4 62,28 7,44 2,10E-05
c5y 120029 146903,5 89,96 113807 140538,9 153,65 4,33 1,10E-03
gd95c 518 624,6 0,49 509 615 0,37 1,53 4,20E-01
gd96a 113045 122945,1 50,62 111671 121649,6 63 1,05 1,20E-02
gd96b 1463 1705,6 0,68 1461 1647,4 1,13 3,41 2,20E-01
gd96c 520 554,8 0,86 519 547,5 0,28 1,33 4,00E-03
gd96d 2634 3087,7 4,03 2520 2940,5 5,3 4,77 1,20E-04
Average 1340338,8 1501700,4 194,85 1291043,5 1419871,1 199,78 6,15 17+

22 Technical Gazette 22, 1(2015), 11-24

E. Rodriguez-Tello i dr. Poboljšanje učinaka metaheuristike kod MinLA problema primjenom kritičnije funkcije evaluacije

using this function to guide the search and enabled us to
devise a more discriminating evaluation function, namely
Φ. The basic idea behind Φ is to integrate in the
evaluation function not only the total edge length of an
arrangement (LA), but also other semantic information
induced by the absolute differences between the labels
assigned to adjacent nodes of the graph.

The practical usefulness of the evaluation function Φ
was first assessed with a parameter-free Steepest Descent
(SD) algorithm using a full test-suite composed of the 21
well-known benchmarks of the literature [8, 9, 10, 11,
12]. The results produced by this experiment showed that
the SD algorithm using Φ as evaluation function (SD-Φ)
returns for 19 out of 21 instances better results than those
produced by SD-LA requiring in average a comparable
CPU time per iteration. The statistical analysis of these
results confirmed that the increase in performance
achieved by SD-Φ with regard to SD-LA is statistically
significant on 66,66% of the studied instances (14 out of
21).

In order to get a better understanding of these results
an experimental analysis of the search landscapes and the
distributions of improving neighbors induced by these
two evaluation functions was carried out. It provided
experimental evidences showing that the superiority of
Φ over LA, for guiding the search, is due to its ability to
identify in average a greater number of improving
neighbors than LA.

To gain more insights into the real working of the
studied evaluation functions a second experimental
comparison between them was carried out employing two
more elaborated metaheuristics: Iterated Local Search
(ILS) and Tabu Search (TS). The analysis of the data
produced by these comparisons showed that the
performance of the ILS and TS metaheuristics can be
boosted by using more discriminating evaluation
functions like Φ. Indeed, ILS-Φ and TS-Φ were able to
consistently improve the best results produced by ILS-LA
and TS-LA, respectively. Furthermore, the statistical
analysis carried out over these results demonstrated that
the increase in performance achieved by the
metaheuristics using Φ as evaluation function with
respect to those employing LA is statistically significant
on 80,95% of the studied instances (17 out of 21). These
results allow us to conclude that the Φ evaluation function
permits the search algorithm using it to make a more
effective exploration of the search space than LA.

Even if the current stage of our knowledge does not
allow us to identify general rules for designing more
informative evaluation functions, we hope the work
reported in this paper sheds useful light on the way that
may be followed. We also expect the results shown in this
work incite more research on more discriminating
evaluation functions as an effective mean of boosting the
performance of metaheuristic algorithms.

Acknowledgements

This research was partially supported by projects No.

105060 and 99276 from The National Council of Science
and Technology of Mexico (CONACyT). The authors
would like to thank the anonymous reviewers for their

valuable feedback that greatly contributed to improving
this paper.

7 References

[1] Gendreau, M.; Potvin, J. Y. (Editors). Handbook of

Metaheuristics (International Series in Operations Research
& Management Science). Springer, 2010.

[2] Hoos, H. H.; Stützle, T. Stochastic Local Search:
Foundations and Applications. Morgan Kaufmann, 2004.

[3] Mladenović, N.; Hansen, P. Variable Neighborhood Search.
// Computers & Operations Research. 24, 11(1997), pp.
1097-1100.

[4] Gaspero, L. D; Schaerf, A. Neighborhood Portfolio
Approach for Local Search Applied to Timetabling
problems. // Journal of Mathematical Modeling and
Algorithms. 5, 1(2006), pp. 65-89.

[5] Goëffon, A.; Richer, J. M.; Hao, J. K. Progressive Tree
Neighborhood Applied to the Maximum Parsimony
Problem. // IEEE/ACM Transactions on Computational
Biology and Bioinformatics. 5, 1(2008), pp. 136-145.

[6] Stadler, P. F. Correlation in Landscapes of Combinatorial
Optimization Problems. // Europhysics Letters. 20, (1992),
pp. 479-482.

[7] Johnson, D. S.; Aragon, C. R.; McGeoch, L. A.; Schevon,
C. Optimization by Simulated Annealing: An Experimental
Evaluation; Part II, Graph Coloring and Number
Partitioning. // Operations Research. 39, 3(1991), pp. 378-
406.

[8] Petit, J. Experiments on the Minimum Linear Arrangement
Problem. // The ACM Journal of Experimental
Algorithmics, 8, (2003), DOI:
http://dx.doi.org/10.1145/996546.996554.

[9] Bar-Yehuda, R.; Even, G.; Feldman, J.; Naor, J. Computing
an Optimal Orientation of a Balanced Decomposition Tree
for Linear Arrangement Problems. // Journal of Graph
Algorithms and Applications. 5, 4(2001), pp. 1-27.

[10] Koren, Y.; Harel, D. A Multi-Scale Algorithm for the
Linear Arrangement Problem // Lecture Notes in Computer
Science. 2573, (2002), pp. 293-306.

[11] Rodriguez-Tello, E.; Hao, J. K.; Torres-Jimenez, J.
Memetic Algorithms for the MinLA Problem. // Lecture
Notes in Computer Science. 3871, (2006), pp. 73-84.

[12] Rodriguez-Tello, E.; Hao, J. K.; Torres-Jimenez, J. An
Effective Two-Stage Simulated Annealing Algorithm for
the Minimum Linear Arrangement Problem. // Computers
& Operations Research. 35, 10(2008), pp. 3331-3346.

[13] Rodriguez-Tello, E.; Hao, J. K.; Torres-Jimenez, J. A
Refined Evaluation Function for the MinLA Problem. //
Lecture Notes in Computer Science. 4293, (2006), pp. 392-
403.

[14] Harper, L. H. Optimal Assignment of Numbers to Vertices.
// SIAM Journal on Applied Mathematics. 12, 1(1964), pp.
131-135.

[15] Adolphson, D. L.; Hu, T. C. Optimal Linear Ordering. //
SIAM Journal on Applied Mathematics. 25, 3(1973), pp.
403-423.

[16] Mitchison, G.; Durbin, R. Optimal Numbering of an N×N
Array. // SIAM Journal on Matrix Analysis and
Applications. 7, 4(1986), pp. 571-582.

[17] Karp, R. M. Mapping the Genome: Some Combinatorial
Problems Arising in Molecular Biology. // ACM Press,
Proceedings of the 25th annual ACM symposium on
Theory of computing / San Diego, CA, USA, 1993, pp.
278-285.

[18] Ravi, R.; Agrawal, A.; Klein, P. N. Ordering Problems
Approximated: Single-Processor Scheduling and Interval
Graph Completion. // Lecture Notes in Computer Science.
510, (1991), pp. 751-762.

Tehnički vjesnik 22, 1(2015), 11-24 23

Boosting the performance of metaheuristics for the MinLA problem using a more discriminating evaluation function E. Rodriguez-Tello et al.

[19] Shahrokhi, F.; Sykora, O.; Szekely, L. A.; Vrto, I. On
Bipartite Drawings and the Linear Arrangement Problem. //
SIAM Journal on Computing. 30, 6(2001), pp. 1773-1789.

[20] Lai, Y. L.; Williams, K. A Survey of Solved Problems and
Applications on Bandwidth, Edgesum, and Profile of
Graphs. // Graph Theory. 31, (1999), pp.75-94.

[21] Lin, S.; Kernighan, B. W. An Effective Heuristic Algorithm
for the Traveling Salesman Problem. // Operations
Research. 21, 2(1973), pp. 498-516.

[22] Garey, M. R.; Johnson, D. S. Computers and Intractability:
A guide to the Theory of NP-Completeness. W. H. Freeman
and Company, New York, 1979.

[23] Safro, I.; Ron, D.; Brandt, A. Graph Minimum Linear
Arrangement by Multilevel Weighted Edge Contractions. //
Journal of Algorithms. 60, 1(2006), pp. 24-41.

[24] Rotman, J. J. Advanced Modern Algebra. Prentice Hall,
2003.

[25] Lü, Z.; Hao, J. K.; Glover, F. Neighborhood Analysis: A
CaseStudy on Curriculum-based Course. // Journal of
Heuristics. 17, 2(2011), pp. 97-118.

[26] Larsen, R. J.; Morris, L. M. An Introduction to
Mathematical Statistics and Its Applications. 4th edition
Upper Saddle River, Prentice Hall , NJ, USA, 2005.

[27] Martin, O.; Otto, S. W.; Felten, E. W. Large-step Markov
Chains for the Traveling Salesman Problem. // Complex
Systems. 5, 3(1991), pp. 299-326.

[28] Lourenco, H. R.; Martin, O.; Stützle, T. Iterated Local
Search. // Handbook of Metaheuristics, International Series
in Operations Research & Management Science, Kluwer
Academic Publishers, 2002, pp. 321-353.

[29] Glover, F.; Laguna, M. Tabu Search. Kluwer
AcademicPublishers, 1997.

[30] Blum, C.; Roli, A. Metaheuristics in Combinatorial
Optimization: Overview and Conceptual Comparison. //
ACM Computing Surveys. 35, 3(2003), pp. 268-308.

[31] Galinier, P.; Boujbel, Z.; Coutinho-Fernandes, M. An
Efficient Memetic Algorithm for the Graph Partitioning
Problem. // Annals of Operations Research. 191, 1(2011),
pp. 1-22.

[32] Wu, Q.; Hao, J. K. Memetic Search for the Max-bisection
Problem. // Computers & Operations Research. 40, 1(2013),
pp. 166-179.

[33] Falkenauer, E. A Hybrid Grouping Genetic Algorithm for
Bin Packing. // Journal of Heuristics. 2, (1996), pp. 5-30.

[34] Rodriguez-Tello, E.; Hao, J. K.; Torres-Jimenez, J. An
Improved Simulated Annealing Algorithm for Bandwidth
Minimization. // European Journal of Operational Research.
185, 3(2008), pp. 1319-1335.

[35] Porumbel, D. C.; Hao, J. K.; Kuntz, P. A study of
evaluation functions for the graph k-coloring problem. //
Lecture Notes in Computer Science. 4926, (2007), pp. 124-
135.

Authors’ addresses

Eduardo Rodriguez-Tello, PhD.
CINVESTAV-Tamaulipas, Information Technology Laboratory,
Km. 5.5 Carretera Victoria-Soto La Marina, 87130 Victoria
Tamps., Mexico
E-mail: ertello@tamps.cinvestav.mx

Jin-Kao Hao, PhD.
LERIA, Université d'Angers, 2 Boulevard Lavoisier, 49045 Angers
Cedex 01, France
E-mail: Jin-Kao.Hao@univ-angers.fr

Hillel Romero-Monsivais, MSc.
CINVESTAV-Tamaulipas, Information Technology Laboratory,
Km. 5.5 Carretera Victoria-Soto La Marina, 87130 Victoria
Tamps., Mexico
E-mail: hromero@tamps.cinvestav.mx

24 Technical Gazette 22, 1(2015), 11-24

	1 Introduction
	2 The MinLA problem and evaluation functions
	2.1 The 𝐋𝐀 function
	2.2 Analyzing the 𝐋𝐀 evaluation function
	2.3 The 𝚽 evaluation function
	2.4 Analyzing the 𝚽 evaluation function
	2.5 Comparison of computational complexity between 𝐋𝐀 and 𝚽

	3 Comparing 𝐋𝐀 and 𝚽 evaluation functions using a Steepest Descent algorithm
	3.1 Steepest Descent algorithm
	3.2 Computational experiments
	3.3 Comparison between SD-𝐋𝐀 and SD-𝚽
	3.4 Distribution of improving neighbors produced by 𝐋𝐀 and 𝚽

	3.5 Interaction between the neighborhood relation and the evaluation function
	3.5.1 Neighborhood relations
	3.5.2 Computational experiments
	4 Comparing 𝐋𝐀 and 𝚽 within other metaheuristics
	4.1 Iterated Local Search algorithm
	4.1.1 Computational experiments
	4.2 Tabu Search algorithm
	4.2.1 Computational experiments

	5 Some related works
	6 Conclusions and discussions
	7 References
	Authors’ addresses

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /None

 /Binding /Left

 /CalGrayProfile (Dot Gain 20%)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Error

 /CompatibilityLevel 1.4

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Default

 /DetectBlends true

 /DetectCurves 0.0000

 /ColorConversionStrategy /CMYK

 /DoThumbnails false

 /EmbedAllFonts true

 /EmbedOpenType false

 /ParseICCProfilesInComments true

 /EmbedJobOptions true

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams false

 /MaxSubsetPct 100

 /Optimize true

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness true

 /PreserveHalftoneInfo false

 /PreserveOPIComments true

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 300

 /ColorImageMinResolutionPolicy /OK

 /DownsampleColorImages true

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 300

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.50000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 300

 /GrayImageMinResolutionPolicy /OK

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 300

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.50000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 1200

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /CheckCompliance [

 /None

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile ()

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>

 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>

 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>

 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>

 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>

 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>

 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)

 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>

 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>

 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>

 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>

 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>

 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)

 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>

 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>

 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>

 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>

 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>

 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>

 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>

 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>

 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>

 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)

 >>

 /Namespace [

 (Adobe)

 (Common)

 (1.0)

]

 /OtherNamespaces [

 <<

 /AsReaderSpreads false

 /CropImagesToFrames true

 /ErrorControl /WarnAndContinue

 /FlattenerIgnoreSpreadOverrides false

 /IncludeGuidesGrids false

 /IncludeNonPrinting false

 /IncludeSlug false

 /Namespace [

 (Adobe)

 (InDesign)

 (4.0)

]

 /OmitPlacedBitmaps false

 /OmitPlacedEPS false

 /OmitPlacedPDF false

 /SimulateOverprint /Legacy

 >>

 <<

 /AddBleedMarks false

 /AddColorBars false

 /AddCropMarks false

 /AddPageInfo false

 /AddRegMarks false

 /ConvertColors /ConvertToCMYK

 /DestinationProfileName ()

 /DestinationProfileSelector /DocumentCMYK

 /Downsample16BitImages true

 /FlattenerPreset <<

 /PresetSelector /MediumResolution

 >>

 /FormElements false

 /GenerateStructure false

 /IncludeBookmarks false

 /IncludeHyperlinks false

 /IncludeInteractive false

 /IncludeLayers false

 /IncludeProfiles false

 /MultimediaHandling /UseObjectSettings

 /Namespace [

 (Adobe)

 (CreativeSuite)

 (2.0)

]

 /PDFXOutputIntentProfileSelector /DocumentCMYK

 /PreserveEditing true

 /UntaggedCMYKHandling /LeaveUntagged

 /UntaggedRGBHandling /UseDocumentProfile

 /UseDocumentBleed false

 >>

]

>> setdistillerparams

<<

 /HWResolution [2400 2400]

 /PageSize [467.717 680.315]

>> setpagedevice

