A Bottom-Up implementation of Path-Relinking for
Phylogenetic Reconstruction applied to Maximum
Parsimony

Karla E. Vazquez-Ortiz
LERIA
2 Boulevard Lavoisier
49045 Angers Cedex 01, France
Email: vazquez@info.univ-angers.fr

Jean-Michel Richer
LERIA
2 Boulevard Lavoisier
49045 Angers Cedex 01, France
Email: richer @info.univ-angers.fr

Abstract—In this article we describe a bottom-up implemen-
tation of Path-Relinking for Phylogenetic Trees in the context of
the resolution of the Maximum Parsimony problem with Fitch
optimality criterion. This bottom-up implementation is compared
to two versions of an existing top-down implementation. We show
that our implementation is more efficient, more interesting to
compare trees and to give an estimation of the distance between
two trees in terms of the number of transformations.

Keywords—Phylogenetic Reconstruction, Path-Relinking

I. INTRODUCTION

Path-Relinking (PR) is a metaheuristic with an intensifi-
cation strategy used to explore elite solutions. It was defined
by Fred Glover [1] and it is closely related to Tabu Search.
PR has been applied to a variety of contexts where it has
proved to be very effective in solving difficult problems.
Given two solutions called source and guiding, PR consists in
transforming the source solution into the guiding solution by
applying a series of modifications. After each modification an
exploration phase is performed on a copy of the source solution
under modification. The aim of PR is to generate a path from
the source to the guiding solution in order to possibly find a
better solution. PR has been used in different domains for the
resolution of Combinatorial Optimization problems [2], [3],

[4], [5].

In [6] the authors describe an implementation of PR
tailored to trees for the resolution of the Maximum Parsimony
problem. This implementation can be called top-down imple-
mentation as it starts from the root of the tree and recursively
explore each left and right subtree. For each iteration they
compare the taxa in the left and right subtrees of the source
and guiding solutions. All taxa of the source left (resp. right)
subtree that are in the right (resp. left) subtree of the guiding
solution are moved to the right (resp. left) subtree of the source
solution. The major drawback of this implementation is that it
requires a lot of modifications and moves of the taxa from left

David Lesaint
LERIA
2 Boulevard Lavoisier
49045 Angers Cedex 01, France
Email: lesaint@info.univ-angers.fr

Eduardo Rodriguez-Tello

CINVESTAV-Tamaulipas, Information Technology Laboratory

Km. 5.5 Carretera Victoria-Soto La Marina
87130 Victoria Tamps., Mexico.
Email: ertello@tamps.cinvestav.mx

to right (resp. right to left) subtrees. When a taxon is degraphed
it is then regraphed on a branch of the sibling subtree that
minimizes the parsimony score of the tree. We can also put
the degraphed taxon at the top of the sibling subtree to avoid
the search of a minimum tree. If we remove the exploration
phase from the PR algorithm we then have an algorithm that
transforms one tree into another which can be used to compare
trees and define a measure of distance between them. This
measure of distance seems to be interesting because it is closer
to the topology of the trees to compare.

The remainder of the article is organized as follows: in the
next section we explain the basics of Maximum Parsimony that
will serve for our experimentations. In section 3, we describe
the method that we have designed to perform Path-Relinking
between two trees based on the difference of subtrees. The last
section is dedicated to computational results and analysis of
the implementations.

II. MAXIMUM PARSIMONY

One of the main problems in Comparative Biology consists
in establishing ancestral relationships between a group of
n species or homologous genes in populations of different
species, designated as taxa (or operational taxonomic units).
These ancestral relationships are usually represented by a bi-
nary rooted tree, which is called a phylogenetic tree or, in short,
a phylogeny [7]. In the past phylogenetic trees were inferred by
using morphological characteristics like color, size, number of
legs, etc. Nowadays, they are improved using the information
from biologic macromolecules like DNA (deoxyribonucleic
acid), RNA (ribonucleic acid) and proteins. The problem of
reconstructing molecular phylogenetic trees has become an
important field of study in Bioinformatics and has many
practical applications in population genetics, whole genome
analysis, and the search for genetic predictors of disease [8],

[9].

There exist many different methods reported in the lit-
erature to solve the problem of phylogenetic reconstruction.
These methods can be classified into three main approaches:
Distance methods [10], [11], Probabilistic methods [12], [13]
and Cladistic methods [14], [15]. In this paper we will use a
cladistic method based on Maximum Parsimony (MP) with
Fitch optimality criterion but it can be applied to any of
the other approaches cited above and more generally to any
method that deals with trees. With MP we are looking for
the tree that minimizes the amount of evolution (in terms
of number of mutations). This approach is based on the
assumption that each character (characteristic feature) evolves
independently. For a thorough introduction to the MP problem
we refer the reader to [16].

A. Problem statement

Let .7 be a set {51, Ss,...,S,} composed of n sequences
of length k over a predefined alphabet .o/. A binary rooted
phylogenetic tree t = (V, F) is used to represent their ancestral
relationships. It consists of a set of nodes V' = {vy,...,v,}
and a set of edges E C V x V = {{u,v}|u,v € V'}. The set
of nodes V (|V| = (2n— 1)) is partitioned into two subsets: [
that contains n — 1 infernal nodes (or hypothetical ancestors)
each having 2 descendants; and L which is composed of
the n taxa that are leaves of the tree, i.e. nodes with no
descendant. For each subtree v, = (v,,v,) such that v, is the
root and {v,,v,},{v.,v,} € E we consider the sequences
related to each node and call them respectively x, y and z.
The hypothetical parsimony sequence z = {z1,---,2} is
computed from z = {x1, -,z } and y = {y1, -, yr} with
the following expression:

otherwise

Iinz‘,

\ﬁ,1gigk,zi_{xmyi’ (1)

Then, the parsimony cost of the sequence z under Fitch
optimality criterion [17], [18] is defined as follows:

k
o 4 L 1, ifz;Ny; =0
¢(2) = ; Ci where C; = { 0, otherwise

2

and the parsimony cost of the tree ¢ is obtained as follows:

o(t) =>_ ¢(2) 3)

zel

The MP problem is then a minimization problem which
consists in finding a tree topology ¢* such that ¢(t*) is
minimum, i.e., ¢(t*) = min{¢(t) : t € T}, where J is the
set composed of all the possible tree topologies also known
as the search space of the problem. In order to compute the
overall cost (or score) ¢(t), which is the objective function of
the problem, Fitch’s algorithm [17] gradually moves back from
the leaves towards the root and computes hypothetical ancestral
taxa z for each internal node in I. This is often referred to as
the first pass of the algorithm (see Fig. 1) whose complexity is
O(n x k). A second-pass can eventually be used to assign one
nucleotide to a site even if many possibilities exist, in order
to obtain a hypothetical tree.

(a) first pass from leaves to root

A

(b) second pass from root to leaves

Fig. 1: First-pass and assignment of states after second-pass
for a tree of score 3 under Fitch’s optimality criterion with
n = 6 taxa of length k =1

B. Resolution

It has been demonstrated that the MP problem is NP-
complete [19], [20], since it is equivalent to the Combinatorial
Optimization problem known as the Steiner tree problem on
hypercubes. This essentially means that no algorithm that
solves all instances quickly is likely to be found. Indeed, for
a set of n taxa, the number of rooted tree topologies is given
by the following expression [21]:

|7 = (2n —3)!/2"%(n — 2)!

The MP problem has been exactly solved for very small
instances (n < 10) using a branch & bound algorithm (B&B)
originally proposed by Hendy and Penny [22]. One of the
most recent applications of B&B to the MP problem is XMP,
a program for finding exact MP trees which uses optimized
vectorized inner loops [23] on highly parallel distributed-
memory computers. For their experiments the authors used real
and synthetic instances from [24] and other real datasets, these
instances have between 12 and 36 taxa which are very small
instances. The best approaches to solve MP and reach inter-
esting solutions are based on metaheuristics. Many software
packages have been developed (PAUP [25], POY [26]) and
are based mainly on local search. Some methods use genetic
or memetic algorithms (Hydra [27]) or simulated annealing
(SAMPARS [28]) or a combination of meta-heuristics and
other techniques (TNT [29]). A very simple method is GRASP
(Greedy Randomized Adaptative Search Procedure), a multi-
start metaheuristic for which a set of initial solutions is
generated and are then improved by a local search. Ribeiro

and Vianna [30] have applied GRASP with VNS (Variable
Neighborhood Search)[31], [32]. The principle of the VNS
metaheuristic is to successively use different neighborhoods
during a descent. It starts with a neighborhood of small size
and once the search is stuck in a local optimum, it uses
a neighborhood of larger size in order to allow important
modifications of the current solution and escape from the local
optimum. An interesting extension of GRASP, which can be
considered as a genetic or memetic algorithm is to use PR to
try to discover new elite solutions from the set of final solutions
obtained by GRASP [6]. PR can also be used with a genetic
or memetic algorithm.

III. THE METHOD

For the MP problem an implementation of PR was given by
[6]. This top-down recursive implementation (see Figure 2)
starts from the root of the tree and compares the left and right
subtrees of the source and guiding solution. All taxa of the
left subtree of the source that are present in the right subtree
of the guiding solution are moved to the right subtree of the
source solution and conversely.

Fig. 2: Top-Down implementation

source tree

guiding tree

T%‘

The major drawback of this implementation (see the results
section) is that it requires a lot of modifications and moves of
the taxa from left (resp. right) to right (resp. left) subtrees.

In contrast, we have implemented a bottom-up iterative
solution which compares the subtrees present in the source and
guiding solutions (see Figure 3). For this the subtrees of each
solution are ordered by their number of leaves and we start to
compare subtrees of size 2, then subtrees of size 3, and so on
(see Algorithm 1).

When a subtree of the guiding solution ¢ = (X,Y) is
not found in the source solution then we have to transform
the subtree in the source solution into the one in the guiding
solution. Here X is the left subtree of ¢ and Y its right subtree.

Consider the example of Figure 3 (a) where we can see
the source and guiding trees. A preliminary modification of
the trees (line 1 and 2 of the algorithm) consists in reordering
the trees by the lexicographic order of the leaves in order to
be able to efficiently compare the subtrees. In fact the subtrees
(A, B) and (B, A) are equal and we do not want to have to
check both cases, so we will only allow subtrees of the form
(A, B).

On each node, one of the sequences on the left subtree
must be inferior to all the sequences on the right subtree. For
example, the node (B, A) will be changed by swapping the
leaves in order to obtain (A, B). The subtree (C, (A4, B)))
will be reordered as ((A4, B), C') because on the right node, A

Algorithm 1: Path-Relinking with bottom-up iterative
implementation

input: s: source tree, g : guiding tree
output: number of transformations

1 reorder(s) ;

2 reorder(g) ;

3 transformations < 0;

4 Qg + ordered set of subtrees of guiding tree g;

5 change < true;

6 while change do

7 Q4 < ordered set of subtrees of source tree s;
8 change < false ;

9 if3 t=(X,Y)eQ,—Q, then

10 change « true ;

1 degraph Y and regraph on X in s;

12 trans formations < transformations + 1,

—
w

return transformations

TABLE I: Sets of subtrees in the source and guiding trees
ordered by number of leaves

‘ Source ‘ Guiding
A,B,C,D,E,F A B,C,D,EF
(A, F), (C,E), (B,D) (A,B), (E,F)

((4,B),C), (D, (E, F))

(4, F), (C, E))

AN |W | = H*

(4, F), (C, E)), (B, D)) | ({4, B),C), (D, (E, F)))

and B are inferior to C. The subtree ((C, E), (A, F')) will be
reordered as ((A, F'), (C, E)) because A that initially appears
on the right subtree is inferior to C' and E.

The subtrees present in the source and guiding solutions
are represented in Table I in Newick notation. After reordering
the source and guiding trees we can enter the main loop of the
algorithm (lines 6 to 12).

The subtree (A, B) present in the guiding tree is not present
in the source tree so we degraph B from the source tree, and
regraph it on A (see Fig. 3b).

On Figure 3b the subtree (E,F) present in the guiding
tree is not present in the source tree so we degraph F' from
the source tree and regraph it on E.

On Figure 3c the subtree ((A4, B), C') present in the guiding
tree is not present in the source tree, we have to degraph C
from the source tree and regraph it on (A, B).

The subtree (D, (F, F')) present in the guiding tree is not
present in the source tree: degraph (E, F') from the source tree
and regraph it on D (see Fig. 3e).

Finally the source and guiding trees are equal so we can
stop the algorithm.

source tree

LRt

A F E A B E F

guiding tree

i

o

(a) source and guiding trees

.

[l

(b) first modification resulting in (A, B) on
source

I'I'I
‘I'I

(c) modification resulting in (E, F)

CE F
A B

(d) modification resulting in ((A, B), C)

Suplems

A B E F

(e) modification resulting in (D, (E, F))

Fig. 3: Example of Bottom-Up Path-Relinking with source and
guiding trees

A. Complexity

The complexity of the algorithm can be computed as
follows: given n, the number of taxa of the problem, the
reordering of the guiding tree needs 2n — 1 comparisons and
the computation of {2, can be done in 2n — 1 operations. The

main loop will be executed a certain number of times, let’s
say p times, and we will need to compute €, find a missing
subtree (the maximum will be n comparisons) and perform a
degraph and regraph (1 transformation). This adds up to:

X(2n—14+n+1)4+3x(2n—1)~3nx (p+2)

In the worst case p = n, so the worst case complexity is
O(n?) for the bottom-up implementation.

For the fop-down implementation, the computation of the
complexity is more difficult to establish as the process is
recursive and the size of the subtrees changes. At each step we
must compute the sets of leaves on the left and right subtrees of
the source and guiding solutions. Then move the leaves in the
source tree from left to right or from right to left. The number
of transformations (see the tables in the results section) can
give us some insight of the complexity of this implementation.

IV. RESULTS
A. Benchmark

For simplicity’s sake we have decided to report results for
a problem called zilla by some authors and that was originally
obtained from the chloroplast gene rbcL [33]. Other experi-
mentations carried out on some other problems of TreeBase
(treebase.org) should likely exhibit the same behavior.

The problem zilla is interesting because it is large (500 taxa
of 759 DNA residues) and the best parsimony score of 16,218
which is challenging to achieve was first found by TNT. In
Table I we report the percentage of common subtrees between
two trees that are compared. The number of common subtrees
can be thought as a measure of similarity between trees.

For example two trees of score 16,218 (namely 16,218 and
16,218%) have 74.75% subtrees in common which means that
they are topologically close. On the contrary the tree of score
21,727 has 0% subtrees in common with the tree of score
16,218. This means they are very far from each other and
have only the leaves in common.

Three different implementations were compared:

e Dottom-up: iterative implementation explained in this
article, based on subtree difference,

e fop-down without minimization: recursive implemen-
tation from the article of [6] without optimization on
regraph, i.e. when a leaf is regraphed it is placed at
the root of the subtree where it should appear,

e fop-down with minimization: recursive implementation
from the article of [6] with optimization on regraph,
i.e. when a leaf is regraphed all possible branches are
tested and we keep the first one that minimizes the
score of the tree.

B. Experiments

The experimentations were performed on an Intel Core
i5 4570 and the program was coded in Java 1.7, it is part
of a software called Arbalet (http://www.info.univ-angers.fr/
pub/richer/ur.php?arbalet). On tables III, IV, V we report for

TABLE II: Percentage of common subtrees for Parsimony trees
of zilla used for Path-Relinking

source / guiding | % common subtrees

16218% / 16218 74.75%
16219 / 16218 73.15%
16250 / 16218 61.12%
16401 / 16218 45.69%
16611 / 16218 36.27%
21727 / 16218 0.00%
16250 / 16219 61.72%
16401 / 16219 48.70%
16401 / 16250 45.49%
16611 / 16250 44.89%
21727 / 16250 0.20%
16611 / 16401 36.67%
21727 / 16611 0.20%

each implementation the number of transformations (degraph +
regraph), the execution time in seconds, the number of times
the source tree had a score inferior or equal to the guiding
tree (#Equal) and the number of times the source tree had a
score strictly inferior to the guiding tree (#Less) during the
generation of the path.

Note that the source tree has a higher score than the guiding
tree. This is not necessary for the bottom-up method for which
we can invert the trees. However this is required by the fop-
down with minimization implementation.

TABLE III: Results of Path-Relinking for Bottom-Up imple-
mentation (Times in seconds)

Bottom-Up

source / guiding | Trans. Time #Equal #Less
16218 / 16218 24 0.10 13 0
16219 / 16218 32 0.14 2 0
16250 / 16218 97 040 3 0
16401 / 16218 151 0.60 2 0
16611 / 16218 186 0.75 2 0
21727 /1 16218 446 1.68 2 0
16250 / 16219 92 0.37 2 0
16401 / 16219 152 0.61 2 0
16401 / 16250 162 0.63 1 0
16611 / 16250 144 0.56 1 0
21727 / 16250 449 1.71 1 0
16611 / 16401 202 0.79 3 0
21727 /1 16611 455 1.84 2 0

TABLE IV: Results of Path-Relinking for Top-Down without
minimization on regraph (Times in seconds)

Top-Down No Minimization
source / guiding | Trans. Time #Equal #Less
16218° / 16218 118 0.33 16 0
16219 / 16218 462 1.36 1 0
16250 / 16218 1770 4.79 1 0
16401 / 16218 1891 5.16 1 0
16611 / 16218 1903 5.19 1 0
21727 / 16218 1881 5.17 1 0
16250 / 16219 1722 4.76 1 0
16401 / 16219 1867 6.17 1 0
16401 / 16250 1707 471 1 0
16611 / 16250 1746 4.79 1 0
21727 1 16250 1712 4.77 1 0
16611 / 16401 1602 4.42 1 0
21727 / 16611 1842 5.16 1 0

TABLE V: Results of Path-Relinking for Top-Down with
minimization on regraph (Times in seconds)

Top-Down With Minimization
source / guiding | Trans. Time #Equal #Less
16218% / 16218 74 0.85 21 0
16219 / 16218 343 4.08 3 0
16250 / 16218 1519 25.32 2 0
16401 / 16218 1474 2536 2 0
16611 / 16218 1225 19.57 2 0
21727 / 16218 1241 18.70 2 0
16250 / 16219 1418 24.70 1 0
16401 / 16219 1390 23.74 1 0
16401 / 16250 1203 19.74 1 0
16611 / 16250 1233 35.78 3 0
21727 / 16250 1196 19.65 1 0
16611 / 16401 1216 47.75 2 1
21727 / 16611 1528 22.40 593 586

On Table III, with the bottom-up implementation the path
between the two trees of score 16,218 (called 16,218 and
16,218%) was built with 24 transformations in 0.1 seconds.
As mentioned before those trees are topologically very close.
During the transformation process the source tree, when mod-
ified, had a best score (of 16,218) 13 times among the 24
transformations.

With the fop-down with minimization algorithm (see results
of Table V) the construction of the path of the tree of
score 21,727 into the tree of score 16,611 has needed 1528

transformations and took 22.4 seconds. It also lead to the
generation of 586 trees of score under 16,611. This means
that the fop-down with minimization algorithm can sometimes
help find a tree of lower score than the guiding tree.

C. Discussion

1) Execution time: although the bottom-up implementation
requires to recompute the set of subtrees of the source tree
for each iteration it is the fastest method. The top-down with
minimization implementation takes much more time because
of the optimization phase on regraph. However for the top-
down implementations the number of transformations in terms
of nodes to degraph and regraph is very important compared
to the bottom-up version. For example for the search of a path
from tree 21,727 to 16,218, the number of recursive calls is
equal to 499. The number of leaves moved for the first 10
steps of the recursion are: 194, 143, 21, 3, 15, 34, 40, 4, 43,
3, ... for a total of 1881 transformations.

2) Comparison of trees: it seems that the bottom-up im-
plementation is more suitable to compare trees than the fop-
down of [6] because it reports a number of transformations
proportional to the topological modifications of the tree. For
example, on Table III the number of transformations from the
tree of score 16,219 to 16,218 is 32, while the number of
transformations from the tree of score 21,727 to 16,218 is
455. For the top-down implementation without minimization
the transformation from the tree of score 16,401 to 16,218 is
nearly equal to the number of transformations of the tree of
score 21,727 to 16,218.

There exists different metrics and methods to compare
trees. One of the most famous is the Robinson-Foulds metric
[34] initially designed for unrooted tree but which has a variant
for rooted trees based on clusters [35]. RF is is equal to the
number of different splits in compared trees. A split A|B of
a set L is an unordered pair (ie, A|B = B|A) of its subsets,
such that L = AU B and AN B = (. Our method can to
some extent be brought closer to the Matching Cluster metric
for rooted trees but provides different results. [35].

3) Ability to find better solutions: finally, we can remark
that with no exploration phase PR generally does not allow
us to find a tree with a score lower than the guiding tree
(see columns #Less and #Equal), except for the top-down
with minimization version but only for trees that are far from
the best known solution. It seems to become harder to find
improving solutions as long as we come close to the best know
solution. In the case of the search of a path from tree 21,727
to 16,611 we have found that the tree with the lowest score
was 16,532.

Nevertheless it is possible to add a minimization phase to
the bortom-up algorithm: the new subtree ¢ = (X, Y") obtained
from line 11 of Algorithm 1 can be degraphed and regraphed
somewhere on the tree in order to minimize the parsimony
score. However ¢ must not be regraphed on some previously
modified subtree in order to avoid any cycle of transformation
that would cause a modification to be undone and that would
be performed again at the next iteration. We have tested this
method but it lead to no improvement and we could not find
a score inferior to the score of the guiding tree.

V. CONCLUSION

In this paper we have described an implementation of Path-
Relinking in the context of Phylogenetic Reconstruction with
Maximum Parsimony. Confronted to other existing implemen-
tations our method does not allow to find trees with a better
score which is the aim of Path-Relinking but represents an
interesting tool to compare the topologies of the source and
guiding trees. The bottom-up iterative implementation what
we have described is faster than the fop-down recursive im-
plementations and can serve as a measure of distance between
trees and could be applied to any other context.

REFERENCES

[1] F Glover, M. Laguna, and R. Mart, “Fundamentals of scatter search and
path relinking,” Control and Cybernetics, vol. 39, pp. 653-684, 2000.

[2] Y. Wang, Z. L, F. Glover, and J.-K. Hao, “Path relinking for
unconstrained binary quadratic programming,” European Journal of
Operational Research, vol. 223, no. 3, pp. 595-604, 2012. [Online].
Available: http://EconPapers.repec.org/RePEc:eee:ejores:v:223:y:2012:
1:3:p:595-604

[3] K. Seridi, L. Jourdan, and E.-G. Talbi, “Multi-objective path relinking
for biclustering: application to microarray data,” in EMO’2013
Evolutionary Multi-objective Optimization, Sheffield, Royaume-Uni,
March 2013, pp. 200-214. [Online]. Available: http://hal.inria.fr/
hal-00837571

[4] H. Z. Yongquan Zhou, Jian Xie, “A hybrid bat algorithm with path
relinking for capacitated vehicle routing problem,” 2013. [Online].
Available: http://www.hindawi.com/journals/mpe/2013/392789/

[5] M. Resende and C. Ribeiro, “Grasp: Greedy randomized adaptive
search procedures,” in Search Methodologies, E. K. Burke and
G. Kendall, Eds. Springer US, 2014, pp. 287-312. [Online].
Available: http://dx.doi.org/10.1007/978-1-4614-6940-7_11

[6] C. C. Ribeiro and D. S. Vianna, “A hybrid genetic algorithm for
the phylogeny problem using path-relinking as a progressive crossover
strategy,” International Transactions in Operational Research, vol. 16,
no. 5, pp. 641-657, 2009.

[71 W. Hennig, Phylogenetic systematics, ser. Phylogeny. Urbana: Univer-
sity of Illinois Press, 1966.

[8] D. M. Hillis, C. Moritz, and B. K. Mable, Molecular systematics,
2nd ed. Sunderland, MA: Sinauer Associates Inc., 1996.

[9] S. Sridhar, F. Lam, G. E. Blelloch, R. Ravi, and R. Schwartz, “Direct
maximum parsimony phylogeny reconstruction from genotype data,”
BMC Bioinformatics, vol. 8, no. 472, 2007.

[10] W. M. Fitch and E. Margoliash, “A method for estimating the number
of invariant amino acid coding positions in a gene using cytochrome ¢
as a model case,” Biochemical Genetics, vol. 1, no. 1, pp. 65-71, 1967.

[11] N. Saitou and M. Nei, “The neighbor-joining method: a new method for
reconstructing phylogenetic trees,” Molecular Biology and Evolution,
vol. 4, no. 4, pp. 406-425, 1987.

[12] J. Felsenstein, “Evolutionary trees from DNA sequences: a maximum
likelihood approach,” Journal of Molecular Evolution, vol. 17, no. 6,
pp. 368-376, 1981.

[13] A. Skourikhine, “Phylogenetic tree reconstruction using self-adaptive
genetic algorithm,” in Proceedings of the IEEE International Sympo-
sium on Bio-Informatics and Biomedical Engineering, Arlington, VA ,
USA, 2000, pp. 129-134.

[14] A. W. E. Edwards and L. L. Cavalli-Sforza, “The reconstruction of
evolution,” Heredity, vol. 18, p. 553, 1963.

[15] L. L. Cavalli-Sforza and A. W. F. Edwards, “Phylogenetic analysis.
models and estimation procedures,” The American Journal of Human
Genetics, vol. 19, no. 3 Pt 1, pp. 233-257, 1967.

[16] . Felsenstein, Inferring phylogenies. Sinauer Associates, 2003.

[17] W. Fitch, “Towards defining course of evolution: minimum change for
a specified tree topology,” Systematic Zoology, vol. 20, pp. 406-416,
1971.

[18] J. A. Hartigan, “Minimum mutation fits to a given tree,” Biometrics,
vol. 29, pp. 53-65, 1973.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

D. Gusfield, Algorithms on strings, trees, and sequences: Computer
science and computational biology, 1st ed. — Cambridge University
Press, 1997.

L. R. Foulds and R. L. Graham, “The steiner problem in phylogeny
is np-complete,” Advances in Applied Mathematics, vol. 3, no. 1, pp.
43-49, 1982.

J. Xiong, Essential Bioinformatics, 1st ed. Cambridge University Press,
2006.

M. D. Hendy and D. Penny, “Branch and bound algorithms to determine
minimal evolutionary trees,” Mathematical Biosciences, vol. 59, no. 2,
pp. 277-290, 1982.

W. T. J. White and B. R. Holland, “Faster exact maximum parsimony
search with xmp,” Bioinformatics, vol. 27, no. 10, pp. 1359-1367, 2011.

D. A. Bader, V. P. Chandu, and M. Yan, “ExactMP: An efficient paral-
lel exact solver for phylogenetic tree reconstruction using maximum
parsimony,” in Parallel Processing, 2006. ICPP 2006. International
Conference on. 1EEE, 2006, pp. 65-73.

D. L. Swofford, “PAUP*: phylogenetic analysis using parsimony, ver-
sion 4.0b10,” 2011.

A. Varn, L. S. Vinh, and W. C. Wheeler, “POY version 4:
phylogenetic analysis using dynamic homologies,” Cladistics, vol. 26,
no. 1, pp. 72-85, 2010. [Online]. Available: http://dx.doi.org/10.1111/
j-1096-0031.2009.00282.x

J. M. Richer, A. Goéffon, and J. K. Hao, “A memetic algorithm for
phylogenetic reconstruction with maximum parsimony,” Lecture Notes
in Computer Science, vol. 5483, pp. 164-175, 2009.

J.-M. Richer, E. Rodriguez-Tello, and K. Vazquez-Ortiz, “Maximum
parsimony phylogenetic inference using simulated annealing,” in
EVOLVE - A Bridge between Probability, Set Oriented Numerics, and
Evolutionary Computation II, ser. Advances in Intelligent Systems
and Computing, O. Schtze, C. A. Coello Coello, A.-A. Tantar,
E. Tantar, P. Bouvry, P. Del Moral, and P. Legrand, Eds. Springer
Berlin Heidelberg, 2013, vol. 175, pp. 189-203. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-31519-0_12

P. A. Goloboff, J. S. Farris, and K. C. Nixon, “TNT, a free program for
phylogenetic analysis,” Cladistics, vol. 24, no. 5, pp. 774786, 2008.

C. C. Ribeiro and D. S. Vianna, “A GRASP/VND heuristic for the
phylogeny problem using a new neighborhood structure,” International
Transactions in Operational Research, vol. 12, no. 3, pp. 325-338,
2005.

N. Mladenovi¢ and N. Hansen, “Variable neighborhood search,” Com-
puters and Operations Research, vol. 24, pp. 1097-1100, 1997.

P. Hansen and N. Mladenovic, Metaheuristics, Advances and Trends in
Local Search Paradigms for Optimization, edited by s. voss et al. ed.
Kluwer Academic Publishers, Dordrecht, 1999, ch. An introduction to
variable neighborhood search, pp. 433-458.

M. W. Chase, D. E. Soltis, R. G. Olmstead, D. Morgan, D. H. Les,
B. D. Mishler, M. R. Duvall, R. A. Price, H. G. Hills, Y.-L. Qiu,
K. A. Kron, J. H. Rettig, E. Conti, J. D. Palmer, J. R. Manhart,
K. J. Sytsma, H. J. Michaels, W. J. Kress, K. G. Karol, W. D. Clark,
M. Hedren, B. S. Gaut, R. K. Jansen, K.-J. Kim, C. F. Wimpee, J. F.
Smith, G. R. Furnier, S. H. Strauss, Q.-Y. Xiang, G. M. Plunkett, P. S.
Soltis, S. M. Swensen, S. E. Williams, P. A. Gadek, C. J. Quinn, L. E.
Eguiarte, E. Golenberg, G. H. Learn, S. W. Graham, S. C. H. Barrett,
S. Dayanandan, and V. A. Albert, “Phylogenetics of seed plants: An
analysis of nucleotide sequences from the plastid gene rbcl,” Annals
of the Missouri Botanical Garden, vol. 80, no. 3, pp. 528-580, 1993.
[Online]. Available: http://spectrum.library.concordia.ca/6741/

D. F. Robinson and L. R. Foulds, “Comparison of phylogenetic trees,”
Mathematical Biosciences, vol. 53, pp. 131-147, 1981.

Y. Lin, V. Rajan, and B. M. E. Moret, “A metric for phylogenetic
trees based on matching,” IEEE/ACM Transactions on Computational
Biology and Bioinformatics, vol. 9, no. 4, pp. 1014-1022, 2012.

