Comparative Study of Different Memetic
Algorithm Configurations for the Cyclic
Bandwidth Sum Problem

Eduardo Rodriguez-Tello! [0000-0002—0333-0633] ' y/a]entina,
Narvaez-Teran![0000-0008-2071-9568] 24 Fréderic Lardeux2[0000-0002-0907-7856]

1 CINVESTAV - Tamaulipas.
Km. 5.5 Carretera Victoria-Soto La Marina, 87130 Victoria Tamps., Mexico
{ertello, mnarvaez}@tamps.cinvestav.mx
2 LERIA, Université d’Angers. 2 Boulevard Lavoisier, 49045 Angers, France
frederic.lardeuxQuniv-angers.fr

Abstract. The Cyclic Bandwidth Sum Problem (CBSP) is an NP-Hard
Graph Embedding Problem which aims to embed a simple, finite graph
(the guest) into a cycle graph of the same order (the host) while mini-
mizing the sum of cyclic distances in the host between guest’s adjacent
nodes. This paper presents preliminary results of our research on the
design of a Memetic Algorithm (MA) able to solve the CBSP. A total of
24 MA versions, induced by all possible combinations of four selection
schemes, two operators for recombination and three for mutation, were
tested over a set of 25 representative graphs. Results compared with re-
spect to the state-of-the-art top algorithm showed that all the tested MA
versions were able to consistently improve its results and give us some
insights on the suitability of the tested operators.

Keywords: Cyclic Bandwidth Sum Problem - Memetic Algorithms -
Graph Embedding Problems

1 Introduction

Graph Embedding Problems (GEP) are combinatorial problems which aim to
find the most suitable way to embed a guest graph G into a host graph H [3, 5].
An embedding is a labeling of the vertices of G by using the vertices of H.
The Cyclic Bandwidth Sum Problem [2] can be formally defined as follows. Let
G = (V, E) be a finite undirected (guest) graph of order n and C,, a cycle (host)
graph with vertex set |Viz| = n and edge set Ep. Given an injection ¢ : V' — Vi,
representing an embedding of G into C,, the cyclic bandwidth sum (the cost)
for G with respect to ¢ is defined as:

Chs(G,p) = Y lp(u) =)l (1)

(u,v)EE

where |z|, = min{|z|, n — |z|} (with 1 < |z] < n — 1) is called the cyclic
distance, and the label associated to vertex u is denoted (u).

2 E. Rodriguez-Tello, V. Narvaez-Teran and F. Lardeux

Then, the CBSP consists of finding the optimal embedding ¢*, such that
Cbs(G, ¢*) is minimum, i.e., * = argmin,c45{Chs(G,)} with @ denoting the
set of all possible embeddings.

The CBSP is an NP-Hard problem originally studied by Yuang [16]. Most
of the work reported in the literature has focused on theoretical research about
calculating (or at least approximating) the optimal solution for some well-known
graph topologies. Some of the topologies addressed by the reported exact for-
mulas [2] are paths, cycles, wheels, k-th powers of cycles and complete bipar-
tite graphs. For the Cartesian products of two graphs (when those graphs are
paths, cycles or complete graphs) upper bounds have been reported in [9]. The
relation of the CBSP with the Bandwidth Sum Problem® (BSP) was also stud-
ied [2]. Given the relevant applications of this problem on VLSI designs [1, 15],
code design [7], simulation of network topologies for parallel computer sys-
tems [12], scheduling in broadcasting based networks [11], signal processing over
networks [6] and compressed sensing in sensor networks [10], it has recently
caught attention in the combinatorial optimization and operation research ar-
eas.

Theoretical formulations are useful to estimate optimal values, but they say
little about how to algorithmically construct optimal embeddings, or at least
near optimal solutions. This resulted in the development of two approximated
algorithms devised to solve the CBSP: General Variable Neighborhood Search
(GVNS) [14] and a greedy heuristic denominated as MACH [6].

GVNS algorithm applies Reduced Variable Neighborhood Search (RVNS)
to improve its initial solution, which consist of a lexicographical embedding.
The properly said GVNS phase includes six perturbation operators and two
neighborhoods. When dealing with path, cycle, star and wheel topologies of
order n < 200 GVNS was able to achieve optimal results as well as solutions
under the theoretical upper bounds for Cartesian products of order n < 64 and
graphs of the Harwell-Boeing collection of order n < 199.

MACH is a two phase greedy heuristic algorithm. In the first phase the guest
graph G is partitioned into disjoint paths by a depth first search mechanism
guided by the Jaccard index [8] as a similarity criterion between vertices. Since
Jaccard index measures the similarity between vertices neighborhoods, vertices
with common neighbors are likely to be included near each other in the same
path. In the second phase a solution is incrementally built up by merging the
paths. The longer path is added to the solution, then a greedy strategy is imple-
mented to determine where in the partial solution the remaining paths should be
inserted. It was experimentally shown that MACH consistently improves the so-
lution quality achieved by GVNS, as well as the running time. Therefore, MACH
is currently considered as the best-known algorithm to solve the CBSP.

Our approach consists in studying a combination of genetic and local search
inspired operators implemented into a Memetic Algorithm to solve the general
case of the CBSP. We worked with four selection schemes, two recombination

3 BSP is the problem of embedding a graph into a path while minimizing the sum of
linear distances between embedded vertices.

Comparative Study of Different MA Configurations for the CBSP 3

mechanisms, three mutation schemes and one survival strategy. The 24 possible
combinations of operators (MA versions) were duly tested.

Our experiments over a set of 25 topologically diverse representative instances
allowed us to obtain significantly improved results with respect to the state-of-
the-art top algorithm. We also obtained some insights about the effectiveness of
some of the tested operators for helping solving the CBSP.

The rest of this work is organized as follows. MA main routine and operator
implementations are described in Sect. 2. Our experimental methodology and
the results of the comparisons among the 24 implemented MA versions with
respect to the literature results are shown and discussed in Sect. 3. Finally, the
conclusions of this work and further research directions are presented in Sect. 4.

2 Memetic Algorithms for the CBSP

Algorithm 1 describes the main framework common to all our MA versions.
Population P contains p individuals. At each generation we chose from P couples
of individuals for recombination by crossover. Then, the resulting individuals
are mutated and extra perturbations of their chromosomes are performed by
inversion. Local search is applied only to the best individual P4 in the surviving
population P, in order to accelerate the computational time expended in each
generation. Furthermore, as it is described in Sect. 2.4, the mutation operators
also incorporate certain local search operations.

Although o” is the individual added to the offspring population O, we also
compare the fitness corresponding to previous states of its chromosome (o and o')
with the best historically found solution g, in order to avoid losing any possible
improvement, even if o and o’ are not actually in O. The historically best found
solution record g is kept independently of the populations P and O.

2.1 Solution Encoding and Initialization

The potential solutions were turned into chromosomes by the permutation en-
coding. An individual is represented as P; = (¢;, pi, f;) where ¢; and p; are two
representations of the same embedding: ¢;(u) stands for the label associated to
vertex u (i.e., the vertex in the host graph associated to vertex u). p;(u’) de-
notes the vertex in G having the label u’ (i.e., the vertex hosted in vertex u’);
and f; = f(pi, G) is the fitness of the individual assessed by the fitness func-
tion which corresponds to (1). Whenever a change occurs in ¢; it is reflected in
p; and vice-versa. All individuals in population P are initialized by the assign-
ment of random permutations to their chromosomes. With exception of insertion
mutation, all of our operators work primarily over ;.

2.2 Selection

We will denote S as a multiset containing the individuals for mating. Since we
use the Cbs values as fitness values and CBSP is a minimization problem, the
individuals with lower Cbs values are actually the fittest ones. Therefore, in the

4 E. Rodriguez-Tello, V. Narvaez-Teran and F. Lardeux

Algorithm 1: Memetic Algorithm
1: P < initializePopulation(P,)

2: 0«0

3:t+1

4: g < Prest

5: repeat

6: fori¢<«1topdo

7: P,, Py + selection(P)

8: o0 + crossover(P,, Py, prob.)
9: o’ + mutation(o, prob,)
10: 0" + inversion(o’, prob;)
11: O« OuUo”

12: g <« fitter individual among current g, o, o’ and o”
13: end for
14: P « survival(P, O)
15: O« 0

16: Pyest < localsearch(Ppest, tries)

17: g + fitter individual among current g and Phpest
18: until stop criterion is met

19: return g

case of stochastic and roulette selections we performed a min-max normalization
of the fitness values. Then, for each individual its expected value was calculated
based on its normalized fitness.

Stochastic selection is performed by adding to S as many copies of each
individual as the integer part of its expected value indicates. Then, the floating
point parts are used to probabilistically determine whether or not to add an
additional copy.

In roulette selection the expected values serve as an indicator of the size of the
section corresponding to each individual in the roulette. We pick 2y individuals
by spinning the roulette 2p times. The higher the expected values, the bigger
the section and the higher chances for the individual to be chosen.

Random selection is rather simple, it just picks 2y individuals from P, with
replacement. Binary tournament performs 2u tournament rounds. At each round
the individual with the lower Cbs value is chosen. So, when implementing random
or binary tournament selections there is neither need for normalization nor for
expected values.

2.3 Crossover

Two permutation specialized crossover operators were implemented: cyclic [13]
and order-based crossover [4]. An offspring is created as follows. First, a couple
of individuals from S is picked with replacement. Each couple can produce only
one offspring. It is probabilistically decided if this individual is created by re-
combination, with probability prob., or if it is a copy of the fitter individual in
the selected couple.

Comparative Study of Different MA Configurations for the CBSP 5

Cyclic crossover operates by computing the cycles between both parent chro-
mosomes. The individual inherits, alternately, one cycle from one of the parents
and one from the other. By doing this, the operator produces a new permutation
in which the absolute positions of each of its genes is preserved with respect to
one of the parents, and therefore implicit mutations are avoided.

Order-based crossover picks a random segment of genes from one parent in-
dividual and inherits it directly to the offspring. Then, the rest of genes of the
offspring are assigned in the same order as they appeared in the other parent.
This operator balances the preserving of absolute positions of the permutation
elements and their relative order. It introduces implicit mutations, but within a
limited scope.

2.4 Mutation

Keeping the population diverse is necessary to avoid premature convergence.
Diversification is provided by mutation, introducing new genetic material into
the population. Mutation works by probabilistically altering some of the genes
of an individual. We tested three existing mutation schemes for permutations:
insertion, reduced 3-swap and cumulative swap.

Insertion mutation operates over p; (see Sect. 2.1). By manipulating p;, in-
sertion models the process of reallocating the guest vertex embedded at the host
vertex u’ to the vertex v’, while displacing the embedded vertices between 1’ and
v’. Both host vertices v’ and v’ are randomly chosen. Given the cyclic nature of
the embeddings for the CBSP, there are actually two sections of vertices that
can be considered to be the section in between u' and v’: one section implies
clockwise displacements and the other counterclockwise displacements. The in-
sertion mutation will affect only the smaller section, i.e., the one with fewest
vertices, which corresponds to the minimum length path between u’ and v’ in
C,,. Figure 1 illustrates this by representing p; as a cyclic permutation in order
to reflect the cyclic nature of the embedding it encodes. As it can be inferred,
any change in p; must be properly reflected in ¢; by updating the labels, i.e.,
host vertices of the guest vertices embedded in the affected section.

Reduced 3-swap mutation picks three random vertices. The labels of those
nodes are exchanged in every possible way, giving as a result five new solutions.
The individual is then replaced by the best of those solutions, even if its fitness
is worse than the current one. This can be seen as a subneighborhood from the
3-swap neighborhood, i.e., all solutions at Hamming distance equal to three from
the current solution.

Cumulative swap performs n/2 iterations (steps). At each iteration, with
probability prob. a pair of random vertices is picked. It is evaluated if the fitness
of the individual would be improved by exchanging the labels of those vertices. If
s0, the labels are actually exchanged. Cumulative swap can be seen as a random
up-hill walk of limited length.

One of the differences in the application of one or other mutation scheme is
the role of the mutation probability prob,,. In the case of reduced 3-swap and
insertion, the mutation probability acts at individual level, i.e., it is decided only

6

7 ~ — 5
6

(a) Counterclockwise dis-
placements for v’ = 5 and
v =09.

E. Rodriguez-Tello, V. Narvaez-Teran and F. Lardeux

1
10/ ™

(b) Clockwise displace-
ments for v = 5 and
v =09.

7 5

~— —
6 6

(c) Clockwise displace- (d) Counterclockwise dis-
ments for v/ = 9 and placements for ' = 9 and
v =5. v =5.

Fig. 1. Insertion mutation. Numbers represent the vertices of permutation p;. Example
in Fig. 1(a) corresponds to counterclockwise insertion when u’ < v’, performing 5 steps.
Also for u’ < v’, clockwise insertion will perform 7 steps, as shown in Fig. 1(b), therefore
counterclockwise insertion is preferred. For ' > v’, clockwise insertion will perform 5
steps, while 7 steps will be required by counterclockwise insertion.

once per generation if an individual will be mutated or not. Meanwhile, in cumu-
lative swap little probabilistic mutations occur up to n/2 times per individual.
From this follows that, when using insertion or reduced 3-swap mutations some
individuals will remain unchanged, approximately 1 — prob,, - 4. The mutated
individuals will present variable size mutations in the case of insertion, and uni-
form size mutations (exactly 3) in the case of reduced 3-swap. In cumulative swap
it is likely that all individuals will mutate, but the amount of genes affected will
vary within the population.

2.5 Inversion

The inversion phase is independent of the mutation one. In a similar way to
the reduced 3-swap and insertion mutations, it is probabilistically applied at
individual level, so some individuals could remain unchanged. Given the nature

Comparative Study of Different MA Configurations for the CBSP 7

1 1

10 2 10 2
9 3 9 3
8 4 8 4
7 5 7 5
6 6
(a) Clockwise inversion. (b) Counterclockwise inver-
sion.

Fig. 2. Inversion over ¢;, numbers represent the permutation labels. In Fig. 2(a) a
clockwise inversion between vertices u = 10 and v = 4 would perform two exchanges
of labels. Figure 2(b) shows the respective counterclockwise inversion which performs
three exchanges of labels, therefore clockwise inversion is preferred.

of this operator, the number of changed genes in the affected individuals will
be variable. Inversion operator consists in selecting two random vertices, and
reversing the order of appearance of the labels in the section between them
(inclusively). This is achieved by consecutive exchanges in the ¢; representation.
In Fig. 2, ¢, is represented as a cyclic permutation to illustrate this process.
Similarly to insertion, the cyclic feature of CBSP embeddings is considered,
and inversion can operate clockwise or counterclockwise, preferring always the
option implying the minimal number of exchanges.

2.6 Survival Strategy

The survival strategy applied was (1 + A). All individuals in populations P and
O are merged and sorted in nondecreasing order according with their fitness
values. Then, the first 4 individuals are chosen to become the parent population
P for the next generation.

2.7 Local Search

Local search is applied only to the best individual in the survivor population.
The neighborhood employed was the one induced by the 2-swap operator, i.e., all
solutions resulting from swapping the labels of two vertices in ¢;. It is visited in a
random order, using the first-improvement move strategy. The local search phase
ends when a local optimum is reached or after a maximal number of iterations
was performed (tries).

8 E. Rodriguez-Tello, V. Narvaez-Teran and F. Lardeux

Table 1. Input parameter values for the MA algorithms.

Parameter Value Parameter Value
Population size I 20 Inversion rate prob; 0.240
Crossover rate prob. 0.788 Local search iterations tries 10
Mutation rate prob, 0.543 Evaluation function calls T 4.0E4+08

3 Experimental Results

We experimented with the full set of 24 MA versions corresponding to all the
possible combinations of operators, with a maximal number (T') of calls to the
fitness function as stop criterion. A set of 25 topologically diverse and repre-
sentative instances (see Table 3) belonging to three different types was used:
Cartesian products, paths and cycles, and Harwell-Boeing graphs. All the MA
versions were tested using a fixed set of parameter values (Table 1) obtained
from the literature and from our a priori experiments using the irace R package
for automatized algorithm tunning. Details on this matter are no included here
due to the space limitations, but they are available online.*

For comparing the algorithms in terms of solution quality the overall relative
root mean square error (O-RMSE) was computed for R = 31 runs, with respect
to the best-known solutions for the |7| = 25 tested instances, see (2). Those
solutions were provided either by MACH or by any of our 24 memetic algorithms.
The O-RMSE among all instances t € T was calculated as:

1 2./ Chs,(t) — Cbs™ () \ 2
o-RMSE_mZmo% (Z(b)))/R, (2)

teT r=1

where Cbs,(t) is the best solution quality achieved by the algorithm at execution
r, and Cbs*(¢) is the best-known quality solution for instance t € 7. An O-RMSE
equal to 0% means the algorithm achieved the best known solution quality in
all the R executions, and therefore it is the preferred value.

We also performed statistical significance analysis by the following method-
ology. The normality of data distributions was evaluated by the Shapiro- Wilk
test. Bartlett’s test was implemented to determine whether the variances of the
normally distributed data were homogeneous or not. ANOVA test was applied
in the case variance homogeneity was present and Welch’s ¢t parametric tests on
the contrary. Meanwhile, Kruskal-Wallis test was implemented for non-normal
data. In all cases the significance level considered was 0.05.

In order to identify the combination of operators corresponding to the dif-
ferent memetic algorithms we assigned keys to the tested operators, then those
keys were used to construct a unique MA configuration identifier. The operator
keys are a) for selection: stochastic (S1), roulette (S2), random (S3) and binary
tournament (S4); b) for crossover: cyclic (C1) and order-based (C2); and c¢) for

4 http://www.tamps.cinvestav.mx/~ertello/cbsp-ma.php

Comparative Study of Different MA Configurations for the CBSP 9

Table 2. Results for the 24 MA tested versions.

Algorithm Op. configuration O-RMSE (%) Avg. ex. time (s) Gpest time (s)

1 MA-10 S2.C2_M1 5.297 87.434 19.886
2 MA-22 S4.C2_M1 5.637 87.133 20.623
3 MA-16 S3.C2.M1 5.854 86.427 19.954
4 MA-04 S1_.C2_M1 5.945 87.569 19.728
5 TMA-19 ¢ s4.Cc1m1 6.030 86.911 1 17.741
6 MA-13 S3.C1.M1 6.609 86.230 17.942
7 MA-07 S2.C1.M1 6.693 87.238 18.808
8 MA-01 S1_.C1_M1 6.715 87.339 18.587
9~ 7 TMA-05 = ¢ S1.C2.M2 10.022 T 85.434 % 21.414
10 MA-17 S3.C2_M2 10.065 84.391 23.983
11 MA-23 S4.C2_M2 10.237 85.064 22.840
12 MA-11 S2_C2_M2 10.583 85.353 22.958
13~ 7 TMA-14 ¢ S3.C1.mM2 T 10.626 84.556 ¢ 22.129
14 MA-02 S1.C1_M2 11.092 85.573 22.103
15 MA-08 S2_C1_M2 11.383 85.523 21.973
16 MA-20 S4_C1_M2 11.389 85.223 21.235
17~ TMA-06 ¢ S1.C2.mM3 12.749 ~ T T 97.562 % 24.883
18 MA-12 S2.C2_M3 12.872 97.463 24.396
19 MA-18 S3.C2.M3 13.182 96.630 23.779
20 MA-24 S4.C2_M3 13.449 97.210 25.685
21~ TMA-09 ¢ S2.C1.mM3 T 14.116 97.191 = % 23.832
22 MA-03 S1_C1_M3 14.285 97.305 23.219
23 MA-21 S4.C1.M3 15.067 96.952 22.853
24 MA-15 S3.C1.M3 15.077 96.377 24.367
25 MACH N/A 21.050 2.09 N/A

mutation: insertion (M1), reduced 3-swap (M2) and cumulative swap (M3). Since
all versions consider only (1 4 \) as survival strategy there is no need to assign
a key for it.

Table 2 presents our algorithms ranked according to their performance in
terms of solution quality. MACH, which ranked last after all the MA, is also
included as reference. Table 2 includes the rank of the algorithm (#), the con-
figuration of genetic operators, the associated O-RMSE value, the average total
running time (in seconds) and the average time in which the reported best found
solution was reached by the algorithm. Since MACH is a constructive approach,
only its average total time is reported.

The results in Table 2 suggest that the recombination and mutation schemes
are more decisive than the selection, since the former operators induce the most
remarkable grouping, indicated by the dashed lines. Despite algorithms includ-
ing order-based crossover being better performing than their counterparts imple-
menting cyclic crossover, it is the mutation operator the one having the higher
influence over the final solution quality reached by the MA. Focusing on O-RMSE
values, we found that the wider performance gap (of almost 5% O-RMSE) is ob-
served between the algorithms implementing insertion mutation (M1) and the
rest, while the gap between cyclic crossover (C1) or order-based crossover (C2)
rarely surpasses 1%. From Table 2 it can be inferred that the top 3 MA con-
figurations are quite similar in solution quality, total running time and time to
find their best solution. The statistical significance analysis showed that, for the
instance set being tested, our top 3 MA configurations are statistically indis-

10 E. Rodriguez-Tello, V. Narvaez-Teran and F. Lardeux

tinguishable from each other in terms of solution quality. This is not surprising
since they differ only in the selection scheme. Moreover, the three of them are
able to provide better solutions than MACH. Even the worst performing of our
MA versions (MA-15) can provide better solutions than MAcCH. MA-15 has a
O-RMSE value of 15.077%, meanwhile the O-RMSE of MACH surpasses 20%.

Although all the Memetic Algorithms take longer time than MACH, it is
worth noting that MACH solution quality cannot be improved by employing a
longer running time. It is also observable that all of our algorithms stopped
finding improving solutions at an early stage of their total running time. Since
there are some instances for which the optimal solutions or upper bounds were
not always reached, this may be an indicator of premature convergence. While
mutation and inversion are diversification mechanisms their effect may be diluted
by the survival strategy. Once a locally optimal individual is reached, it will
remain in the population in next generations and its genes are likely to keep
proliferating in the population, until a fitter individual appears. Meanwhile, the
less fit individuals will disappear from the population and diversity may be lost
in preference of individuals becoming (probably) a locally optimal solution.

Table 3 presents the results of MA-10, the one with the best performance,
compared with the state of the art. Only MACH is considered for the comparison,
since it has been experimentally shown better than GVNS [6]. For each of the
25 instances in the set we present its number of vertices (|V]), number of edges
(|E]), density (d = 2|E|/|V|(]V|—=1)) and value of the optimum or upper bound
(UB/Opt*). Those values were assessed according to the graph topology: upper
bound formula for the Cartesian products [9]; optimal value formula (marked by
the symbol *) for path, cycle, wheel and k-th power of cycle topologies [2, 9],
and the general graph upper bound formula [9] for the Harwell-Boeing graphs.

Our best MA is compared to MACH [6], including the minimal of the solution
cost values (Best) found among 31 executions, average and standard deviation
of the those values (Std), and average time to reach the reported solutions. The
last column (MA-10/MACH) corresponds to the result of the statistical signifi-
cance test performed. Instances where MA-10 results present improvements with
statistical significance with respect to those achieved by MACH are indicated by
the 4+ symbol, meaning a wvictory for MA-10. The contrary case, a defeat for
MA-10, is marked with the — symbol. Results with no statistical significant
difference are counted as ties and marked with the * symbol. The best known
solution for each instance is highlighted in bold.

For most of the tested instances MA-10 is able to consistently produce sig-
nificantly better solutions with respect to those furnished by MACH. Our only
defeats correspond to graphs for which M ACH is specially suitable to solve: highly
regular topologies with low densities, such as cycles and paths. However, MA-10
shows dominance for regular topologies with growing densities (see Cartesian
products) and more general graphs, such as Harwell-Boeing graphs. It is also
noticeable that our algorithm reached solutions with CBS values under the the-
oretical upper bounds (or equal to the optimal know values) for all instances.

Comparative Study of Different MA Configurations for the CBSP 11

Table 3. Performance comparison of our best performing MA (MA-10), with respect
to the state-of-the-art method.

UB/ Mach MA-10 (S2.C2_M1) MA-10

Graph VI |E] d Opt* Best Avg Std T Best Avg Std T /MACH
p9p9 81 144 0.04 720 944 1254.77 183.07 0.00 516 585.68 96.65 3.51 +
c9c9 81 162 0.05 873 991 1283.65 131.95 0.01 873 961.52 85.73 6.30 +
p9c9 81 153 0.05 7434 794 794.00 0.00 0.00 745 805.81 73.38 5.62 *
p9k9 81 396 0.12 7362 1728 1728.00 0.00 0.01 1728 1728.00 0.00 1.13 *
c9k9 81 405 0.13 7434 1809 1809.00 0.00 0.01 1809 1809.00 0.00 0.68 *
k9k9 81 648 0.20 8370 9454 9533.32 43.63 0.02 8280 8605.81 270.05 21.87 +
‘path100 100 99 0.02 99 99 99.00 0.00 000 99 99.00 0.00 7.48
cyclel00 100 100 0.02 100* 100 100.00 0.00 0.00 100 144.65 56.29 5.13 -
wheell00 100 198 0.04 2600* 2600 2600.00 0.00 0.01 2600 2633.42 45.94 11.71 -
cPow100-10 100 1000 0.20 5500* 5598 5703.74 68.71 0.04 5500 5500.00 0.00 11.89 +
cPow100-2 100 200 0.04 300* 300 302.52 2.42 0.00 300 385.16 155.97 5.16 *
‘can24 24 68 0.25 425 220 255.03 16.01 001 182 182.00 0.00 0.8 +
ibm32 32 90 0.18 743 493 540.35 22.94 0.01 405 411.84 8.18 1.84 =+
bespwr01 39 46 0.06 460 102 115.58 8.53 0.01 98 102.58 5.82 4.80 +
besstk01 48 176 0.16 2156 1157 1339.74 111.74 0.02 936 954.45 13.43 21.32 +
bespwr02 49 59 0.05 737 158 176.23 20.03 0.02 148 151.94 5.93 10.53 +
curtis54 54 124 0.09 1705 448 633.61 89.46 0.03 411 422.90 20.66 8.54 +
will57 57 127 0.08 1841 408 436.55 45.42 0.04 335 345.29 21.55 0.60 +
impcol_b 59 281 0.16 4215 2462 2838.13 242.00 0.07 1822 1829.74 9.90 0.16 +
ash85 85 219 0.06 4708 1232 1422.16 142.17 0.14 919 1036.58 89.64 22.89 +
nos4 100 247 0.05 6237 1181 1397.48 222.87 0.07 1031 1031.00 0.00 6.03 +
bespwr03 118 179 0.03 5325 766 926.90 76.74 0.25 664 713.19 53.72 14.67 +
can_292 292 1124 0.03 82333 23288 25703.48 1678.87 7.13 15763 18982.10 2148.92 75.81 +
besstk06 420 3720 0.04 391532 65017 84469.87 8027.79 30.83 55140 67875.65 10377.12 177.82 +
impcol_d 425 1267 0.01 134935 25677 35355.19 4596.68 13.48 12232 15932.90 3170.52 71.47 +

Note: The overall winner MA-10 scored 18 victories (+), 2 defeats (—), and 5 ties (x).

4 Conclusions and Future Work

A set of 24 different MA configurations for solving the CBSP was evaluated. The
experiments presented revealed that the top three MA configurations, which are
statistically indistinguishable from each other, can provide significantly better
results than MACH [6] for 18 out of 25 tested instances. Furthermore, the best MA
version (MA-10) achieved optimal results for the 5 instances with known exact
solution values. For the remaining 20 instances with unknown exact optimal
values, MA-10 was able to establish 18 new upper bounds and to equal 2 other.

Confirming the presence of premature convergence in our MA, as well as iden-
tify its causes, are certainly interesting future research topics. Exploring other
alternatives for the survival strategy, as well as using MACH as an initialization
operator, could be promising directions to improve the performance our MA. It
is also interesting to consider the implementation of automatic schemes allowing
the algorithm to self-adapt its own operators, instead of defining them from the
beginning of the search.

Acknowledgments. The second author acknowledges support from CONACyT
through a scholarship to pursue graduate studies at CINVESTAV-Tamaulipas.

12 E. Rodriguez-Tello, V. Narvaez-Teran and F. Lardeux
References
1. Bhatt, S.N., Leighton, F.T.: A framework for solving VLSI graph layout

10.

11.

12.

13.

14.

15.
16.

problems. Journal of Computer and System Sciences 28(2), 300-343 (1984).
https://doi.org/10.1016,/0022-0000(84)90071-0

Chen, Y., Yan, J.: A study on cyclic bandwidth sum. Journal of Combinatorial
Optimization 14(2), 295-308 (2007). https://doi.org/10.1007/s10878-007-9051-y
Chung, F.R.K.: Labelings of graphs. In: Beineke, L.W., Wilson, R.J. (eds.) Selected
Topics in Graph Theory, vol. 3, chap. 7, pp. 151-168. Academic Press (1988)
Davis, L.: Applying adaptive algorithms to epistatic domains. In: Proceedings of
the 9th IJCAL vol. 1, pp. 162-164. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA (1985)

Diaz, J., Petit, J., Serna, M.: A survey of graph layout problems. ACM Computing
Surveys 34(3), 313-356 (2002). https://doi.org/10.1145/568522.568523

Hamon, R., Borgnat, P., Flandrin, P., Robardet, C.: Relabelling vertices according
to the network structure by minimizing the cyclic bandwidth sum. Journal of
Complex Networks 4(4), 534-560 (2016). https://doi.org/10.1093/comnet/cnw006
Harper, L.: Optimal assignment of numbers to vertices. Journal of SIAM 12(1),
131-135 (1964). https://doi.org/10.1137/0112012

Jaccard, P.: The distribution of the flora in the alpine zone. New Phytologist 11(2),
37-50 (1912). https://doi.org/10.1111/j.1469-8137.1912.tb05611.x

Jianxiu, H.: Cyclic bandwidth sum of graphs. Applied Mathematics - A Journal of
Chinese Universities 16(2), 115-121 (2001). https://doi.org/10.1007/s11766-001-
0016-0

Li, Y., Liang, Y.: Compressed sensing in multi-hop large-scale wireless sen-
sor networks based on routing topology tomography. IEEE Access (2018).
https://doi.org/10.1109/ACCESS.2018.2834550

Liberatore, V.: Multicast scheduling for list requests. In: Proceed-
ings of the 2lst Annual Joint Conference of the IEEE Computer
and Communications Societies. vol. 2, pp. 1129-1137. IEEE (2002).
https://doi.org/10.1109/INFCOM.2002.1019361

Monien, B., Sudborough, I.H.: Embedding one interconnection network in another,
vol. 7, pp. 257-282 (1990). https://doi.org/10.1007/978-3-7091-9076-0_13

Oliver, I., Smith, D., Holland, J.: A study of permutation crossover operators on the
traveling salesman problem. In: Proceedings of the 2nd International Conference
on Genetic Algorithms and Their Application. pp. 224-230. L. Erlbaum Associates
Inc., Hillsdale, NJ, USA (1987)

Satsangi, D., Srivastava, K., Gursaran: General variable neighbourhood search
for cyclic bandwidth sum minimization problem. In: Proceedings of the Students
Conference on Engineering and Systems. pp. 1-6. IEEE Press (March 2012).
https://doi.org/10.1109/SCES.2012.6199079

Ullman, J.D.: Computational Aspects of VLSI. Computer Science Press (1984)
Yuan, J.: Cyclic arrangement of graphs. Graph Theory Notes of New York, New
York Academy of Sciences pp. 6-10 (1995)

