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Abstract
Dynamic island models are population-based algorithms for solving optimization problems, where the individuals of the

population are distributed on islands. These subpopulations of individuals are processed by search algorithms on each

island. In order to share information within this distributed search process, the individuals migrate from their initial island

to another destination island at regular steps. In dynamic island models, the migration process evolves during the search

according to the observed performance on the different islands. The purpose of this dynamic/adaptive management of the

migrations is to send the individuals to the most promising islands, with regards to their current states. Therefore, our

approach is related to the adaptive management of search operators in evolutionary algorithms. In this work, our main

purpose is thus to precisely analyze dynamic migration policies. We propose a testing process that assigns gains to the

algorithms applied on the islands in order to assess the adaptive ability of the migration policies, with regards to various

scenarios. Instead of having one dynamic migration policy that is applied to the whole search process, as it has already been

studied, we propose to associate a migration policy to each individual, which allows us to combine simultaneously different

migration policies.

Keywords Adaptive operator selection � Adaptive evolutionary algorithms � Dynamic island model � Island models �
Migration policies

1 Introduction

Island models (IM) have been introduced in evolutionary

computation in order to avoid premature convergence in

population-based algorithms when solving optimization

problems (Whitley et al. 1998; Skolicki 2007). The main

idea of IM is to use a set of sub-populations instead of a

panmictic one, in order to improve the performance of the

evolutionary search process. IM are thus closely related to

parallel evolutionary computation (Luque and Alba 2011;

Melab et al. 2005). Each sub-population evolves indepen-

dently on each island and interacts periodically with other

islands by means of migrations (Ruciski et al. 2010). Note

that classic island models consider the same algorithm on

all islands and use migration of good individuals that are

duplicated from an initial island in order to disseminate

such individuals of high quality among other destination

islands.The impact of migration has been carefully studied

already by Luque and Alba (2010) and Lässig and Sudholt

(2013). Migrations may be actually used in order to rein-

force the most efficient islands (Skolicki and De Jong

2005; Gustafson and Burke 2006; Araujo et al. 2009). Note

that the impact of the frequency of migrations has been also

studied more recently by Mambrini and Sudholt (2014).

One may be interested in assessing the global convergence

by evaluating two complementary aspects: (1) converge on

each island (e.g., the ability to obtain the best individuals

on all islands using for instance the notion of takeover

time; Rudolph 2000; Luque and Alba 2010) and (2) ensure

a good global diversity to avoid sub-populations from

getting stuck in local optima and finally reach a global
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optimum (e.g., using specific problems, difficult to handle

with a single panmictic population; Lässig and Sudholt

2010).

1.1 Context

Classically, in the above-mentioned research, islands

models use the same algorithm on each island and the

islands differ only by their populations. Lardeux and

Goëffon (2010) proposed to consider different algorithms

on the islands—restricted in fact to a basic evolutionary

algorithm with only one variation operator—and to define

dynamic migration policies. In this approach, called

Dynamic Island Models (DIM), migration probabilities are

modified during the evolutionary process according to the

impact of previous analogue migrations, by means of a

learning process. Moreover, migrations are performed after

each iteration of the algorithms on the islands. Compared

to classic island models DIM has indeed been related to

adaptive operator selection (AOS) techniques for evolu-

tionary algorithms (Da Costa et al. 2008) since only one

operator is used on each island. DIM should be able to

identify a subset of islands that are currently the most

suitable for improving individuals. It should also quickly

react to changes when other operators become more effi-

cient. Therefore, DIM has been compared to other classic

operator selection mechanisms by Candan et al. (2012).

Remark that this approach is also related to the Bucket

Brigade Algorithms introduced in the context of classifi-

cation (Wilson and Goldberg 1989). In particular the work

of Dorigo (1991) handles the apportionment of credit

problem with such techniques.

1.2 Contributions

The purpose of this paper is to carefully study different

configurations of the DIM with dynamic migration poli-

cies, as well as their ability to adapt to changes during the

search process. Such changes occur when this search pro-

cess explores different areas of the search space. Therefore,

the basic search operators (or heuristics) may become more

or less efficient according to the current state of the search.

Considering the case where each island may use its own

specific search algorithm, we propose here different testing

scenarios in order to simulate the evolution of the search

efficiency on the islands. In such abstract scenarios, gains

are associated to operators of the island in order to reflect

their performances. Compared to previous testing scenarios

(see for instance Thierens 2005; Da Costa et al. 2008;

Candan et al. 2013), we consider here a gain matrix that

takes into account all possible interactions between oper-

ators, i.e., the efficiency of an operator applied on a given

individual may depend on the previous operators applied

on it. This is motivated by the fact that, in search processes,

such complementary dependencies may occur between

operators that intensify the search and operators that

achieve diversification in order to escape from local

optima. Similar complementarity may be observed when

using local search operators that involve different neigh-

borhoods. We consider in this work two types of scenarios:

fixed and dynamic. The dynamic scenarios employed are

designed to reflect different possible search processes.

Extending previous works (Lardeux and Goëffon 2010;

Candan et al. 2012, 2013) where the same dynamic

migration policy has been investigated, we propose here to

study several possible configurations of the DIM, by con-

sidering more possible components, including learning and

migration processes. Moreover, instead of having prede-

fined migration policies, we propose to attach different

policies to different individuals. This cooperative model

allows us to use simultaneously several migration policies

in order to benefit from their respective properties. Our

study highlights that DIM is efficient for tracking interac-

tions between islands. It also quickly react to efficiency

changes during the search.

1.3 Organization of the paper

This paper is organized as follows. Section 2 presents the

dynamic island model. Section 3 discusses how to measure

the efficiency of migration policies. The experiments are

presented in Sect. 4 and application to the NK-landscape

problem is proposed Sect. 5. Finally conclusions and future

research works are given in Sect. 6.

2 Dynamic island models

In this section we propose to generalize the definition of

dynamic island models proposed in Lardeux and Goëffon

(2010) by considering different possible options for the

main components of the algorithm that manage the

migration process. The purpose is to evaluate the respective

advantages of the resulting possible configurations.

A Dynamic Island Model (DIM) is defined by:

– its size n that corresponds to the number of islands.

– a set of islands I ¼ fi1; . . .; ing and a set of algorithms

A ¼ fa1; . . .; ang. Each algorithm ak is assigned to

island ik.

– a population P ¼
S

k21;...;n pk. Each subpopulation pk is

a subset (in fact a multiset) of individuals. Each

population pk is assigned to island ik. The size of the

entire population is fixed but the size of each pk may

change continuously according to the migrations. The

subpopulation obtained by applying one iteration of the
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algorithm ak over the subpopulation pk is referred to as

akðpkÞ.
– a topology given by an undirected graph ðI ;EÞ where

E � I � I is a set of edges between islands (here we

will consider a complete graph).

– a migration matrix M of size n� n with Mði; jÞ 2 ½0; 1�.
M(i, j) corresponds to the probability of migration of an

individual from island i to island j. At each iteration of

the algorithm described below, each individual

migrates from an initial island to a destination island

according to these probabilities. M is supposed to be

coherent with the topology, i.e., if ði; jÞ 62 E then

Mði; jÞ ¼ 0, M is the set of migration matrices.

– a migration policy P : I �M ! I permits to select a

destination island given an initial island and a migra-

tion matrix. This general notion of migration policy has

to be implemented by means of different functions in a

DIM algorithm.

Given a DIM, its computational behavior is described by

Algorithm 1.

Overview of the algorithm: At each iteration of Algo-

rithm 1, given an island ik, the process is the following: (1)

the corresponding algorithm ak is applied to the population

pk, (2) individuals migrate from this current island to other

island or possibly stay on the same island. The benefit of

the migrations are then computed by the reward function

and used in the learning function in order to update the

migration matrix M. The contents of the following sub-

section is:

– Section 2.1: basic components and data structures of

the algorithm, including the gain function used to

evaluate the performance of the islands.

– Section 2.2: reward function (line 11) that evaluates the

benefit of migrations. Two different functions are

proposed.

– Section 2.3: learning function (line 12) that uses

assigned rewards in order to update dynamically the

migration matrix M. Different learning mechanism are

presented.

– Section 2.4: different possible migration processes.

Using previous functions, the Migrate function (line

8) implements in fact the migration policy P as defined

above.

2.1 Components of the algorithm

Note that we rather aim at testing scenarios in order to

evaluate different possible settings of the DIM. Therefore,

we define a notion of gain associated to each algorithm

located on the islands. This gain simulates the effect of the

application of the algorithm on the individuals. For

instance, this gain can be the fitness improvement with

regards to a classic optimization problem. Of course, this

approach does not take into account the fact that the per-

formance of an algorithm a depends, most of the time, on

the semantics - phenotype and/or genotype - of the indi-

viduals in real problem. Nevertheless, such testing sce-

narios for EAs have been widely used for studying control

of operators (Thierens 2005; Da Costa et al. 2008) and are

indeed useful for evaluating general properties of these

adaptive control mechanisms.

Definition 1 (Gain and fitness of individuals) We consider

a function gain : A�N ! ½0; 1�, such that gain(a, t) cor-

responds to the improvement of an individual when pro-

cessed by the algorithm a at iteration t of the DIM.

Individuals may be abstracted by the sum of their succes-

sive obtained gains. For an individual s 2 pi at iteration t,

we define its value (fitness) as vðs; tÞ ¼ Rt
s¼1gainðasðsÞ; sÞ,

where sðsÞ is the island where s was located at iteration s.

The fitness of an individual is related to the successive

operators that have been applied to it. This generic gain

function model will be refined in Sect. 3.

The value R(i, j) of reward matrix R evaluates the

benefit (in terms of fitness improvement) of sending indi-

vidual from island i to island j. R is used to update the

migration matrix M by means of a reinforcement learning

based process. Note that R is initialized with 0 values.

M can be initialized with similar values for all M(i, j) cor-

responding to equal probabilities of migration for any pair

of islands.

Function best the best current individual of the whole

population is selected by the function bestðPÞ ¼ s�, where

s� ¼ maxs2P;t vðs; tÞð Þ.

Migration policies in dynamic island models 165

123



Stop conditions as is usual in the literature the algorithm

stops after a predefined limited number of iterations or

when a certain prefixed solution cost has been found in the

global population P.

In our approach, since M and R will be changed at each

iteration of the algorithm, let us denote MðtÞ and RðtÞ the

value of these matrices at iteration t of the algorithm.

2.2 Reward function

RðtÞði; kÞ corresponds to the reward assigned to individuals

that were on island i at iteration t � 1 and that have been

processed on island k at iteration t. We consider two pos-

sible reward functions for computing RðtÞði; kÞ

Elitist Reward:RðtÞði; kÞ ¼
1

jBj if k 2 B;

0 otherwise;

8
<

:
with

B ¼ argmax
k2f1;...;ng

ðfvðs; tÞ � vðs; t � 1ÞjsðtÞ ¼ k; sðt � 1Þ ¼ igÞ

where B is the set of the indices of the islands k where

individuals coming from i at iteration t � 1 have obtained

the best gain improvements at iteration t. Remind that

v(s, t) correspond to the fitness of individual s at iteration

t (Definition 1).

Average Reward :RðtÞði; kÞ ¼ Rs2Kmaxðvðs; tÞ � vðs; t � 1Þ; 0Þ
jKj ;

withK ¼ fs 2 p
ðtÞ
k jsðt � 1Þ ¼ ig

Note that K is the set of the individuals of the island k at

iteration t that were on island i at iteration t � 1. The fitness

improvement obtained on destination island i by individ-

uals coming from previous island k is computed by

maxðvðs; tÞ � vðs; t � 1Þ; 0Þ. Note that this improvement

belongs to interval [0, 1] in order to be compatible with

learning functions.

2.3 Learning function

2.3.1 Basic reinforcement learning function

The basic learning principle consists in sending more

individuals to the destination islands that have previously

improved individuals coming from the current island and

less to the destination islands that are currently less effi-

cient. The learning process is achieved by an adaptive

update of the migration matrix at iteration t, MðtÞ, per-

formed as:

Mðtþ1Þði; kÞ ¼ ð1 � bÞðaMðtÞði; kÞ þ ð1 � aÞRðtÞði; kÞÞ þ bNðtÞðkÞ

where NðtÞ is a stochastic noise vector and parameters a and

b are constant values in the interval [0, 1]. The parameter a
represents the importance of the knowledge accumulated

(inertia or exploitation) and b is the amount of noise, which

is necessary to explore alternative actions. The influence of

these parameters has been previously studied by Candan

et al. (2012).

2.3.2 QLearning based function

In this work, we introduce a classic QLearning (see Sutton

and Barto (1998) for more details) algorithm in order to

update the transition matrix. Compared to the previous

learning function, QLearning takes into account an esti-

mation of the future expected value that can be obtained

after a migration has been performed (i.e., examining next

destination j from k by using maxj, in case of k is selected

as destination from i).

Mðtþ1Þði; kÞ ¼ MðtÞði; kÞ þ dðRðtÞði; kÞ þ cmaxjM
ðtÞðk; jÞ �MðtÞði; kÞÞ

where d is the learning rate and c is a discount factor that

allows to control the importance of the estimated future

gains.

2.4 Migrate function

We consider four possible migration functions:

– Elitist migration: individuals from island i migrate to

the island j that has the highest value in row i of M, i.e.,

argmaxjM
ðtÞði; jÞ. Such migration policy promotes

intensification of the search process toward the most

efficient islands.

– Proportional migration: each individual s on island

i migrates according to a probability on the ith row of

MðtÞ. Note that M is normalized in order to insure good

probability properties (in particular the sum of the

value of a given line should be equal to 1).

– Uniform migration: individuals from island i randomly

migrate to the island j (uniform probability).

– Upper Confidence Bound (UCB) based migration: the

selection of the next possible migration can be consid-

ered as a reinforcement learning problem itself. There-

fore, we consider the destination island selection as a

multi-armed bandit problem (see Cesa-Bianchi and

Lugosi 2006 for instance)and we select the next

migration using the following formula:

UCBði; jÞ ¼ MðtÞði; jÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 logð
P

1� j� n nb
ðtÞ
i ðkÞÞ

nb
ðtÞ
i ðjÞ

v
u
u
t ls
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where nb
ðtÞ
i ðkÞ is the number of individuals that have

migrated from i to k at iteration t. Note that we use here the

migration matrix as an estimation of the gain that has been

obtained by previous migrations from i to other islands.

The island j with maximal UCB(i, j) value is selected for

next migration. Informally, UCB ensures a trade-off

between exploitation by choosing the best current desti-

nation j (i.e., greedy choice of the best value MðtÞði; jÞ) and

exploration of other possible destinations j (when j has

been less considered, the second term of the sum

increases).

2.5 Configurations of the DIM: setting the policy

While in previous works (Lardeux and Goëffon 2010;

Candan et al. 2012, 2013), the proposed DIM used a single

migration policy (i.e., choice of reward, learn and migrate

functions). In this work, we study different configurations

of the DIM in order to highlight their respective behaviors.

In particular we consider an alternative learning mecha-

nism based on QLearning, as well as alternative migration

functions. A configuration of the DIM defines indeed a

migration policy.

Instead of considering policies at the algorithm level, we

want to fully benefit from the collaborative model induced

by the DIM and we propose to link policies to individuals,

allowing thus the DIM to use simultaneously different

policies within the same search process. This is motivated

by the fact that the DIM is particularly well suited to the

management of collaborative policies. Moreover, we pre-

viously observed that different policies leads to different

search behavior and we propose here to check that coop-

eration may lead to better results.

We may first remarks that different migration functions

may be used in the same DIM while its is not possible to

use different Learn and reward functions at the same time

since they manage the matrices R and M differently,

involving incompatible update processes. Based on the

previously described components, we propose the follow-

ing taxonomy. A policy for a DIM will be described by a

tuple

ðtypel; typer; typemÞ

where

– typel corresponds to the type of learning functions (see

Sect. 2.3), typel 2 fC;Qg, (C)lassic or (Q)learning

– typer corresponds to the type of reward functions (see

Sect. 2.2), typer 2 fE;Pg, (E)litist or (P)roportional

– typer corresponds to composition of the population

concerning the migration functions (see Sect. 2.4) and

is a tuple (Elit, Prop, Unif, UCB) with

Elit;Prop;Unif ;UCB 2 ½0; 1�. n fact typer can be a

stochastic vector, satisfying that the sum of its compo-

nents is equal to 1. Nevertheless in the following, in

order to simplify the configurations, we choose to use a

discrete f0; 1g notation indicating that a migration

function is used or not. These possible migration

functions are then equally distributed on the individ-

uals. For instance, (1, 1, 0, 1) means that one third of

the individuals use elitist migration, one third use

proportional migration, and one third UCB based

migration. Of course, some ill-formed configurations

are not allowed, such as (0, 0, 0, 0).

Observe that we may consider here pure policies, i.e.,

policies that use only one type of individuals as well as

mixed policies were the migration policy is not the same

for all individuals. For instance, the policy

(C, E, (0, 1, 0, 0)) corresponds to the basic dynamic island

model that has been previously studied in Candan et al.

(2012, 2013).

Note that DIM migration policies have been previously

compared to adaptive selection operator policies based on

reinforcement learning technique, considering the adaptive

operator selection problem as a multi-armed bandit prob-

lem. These previous works (Goëffon et al. 2016; Candan

et al. 2012, 2013) have shown that DIM is an efficient

alternative to these approaches. In this paper, since we

consider gains that depend from previously visited island,

classic adaptive operator selection approaches, as fully

described by Maturana et al. (2012), are not efficient (as

we have checked experimentally). As baseline for com-

parisons, we consider the following policies:

– A myopic oracle (Oracle) which knows the hidden

matrix and selects, at iteration t þ 1, argmaxjH
ðtþ1Þði; jÞ

if action ai has been selected at iteration t.

– A uniform selection (U) that selects uniformly an

action at each iteration.

3 Assessing the efficiency of the policies

In this section, we focus on assessing the ability of a DIM

to dynamically select the most promising islands according

to the current state of the search. We want to assess that

migration policies are able to adapt to changes that may

occur during the search process, which will be simulated by

scenarios. In order to define these scenarios, we are par-

ticularly interested in two main aspects:

– introducing changes in the efficiency of the islands,

which corresponds to the fact that different exploration

and exploitation stages are usually required along a

search process, involving different search operators
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– taking into account dependencies between islands in

order to discover possible cooperative sequences,

which corresponds to the fact that, when using different

operators (e.g., metaheuristics or hyperheuristics), they

can be combined to achieved an efficient search (e.g.,

due to complementary effects). For instance, after

having reached a local optimum with a given search

operator, one may use another operator to escape from

this local optimum (e.g., using different neighborhoods

that correspond to different local move operators).

The purpose of this paper is to assess the efficiency of

different dynamic migration policies using scenarios that

simulate both above-mentioned aspects. Given a DIM, the

efficiency of the migration policy can be estimated

according to the fitness of the individuals that are generated

during the search process. As mentioned before, we use

here generic testing scenarios (i.e., not related to a specific

optimization problem) for assessing this efficiency.

Given a DIM and a time horizon T, the efficiency of its

migration policy is defined by the value obtained by its best

individual vðs�; TÞ after T iterations (see Definition 1). In

this context, an optimal policy corresponds to the best

sequence of applications of algorithms aið1Þ; . . .; aiðTÞ (that

also corresponds to the best visiting sequence of islands

ið1Þ; . . .; iðTÞ).
In order to assess the ability to adapt the migration

policy to changes, we introduce a hidden gain matrix that

defines a specific gain function.

Definition 2 (Hidden Gain Matrix) Given a DIM we

define a sequence of matrices HðtÞ of size jAj2, for each

iteration t, such that gainðak; tÞ ¼ HðtÞðj; kÞ if akðt�1Þ ¼ aj

(i.e., gain from j to k).

The gain obtained by algorithm ak depends on the

algorithm aj that has been previously applied to a given

individual. This general model allows us to take into

account dependencies between search operators that should

be used sequentially. Of course, H is not known by the

DIM. Note that while HðtÞ encodes gains, MðtÞ encodes

migration probabilities. Nevertheless, the accuracy of the

learning process will be easy to assess by comparing the

structures of H and M. Note that, for an individual s,

vðs; tÞ ¼ Rt
k¼2H

ðkÞðsðk � 1Þ; sðkÞÞ.
When solving real problems, the gains associated to the

application of the search operators are likely to change over

time. In order to simulate this behavior in our model, H will

be a dynamic in our experiments, with changing values

HðtÞ.
Moreover, in order to simulate the fact that search

operators can be often stochastic, we will consider two

different types of gains, extending Definition 2:

– fixed gain functions, where gainðak; tÞ is always equal

to the value HðtÞðj; kÞ as mentioned in Definition 2.

– probabilistic gain functions, where gainðak; tÞ ¼ 1

according to the probability defined by HðtÞðj; kÞ. For

this reason, the values of H will always belong to

interval [0, 1].

Therefore a scenario is fully defined by a sequence of

hidden matrices Hð0Þ, Hð1Þ; . . .;HðTÞ.

4 Experiments

The purpose of this section is to evaluate and to analyze the

respective performances of the different possible configu-

rations of the DIM, that implement different migration

policies, on various possible testing scenarios. According

to our evaluation methodology described in Sect. 3, we

consider both static and dynamic hidden gain matrices. The

goal is to provide representative scenarios, where interac-

tion between islands may be stable or may evolve during

the search process. Dynamic scenarios are defined by

alternating different matrices selected from a set of pre-

defined fixed matrices, at different change frequencies. We

use also Markov inspired scenarios in order to simulate a

search process that changes progressively and reach a

stable state after a given time. Remind that our main

motivation is to focus on the management of the migration

of individuals within the DIM, whose efficiency is assessed

by scenarios that take into account the benefit of visiting

the islands (and thus being processed by their corre-

sponding algorithms).

4.1 Fixed hidden matrices

We consider three basic 10 � 10 gain matrices A, B and

C. These matrix simulate situations with different types of

dependencies between islands. Based on A, B and C, we

define constant gain matrices or changing matrices. The

gains are illustrated on Fig. 1. The thickness of the arrows

from i to j is proportional to the associated gain HðtÞði; jÞ.
Of course, even if there is no edge between some islands,

migrations are possible but with a null gain HðtÞði; jÞ, which

means that no benefit is obtained by using the operator

j after the operator i (e.g., if operators have opposite or

incompatible effects).

– Matrix A has two possible gain paths of length 3 that

provide a total gain of 2, namely ð1 � 2 � 4 � 6Þ and

ð1 � 2 � 3 � 5Þ. Nevertheless, once reaching the end of

these paths , i.e., either island 6 or 5, one needs to

restart again from island 1 without any gain leading to a

total number of 4 migrations. Therefore, using one of
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these paths is suboptimal compared to a cycle ð1 �
2 � 4 � 1Þ whose gain is thus 1.7 but in only 3

migration steps. This matrix has been defined to check

if the policy is able to avoid being trapped into

suboptimal paths.

– Matrix B is introduced to checked that with only 3

efficient paths, the policy is able to identify shortest

gain paths (e.g., performing a cycle ð10 � 2 � 10Þ).
– Matrix C has a clear gain cycle ð2 � 10 � 9 � 8 � 7 �

5 � 2Þ with no null gain transition. However this cycle

is suboptimal compared to the optimal shortest cycle

ð2 � 10 � 7 � 5 � 2Þ.

4.2 Dynamic hidden matrices

In order to define a dynamic hidden matrix it is possible to

use a sequence of fixed matrices or to use a matrix based on

Markov chain transitions.

– Dynamic hidden matrix based on fixed matrices

(Hidden Dyn) In this model, we alternate the three

previous matrices A, B and C at defined time steps.

Given a change frequency FC and a time horizon T the

Hidden Dyn matrix can be defined as:

HðtÞ ¼ A if ðFC[ 1 ^ ðt div FCÞ mod 3 ¼ 0Þ or ðFC ¼ 1 ^ t mod 3 ¼ 1Þ
HðtÞ ¼ B if ðFC[ 1 ^ ðt div FCÞ mod 3 ¼ 1Þ or ðFC ¼ 1 ^ t mod 3 ¼ 2Þ
HðtÞ ¼ C if ðFC[ 1 ^ ðt div FCÞ mod 3 ¼ 2Þ or ðFC ¼ 1 ^ t mod 3 ¼ 0Þ

The previous three rules have been defined in order to

modify the gain model using the three previously defined

matrices A, B and C. Therefore, we define three possible

states according to the current iteration and a frequency of

change.

– Dynamic hidden matrix based on Markov chain

transitions (Hidden Markov) We use a Markov chain

transitions matrix (see Kemeny and Snell 1960) as

dynamic hidden gain matrix.

HMarkovð0Þ

¼

0:6 0:4 0 0 0 0 0 0 0 0

0 0:3 0:3 0 0:4 0 0 0 0 0

0:2 0 0:8 0 0 0 0 0 0 0

0 0 0 0 0 0:6 0:4 0 0 0

0 0 0 0 0 0:3 0:7 0 0 0

0 0 0:2 0:5 0 0 0:3 0 0 0

0 0 0:2 0:8 0 0 0 0 0 0

0 0 0 0 0 0 0 0:5 0:2 0:3

0 0 0 0 0 0 0 0:1 0:5 0:4

0 0 0 0 0 0 0 0:1 0:4 0:5

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

This matrix has been defined in order to include different

possible gain cycles, similar to the previous fixed matrices.

As for dynamic hidden matrix based on fixed matrices,

we also use a frequency of changes FC. At each change

time t, an update of the hidden matrix is performed such

that HðtÞ ¼ Hðt�1Þ � Hð0Þ (otherwise the matrix remains

identical). This Hidden Markov matrix stabilizes after 50

changes. Therefore, according to the time horizon and FC

value, this stable state may be reached sooner or not.

We consider two possible types of gains: either constant

gains, in this case as mentioned in Sect. 3, gainðak; tÞ ¼
HðtÞðj; kÞ if aiðt�1Þ ¼ aj or probabilistic gains, in this case

gainðak; tÞ ¼ 1 with a probability equal to HðtÞðj; kÞ. This

allows us to simulate scenarios where the effect of an

operator can be subjected to stochastic phenomena, which

is specially the case in metaheuristics that use generic

operators (e.g., uniform crosser or basic mutation operators

in evolutionary algorithms).

4.3 Test instances and parameters
of the configurations

Using the previous matrices, we define the following set of

test scenarios over a time horizon T ¼ 600.

– Changing dynamic hidden gain matrix with fixed gains

and change frequencies 1, 5, 10, 25, 50, 100 and 200

– Markov hidden gain matrix with fixed gains and change

frequencies of 1, 5, 10, 25, 50, 100 and 200

Fig. 1 Representation of

possible gains of H
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– Changing dynamic hidden gain matrix with probabilis-

tic gains and change frequencies of

1, 5, 10, 25, 50, 100 and 200

– Markov hidden gain matrix with probabilistic gains and

changes frequencies of 1, 5, 10, 25, 50, 100 and 200

– Fixed matrices A, B and C with fixed gains

– Fixed matrices A, B and C with probabilistic gains

We consider thus 34 scenarios for each configuration of the

DIM. Each configuration is evaluated on 20 independent

runs for each scenario.

Note that the performance of the learning functions

presented in Sect. 2.3 can be affected by the choice of their

parameter values. The literature offers different possibili-

ties to find a combination of parameter values allowing a

given algorithm to achieve its best possible performance

(Birattari 2009; Hutter et al. 2009; Adenso-Diaz and

Laguna 2006; Gunawan et al. 2011).

In this work, the most appropriate parameter values for

the learning functions were found by using an iterated

racing procedure called I/F-Race (Balaprakash et al. 2007).

This offline automatic configuration procedure is imple-

mented in R as part of the irace package (López-Ibáñez

et al. 2011) and has been successfully used in several

research projects (López-Ibáñez et al. 2016).

A sample of 6 representative scenarios was used to run

the irace package. 1000 independent runs were executed

for each scenario and for each studied learning function.

The selected parameters are a and b for the basic rein-

forcement learning function, and d and c for QLearning.

Each of these four parameters can take values in the range

[0.0, 1.0]. As a result, the following parameter configura-

tions were obtained: a ¼ 0:8 and b ¼ 0:01 for the basic

reinforcement learning function, and for QLearning, d ¼
0:1 and c ¼ 0:8. Therefore, these parameter configurations

are used in the experimentations reported hereafter.

4.4 Statistical testing methodology

A statistical significance analysis was performed for the

experiments presented in this paper. Each analysis was

conducted using the following methodology. First, the

Shapiro-Wilk test was used to evaluate the normality of

data distributions. For normally distributed data, either

ANOVA or the Welch’s t parametric tests were used

depending on whether the variances across the samples

were homogeneous (homoskedasticity) or not. This was

investigated using the Bartlett’s test. For non-normal data,

the nonparametric Kruskal–Wallis test was adopted. A

significance level of 0.05 has been considered.

4.5 Experimental results

The experimental results are presented according to the

previously described scenarios on the different configura-

tions/policies of the DIM, with regards to our taxonomy

Table 1 QLearning configurations—scenarios with fixed gains—one individual

Strategies Fixed matrices

A B C

Q1000 165.80 64.33 328.10

Q0100 125.20 50.53 223.42

Q0010 19.31 9.18 20.26

Q0001 57.31 21.65 74.64

Strategies Hidden dyn with different change frequencies

1 5 10 25 50 100 200

Q1000 102.74 47.82 41.80 46.56 67.30 125.05 163.10

Q0100 51.60 44.42 43.08 49.99 57.91 85.44 128.74

Q0010 16.80 16.49 15.92 17.25 15.90 16.90 16.63

Q0001 18.70 17.04 19.18 26.96 27.57 39.30 66.65

Strategies Hidden Markov with different change frequencies

1 5 10 25 50 100 200

Q1000 146.35 158.86 167.15 185.18 198.10 222.17 256.54

Q0100 130.43 131.18 132.93 135.56 143.72 159.30 184.50

Q0010 60.79 60.70 60.47 60.64 60.41 60.36 60.20

Q0001 83.41 83.44 83.48 83.89 84.63 90.63 106.20
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(see Sect. 2.5). In the tables, the final gains are mentioned

(i.e., the sum of all successive gains obtained by the best

individual according to our previous definitions). There-

fore, higher values correspond to better performances.

4.5.1 Configurations based on QLearning

In this paper, we introduce QLearning as a possible

learning technique in order to update the migration matrix

M as defined in Sect. 2.3. Therefore, we first study this new

configuration of the DIM before going on into more

complete comparisons.

According to Sect. 2.5, this learning approach can be

combined with two possible reward functions providing a

set of possible configurations of the form QE� or QP�,

where � is any vector f0; 1g4
. We have run the previously

defined scenarios and we observed that both configurations

provide similar results for each evaluated scenario (there

was not a significant performance difference between

them). Therefore, in the following, we only consider one

type of configuration, which will be called Q�, with the

different values of � as above.

Concerning the QLearningQ� configurations, we aim first at

evaluating different configurations with only one individual. To

this aim, we run single individual versions of the following four

configurations Q1000, Q0100, Q0010, Q0001. Each configu-

ration has been run 20 � 20 times for each scenario and the best

results of each sequence of 20 consecutive runs has been used to

compute the mean value. In this case, we compare the mean

value with the results obtained with other configurations with

Table 2 Q1000—scenarios with fixed gains—different population sizes

nb ind Fixed matrices

A B C

1 165.80 64.33 328.10

4 266.48 71.73 345.24

10 285.13 74.39 353.65

20 292.99 76.37 353.81

50 295.43 77.30 360.81

100 297.00 78.96 365.94

400 297.76 79.95 390.00

nb ind Hidden dyn with different change frequencies

1 5 10 25 50 100 200

1 146.35 158.86 167.15 185.18 198.10 222.17 256.54

4 193.23 211.27 215.45 224.48 235.66 258.63 292.62

10 223.17 233.99 236.93 240.27 254.33 284.98 327.23

20 241.84 247.34 250.43 251.38 263.74 296.93 339.57

50 250.05 251.92 252.54 253.96 269.89 310.78 364.17

100 253.14 253.50 254.13 256.44 270.75 310.77 362.44

400 255.65 256.03 256.50 257.92 274.71 327.93 395.20

nb ind Hidden Markov with different change frequencies

1 5 10 25 50 100 200

1 102.74 47.82 41.80 46.56 67.30 125.05 163.10

4 136.01 90.15 74.12 97.93 153.16 180.51 209.37

10 144.88 105.75 100.74 125.75 176.00 200.90 232.96

20 146.01 134.55 113.53 131.48 190.27 218.73 243.21

50 134.32 135.21 121.66 132.30 195.63 223.57 245.90

100 130.66 147.71 127.72 134.09 196.28 226.87 248.31

400 137.92 149.15 127.07 132.08 175.98 225.61 250.79
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20 individuals. Table 1 shows that the configuration Q1000

provides the best results, followed byQ0100, which means that

for QLearning, as expected, a greedy based strategy is useful for

selecting next island.

Once having compared the respective performances of

the different ‘‘pure’’ configurations based on QLearning,

we aim at studying the influence of using several individ-

uals with different migration policies, instead of a single

one, i.e. assessing the benefit of using a cooperative man-

agement of the migration process and its influence on the

knowledge that is collected by a population of individuals.

We focus thus on the configuration Q1000 and run several

experiments with different population sizes. Note that for

all the experiments, the same computation power (total

number of executions) is assigned to each configuration.

For instance, when one individual is used, 400 executions

are needed to compute the mean values, as mentioned

above. The number of individuals ranges from 1 to 400 for

the different scenarios with fixed gains.

The results in Table 2 show that the performance

increases with the number of individuals. This is interest-

ing, since from the QLearning point of view, it means that

using a DIM with several individuals, which share their

learned information by means of the migration matrix M,

may improve the global learning process and, conse-

quently, improves the management of the migrations. It

also appears that, when using more than 20 individuals,

improvement slows down. Therefore, we consider that

using 20 individuals for the next experiments constitutes a

good compromise.

In this section, we have restricted the presentation of our

experiments to fixed gain scenarios, since results obtained

with probabilistic scenarios are rather similar. We have

only assessed the benefit of using several individuals

instead of a single one for improving the performance of

configurations that use only one type of migration policy.

In next section, we will consider general configurations

using several type of individuals—and thus several

migration policies—simultaneously.

4.5.2 Comparison of the different configurations

According to previous observations made in Sect. 4.5.1, we

consider 15 configurations for QLearning (different com-

binations types, ignoring the reward function as already

mentioned), 30 configurations for the classic learning

mechanism C associated to all possible rewards and com-

binations of migration functions, the uniform blind

migration policy (U) and the myopic oracle (Oracle).

Hence, 47 configurations are evaluated on 34 scenarios. A

statistical significance analysis was performed for each

possible pair of configurations, say (x, y), by using the

methodology described in Sect. 4.4. Then, a global score

of the configurations was computed as follows. If a sig-

nificant performance difference exists between configura-

tions x and y for a particular scenario, the global score of

either x or y is increased by one point depending on whe-

ther such a difference favors one of these configurations. If

there is no significant difference between the compared

configurations their global scores remain unaltered. Thus,

the higher the global score of a configuration, the better its

overall performance is. In order to provide a more readable

analysis of the results, we decided to focus on the 12 best

performing configurations according to its score (the first

quartile).

In the rest of the tables presented in this section

(Tables 3, 4, 5, 6, 7 and 8), the data presented in each

column is sorted in descending order according to the

global score (shown between parentheses) obtained by the

configurations in the statistical significance analysis. Con-

figurations with a similar global score value are grouped.

In Tables 4, 5, 7 and 8 the frequency at which the hidden

matrix is changed is represented by FC.

We first analyze the results for Fixed, Hidden Dyn and

Hidden Markov matrices using fixed gains.

Table 3 shows that depending on the structure of the

hidden matrix that may contain improvement cycles or not

as well as suboptimal gain cycles, the performance of the

policies may differ. In particular, it is interesting to remark

that the Oracle may be confused with matrix A, where there

exist two possible gain paths (no cycle), one being sub-

optimal. Q� policies are more efficient to detect such gain

cycles and to identify the best ones. Since on matrix B no

cycle occurs, classic C� policies can be efficient to detect

short gain paths or cycle paths, as those present in matrix

C. Of course it is noticeable that Q� policies provide good

Table 3 Basic fixed matrix (A–B–C)—fixed gain—top 12

configurations

Fixed matrices

A B C

Q1001 (44) Q1000 (40) Oracle (46)

Q1101 Oracle (39) CP1001 (43)

Q1000 (43) Q1110 (33) Q1001

Q1011 (41) Q1100 Q1010 (37)

Q1100 CP1111 Q1100

Q1111 (40) Q1010 (32) Q1101 (36)

Q1110 (38) Q1011 (31) Q1011

Q0101 Q0110 (30) Q1110

Q0100 (36) Q0100 (29) Q1111

Q1011 C P 0011 C P1011 (30)

Q1101 (35) Q0111 (27) CE1101 (28)

Q1111 CP 0111 (26) CE1111 (27)
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performance as soon as they use either elitist or propor-

tional migration to promote greedy choices.

We consider now the dynamic hidden matrices based on

alternating between A, B and C, again with fixed gains.

These matrices will be called Hidden Dyn in the remaining

of this paper. We may observe in Table 4 that, if the

changes are too frequent then, since the learning process is

unable to detect any stable knowledge, most of the policies

are statistically equivalent. Nevertheless, note that, if we

considered more than the 12 best policies it will not be still

the case. Since the Oracle was rather efficient for the fixed

matrices case, it still have good properties. In most of these

experiments, classic learning processes (either CP or CE)

exhibit good results. It is also interesting to mention that, in

these experiments, configurations Q� that use several types

of individuals obtain better results than configurations

using only one type of individual.

In Table 5, results are more contrasted among the dif-

ferent policies. When the frequency of changes if high (i.e.,

lowest values), then the matrix stabilizes sooner (remind

that the matrix is stable after 50 changes). Therefore,

methods that were efficient for fixed matrices are also

efficient here (e.g., CP� or Q�). It is interesting to see that

when the changes are less frequent, due to the structure of

the initial matrix, which does not have specific gain paths

or cycles, Q� are really efficient and may become even

better than the Oracle. This phenomena is certainly related

to the successive states reached by the matrix during its

stabilization process.

Table 4 Hidden dyn—fixed reward—top 12 configurations

Frequency of changes (FC)

1 5 10 25 50 100 200

Q1100 (45) Oracle (46) Oracle (46) Oracle (46) Oracle (46) Q1000 (42) Q1000 (45)

Q0101 (38) Q1100 (41) Q0101 39 Q1010 (45) Q1110 (45) Q1100 Q1100

Oracle (37) Q1101 Q1001 (38) Q1110 (40) Q1010 (40) Q1101 Q0100 (42)

Q1000 (33) Q0100 (39) CP1010 (33) Q0110 Q1011 Q0100 (41) Q1110

Q1101 CP1001 (38) Q1101 Q0111 Q1111 Q1011 (40) Q1101 (41)

Q0100 (31) Q0101 Q1000 (32) Q1011 Q1000 Q1111 (39) Q1001 (40)

Q1111 Q1000 (37) Q0110 (30) Q1111 Q0100 Oracle (38) Q1111

Q1001 (30) CP0001 (35) Q1010 Q1000 (36) Q0110 (36) Q1110 Q1011 (39)

CP1010 Q1001 (34) Q1100 (29) Q0101 (33) Q1100 (33) Q1010 (37) Q0110 (35)

CP1011 Q1110 (33) Q1011 Q1100 Q1101 CP0111 (33) Q0101

CP1111 Q1111 Q1110 Q0011 (31) CP0111 (31) Q0111 (32) Q0111

Table 5 Hidden Markov—fixed gains—top 12 configurations

Frequency of changes (FC)

1 5 10 25 50 100 200

Oracle (46) Oracle (46) Oracle (46) Oracle (46) Oracle (46) Oracle (46) Oracle (46)

Q1101 (38) CP1001 (37) Q1001 (40) Q1001 (39) Q1101 (34) Q1101 (36) Q1110 (29)

CE1001 Q1001 CE1001 (39) CP1001 (38) Q1100 (33) Q1100 (35) CP1011

Q1001 CE1001 CP1001 (36) CE1001 Q1001 Q1110 (34) Q1101 (28)

CP1001 Q1101 (36) Q1101 Q1101 (35) Q1010 (31) Q1011 (33) Q1100 (27)

CE1011 (35) Q1011 (35) CE1011 (33) Q1011 (34) Q1011 Q1010 (32) Q1001

Q1011 CE1011 (32) Q1011 CE1011 (30) CP1001 Q1001 Q1011

CE1101 (34) Q1100 Q1100 (32) CE1101 Q1110 Q1111 Q1111

Q1100 (32) CE1101 CE1101 (30) Q1100 Q1111 CE1111 (26) CP1111

Q1110 Q1111 Q1111 Q1111 CE1101 (30) CP1011 Q1010 (26)

Q1111 CE1111 (30) Q1110 Q1110 (29) Q1000 (29) CE1011 (25) Q0011

Q1010 (31) Q1110 Q1010 (29) Q1010 (28) CE1001 (27) CE0011 CE0111 (25)
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The following Tables 6, 7 and 8 present the results

obtained with probabilistic gains. These results are quite

similar for many policies. Nevertheless, when using prob-

abilistic gains, Q� policies have better properties than C�
policies.

In order to give a clearer overview of our experiments,

we present in Figs. 2 and 3, a global comparison of the

methods that have been ranked in the top 12 for all pre-

vious experiments with respect to their global score, dis-

tinguishing between fixed and probabilistic gains. The

y-axis represents the sum of the scores that have been

obtained by the policies according to their rankings (higher

scores correspond to better performances). We may draw

the following conclusions from these experiments:

– The newly introduced Q� policies provide good results

allowing to reach even better adaptive control than a

myopic Oracle. In presence of fixed gains, classic

configurations C� are still interesting. Note that all the

best configurations use individuals that migrate accord-

ing to an elitist choice (i.e. greedy choice of the best

possible next decision). When this migration compo-

nent is not present, it can be compensated by a

proportional migration that allows the individuals to

benefit from a less elitist migration process. The UCB

migration policy mixing exploitation (greedy choice)

and exploration (random choice) seems to be also an

interesting diversification mechanism, if combined with

more exploitative strategies, while not being efficient if

used alone (as seen in Sect. 4.5.1).

– Using simultaneously several types of individuals is

really beneficial. In fact, some individuals play the role

of explorers: even if they obtain poor gains, they

contribute to the global learning process, by updating

the reward matrix and, consequently, the migration

matrix. Individuals that focus on elitism can be

considered as ‘‘champions’’, whose role is to collect

the best possible scores, according to the current

knowledge with regards to estimated expected gains.

Therefore, instead of achieving the classic trade-off

between exploration and exploitation at the algorithm

level, it is performed by means of the cooperation

between individuals. In particular, let us note that C�
configurations using several types of individuals

achieve better results than the classic initial DIM

(i.e., CE0100). In general, good results can be obtained

Table 6 Basic fixed matrix (A–B–C)—probabilistic gain—top 12

configurations

Fixed matrices

A B C

Q1000 (41) Oracle (39) Oracle (46)

Q1001 Q1000 CP1001 (37)

Q1011 (39) Q1110 (35) Q1001 (36)

Q1100 Q1100 (34) Q1010 (35)

Q1101 Q0100 (30) Q1100

Q1111 Q0110 Q1101 (33)

Q1110 (37) Q1010 Q1011 (32)

Q0100 (36) CP0011 (28) Q1110

Q0101 CP0100 Q1111

Q1010 CP1111 CP1111 (28)

Q0110 (35) Q1011 CE1111 (26)

Q0111 CP0111 (24) CE0011 (25)

Table 7 Hidden dyn—probabilistic gains—top 12 configurations

Frequency of changes (FC)

1 5 10 25 50 100 200

Q0101 (38) Oracle (46) Oracle (46) Oracle (46) Oracle (46) Q1000 (42) Q1000 (45)

Oracle (37) CP1001 (42) Q0101 (40) Q1010 (44) Q1010 (42) Q1100 (41) Q0100 (43)

Q0100 Q1100 (41) Q1001 Q1110 Q1011 Q0100 (40) Q1100

Q1000 Q0100 (40) CP1010 (32) Q0110 (40) Q1110 Q1101 Q1110 (42)

Q1001 (36) Q1101 (38) Q1000 Q0111 Q1111 Q1110 Q1101 (41)

Q1101 CP1010 (36) Q1101 Q1011 Q1000 (38) Q1111 Q1001 (40)

Q1100 (34) Q0101 Q0100 (31) Q1111 Q0100 (37) Oracle (38) Q1111

CP1001 (30) Q1001 Q1100 Q1000 (38) Q0110 Q1011 Q1010 (38)

Q1110 CP0001 (35) Q0110 (30) Q1101 (36) Q0111 Q1010 (36) Q1011

Q1111 CP1011 (34) Q1010 Q0011 (33) Q1100 CP0011 (32) Q0110 (37)

CP1101 (29) Q1000 Q1011 Q0100 Q1101 (35) Q0101 Q0101 (35)

CP1010 (27) CP0011 (32) Q1110 Q0101 CP0111 (32) Q0111 Q0111
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Table 8 Hidden Markov—probabilistic gains—top 12 configurations

Frequency of changes (FC)

1 5 10 25 50 100 200

Q1101 (39) Oracle (37) Oracle (39) CE1011 (35) Oracle (43) Oracle (45) Oracle (46)

Oracle (38) CE1011 (36) CE1011 (34) Oracle Q1100 (40) Q1100 (42) Q1100 (38)

CE1101 (36) Q1101 (35) CE1101 Q1101 Q1000 (33) Q1010 (38) Q1001 (37)

CE1001 (34) CP1001 (34) CP1001 CP1001 (34) Q1010 Q1101 Q1010

CE1011 Q1100 (33) Q1101 CE1001 (33) Q1101 Q1001 (35) Q1101 (34)

Q1001 Q1011 CE1001 (33) CE1101 Q1011 (32) Q1011 Q1011 (32)

Q1011 (32) Q1010 Q1001 Q1001 CE1011 (29) Q1110 Q1110 (31)

CP1001 (31) Q1001 Q1010 Q1011 CP1001 (27) Q1111 (28) Q1111 (30)

CP1101 CE1101 Q1011 Q1100 Q1001 CE1011 (26) Q0011 (24)

Q1010 CE1001 Q1100 (32) Q1010 (32) Q1110 Q1000 (25) CP0011 (23)

Q1100 Q1111 (30) CP1011 (31) CP1011 (30) CE1101 (26) CE0011 (21) CE0111 (18)

CP1011 (30) CP1101 CP1101 Q1000 CE0011 (23) CE0111 (20) Q1000

Fig. 2 Ranking of configurations for fixed gains based on their global score computed from data obtained from a statistical significance analysis

(see Sect. 4.4)

Fig. 3 Ranking of configurations for probabilistic gains according to their global score computed from data obtained from a statistical

significance analysis (see Sect. 4.4)
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when individuals using an elitist migration policy are

associated to individuals using a policy that permits

more or less diversification (from uniformly random

choice to proportional choice).

– Concerning QLearning based configurations, remark

that, of course, this learning process is really interesting

for controlling migrations in DIM, which had not been

experimented before. Moreover, it is interesting to

remark that using simultaneously different type of

individuals provide an increase of efficiency of the

learning process compared to a pure strategy (e.g.,

Q1000). In particular, it should be noticed that the

configuration Q1100, that mixes elitist and proportional

migration, always belong to the 12 best configurations

for the 34 scenarios.

5 Application to the NK-landscape problem

In this section, we propose to observe the behavior of

migration policies on a test proble that is often used in

evolutionary computation.

5.1 Description of the problem

The Nk-landscape problem (Kauffman 1993) is a problem-

independent model for constructing multi-modal land-

scapes that can gradually be tuned from smooth to rugged.

The parameter of this model are N, the number of (binary)

genes, and k, the number of genes that influence a partic-

ular gene. By increasing the value of k from 0 to N � 1,

Nk-landscapes can be tuned from smooth to rugged. The

k variables that form the context of the fitness contribution

of gene si can be chosen according to different models.

In our experiments, we use as set of 8 instances of Nk-

landscape of sizes 128, 256 and 512 and different values of

K from 2 to 8. Since this is a binary problem, we consider

here 4 classical binary mutation operators: bit-flip that flip

each bit of an individual with a probability 1 / N and p-flip

operators with p 2 f1; 3; 5g that change randomly p bits in

an individuals. The goal is to find the best possible solu-

tion. Note that only improving mutations are taken into

account (i.e., the individual is not replaced by a mutated

individual of lower fitness).

5.2 Experimental settings and method

Each configuration has been run 20 times on the 8 problem

instances. The size of the population will be studied in

Sect. 5.3. The parameters of the Learn functions have been

set using as in previous section. In this section, our purpose

is to study experimentally the following properties of DIM:

– Impact of the population size: since we introduce

different types of individuals, each one defining its own

migration policy and collaborating through the learning

mechanism, we propose to evaluate the influence of the

number of individuals on the quality of the learning

process.

– Impact of QLearning: since QLearning is introduced in

this work as an alternative learning technique for

managing the migration matrix, we want to study its

efficiency with respect to other learning techniques.

In previous section, we have observed that several migra-

tion functions have indeed related effects. In particular,

UCB that can be viewed as an mix between elitist choice

and random choice. Nevertheless, observing results in

Tables 7 and 8, we may see that the effects of UCB are not

really significant when combined with other functions and

is inefficient when used alone. Therefore, in this section in

order to propose a more compact study, we reduce the

possible migrations functions to: Elitist, Proportional and

Uniform. The configurations are thus defined by triple.

5.3 Impact of the population size

DIM takes advantage of the successive generation of

individuals that contribute to the migration matrix and, of

course, the number of individuals is an important

Fig. 4 Impact of population size on fitness and computation time
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parameter. The main question is: ‘‘Given a computational

budget, is it more beneficial to use more individual with

fewer runs of the algorithm or more runs with fewer

individuals ?’’ Figure 4 presents the results on the 128_8.0

nk-landscape instance and configurations CP, CE and Q,

where individuals are equally dispatched between the dif-

ferent migration functions, i.e. (1, 1, 1) configurations.

Similar results were observed for other configurations and

instances.

FM fitness (resp. FM time) represents the evolution of

the fitness (resp. time) with regards to the population size

(on X axis), when the same number of migrations (set ot

10,000) is used for each population size. SP fitness (resp.

SP time) represents the evolution of the fitness (resp. time)

when the same computation time is used (SP time curve is

thus constant).

Let us remark that, even if the number of allowed

migration is fixed, increasing the size of the population

improve the results up to a given limit (SP fitness curve).

Of course with more individuals (FM fitness) and the same

number of migration results may be improved but with a

drastic increase of computation time. Therefore, it appears

that a population size around 20–25 individuals constitutes

a good compromise.

5.4 Evaluating different policies

Table 9 is a compilation of tests realized on the 8 Nk-

landscape instances for all learning and reward functions

with a number of migrations fixed to 10,000. These

experiments use a population of 25 individuals with dif-

ferent configurations of migration functions.

We consider also pure random migration policies (i.e., *

0-0-n) that are simply named as Rand since, in this case the

learning process is not used. For each population and each

instance, results are sorted and a rank is assigned to the

configuration. Each cell corresponds to the sum of the 8

ranks obtained on the 8 instances. Values in bracket are the

rank for each line (i.e., each repartition of individuals

types). Last line provides the average rank.

We observe here results that have some common points

with results obtained for fixed matrices with fixed gain in

Table 3. Here, classic learning methods (CP and CE) have

interesting results.

We may also remark that no combination of learn/re-

ward function obtains the best results for all combinations

of types of individuals. Nevertheless, using Qlearning

seems to be a reasonable choice.

6 Conclusions

In this work, we propose to study the management of

migrations in islands models. In Dynamic Island Models,

the migration mechanism is updated during the search in

order to better adapt to the current state of the search

process and therefore to improve its overall performance.

DIM are using different sub-populations that are processed

by different search operators or algorithms. In order to

provide a wide range of possible search situations, we

propose to use search scenarios that take into account

possible interactions between the operators as well as the

dynamic evolution of their efficiency during the search.

Based on a generic DIM, we propose a rather complete set

of possible components that allows us to define different

configuration of the DIM, involving different management

of the individuals and of the migration processes. Instead of

having one dynamic migration policy that is applied to the

whole search process, as it has already been studied, we

propose here to associate this policy to each individual,

which allows us to use simultaneously different migration

policies within the same DIM. Therefore, these individuals

cooperate and share their information into a common

migration matrix. We also consider in this work, a

QLearning approach in order to learn what are the best

migration choices for individuals at a given state of the

search. We evaluate these possible configurations of the

DIM on a set of scenarios. Our results highlights that:

– using QLearning is interesting for managing migrations

in dynamic island models,

– using a population of individuals that cooperate by

exchanging informations improves the QLearning per-

formance for scheduling the operators that must be

used along the search compared to a single learning

process,

– considering simultaneously different type of individu-

als that use different migration policies is also bene-

ficial and leads to good results compared to previously

Table 9 Comparison of different configurations

Population Learn and reward functions

Elit, Prop,

Unif

CE CP Q Rand

1, 0, 0 5 (3) 6 (2) 7 (1) 0 (4)

0, 1, 0 8 (1) 5 (3) 8 (1) 0 (4)

1, 1, 0 9 (1) 7 (2) 5 (3) 0 (4)

1, 0, 1 8 (1) 6 (2) 6 (2) 0 (4)

0, 1, 1 6 (2) 6 (2) 7 (1) 0 (4)

1, 1, 1 6 (2) 7 (1) 6 (2) 0 (4)

Average

sum

7 (1) 6.17 (3) 6.5 (2) 0 (4)

Average

rank

1.67 2 1.67 4
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proposed dynamic migration approaches in the context

of our search scenarios.
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Birattari M (2016) The irace package: iterated racing for

automatic algorithm configuration. Oper Res Perspect 3:43–58.

https://doi.org/10.1016/j.orp.2016.09.002
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sité Libre de Bruxelles, Belgium. http://iridia.ulb.ac.be/

IridiaTrSeries/IridiaTr2011-004.pdf

Luque G, Alba E (2011) Parallel genetic algorithms, theory and real

world applications, studies in computational intelligence, vol

367. Springer, Berlin. https://doi.org/10.1007/978-3-642-22084-

5

Luque G, Alba E (2010) Selection pressure and takeover time of

distributed evolutionary algorithms. In: Proceedings of the 12th

annual conference on genetic and evolutionary computation,

GECCO, ACM, Portland, Oregon, USA, pp 1083–1088, https://

doi.org/10.1145/1830483.1830684

Mambrini A, Sudholt D (2014) Design and analysis of adaptive

migration intervals in parallel evolutionary algorithms. In:

Proceedings of the 2014 annual conference on genetic and

evolutionary computation, GECCO, ACM, Vancouver, BC,

Canada, pp 1047–1054. https://doi.org/10.1145/2576768.

2598347

Maturana J, Fialho A, Saubion F, Schoenauer M, Lardeux F, Sebag M

(2012) Autonomous search. In: Adaptive operator selection and

management in evolutionary algorithms. Springer, pp 161–190.

https://doi.org/10.1007/978-3-642-21434-9_7

Melab N, Mezmaz M, Talbi E (2005) Parallel hybrid multi-objective

island model in peer-to-peer environment. In: Proceedings of the

19th IEEE international parallel and distributed processing

symposium, IEEE, p 190, https://doi.org/10.1109/IPDPS.2005.

327

Ruciski M, Izzo D, Biscani F (2010) On the impact of the migration

topology on the island model. Parallel Comput

36(10–11):555–571. https://doi.org/10.1016/j.parco.2010.04.002

Rudolph G (2000) Takeover times and probabilities of non-genera-

tional selection rules. In: Proceedings of the 2nd annual

conference on genetic and evolutionary computation, GECCO,

Morgan Kaufmann, Las Vegas, Nevada, USA, pp 903–910

Skolicki ZM (2007) An analysis of island models in evolutionary

computation. Ph.D. thesis, George Mason University, Fairfax

Skolicki Z, De Jong K (2005) The influence of migration sizes and

intervals on island models. In: Proceedings of the 7th annual

conference on genetic and evolutionary computation, GECCO,

Washington DC, USA, pp 1295–1302, https://doi.org/10.1145/

1068009.1068219

Sutton R, Barto A (1998) Reinforcement learning: an introduction.

MIT Press, London

Thierens D (2005) An adaptive pursuit strategy for allocating operator

probabilities. In: Proceedings of the 7th annual genetic and

evolutionary computation conference, GECCO, ACM, Wash-

ington DC, USA, pp 1539–1546. https://doi.org/10.1145/

1068009.1068251

Whitley D, Rana S, Heckendorn RB (1998) The island model genetic

algorithm: on separability, population size and convergence.

J Comput Inf Technol 7(1):33–47 http://cit.fer.hr/index.php/CIT/

article/view/2919/1783

178 F. Lardeux et al.

123

https://doi.org/10.1145/1569901.1570080
https://doi.org/10.1007/978-3-540-75514-2_9
https://doi.org/10.1007/978-3-540-75514-2_9
https://doi.org/10.1007/978-3-642-00483-4
https://doi.org/10.1007/978-3-642-00483-4
https://doi.org/10.1145/2330163.2330337
https://doi.org/10.1145/2463372.2463559
https://doi.org/10.1145/1389095.1389272
https://doi.org/10.1007/BFb0017018
https://doi.org/10.1016/j.asoc.2015.09.024
https://doi.org/10.1007/978-3-642-25566-3
https://doi.org/10.1016/j.jpdc.2006.04.017
https://doi.org/10.1016/j.jpdc.2006.04.017
https://doi.org/10.1007/978-3-642-17298-4
https://doi.org/10.1007/s00500-013-0991-0
https://doi.org/10.1145/1830483.1830687
https://doi.org/10.1016/j.orp.2016.09.002
http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2011-004.pdf
http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2011-004.pdf
https://doi.org/10.1007/978-3-642-22084-5
https://doi.org/10.1007/978-3-642-22084-5
https://doi.org/10.1145/1830483.1830684
https://doi.org/10.1145/1830483.1830684
https://doi.org/10.1145/2576768.2598347
https://doi.org/10.1145/2576768.2598347
https://doi.org/10.1007/978-3-642-21434-9_7
https://doi.org/10.1109/IPDPS.2005.327
https://doi.org/10.1109/IPDPS.2005.327
https://doi.org/10.1016/j.parco.2010.04.002
https://doi.org/10.1145/1068009.1068219
https://doi.org/10.1145/1068009.1068219
https://doi.org/10.1145/1068009.1068251
https://doi.org/10.1145/1068009.1068251
http://cit.fer.hr/index.php/CIT/article/view/2919/1783
http://cit.fer.hr/index.php/CIT/article/view/2919/1783


Wilson SW, Goldberg DE (1989) A critical review of classifier

systems. In: Proceedings of the 3rd international conference on

genetic algorithms, Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, pp 244–255. http://dl.acm.org/citation.

cfm?id=645512.657260

Migration policies in dynamic island models 179

123

http://dl.acm.org/citation.cfm?id=645512.657260
http://dl.acm.org/citation.cfm?id=645512.657260

	Migration policies in dynamic island models
	Abstract
	Introduction
	Context
	Contributions
	Organization of the paper

	Dynamic island models
	Components of the algorithm
	Reward function
	Learning function
	Basic reinforcement learning function
	QLearning based function

	Migrate function
	Configurations of the DIM: setting the policy

	Assessing the efficiency of the policies
	Experiments
	Fixed hidden matrices
	Dynamic hidden matrices
	Test instances and parameters of the configurations
	Statistical testing methodology
	Experimental results
	Configurations based on QLearning
	Comparison of the different configurations


	Application to the NK-landscape problem
	Description of the problem
	Experimental settings and method
	Impact of the population size
	Evaluating different policies

	Conclusions
	References




