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Abstract. A Covering Array denoted by CA(N ; t, k, v) is a matrix of
size N × k, in which each of the vt combinations appears at least once
in every t columns. Covering Arrays (CAs) are combinatorial objects
used in software testing. There are different methods to construct CAs,
but as it is a highly combinatorial problem, few complete algorithms to
construct CAs have been reported. In this paper a new backtracking al-
gorithm based on the Branch & Bound technique is presented. It searches
only non-isomorphic Covering Arrays to reduce the search space of the
problem of constructing them. The results obtained with this algorithm
are able to match some of the best known solutions for small instances
of binary CAs.
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1 Introduction

Within the recent years the use of software has become more and more im-
portant in our society. Most of the businesses nowadays depend on computer
software, thus a failure on it can be catastrophic. As mentioned in a NIST (Na-
tional Institute on Standards and Technology) report [1], the sales of software
reached approximately $180 billion dollars generating a significant and high-
paid workforce, composed of 697,000 software engineers and 585,000 computer
programmers. It shows clearly that the software industry is a really important
part of the economy, moreover if the software present errors, millionaire losses
can occur affecting the economy. According to Hartman [2], the quality of the
software strongly depends on the use of appropriate software testing techniques.

Software systems at the moment are numerous times more complex than
before. Moreover, they usually have a lot of possible configurations that are
produced by the combination of their input parameters. To totally guarantee
the quality of these software products all the possible configurations must be
tested, but this exhaustive approach is not a viable option. For instance, suppose
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that we have a simple program that takes 12 arguments and each one of the
arguments take only 4 possible values. In order to verify it totally we need
to make 412 = 16, 777, 216 tests. But, previous works have demonstrated that
testing it with an interaction of level 6 (all the combinations of 6 parameters)
will only require 46 = 14, 888 tests [3] (each test is a combination of values taken
by all the parameters). This approach based on constructing economical sized
test suites that provide coverage of the most prevalent configurations is known as
software interaction testing. Covering arrays (CAs) are combinatorial structures
used to represent these test suites when exhaustive testing is not feasible [4].

A Covering Array CA(N ; t, k, v) of size N is an N × k array consisting of
N vectors of length k (degree) with entries from an alphabet of size v, i.e., {0,
1, . . . , v − 1}, such that every one of the vt possible vectors of size t (t-wise)
occurs at least once in every possible selection of t elements from the vectors. The
parameter t is referred to as the strength or level of interaction. The minimum
N for which a CA(N ; t, k, v) exists is known as the covering array number and
it is defined according to (1).

CAN(t, k, v) = min{N : ∃ CA(N ; t, k, v)} (1)

A CA(N ; t, k, v) can be mapped to a software test suite as follows. In a
software test we have k components, each of these has v configurations. A test
suite is an N × k array where each row is a test case. Each column represents a
component and the value in the column is the particular configuration.

Lei and Tai [5] demonstrated that the problem of generating the minimum
pairwise test set belongs to the NP class (for non-binary alphabets). Then by
reduction of the problem of vertex cover, they proved that the pair-cover problem

is NP-complete. Colbourn [6] also showed that this problem is NP-complete by
reducing it to the SAT problem.

Even though the general problem of finding a combinatorial test suite is NP
[7], there are some isolated cases that can be solved in polynomial time [6]:

1. When the strength is 2 (t = 2) and the alphabet is 2 (v = 2). Sloane stated
that this case was solved by Rényi with an even value of N and by Katona
independently. Then, it was completely solved by Kleitman and Spencer for
all N [8].

2. When the alphabet is a power of prime v = pα, k 6 (pα + 1), and pα > t.
This construction was proposed by Bush [9], he used Finite Galois Fields in
order to solve this case.

Given the complexity of the optimal construction of CAs many of the algo-
rithms developed to solve this problem are approximate methods. They try to
reach solutions as close as possible to CAN(t, k, v), given some values for k, v,

and t [10].
In this paper we introduce a new backtracking algorithm for constructing

binary CAs of variable strength which is based on the Branch & Bound (B&B)
technique. It incorporates some distinguished features for improving the effi-
ciency of the search process, including: symmetry breaking techniques, partial
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t-wise verification and fixed blocks. This backtracking algorithm guarantees to
discover optimal CAs if they exist or prove their nonexistence, for small in-
stances, given that no computer time restrictions are imposed.

The effectiveness of the proposed backtracking algorithm is assessed using
a benchmark, conformed by 14 binary covering arrays of strength 3 ≤ t ≤ 5,
taken from the literature. The computational results are reported and compared
against those reached by some state-of-the-art methods, showing that our algo-
rithm is able to match some of the best-known solutions for small instances of
binary CAs expending in some cases less computational time.

The remainder of this work is organized as follows. In Sect. 2, a brief review is
given to present some representative solution procedures for constructing binary
covering arrays of variable strength. Then, the components of our backtracking
algorithm are detailed in Sect. 3 and 4. Section 5 presents computational ex-
periments and comparisons of our backtracking algorithm with respect to other
previously published algorithms. Last section is dedicated to summarize the main
contributions of this work.

2 Relevant Related Work

The objective of constructing a CA is to minimize the number of rows given
the parameters v, k, and t. There are several reported methods for constructing
these combinatorial models. Among them are: a) recursive methods [8, 11], b)
algebraic methods [12], c) greedy methods [13] and d) meta-heuristics such as
Simulated Annealing [14] and Tabu Search [15]. These algorithms have a point
in common, all of them are approximate methods.

To the best of our knowledge, there exists only one method reported in
the literature which tries to make a systematic enumeration of the candidate
solutions in the search space in order to guarantee to discover optimal CAs.
This method, that we used in our experimental comparisons, is called EXACT
(Exhaustive search of combinatorial test suites) and was proposed by Yan and
Zhang [10].

EXACT is a backtracking algorithm that employs certain rules in order to
eliminate isomorphic CAs. Two CAs are isomorphic if they have the same num-
ber of rows, columns and alphabet and one can be transformed into the other
via permutations of rows, columns, and/or symbols [16]. Moreover, it introduces
the concept of miniblock. A miniblock is a mb × t sub-array which values are
fixed before starting the construction of a CA. It allows to reduce the size of the
search space to the value given in (2). Please note that in this expression the
total size of search space equals the numerator, and the denominator indicates
the size of the fixed miniblock.

(
∏k

i=1 vN
i )

(
∏t

i=1 vmb
i )

(2)

A novel pruning technique, called SCEH (Sub-Combination Equalization
Heuristic), is also integrated to EXACT. The authors decided to use this tech-
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nique because they noted that for many CAs each symbol appears almost the
same number of times in each column of the CA.

In 2008, Yan and Zhang [17] reported an improvement to EXACT. In this
new version of EXACT they added a new rule: for each two rows i, j (1 <

i ≤ mb and j > mb) of a CA, if these two rows have the same first t values
and Ri >lex Rj (where >lex refers to a lexicographical order), then these rows
are exchanged. This work has improved the best-known solution for only one
instance (CA(24; 4, 12, 2)).

3 A New Backtracking Algorithm

We can represent a CA as a 2-dimensional N × k matrix. Each row can be
regarded as a test case and each column represents some parameter of the system
under test. Each entry in the matrix is called a cell, and we use Mij to denote
the cell at row i (i > 0) and column j (j > 0), i.e., the value of parameter j in
test case i.

We apply an exhaustive search technique to this problem. Our algorithm is
based on the Branch & Bound technique. The main algorithm can be described
as an iterative procedure as follows.

For a given matrix N × k, and a strength t, we construct the first element
l belonging to the set of all possible columns with ⌊N

2 ⌋ zeros and is inserted in
the first column of the partial solution M. Then the next element li−1 + 1 is
constructed and if the row i is smaller than the row i + 1 and it is a partial
CA then the element is inserted, otherwise it tries with the next element. If no
elements could be inserted in the current column of M , it backtracks to the
last column inserted and tries to insert a new element. When k columns are
inserted then the procedure finishes and the CA is generated. A flow chart of
this algorithm is shown in Figure 1.

4 Techniques for Improving the Efficiency of the Search

The worst time complexity of the naive exhaustive search for CA(N, k, v, t) is
shown in (3).

(

(

N

⌊N

2
⌋

)

k

)

(3)

This worst time complexity is due mainly because there exist so many iso-
morphic CAs. There are 3 types of symmetries in a CA: row symmetry, column
symmetry and symbol symmetry. The row symmetry refers to the possibility to
alter the order of the rows without affecting the CA properties. There are N !
possible row permutations of a CA. The column symmetry refers to permuting
columns in the CA without altering it. There exist k! possible column permuta-
tions of a CA. In the same way thanks to the symbol symmetry if we make one
of the (v!)k possible permutations of symbols it results in an isomorphic CA. By
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Begin

Generate the subset of all
the columns with ⌊N

2
⌋ zeros.

Construct a Fixed Block,
curr=t.

Insert the column l+1 in po-
sition curr in the matrix M.
curr=curr+1.

Ordered by Row?
Backtrack to the last col-
umn. curr=curr-1.

Partial t-Wise?

curr==k?

End

No

Yes

Yes

Yes

No

No

Fig. 1. A new backtracking algorithm.

the previous analysis we can conclude that there are a total of N ! × k! × (v!)k

number of symmetries in a CA. An example of two isomorphic CAs is shown in
Table 1.

The covering array in Table 1(d) can be produced by the following steps over
the covering array in Table 1(a): exchanging the symbols of the first column
(Table 1(b)), then exchanging the first and second rows (Table 1(c)), finally
exchanging the third and fourth columns.

Searching within the non-isomorphic CAs can significantly reduce the search
space, these symmetry breaking techniques have been previously applied in order
to eliminate the row and column symmetries in [17] by Yan and Zhang. However,
they only proposed an approach to eliminate row and column symmetries. In the
following sections we will describe the symmetry breaking techniques that we ap-
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Table 1. Isomorphic Covering Arrays

(a)

0 0 0 0

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

(b)

1 0 0 0

1 1 1 1

0 0 1 1

0 1 0 1

0 1 1 0

(c)

1 1 1 1

1 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

(d)

1 1 1 1

1 0 0 0

0 0 1 1

0 1 1 0

0 1 0 1

plied within our backtracking algorithm to search only over the non-isomorphic
CAs.

4.1 Symmetry Breaking Techniques

In order to eliminate the row and column symmetries in our new backtracking
algorithm the restriction that within the current partial solution M the column
j must be smaller than the column j + 1, and the row i must be smaller than
the row i + 1.

As we have mentioned above a CA(N ; t, k, v) has N ! × k! row and column
symmetries. This generates an exponential number of isomorphic CAs. Adding
the constraints mentioned above we eliminate all those symmetries and reduce
considerably the search space. Another advantage of this symmetry breaking
technique is that we do not need to verify that the columns are ordered, we only
need to verify that the rows are still ordered as we insert new columns. This is
because we are generating an ordered set of columns such that the column l is
always smaller than the column l + 1.

Moreover, we propose a new way of breaking the symbol symmetry in CAs.
We have observed, from previously experimentation, that near-optimal CAs have
columns where the number of 0’s and 1’s are balanced or near balanced. For this
reason we impose the restriction that through the whole process the symbols in
the CAs columns must be balanced. In the case where N is not even, the number
of 0’s must be exactly ⌊N

2 ⌋ and the number of 1’s ⌊N
2 ⌋ + 1. As long as we know

this is the first work in which the symbol symmetry breaking is used. In Table
2 an example of our construction is shown.

In Table 2 we can see clearly that the next column generated is automatically
lexicographically greater than the previous one, so we do not need to verify for
the column symmetry breaking rule. Even though that in Table 2 the rows are
ordered as well, it does not happen in general so we still have to check that the
rows remain ordered for each element that we try to insert in the partial solution
M .

4.2 Partial t-Wise Verification

Since a CA of strength t− 1 is present within a CA of strength t we can bound
the search space more quickly and efficiently if we partially verify for a CA
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Table 2. Example of the current partial solution M after 4 column insertions.

l l + 1 l + 2 l + 3

0 0 0 0

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

instead of waiting until all k elements are inserted. We can test the first t − 1
columns with strength i, where i is the current element inserted, and when i is
greater or equal to t then is tested with strength t. It is important to remark
that a complete CA verification is more expensive in terms of time,1 than making
the partial evaluation described above due to the intrinsic characteristics of the
backtracking algorithm.

4.3 Fixed Block

The search space of this algorithm can be greatly reduced if we use a Fixed

Block (FB). We define a FB as matrix of size N and length t in which the first

⌊ (N−vt)
2 ⌋ rows are filled with 0’s, then a CA of strength t, k = t and N = vt is

inserted. This CA can be easily generated (in polynomial time) by creating all
the vt binary numbers and listing them in order. An example of a CA(vt; t, t, v)

is shown in Table 3. Finally, the last ⌈ (N−vt)
2 ⌉ rows are filled with 1’s. It can be

easily verified that in a FB the rows and columns are already lexicographically
ordered. This FB is constructed in this way in order to preserve the symmetry
breaking rules proposed in Sect. 4.1 and is used to initialize our algorithm as
shown in Figure 1.

Table 3. A CA(vt; t, t, v) example.

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

1 The computational complexity of making a full verification of a CA(N ; t, k, v) is
N ×

`

k

t

´
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5 Computational Results

In this section, we present a set of experiments accomplished to evaluate the
performance of the backtracking algorithm presented in Sect. 3. The algorithms
were coded in C and compiled with gcc without optimization flags. It was run
sequentially into a CPU Intel Core 2 Duo at 1.5 GHz, 2 GB of RAM with Linux
operating system.

The test suite used for this experiment is composed of 14 well known binary
covering arrays of strength 3 ≤ t ≤ 5 taken from the literature [3, 17]. The main
criterion used for the comparison is the same as the one commonly used in the
literature: the best size N found (smaller values are better) given fixed values
for k, t, and v.

5.1 Comparison Between our Backtracking Algorithm and EXACT

The purpose of this experiment is to carry out a performance comparison of
the upper bounds achieved by our backtracking algorithm (B&B) with respect
to those produced by the EXACT procedure [17]. For this comparison we have
obtained the EXACT algorithm from the authors. Both algorithms were run in
the computational platform described in Sect. 5.

Table 4 displays the detailed computational results produced by this exper-
iment. The first two columns in the table indicate the degree k, and strength t

of the instance. Columns 3 and 5 show the best solution N found by B&B and
the EXACT algorithms, while columns 4 and 6 depict the computational time
T , in seconds, expended to find those solutions.

Table 4. Performance comparison between the algorithms B&B and EXACT.

B&B EXACT

k t N T N T

4 3 8 0.005 8 0.021

5 3 10 0.005 10 0.021

6 3 12 0.008 12 0.023

7 3 12 0.018 12 0.024

8 3 12 0.033 12 0.023

9 3 12 0.973 12 0.022

10 3 12 0.999 12 0.041

11 3 12 0.985 12 0.280

12⋆ 3 15 1090.800 15 1100.400

5 4 16 0.020 16 0.038

6 4 21 95.920 21 0.266

6 5 32 102.000 32 0.025

From the data presented in Table 4 we can make the following main observa-
tions. First, the solution quality attained by the proposed backtracking algorithm
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is very competitive with respect to that produced by the state-of-the-art proce-
dure EXACT. In fact, it is able to consistently equal the best-known solutions
attained by the EXACT method (see columns 3 and 5).

Second, regarding the computational effort, one observes that in this exper-
iment the EXACT algorithm consumes slightly more computational time than
B&B for 6 out 12 benchmark instances (shown in boldface in column 4).

We would like to point out that the instance marked with a star in Table 4
was particularly difficult to obtain using the EXACT algorithm. We have tried
many different values for the parameter SCEH (Sub-Combination Equalization
Heuristic), and only using a value of 1 the EXACT tool was able to find this
instance consuming more CPU time than our B&B algorithm. For the rest of
the experiments we have used the default parameter values recommended by the
authors.

5.2 Comparison Between our Backtracking Algorithm and IPOG-F

In a second experiment we have carried out a performance comparison of the
upper bounds achieved by our B&B algorithm with respect to those produced
by the state-of-the-art procedure called IPOG-F [18].

Table 5 presents the computational results produced by this comparison.
Columns 1 and 2 indicate the degree k, and strength t of the instance. The best
solution N found by our B&B algorithm and the IPOG-F algorithm are depicted
in columns 3 and 5, while columns 4 and 6 depict the computational time T , in
seconds, expended to find those solutions. Finally, the difference (∆N ) between
the best result produced by our B&B algorithm compared to that achieved by
IPOG-F is shown in the last column.

From Table 5 we can clearly observe that in this experiment the IPOG-
F procedure [18] consistently returns poorer quality solutions than our B&B
algorithm. Indeed, IPOG-F produces covering arrays which are in average 31.26%
worst than those constructed with B&B.

6 Conclusions

We proposed a new backtracking algorithm that implements some techniques
to reduce efficiently the search space. This backtracking algorithm guarantees
to discover optimal CAs if they exist or prove their nonexistence, for small
instances, given that no computer time restrictions are imposed. Additionally, we
have presented a new technique for breaking the symbol symmetry which allow
to reduce considerably the size of the search space. Experimental comparisons
were performed and show that our backtracking algorithm is able to match
some of the best-known solutions for small instances of binary CAs, expending
in some cases less computational time compared to another existent backtracking
algorithm called EXACT. We have also carried out a comparison of the upper
bounds achieved by our backtracking algorithm with respect to those produced
by a state-of-the-art procedure called IPOG-F. In this comparison the results
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Table 5. Performance comparison between the algorithms B&B and IPOG-F.

B&B IPOG-F

k t N T N T ∆N

4 3 8 0.005 9 0.014 -1

5 3 10 0.005 11 0.016 -1

6 3 12 0.008 14 0.016 -2

7 3 12 0.018 16 0.018 -4

8 3 12 0.033 17 0.019 -5

9 3 12 0.973 17 0.019 -5

10 3 12 0.999 18 0.019 -6

11 3 12 0.985 18 0.034 -6

12 3 15 1090.800 19 0.033 -4

13 3 16 1840.320 20 0.019 -4

5 4 16 0.020 22 0.016 -6

6 4 21 95.200 26 0.017 -5

7 4 24 113.400 32 0.014 -8

6 5 32 102.000 42 0.020 -10

Average 15.29 20.07 -4.79

obtained by our backtracking algorithm, in terms of solution quality, are better
than those achieved by IPOG-F for all the studied instances.

Finding optimum solutions for the CA construction problem in order to con-
struct economical sized test-suites for software interaction testing is a very chal-
lenging problem. We hope that the work reported in this paper could shed useful
light on some important aspects that must be considered when solving this in-
teresting problem. We also expect the results shown in this work incite more
research on this topic. For instance, one fruitful possibility for future research is
the design of new pruning heuristics in order to have the possibility to generate
larger instances of CAs.

Acknowledgments. The authors would like to thank Jun Yan and Jian Zhang
who have kindly provided us with an executable version of their application
EXACT.
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