A Refined Evaluation Function for the MinLA
Problem

Eduardo Rodriguez-Tello!, Jin-Kao Hao'!, and Jose Torres-Jimenez?
! LERIA, Université d’Angers.
2 Boulevard Lavoisier, 49045 Angers, France
{ertello, hao}@info.univ-angers.fr
2 Mathematics Department, University of Guerrero.
54 Carlos E. Adame, 39650 Acapulco Guerrero, Mexico
jose.torres.jimenez@acm.org

Abstract. This paper introduces a refined evaluation function, called
@, for the Minimum Linear Arrangement problem (MinLA). Compared
with the classical evaluation function (LA), @ integrates additional in-
formation contained in an arrangement to distinguish arrangements with
the same LA value. The main characteristics of @ are analyzed and its
practical usefulness is assessed within both a Steepest Descent (SD) al-
gorithm and a Memetic Algorithm (MA). Experiments show that the
use of @ allows to boost the performance of SD and MA, leading to the
improvement on some previous best known solutions.

Key words: Genetic Algorithms, Evaluation Function, Linear Arrange-
ment, Heuristics.

1 Introduction

The evaluation function is one of the key elements for the success of evolutionary
algorithms and more generally, heuristic search algorithms. It is the evaluation
function that guides the search process toward good solutions in a combinatorial
search space. The more discriminating this function is, the more effective the
search process will be.

In combinatorial optimization, the objective function associated to a par-
ticular problem is often used as an evaluation function. However, this method
can not be used if the search space includes infeasible solutions. In such cases,
penalty terms are often added to evaluate the degree of infeasibility [3, 8]. It is
also effective to dynamically change the evaluation function during the search,
like in the noising method [1] and the search space smoothing method [6]. An-
other technique consists in developing new more informative evaluation functions
which may not be directly related to the objective function such in [8, 9].

In this paper, we are interested in devising a refined evaluation function for
the Minimum Linear Arrangement problem (MinLA). MinLA was first stated by
Harper in [7]. His aim was to design error-correcting codes with minimal average
absolute errors on certain classes of graphs. MinLLA arises also in other research

fields like biological applications, graph drawing, VLSI layout and software dia-
gram layout [2, 11].

MinLA can be stated formally as follows. Let G(V,E) be a finite undi-
rected graph, where V' (|]V| = n) defines the set of vertices and E C V x
V = {{i,5}]i,j € V} is the set of edges. Given a one-to-one labeling function
¢ : V. — {l..n}, called a linear arrangement, the total edge length (cost) for G
with respect to arrangement ¢ is defined according to Equation 1.

LAG,)= Y lo(u) = p(v)] (1)

(u,v)EE

Then the MinLLA problem consists in finding a best labeling function ¢ for a
given graph G so that LA(G, ¢) is minimized.

MinLA is known to be NP-hard for general graphs [4], though there exist
polynomial cases such as trees, rooted trees, hypercubes, meshes, outerplanar
graphs, and others (see [2] for a detailed survey). To tackle the MinLLA problem, a
number of heuristic algorithms have been developed. Among these algorithms are
a) heuristics especially developed for MinL A, such as the multi-scale algorithm
[10] and the algebraic multi-grid scheme [14]; and b) metaheuristics such as
Simulated Annealing [12] and Memetic Algorithms [13].

All these algorithms evaluate the quality of a solution (linear arrangement)
as the change in the objective function LA(G, ¢). However, using LA as the eval-
uation function of a search algorithm represents a potential drawback. Indeed,
different linear arrangements can have the same total edge length and can not
be distinguished by LA, even though they do not have the same chances to be
further improved.

In this paper, a more discriminating evaluation function (namely @) is pro-
posed. The basic idea is to integrate in the evaluation function not only the total
edge length of an arrangement (LA), but also other semantic information related
to the arrangement.

The new evaluation function @ is experimentally assessed regarding to the
conventional LA evaluation function within both a Steepest Descent (SD) algo-
rithm and a Memetic Algorithm (MA) by employing a set of benchmark instances
taken from the literature. The computational results show that thanks to the
use of @, the performance of the search algorithms is greatly improved, leading
to the improvement on some previous best known solutions.

The reminder of this work is organized as follows. In Section 2, after ana-
lyzing the drawbacks of the classic evaluation function for MinLLA, the refined
evaluation function is formally described. Then, in Section 3, with the help of a
parameter-free SD algorithm, the proposed evaluation function is assessed with
respect to the conventional LA function. Additional analysis and comparisons
are given in Section 4 within a Memetic Algorithm framework. Finally, Section
5 summarizes the contributions of this paper.

2 A Refined Evaluation Function for MinLA

The choice of the evaluation function (fitness function) is a very important as-
pect of any search procedure. Firstly, in order to efficiently test each potential
solution, the evaluation function must be as simple as possible. Secondly, it must
be sensitive enough to locate promising search regions on the space of solutions.
Finally, the evaluation function must be consistent: a solution that has a higher
probability for further improvement should get a better evaluation value.

The classical evaluation function for MinLA (LA) does not fulfill these re-
quirements. In the next subsection LA’s deficiencies are analyzed and a refined
evaluation function is formally introduced.

2.1 The ¢ Evaluation Function

A particular resulting value of the LA evaluation function can also be expressed
by the Formula 2, where dj refers to the appearing frequency of an absolute
difference with value k between two adjacent vertices of the graph (see Table 1
for an example).

LAG.) = 3 kil 2)
k=1

This way of computing the solution quality is not sensitive enough to locate
promising search regions on the space of solutions, because it does not make
distinctions among the absolute differences (k). In other words, LA considers
exactly equal a big absolute difference and a small one. Additionally, it is not
really prospective because when two arrangements have the same total edge
length it is impossible to know which one has higher possibility for further im-
provement. For example, the two arrangements for the graph showed in Fig. 1
have the same cost (LA = 35), but one of them has in fact better chances to be
improved in subsequent iterations of the search process. This point will be made
clear below.

The @ evaluation function that will be introduced below helps to overcome
these disadvantages. This new function evaluates the quality of an arrangement
considering not only the total edge length (LA) of the arrangement, but also
additional information induced by the absolute differences of the graph. Fur-
thermore, it maintains the fact that |®| results into the same integer value
produced by Equations 1 and 2.

The main idea of @ is to penalize the absolute differences having small values
of k and to favor those with values of k near to the bandwidth 3 of the graph®.
The logic behind this is that it is easier to reduce the total edge length of
the arrangement if it has summands of greater value. To accomplish it, each
frequency dj should have a different contribution, which can be computed by

' B(G, ¢) = Maz{|p(u) — ¢(v)| : (u,v) € E}

Fig. 1. (a) Arrangement o with LA = 35. (b) Arrangement ¢’ with LA = 35.
employing Equation 3.

1 n!
k+ ——m=k+ —— (3)
(n+) (n+k)

i

J

Then, the quality of an arrangement can be defined by the following expres-

| de(m +k)) (4)

By simplifying this formula we obtain the Equation 5, which represents the
new @ evaluation function. Observe that the first term in this formula is equal
to Equation 2. The second term (a fractional value) is the discriminator for
arrangements having the same LA value.

deﬁz ”d’“ (5)

In the following subsection the calculation of @ is illustrated with an example.

2.2 A Calculation Example of the ¢ Evaluation Function

Let us consider the two arrangements of the graph depicted in Fig. 1. In Table
1 the steps used in the computation of the second term in Equation 5, for each
arrangement, are displayed. The rows corresponding to dy = 0 were omitted
because they do not contribute to the final result.

Then, by making the substitution of the resulting values in the Formula 5
we obtain: ¢(G, ¢) = 35+2.43E-01= 35.243. In contrast if @ is computed for
¢ of Fig. 1(b), a different and smaller value is obtained: (G, ¢’) = 354+1.77E-
01= 35.177. It means that the arrangement ¢’ is potentially better than ¢
Indeed it is better because it is easier to reduce the 4 absolute differences with
value 2 (d2 = 4) in ¢’ than the 3 absolute differences with value 1 (d; = 3) in .

In this sense @ is more discriminating than LA and leads to smoother land-
scapes of the search process.

Table 1. Calculation of @ for the two arrangements presented in Fig. 1.

7

®
nldy, (n+k)! nldi/(n+k)! d

k dp. k nldy, (n+k)! nlde/(n+k)!
1 3 1.44E409 6.23E+09 2.31E-01 2 9.58E+408 6.23E+09 1.54E-01
2 2 9.58E+08 8.72E+10 1.10E-02 4 1.92E4+09 8.72E+10 2.20E-02
3 4 1.92E409 1.31E412 1.47E-03 3 1.44E409 1.31E412 1.10E-03
6 1 4.79E+08 6.40E+415 7.48E-08 1 4.79E408 6.40E415 7.48E-08
10 1 4.79E+08 1.12E+21 4.26E-13 1 4.79E+08 1.12E421 4.26E-13
Sum 2.43E-01 1.77E-01

2.3 Computational Considerations

In order to compute the quality of a linear arrangement ¢ by using the conven-
tional LA evaluation function, we must calculate the sum » -, e i [o(w) —¢(v)].
Then it requires O(|E|) instructions.

On the other hand, to efficiently compute the @ evaluation function we could
precalculate each term k + (n!/(n + k)!) in the Equation 4 and store them in
an array W. All this needs to execute O(|V| + |V|) operations. Then each time
that we need to calculate the value of @ the sum 2, g Wllo(u) — @(v)]]
must be computed, which results into the same computational complexity as
the one that is required to compute LA. Additionally, the & evaluation function
allows an incremental cost evaluation of neighboring solutions (see Subsection
3.1). Suppose that the labels of two different vertices (u,v) are swapped, then
we should only recompute the |N(u)| + |N(v)| absolute differences that change,
where |N(u)| and |N(v)| represent the number of adjacent vertices to u and v
respectively. As it can be seen this is faster than O(|E|).

In the next sections, we will carry out experimental studies in order to assess
the effectiveness of the proposed evaluation function compared with the conven-
tional LA function. This is realized first with a parameter free descent algorithm
and then with a memetic algorithm.

3 Comparing the Evaluation Functions within a Steepest
Descent Algorithm

3.1 Steepest Descent Algorithm

The choice of the Steepest Descent (SD) algorithm for this comparison is fully
justified by the fact that SD is completely parameter free and thus allows a
direct comparison of the two evaluation functions without bias. Next, the imple-
mentation details of this algorithm are presented.

Search Space, Representation and Fitness Function. For a graph G
with n vertices, the search space A is composed of all n! possible linear arrange-
ments. In our SD algorithm a linear arrangement ¢ is represented as an array [
of n integers, which is indexed by the vertices and whose i-th value [[i] denotes
the label assigned to the vertex . The fitness of an arrangement ¢ is evaluated
by using either the LA or @ evaluation function (Equation 1 or 5 respectively).

Table 2. Performance comparison between SD-LA and SD-®.

SD-LA SD-&

Graph \4l I C T I C T IN Ac
randomAl 1000 2115.7 946033.1 0.0195 3134.2 941677.7 0.0182 741.5 -4355.4
randomA3 1000 2460.1 14397879.8 0.4839 2887.3 14396580.9 0.4681 625.1 -1298.8
bintreel0 1023 1233.6 51716.8 0.0132 1406.9 51548.8 0.0132 229.4 -167.9
mesh33x33 1089 2994.4 130751.3 0.0153 8143.9 112171.7 0.0151 1347.6 -18579.6
3elt 4720 27118.4 2630144.6 0.2708 52061.6 2392981.3 0.2797 5616.7 -237163.3
airfoill 4253 23566.4 2184693.3 0.2386 45909.1 1958983.4 0.2263 4575.9 -225709.9
c2y 980 2140.9 169434.7 0.0159 3078.9 167127.9 0.0171 578.3 -2306.8
c3y 1327 3334.1 282818.5 0.0559 5097.4 275529.3 0.0461 1008.8 -7289.2
gd95¢ 62 69.2 716.3 0.0002 81.3 697.4 0.0002 19.4 -18.9
gd96a 1096 2215.7 148158.3 0.0167 3283.5 144751.7 0.0177 804.3 -3406.6

Average —50029.6

Initial Solution. In this implementation the initial solution is generated
randomly.

Neighborhood Function. The neighborhood N(p) of an arrangement ¢ is
such that for each ¢ € A, ¢’ € N(y) if and only if ¢’ can be obtained by swapping
the labels of any pair of different vertices (u,v) from . This neighborhood is
small and allows an incremental cost evaluation of neighboring solutions.

General Procedure. The SD algorithm starts from the initial solution ¢ €
A and repeats replacing ¢ with the best solution in its neighborhood N () until
no better arrangement is found.

3.2 Computational Experiments

The purpose of this experiment is to study the characteristics of the @ evalua-
tion function and provide more insights into its real working. That is why this
analysis does not only take into account the final solution quality obtained by
the algorithms, but also their ability to efficiently explore the search space. To
attain this objective, the SD algorithm presented in Subsection 3.1 was coded
in C, named SD-LA and SD-® depending on which evaluation function is used.
The algorithm was compiled with gcc using the optimization flag -O3, and ran
sequentially into a cluster of 10 nodes, each having a Xeon bi-CPU at 2 GHz, 1
GB of RAM and Linux.

The test-suite used in this experiment is composed of the 21 benchmarks?
proposed in [12] and used later in [10, 13, 14]. In our preliminary experiments, we
observed similar results over the set of 21 benchmark instances. For the reason of
space limitation, we have decided to report only the results of 10 representative
instances covering the different cases.

The methodology used consistently throughout this experimentation is the
following. First, 20 random arrangements were generated for each of the 10 se-
lected benchmark instances, and were used as starting solutions for each run of
the compared evaluation functions. The average results achieved in these exe-
cutions are summarized in Table 2, where column 1 and 2 show the name of

2 http://www.lsi.upc.es/ jpetit/MinL.A /Experiments

3000

957000
2500
954000 -
2000 [

951000 -
1500 -

Solution Quality

948000 -
1000 -

Improving Neighbors

945000 - 500 |-

942000

. 0
1200 1500 1800 2100 2400 2700 1200 1500 1800 2100 2400 2700
Moves Moves

(a) (b)
Fig. 2. Graphs representing the behavior of the compared evaluation functions over the
randomAl instance. (a) Average solution quality, (b) Average improving neighbors.

the graph and its number of vertices. Columns 2 to 8 display the total itera-
tions (I), the final cost in terms of total edge length (C), and the CPU time
per iteration (T) in seconds for both SD-LA and SD-@ respectively. Column 9
presents the average number of improving neighbors (IN) found by SD-&, at
the same iteration where SD-L A stops, that is when IN for SD-LA equals zero.
Last column shows the difference (A¢) between the total average cost produced
by the compared algorithms.

The results presented in Table 2 show clearly that the SD algorithm that
employs @, consistently has better results than the algorithm that uses LA. The
average improvement obtained with the use of @ is —50029.6, which leads to a
significant decrease of the total edge length (Ax up to —237163.3). Notice that
the SD-L A algorithm always stops the search process earlier than SD-@ (compare
columns 2 and 5), basically because LA can not distinguish arrangements with
the same total edge length given as consequence a critical deficiency in finding
improving neighbors (see column 8). Additionally, it is important to remark that
these results can be obtained without a significant increment in the computing
time, one iteration of SD-LA is approximatively equal to one iteration of SD-@
(see columns 4 and 7).

The dominance of @ is better illustrated in Fig. 2, where the behavior of the
studied evaluation functions is presented over the randomAl instance (the rest of
the studied instances provide similar results). In Fig. 2(a) the X axis represents
the number of moves, while the Y axis indicates the average solution quality.
Fig. 2(b) depicts the evolution of the average number of improving neighbors (Y
axis) with respect to the number of moves. Observe that SD-@ produces better
results because it is capable of identifying the improving neighbors that orient
better the search process.

4 Comparing the Evaluation Functions within a Memetic
Algorithm

After having studied the characteristics of @ by using a simple SD algorithm,
we have decided to evaluate its practical usefulness within a Memetic Algorithm
(MA).

4.1 Memetic Algorithm

The MA implementation used for this comparison was kept as simple as possible
to obtain a clear idea of the evaluation function effectiveness. Indeed, the recom-
bination operator does not take into account the individuals’ semantic, no special
initialization procedure is employed. Furthermore, A simple SD algorithm was
used, which is not as effective as Simulated Annealing or Tabu Search, to reduce
the strong influence of (sophisticated) local search procedures. In this sense, this
MA implementation is much simplified comparing with the MA of [13]. Next all
the details of our MA implementation are presented.

Search Space, Representation and Fitness Function. The search space,
representation and evaluation (fitness) functions are the same used in the SD
algorithm presented in Section 3.1.

Initialization. The population P is initialized with |P| configurations ran-
domly generated.

Selection. In this MA mating selection is performed by tournament selec-
tion, while selection for survival is done by choosing the best individuals from
the pool of parents and children, taking care that each phenotype exists only
once in the new population (a (4 \) selection scheme).

Recombination Operator. For this implementation the Partially Matched
Crossover (PMX) operator, introduced in [5], was selected. PMX is designed to
preserve absolute positions from both parents.

Local Search Operator. Its purpose is to improve the configurations pro-
duced by the recombination operator. In this MA we have decided to use a
modified version of the SD algorithm presented in Section 3.1. Instead of replac-
ing the current solution with the best arrangement found in its neighborhood, it
is replaced with the first improving neighbor. Notice that this Descent Algorithm
is weaker than its best improvement version used in Section 3.1, but it is faster.
This process is repeated until no better arrangement is found or the predefined
maximum number iterations is reached.

General Procedure. MA starts building an initial population P. Then at
each generation, a predefined number of recombinations (offspring) are executed.
In each recombination two configurations are chosen by tournament selection
from the population, then a recombination operator is used to produce two
offspring. The local search operator is applied to improve both offspring for a
fixed number of iterations L and the improved configurations are inserted into the
population. Finally, the population is updated by choosing the best individuals
from the pool of parents and children. This process repeats until a predefined
number of generations (maxzGenerations) is reached.

Table 3. Performance comparison between MA-LA and MA-®.

MA-LA MA-&

Graph C Dev. T C Dev. T Ac
randomA1 882305.9 3833.1 937.7 877033.1 4371.4 930.2 -5272.8
randomA3 14243888.8 11272.2 7843.6 14235917.8 12236.3 9030.9 -7971.0
bintreelO 13869.0 5274.3 171.2 13422.3 4119.3 176.7 -446.8
mesh33x33 35151.8 359.3 65.7 35083.4 90.0 129.9 -68.3
3elt 458695.8 7230.1 10968.2 453149.4 5176.7 11822.6 -5546.4
airfoill 382781.0 2701.0 8855.5 380404.6 4464.6 9515.3 -2376.5
c2y 85240.5 733.6 370.4 84201.9 723.2 405.8 -1038.6
c3y 137983.9 1027.1 686.7 137281.7 1746.9 705.9 -702.2
gd95¢ 506.2 0.6 0.4 506.1 0.4 0.5 -0.1
gd96a 102827.8 1759.9 319.9 102285.3 2052.9 348.1 -542.4

Average -2396.5

4.2 Computational Experiments

For this comparison the MA presented in Section 4.1 was coded in C. Let us
call it MA-LA or MA-® to distinguish which evaluation function it employs.
The algorithm was compiled with gcc using the optimization flag -O3 and run
in the computational platform described in Subsection 3.2. The same param-
eters were used for MA-LA and MA-® in this comparison: a) population size
|P| = 50, b) recombinations per generation offspring= 5, ¢) maximal number
of local search iterations L = 0.20 % |[V| and d) maximal number of generations
mazGenerations = 1000.

Table 3 presents the average results obtained in 20 independent executions for
each of the 10 benchmark instances selected for the experiments of the Subsection
3.2. The first column in the table shows the name of the graph. The rest of
the columns indicate the cost in terms of total edge length (C), its standard
deviation (Dev.) and the total CPU time (T) in seconds for the MA-LA and
MA-® algorithms respectively. Finally, column 8 displays the difference (A¢)
between the cost found by MA-® and that reached by MA-LA.

From Table 3, one observes that MA-® is able to improve on the 10 selected
instances the results produced by MA-LA. With respect to the computational
effort we have noted that MA-® consumes approximately the same computing

time than MA-LA. So this second experiment confirms again that @ is superior
than LA.

4.3 Using & within a more Sophisticated M A

Given the results obtained with the simple MA described in the Subsection 4.1,
we have decided to asses the performance of @ within a more sophisticated MA.
For this purpose we have reused the MA reported in [13] and replace in its code
the classic evaluation function by the refined function @ (call this algorithm
MAMP-®). The resulting code was compiled in the computational platform de-
scribed in 3.2 and executed 20 times on the full test-suite of Petit [12] using the
parameters suggested in [13].

The results of this experiment are presented in Table 4 and compared with
those of the two best known heuristics: AMG [14] and MAMP [13]. In this table,

Table 4. Performance comparison between MAMP-® and the state-of-the-art algo-
rithms.

MAMP-&

Graph V| AMG MAMP C Avg. Desv. T Ac
randomAl 1000 888381 867535 867214 867581.7 634.2 909.0 -321
randomA2 1000 6596081 6533999 6532341 6534770.7 2616.2 3486.3 -1658
randomA3 1000 14303980 14240067 14238712 14239766.4 1213.0 5175.7 -1355
randomA4 1000 1747822 1719906 1718746 1720260.5 1479.7 1904.1 -1160

randomG4 1000 140211 141538 140211 140420.7 354.1 2077.2 0
bintreel0 1023 3696 3790 3721 3749.7 36.3 978.7 25
hcl0 1024 523776 523776 523776 523776.2 0.6 1140.8 0
mesh33x33 1089 31729 31917 31789 31847.5 68.8 1123.2 60
3elt 4720 357329 362209 357329 361174.7 2198.0 5609.9 0
airfoill 4253 272931 285429 273090 278259.8 7063.0 5443.1 159
whitaker3 9800 1144476 1167089 1148652 1160117.7 9207.0 15299.7 4176
cly 828 62262 62333 62262 62302.7 65.0 643.5 0
c2y 980 78822 79017 78929 78964.2 45.4 654.8 107
c3y 1327 123514 123521 123376 123458.5 92.3 728.1 -138
cdy 1366 115131 115144 115051 115129.1 185.7 733.3 -80
cby 1202 96899 96952 96878 97080.5 391.9 715.3 -21
gd95¢ 62 506 506 506 506.1 0.3 1.6 0
gd96a 1096 96249 96253 95242 96019.4 559.9 636.8 -1007
gd96b 111 1416 1416 1416 1416.1 0.3 3.7 0
gd96¢ 65 519 519 519 519.7 1.3 1.4 0
gd96d 180 2391 2391 2391 2391.5 1.1 7.7 0

the name of the graph and its number of vertices are displayed in the first two
columns. The best solution reported by AMG and MAMP is shown in columns
3 and 4 respectively. Columns 5 to 8 present the best cost in terms of total edge
length (C), the average cost (Avg.), its standard deviation (Dev.) and the average
CPU time (T) in seconds for the MAMP-& algorithm. Last column shows the
difference (A¢) between the best cost produced by MAMP-® and the previous
best-known solution.

From Table 4, one observes that MAMP-@ is able to improve on 8 previ-
ous best known solutions and to equal these results in 8 more instances. In 5
instances, MAMP-® did not reach the best reported solution, but its results
are very close to them (in average 0.028%). Moreover, MAMP-® improves in 16
instances the results achieved by MAMP (see columns 4 and 5).

5 Conclusions

In this paper, we have introduced the @ evaluation function for the Minimum
Linear Arrangement problem. It allows to indicate the potential for further im-
provement of an arrangement by considering additional information induced by
the absolute differences between adjacent labels of the arrangement. To gain
more insights into its real working, the classical evaluation function LA and &
were compared over a set of well known benchmarks within a basic SD algorithm.
The results showed that an average improvement of 3.39% can be achieved when
@ is used, because it is able to identify an average number of improving neighbors
greater than that produced by LA.

Moreover, we have evaluated the practical usefulness of ¢ within a basic MA.
From this experiment, it is observed that MA-® is able to improve on the 10

selected instances the results produced by MA-LA, consuming approximately
the same computing time.

Finally, in a third experiment the @ evaluation function was incorporated
into a more sophisticated MA. The resulting algorithm, called MAMP-®, was
compared with the two best known heuristics: AMG [14] and MAMP [13]. The
results obtained by MAMP-@ are superior to those presented by the previous
proposed evolutionary approach [13], and permit to improve on 8 previous best
known solutions.

This study confirms that the research on evaluations functions, to provide
more effective guidance for heuristic algorithms, is certainly a very interesting
way to boost the performance of these algorithms.

Acknowledgments. This work is supported by the CONACyT Mexico, the “Con-
trat Plan Etat-Région” project COM (2000-2006) as well as the Franco-Mexican Joint
Lab in Computer Science LAFMI (2005-2006). The reviewers of the paper are greatly
acknowledged for their constructive comments.

References

1. I. Charon and O. Hudry. The noising method: A new method for combinatorial
optimization. Operations Research Letters, 14(3):133-137, 1993.

2. J. Diaz, J. Petit, and M. Serna. A survey of graph layout problems. ACM Comput.
Surv., 34(3):313-356, 2002.

3. E. Falkenauer. A hybrid grouping genetic algorithm for bin packing. Journal of
Heuristics, 2:5-30, 1996.

4. M. Garey and D. Johnson. Computers and Intractability: A guide to the Theory
of NP-Completeness. W.H. Freeman and Company, New York, 1979.

5. D. E. Goldberg and R. Lingle. Alleles, loci, and the travelling salesman problem.
In Proc. of ICGA’85, pages 154—-159. Carnegie Mellon publishers, 1985.

6. J. Gu and X. Huang. Efficient local search with search space smoothing: A case
study of the traveling salesman problem (TSP). IEEE Transactions on Systems,
Man, and Cybernetics, 24:728—-735, 1994.

7. L. Harper. Optimal assignment of numbers to vertices. Journal of SIAM,
12(1):131-135, 1964.

8. D. Johnson, C. Aragon, L. McGeoch, and C. Schevon. Optimization by simu-
lated annealing: An experimental evaluation; part II, graph coloring and number
partitioning. Operations Research, 39(3):378-406, 1991.

9. S. Khanna, R. Motwani, M. Sudan, and U. Vazirani. On syntactic versus compu-
tational views of approximability. In Proc. Of the 85th Annual IEEE Symposium
on Foundations of Computer Science, pages 819-830. IEEE Press, 1994.

10. Y. Koren and D. Harel. A multi-scale algorithm for the linear arrangement prob-
lem. Lecture Notes in Computer Science, 2573:293-306, 2002.

11. Y. Lai and K. Williams. A survey of solved problems and applications on band-
width, edgesum, and profile of graphs. Graph Theory, 31:75-94, 1999.

12. J. Petit. Layout Problems. PhD thesis, Universitat Politécnica de Catalunya, 2001.

13. E. Rodriguez-Tello, J.-K. Hao, and J. Torres-Jimenez. Memetic algorithms for the
MinLA problem. Lecture Notes in Computer Science, 3871:73-84, 2006.

14. 1. Safro, D. Ron, and A. Brandt. Graph minimum linear arrangement by multilevel
weighted edge contractions. Journal of Algorithms, 2004. in press.

