796 MIC2005. The 6th Metaheuristics International Conference

A New Evaluation Function for the MinLA Problem

Eduardo Rodriguez-Tello* Jin-Kao Hao* Jose Torres-Jimenez!

*LERIA, Université d’Angers
2 Boulevard Lavoisier, 49045 Angers Cedex 01, France
{ertello, hao}@info.univ-angers.fr

TMathematics Department, University of Guerrero
54 Carlos E. Adame, 39650 Acapulco Guerrero, Mexico
jtjOuagro.mx

1 Introduction

The minimum linear arrangement problem (MinLA) was first stated by Harper in [5]. His aim
was to design error-correcting codes with minimal average absolute errors on certain classes of
graphs. Latter, in the 1970’s it was used as an abstract model of the placement phase in VLSI
layout, where nodes of the graph represented modules and edges represented interconnections.
In this case, the cost of the arrangement measures the total wire length [1]. MinLA arises also
in other application areas like graph drawing, software diagram layout and job scheduling [3].

The MinLA problem can be defined formally as follows. Let G(V, E) be a finite undirected
graph, where V' (|V| = n) defines the set of vertices and £ C V x V = {{i,j} | i,j € V} is
the set of edges. Given a one-to-one function ¢ : V- — {1..n}, called a linear arrangement, the
total edge length for G with respect to arrangement ¢ is defined by:

LAG,)= > lp(u) = ¢(v)] (1)

(u,v)EE

Then the MinL A problem consists in finding an arrangement ¢ for a given G so that
LA(G, ¢) is minimized.

As is the case with many graph layout problems, finding the minimum linear arrangement
is NP-hard and the corresponding decision problem is NP-complete [4]. Only in very special
cases it is possible to find the optimal arrangement in polynomial time (see [3] for a detailed
survey). Nowadays, the best polynomial time approximation algorithm for MinL A gives a
O(log n) approximation factor for general graphs [8]. However, this algorithm presents the
disadvantage of having to solve a linear program with an exponential number of constraints,
making it impractical for large graphs.

As an indispensable alternative, several heuristic methods have been proposed. Some
examples are: a binary balanced decomposition tree heuristic [2] and a multi-scale algorithm

Vienna, Austria, August 22—-26, 2005

MIC2005. The 6th Metaheuristics International Conference 797

[6]. In [7], Petit presents several heuristics for MinLa that belong to the families of Greedy
algorithms, local search algorithms (Hillclimbing, Metropolis and Simulated Annealing) and
Spectral Sequencing. He concluded that the heuristic that achieved the best results was
Simulated Annealing.

All these algorithms have a point in common, all of them evaluate the quality of a solution
(linear arrangement) as the change in the objective function LA(G, ¢). It represents a potential
drawback because different linear arrangements can result in the same total edge length. This
incomplete information can prevents the search process from finding better solutions.

Taking this idea in mind, and given that one of the most important elements in heuristic
search is how the quality of a solution is evaluated, a new evaluation function (namely V)
is proposed in this paper. This new evaluation function is able to capture even the smallest
improvement that orients the searching of better solutions and permits to distinguish arrange-
ments with the same total edge length.

The paper is organized as follows: In Section 2 the new evaluation function ¥ is introduced.
Section 3 shows a Simulated Annealing algorithm which is used to compare ¥ and the classical
evaluation function LA. Section 4 presents an experimental comparison between ¥ and LA.
Finally, in Section 5 some conclusions are presented.

2 The U evaluation function

The choice of the evaluation function is an important aspect of any search procedure. Firstly,
in order to efficiently test each potential solution, the evaluation function must be as simple as
possible. Secondly, it must be sensitive enough to locate promising search regions on the space
of solutions. Finally, the evaluation function must be consistent: a solution that is better than
others must return a better value.

The classical evaluation function (LA) does not fulfill these requirements, because using
it different linear arrangements can result in the same total edge length. Given this negative
feature we have developed a new evaluation function, called ¥, which permits to better dis-
criminate arrangements with the same total edge length. The proposed evaluation function
not only measures the total edge length for G with respect to arrangement ¢, it also evaluates
how much a linear arrangement can improve. Next, we present some preliminary concepts
used in its definition.

Consider the contribution L(u,¢) of a vertex u with respect to the linear arrangement ¢
defined by: L(u,) = 3 ,caq) lp(u) — p(v)], where A(u) is the set of adjacent vertices to u.

Figure 1: The best possible arrangement for a node u.

Vienna, Austria, August 22—26, 2005

798 MIC2005. The 6th Metaheuristics International Conference

Figure 2: (a) Arrangement ¢ with LA = 35. (b) Arrangement ¢’ with LA = 35.

Remark that in the best possible arrangement, a node must have two incident edges that
contribute 1, two incident edges that contribute 2, two incident edges that contribute 3, and
so on (see Figure 1). Therefore, the maximal contribution L(u,¢) of a node u with degree d
can be defined as follows:

d—1
il fjl 2i = WD it g is odd
1=

d
22:22':M, if d is even

Using this bound we are able to compute the pgtential improvement of an arrangement
¢ using the expression I(G,¢) = > ,cv[L(u, @) — L(u,¢)]. Additionally, the potential im-
provement can be normalized (0 < ILyorm(G,) < 1) by using the formula Ip,omm(G,¢) =

1 —1/I(G,). Then, we can define the new ¥ evaluation function as follows:

U(G,) = LA(G,) + Lnorm(G,) (3)

To illustrate the computation of this new evaluation function, let us consider the graph in
Fig. 2(a). For this particular graph n = 12, LA(G, ¢) = 35 and I(G, ¢) = 40.

Then, by making the substitution of these values in the Formula 3 we obtain: ¥(G,¢) =
35+ (1— 4—10) = 35.975. In contrast if ¥ is computed for the arrangement ¢’ showed in Fig.
2(b) a different and smaller value is obtained: ¥(G, ¢') = 35+ (1—35) = 35.973. It means that
the arrangement ¢ is better than ¢’. Indeed it is better because its potential improvement is
higher.

In this sense this new evaluation function is much more discriminating than LA and leads
to smoother landscapes during the search process. This is possible because ¥ allows to capture
even the smallest improvement that orients the searching process of solutions.

Vienna, Austria, August 22—-26, 2005

MIC2005. The 6th Metaheuristics International Conference 799

3 A SA algorithm for solving the MinLA problem

To evaluate the practical usefulness of the ¥ evaluation function, a Simulated Annealing (SA)
algorithm was developed. Next some details of the implementation proposed are presented:

Evaluation Function. In this implementation we have included the ¥ evaluation function
whose formal definition is presented in Formula 3.

Neighborhood Function. The neighborhood of a solution N(¢) in our implementation
contains all the arrangements ¢’ obtained by swapping two randomly selected vertices of the
current arrangement .

Initial Solution. The initial solution is the starting configuration used as input for the
algorithm. This SA implementation generates randomly the initial arrangement.

Cooling Schedule. In this SA algorithm the proportional cooling schedule is used (7}, =
Tn—1%0.95). The initial temperature was fixed at 10 and the final temperature () at 0.2.

Termination Condition. The algorithm stops either if the current temperature reaches
T}, or if the number of accepted configurations at each temperature falls below the limit of 25.
The maximum number of accepted configurations at each temperature (maxCon figurations),
depends directly on the number of nodes in the graph (n), because more moves are required
for larger graphs (mazCon figurations = 30n3/?).

4 Computational experiments

In this section, we present the experiments accomplished to evaluate the performance of W
over a set of 21 benchmark instances!. For these experiments the above SA algorithm is used.
The code, programmed in C, was compiled with gcc using the optimization flag -O3 and ran
into a cluster of 5 nodes, each having a Xeon bi-CPU at 2 GHz and 1 GB of RAM with Linux.
Due to the non-deterministic nature of th SA algorithm, 20 independent runs were executed
for each of the selected benchmark instances. All the results reported here are data averaged
over the 20 corresponding runs.

The set of problem instances is the same proposed by Petit [7] and used in [2, 6]. It consists
of six different families: Uniform random graphs (randomA* class), Geometric random graphs
(randomG* class), Graphs with known optima (trees, hypercubes and meshes), Graphs from
finite element discretizations (3elt, airfoill and whitaker3), Graphs from VLSI design (c*y
class) and Graphs from graph-drawing competitions (gd* class). All the graphs included in
this test-suite have 1000 vertices or more, except for some instances in the gd* class.

The criteria used for evaluating the performance of ¥ are the same as those used in the
literature: the average total edge length for each instance and the average CPU time in seconds.

!These instances are available at: http://www.lsi.upc.es/ jpetit/MinLA /Experiments/jpetit-extra.tar.gz

Vienna, Austria, August 22—-26, 2005

800 MIC2005. The 6th Metaheuristics International Conference

4.1 Comparison between ¥V and LA

In order to compare both evaluation functions we used them within the SA algorithm pre-
sented in Section 3 (call these SA algorithms SA-¥ and SA-LA) and test them on the set of
21 instances. Both SA-¥ and SA-LA were run 20 times on each instance and the results are
presented in Table 1. In this table columns 1 to 3 show the name of the graph, the number
of vertices and edges. Columns 4 to 7 shows the average total edge length and the average
CPU time in seconds for the 20 runs of the SA algorithm that uses the ¥ and the LA evalu-
ation function respectively. The last column presents the improvement obtained when the ¥
evaluation function was used.

The results presented in Table 1 show clearly that the new evaluation function ¥ allows
the SA algorithm to obtain better results for many classes of graphs with very weak additional
computing time. We can observe an average improvement of 9.18%, with a peak of 62.31%
(see column Improvement). So the superiority of ¥ over LA is confirmed.

Table 1: Results obtained with two SA algorithms using ¥ and LA.

SA-T SA-LA %

Graph n Edges Cost Time Cost Time Improvement
randomAl 1000 4974 914523.80 88.99 934880.00 74.50 2.18
randomA2 1000 24738 6665621.10 223.65 6714392.00 182.93 0.73
randomA3 1000 49820 14376963.90 356.07 14445089.00 289.66 0.47
randomA4 1000 8177 1786088.90 105.72 1810207.00 91.19 1.33
randomG4 1000 8173 229349.70 81.29 277593.00 87.10 17.38
bintreel0 1023 1022 4274.40 42.11 11341.00 55.10 62.31
hcl0 1024 5120 523776.00 92.30 528829.00 90.90 0.96
mesh33x33 1089 2112 38395.50 56.52 44430.00 89.80 13.58
3elt 4720 13722 427555.60 785.71 481815.00 756.60 11.26
airfoill 4253 12289 347672.80 693.64 384013.00 665.80 9.46
whitakerd 9800 28989 1216866.30 3273.27 1231912.00 3230.60 1.22
cly 828 1749 64490.80 36.96 70710.00 46.51 8.80
c2y 980 2102 82120.10 48.64 90158.00 54.25 8.92
c3y 1327 2844 139480.20 81.35 151622.00 87.15 8.01
cdy 1366 2915 118541.10 87.83 131106.00 91.30 9.58
cHy 1202 2557 106568.00 68.03 118541.00 83.90 10.10
gd95¢ 62 144 507.30 0.39 525.00 0.67 3.37
gd96a 1096 1676 105722.20 57.73 124704.00 66.76 15.22
gd96b 111 193 1420.90 1.60 1437.00 1.08 1.12
gd96¢ 65 125 520.50 0.45 531.00 0.56 1.98
gd96d 180 228 2402.10 2.62 2523.00 2.92 4.79

Average 1292993.39 294.52 1312207.52 288.06 9.18

5 Conclusion

In this paper, we have introduced the ¥ evaluation function for the MinLA problem. It allows
to better orient the search process by producing a smoother landscape.

To validate the practical usefulness of ¥, two versions of a basic SA (SA-¥ and SA-LA)
were implemented. They were compared using a set of well known benchmarks and the results

Vienna, Austria, August 22—-26, 2005

MIC2005. The 6th Metaheuristics International Conference 801

showed that for many classes of graphs an average improvement of 9.18% can be achieved
when W is used.

Finally, let us notice that the ¥ evaluation function proposed in this paper can be used by
other metaheuristic algorithms (Genetic Algorithms, Tabu Search, Scatter Search) to boost
their performance.

More generally, we think that research of new evaluation function for combinatorial prob-
lems is a very important issue and worthy of more attention of researchers. Indeed, it is this
function that guides the exploration and exploitation process of a heuristic algorithm.

Acknowledgments. This work was supported in part by the Franco-Mexicain Computer
Science Laboratory (LAFMI), the CONACyT Mexico and the CPER COM project.

References

[1] Adolphson, D., and Hu, T. (1973): “Optimal Linear Ordering”. In: SIAM J. Appl. Math.
25 (3), 403-423.

[2] Bar-Yehuda, R., Even, G., Feldman, J., and Naor, S. (2001) “Computing an Optimal
Orientation of a Balanced Decomposition Tree for Linear Arrangement Problems”. In:
Journal of Graph Algorithms and Applications 5 (4), 1-27.

[3] Diaz, J., Petit, J., and Serna, M. (2002): “A Survey of Graph Layout Problems”. In: ACM
Comput. Surv. 34 (3), 313-356.

[4] Garey, M., and Johnson, D. (1979): Computers and Intractability: A guide to the Theory
of NP-Completeness. W.H. Freeman and Company, New York, USA.

[5] Harper, L. (1964): “Optimal Assignment of Numbers to Vertices”. In: Journal of SIAM
12 (1), 131-135.

[6] Koren, Y., and Harel, D. (2002): “A Multi-scale Algorithm for the Linear Arrangement
Problem”. In: Lecture Notes in Computer Science 2573, 293-306.

[7] Petit, J. (1998): “Approximation Heuristics and Benchmarkings for the MinLLA Problem”.
In: Algorithms and Ezperiments (ALEX98), pp. 112-128.

[8] Rao, S., and Richa, A. (1998): “New Approximation Techniques for Some Ordering Prob-
lems”. In: Proc. of the 9th ACM-SIAM Symposium on Discrete Algorithms, 211-218.

Vienna, Austria, August 22—-26, 2005

