
Two-dimensional bandwidth minimization problem: exact and heuristic
approaches

Miguel Ángel Rodŕıguez-Garćıaa, Jesús Sánchez-Oroa,∗, Eduardo Rodriguez-Tellob, Éric Monfroyc,
Abraham Duartea

aDept. Computer Sciences, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles (Madrid), Spain
bCinvestav Tamaulipas. Km 5.5 Carretera Victoria-Soto La Marina,

87130 Victoria Tamps., Mexico
cLERIA, Université d’Angers. 2 Boulevard Lavoisier, 49045 Angers, France

Abstract

Reducing the bandwidth in a graph is an optimization problem which has generated significant attention

over time due to its practical application in Very Large Scale Integration (VLSI) layout designs, solving

system of equations, or matrix decomposition, among others. The bandwidth problem is considered as a

graph labeling problem where each vertex of the graph receives a unique label. The target consists in finding

an embedding of the graph in a line, according to the labels assigned to each vertex, that minimizes the

maximum distance between the labels of adjacent vertices. In this work, we are focused on a 2D variant

where the graph has to be embedded in a two-dimensional grid instead. To solve it, we have designed two

constructive and three local search methods which are integrated in a Basic Variable Neighborhood Search

(BVNS) scheme. To assess their performance, we have designed three Constraint Satisfaction Problem

(CSP) models. The experimental results show that our CSP models obtain remarkable results in small or

medium size instances. On the other hand, BVNS is capable of reaching equal or similar results than the

CSP models in a reduced run-time for small instances, and it can provide high quality solutions in those

instances which are not optimally solvable with our CSP models.

Keywords: Graph layout, metaheuristics, Variable Neighborhood Search, GRASP, Constraint

Programming Formulations

1. Introduction

The bandwidth minimization problem (BMP) and its variants have been extensively studied in the

literature for their applications in the context of circuit layout, Very Large Scale Integration (VLSI) design, or

network communications [1, 2, 3]. Formally, this family of problems is defined as follows. Let H = (VH , EH)

∗Corresponding author

Email addresses: miguel.rodriguez@urjc.es (Miguel Ángel Rodŕıguez-Garćıa), jesus.sanchezoro@urjc.es (Jesús

Sánchez-Oro), ertello@cinvestav.mx (Eduardo Rodriguez-Tello), eric.monfroy@univ-angers.fr (Éric Monfroy),
abraham.duarte@urjc.es (Abraham Duarte)

Preprint submitted to Knowledge-Based Systems July 4, 2025

and G = (VG, EG) be a host graph and a guest graph, respectively, and let φ be an injective function5

(usually known as labeling or embedding) of the guest graph to the host graph, i.e., φ : VG −→ VH . Then,

the bandwidth (cost) of this labeling is computed as:

B(G,φ) = max
(u,v)∈EG

dH(φ(u), φ(v)) , (1)

where the function dH(x, y) computes the distance between x and y in H. The optimal bandwidth of G,

relative to the host graph H, is then defined as the minimum B(G,φ) value considering the set of all possible

labelings Φ of G. In mathematical terms,10

B⋆(G) = min
φ∈Φ

B(G,φ) . (2)

The most studied variant of this family of problems, is called linear bandwidth (LBMP), and considers

that H is a path graph of order n = |VH | = |VG|, which is usually represented as a horizontal line. In this

case, the embedding φ of G to H consists in assigning the integers {1, 2, . . . , n}, where φ(u) = i indicates

that vertex u ∈ VG is located in position i in the line, with 1 ≤ i ≤ n. Figures 1(a) and 1(b) show an

example graph G with 5 vertices and 7 edges and a feasible embedding in a path graph, respectively. As15

it can be observed, φ(I) = 1 since vertex I is located in the first position in the line. Similarly, φ(C) = 5

which means that vertex C is located in the fifth position in the line. The linear bandwidth of the labeling

depicted in Figure 1(b) is determined by the maximum distance in the host graph between adjacent vertices

(in the guest graph), i.e., BP (φ) = 4. It corresponds to the distance between vertices I and C in the host

graph.20

(a) Example graph with 5 vertices and 7

edges.

(b) Example labeling of the graph.

Figure 1: Undirected graph G and a possible labeling of G for the linear bandwidth minimization problem.

This variant of the bandwidth problem was proven to be NP-complete [4] and, since then, it is an

optimization problem which has been extensively studied. The scientific community has approached this

problem by considering two lines of research. The first one is devoted to deriving theoretical results (mainly

lower bounds) and exact methods for the linear bandwidth. Specifically, Chvat́al [5] proposed a lower bound

2

based on the density of the graph. Gurari and Sudborough [6] designed an improved dynamic programming25

algorithm which solves the LBMP in O(nb) steps, b being the searched bandwidth. Del Corso and Manzini

[7] proposed an exact procedure based on the branch-and-cut methodology to solve small and medium

instances (up to 100 vertices). Caprara and Salazar [8], extend the previous one by introducing tighter lower

bounds, thus solving large size instances. Mart́ı et al. [9] introduced a branch-and-bound coupled with a

metaheuristic procedure that outperformed all previous approaches.30

The second line of research is devoted to heuristic approaches. For many years, researchers were only

interested in designing relatively simple heuristic procedures, which were extremely fast but, unfortunately,

the quality of the obtained solutions were poor. See for instance [10, 11]. In the last 20 years, researches

have focused on proposing advanced metaheuristics which are able to find high-quality solutions in moderate

computing time. A tabu search is presented in [12], where the authors reinterpret the linear bandwidth as35

a labelling problem. To solve it, the authors introduced a move strategy that reduces the bandwidth by

swapping labels between vertices. The tabu procedure is designed through a short-term memory imple-

mentation which restricts the node re-tagging when it has been moved. Using the same move operator,

Piñana et al. [13] proposed a Greedy Randomized Adaptive Search Procedure (GRASP) in combination

with Path Relinking to improve the performance compared to the tabu search. Conversely, from a different40

perspective, we can also find trajectory-based metaheuristics based on soft computing methodologies. For

instance, Lim et al. [14] proposed a hybrid strategy based on ant colony and hill-climbing or Czibula et

al. [15] proposed a soft computing methodology which consisted on combining a genetic algorithm and an

ant-based system to resolve the bandwidth problem. Rodriguez-Tello et al. [16] proposed a simulated an-

nealing procedure with an alternative objective function to efficiently explore the search space. Mladenovic45

et al. [17] introduced a Variable Neighborhood Search (VNS) heuristic. Their implementation considered

a reduced swap neighborhood, a fast local search procedure, and a rotation-based neighborhood structure.

Finally, Torres-Jimenez et al. [18] reported a dual representation simulated annealing algorithm based on a

compound neighborhood function to provide high quality solutions to the LBMP. As far as we know, this

method is currently considered the state of the art in this optimization problem.50

In this paper, we focus on the two-dimensional bandwidth minimization problem (2DBMP), originally

proposed in [19]. This variant considers the embedding of a guest graph G = (VG, EG) into a host graph

GH = (VH , EH), which is a two-dimensional grid with size n × n, being |VH | = |VG| = n. In this case, the

embedding φ of G to H assigns a 2-tuple to each vertex that corresponds with the row and column of the

grid node1 where the vertex is located. Specifically, φ(u) = (i, j) indicates that vertex u ∈ VG is located in55

the grid node at row i and column j, with 1 ≤ i, j ≤ n.

1Hereafter, the term node is used to refer to vertices in the grid host, while vertex is employed in the context of the guest

graph.

3

As it was aforementioned, the distance function strongly depends on the host graph. Considering that

2DBMP was originally derived from circuit layout models (where wires are traced in horizontal/vertical

directions), this metric usually represents the rectilinear distance computed with the L1-norm distance [20].

Therefore, given two vertices u, v ∈ VG and a labeling φ such that φ(u) = (i, j) and φ(v) = (i′, j′), the60

distance between them in the grid is:

dL1
(φ(u), φ(v)) = dL1

((i, j), (i′, j′)) = |i− i′|+ |j − j′| (3)

Therefore, Equation 1 is particularized for the 2DBMP by considering L1-norm instead of a general

distance function (defined with the dH function) as follows:

B2D(G,φ) = max
(u,v)∈EG

dL1(φ(u), φ(v)) , (4)

and it represents the objective function of the 2DBMP.

(a) Labeling φ1. (b) Labeling φ2.

Figure 2: Example of two different labelings for the graph depicted in Figure 1(a).

Figures 2(a) and 2(b) show two possible labelings, φ1 and φ2, for the graph depicted in Figure 1(a). As65

it can be observed in Figure 2(a), φ1(B) = (1, 1) since vertex B is located in the first row and first column of

the grid. Similarly, φ2(C) = (2, 3), which means that vertex C is located in the second row and third column

of the grid in φ2 (see Figure 2(b)).

Considering the embedding φ1 of the guest example graph (see Figure 1(a)) to a 3 × 3 bi-dimensional

grid, the largest distance between any pair of vertices is obtained when considering B and H. In particular,70

dL1
(φ1(B), φ1(H)) = dL1

((1, 1), (3, 3)) = |1−3|+ |1−3| = 4. If we now consider φ2, we can see that the max-

imum distance corresponds to the one between vertices H and G, so dL1(φ2(G), φ2(H)) = dL1((1, 3), (3, 3)) =

4

|1 − 3| + |3 − 3| = 2. Thus, we can conclude that φ2 is a better solution than φ1 for the 2DBMP since it

presents a smaller objective function value.

The 2DBMP has been also proven to be NP-complete [21, 22]. This problem is useful for optimizing the75

design of VLSI [2], in order to generate more efficient circuits, in terms of area and wire lengths. 2DBMP can

be also applied for optimizing the communication requirements in grid-based parallel computers, which are

usually considered when parallelizing divide-and-conquer algorithms [1]. If we model parallel algorithms or

massively parallel computers as graphs, where vertices are processes or processor units, and edges indicate

the relations among them, the problem of efficiently executing a parallel algorithm on a parallel computer80

is reduced to mapping the graph that represents the algorithm on the graph that represents the parallel

computer, satisfying the required constraints. As stated in [3], the 2DBMP can be useful for generating

those embedding.

Despite the high number of applications of the 2DBMP, this problem have been mainly approached by

proposing lower bounds for general graphs [20, 23, 24]. To the best of our knowledge, there are not previous85

algorithms for solving the 2DBMP neither from an exact nor from a heuristic perspective.

The main contributions of this paper are related with the introduction of new solving procedures for the

2DBMP that can be easily adapted for dealing with other hard optimization problems. Specifically, a Con-

straint Satisfaction Problem (CSP) model, named M0, to optimally solve small and medium size instances.

We propose three refinements of M0 denoted as M1, M2, and M3, where each model incrementally includes90

the strategies of the previous one. The first model is intended to avoid costly conjunctions; the second

model additionally includes global constraints to increase the efficiency of the solver; finally, the third model

also incorporates strategies to prevent exploring symmetric solutions in the search space. We then propose

a Variable Neighborhood Search (VNS) algorithm to deal with large size instances. This metaheuristic is

composed of an original constructive procedure and six novel local search procedures designed for exploring95

a large portion of the search space. These local search methods are based on three exploration strategies:

first improvement (FI), best improvement (BI), and a novel hybrid approach which leverages the best of

both FI and BI.

The remaining of the paper is organized as follows. Section 2 presents the Constraint Satisfaction Problem

models designed for finding optimal solutions for the 2DBMP. Section 3 proposes a metaheuristic algorithm100

for solving large-scale instances efficiently. Section 4 evaluates the presented algorithms in terms of quality

and computing times, showing the limitations of exact and heuristic approaches. Finally, Section 5 draws

the conclusions derived from this research.

5

2. Constraint Programming Formulations for the 2DBMP

In order to obtain a clear basis, we need a sharp separation between the optimization problem and105

its resolution. To this end, we consider a declarative programming paradigm which provides a high-level

language for modeling our problem and a generic method for solving it. On the one hand, the probabilistic

programming approaches [25] and probabilistic graphical models provide a formal language for modeling

and, additionally, a common target for efficient inference algorithms. Probabilistic programming languages

aim at unifying general purpose programming with probabilistic modeling: the user specifies a probabilistic110

model and inference follows automatically given the corresponding specification. On the other hand, con-

straint programming [26] is originated from constraint logic programming [27]. It is a paradigm for solving

combinatorial problems that also uses techniques from Artificial Intelligence and Computer Science mainly.

In constraint programming, the user just declaratively states what her/his problem is, and then the com-

puter automatically solves it. Constraint programming differs from usual programming languages in that it115

does not require to specify steps or sequences of steps to execute, but rather properties of solutions to be

found.

Both of these programming approaches present a clean dissociation from modeling and reasoning/inference.

However, since we do not have to handle uncertainty in our data (an instance is directly determined with a

graph), and that we require numerous arithmetic operations to compute and compare bandwidths, we turn120

towards constraint programming.

In constraint programming, stating the problem or modeling the problem consists in defining a set of

objects that must satisfy some constraints or limitations. Practically, the model or the constraint satisfaction

problem is given by a set of decision variables with their domains (the candidate values of these variables),

together with some relations (the constraints) linking these variables. A solution is a tuple of the search125

space (defined by the Cartesian product of the domains of variables) which satisfies all the constraints. The

user may also need a solution that optimizes some criteria. In this case, it is usually known as constraint

optimization problem. In this paper, we are concerned with a constraint optimization problem, i.e., the

2DBMP, which requires finding the best solution (the solution which minimizes the maximum distance

between labels) which satisfies some constraints (vertices are labeled with different nodes of the grid). A130

model together with the required data conforms an instance, which is solved with an algorithm that we call

a constraint solver.

There are numerous possible methods and algorithms that can be solvers, issued from Artificial Intelli-

gence, Mathematical Programming, Metaheuristics, Operational Research, etc. Most of the time, the solvers

are constraint-propagation-based solvers. This kind of solvers is said to be complete: if there is no solution,135

they prove it; if there is a solution, they find it. In case of optimization, they find the global optimal solution

if they are given sufficient time.

6

Constraint-propagation-based solvers combine computation and deduction. They are based on an itera-

tive process that alternates constraint propagation and search. Constraint propagation consists in reducing

the search space by removing those values (from domains of variables) that cannot participate in any solu-140

tion. Search consists in branching in the search tree by enumerating a variable. Completeness is assured by

means of backtracking strategies.

In the following, we will thus focus on modeling the 2DBMP. Modeling is also an iterative process which

consists in producing a first model which is then refined in order to be solved more efficiently. Modeling

consists in defining decision variables together with their domains (candidate values), and some constraints145

linking these variables. Refining the model may be performed by rewriting some constraints in a better-

suited way for the solver, adding some redundant constraint that simplifies and speeds-up the solving process,

using some global constraints, breaking some symmetries for reducing the search space, etc.

2.1. First Constraint Satisfaction Problem model

A Constraint Satisfaction Problem (CSP) model is usually determined by defining some data, variables150

(with their corresponding domains), and constraints (linking these variables). For the 2DBMP, initial

graphs are our data. For the sake of convenience, we represent the graph by considering a 2-dimensional

array of edges, named as graph(1..m, 1..2), where m indicates the number of edges of the guest graph. In

this particular representation, graph(i, 1) and graph(i, 2) determines both extremes of the i-th edge of the

graph. We additionally consider upper and lower bounds for the 2DBMP, denoted as ub and lb, respectively,155

computed according to the following expressions proposed in [24]:

lb =
δ(n)

D(G)
, (5)

and

ub = δ(n) , (6)

where D(G) represents the diameter of the graph G, n is the number of vertices of the host/guest graphs,

and δ(n) is the minimal diameter for a set of n grid points calculated as follows:

δ(n) = min

{
2

⌈√
2n− 1− 1

2

⌉
, 2

⌈√
n

2

⌉
− 1

}
. (7)

The reader is referred to Appendix A and Appendix B for consulting a list of graphs with known160

bounds, and a collection of graphs with known optimal solutions, respectively.

The objective function depicted in Equation 4 is implemented in the model to evaluate the feasible CSP

states.

The second stage in the CSP model consists in defining the decision variables (or variables, for short),

that we need in our model. Specifically, they are meant to capture distances between vertices of every165

7

edge and labels assigned to vertices. Distance variables are stored in an array of variables ranging from

the minimum distance to the maximum distance. More precisely, it is named as distance(1..m) where

distance(i) is a variable ranging from 1 to ub that represents the distance between the two vertices of edge i.

Labels of the n vertices are stored in a 2-dimensional array of grid coordinates. In particular, grid(1..n, 1..2)

is an array of labels, where grid(i, 1) and grid(i, 2) indicates the row and column where the i-th vertex of170

the guest graph is located in the host graph.

Constraints in the CSP model for the 2DBMP are focused on distances and uniqueness of labels.

Specifically, distance constraints exactly correspond to the definition of distance given in Section 1 (see

Equation 1):

∀i ∈ [1..m]

distance(i) = |grid(graph(i, 2), 1)− grid(graph(i, 1), 1)|+ (8)

|grid(graph(i, 2), 2)− grid(graph(i, 1), 2)| .

Similarly, constraints about labels establish that two vertices of the guest graph cannot correspond to175

the same vertex of the grid:

∀v1 ∈ [1..n− 1], ∀v2 ∈ [v1 + 1..n]

grid(v1, 1) ̸= grid(v2, 1) ∨ grid(v1, 2) ̸= grid(v2, 2) . (9)

These constraints state that if two vertices are on the same row, they must be on different columns of

the grid.

The 2DBMP is an optimization problem, therefore, we need to state which variable must be optimized.

Specifically, the maximum of the distances is defined as follows (see Equation 1, where the distance function180

es particularized in Equation 3):

max distance = max{distance(i)|i ∈ [1..m]} . (10)

Then, according to the definition introduced in Section1, the 2DBMP requires to minimize the maximum

distance (see Equation 2):

minimize(max distance) . (11)

Finally, the first model for the 2DBMP, denoted as M0, is given by the variable definition and the

following conjunction of constraints and objective:185

M0 = (9) ∧ (8) ∧ (10) ∧ (11) .

8

2.2. Refined models

Programming is an iterative process which consists in coding a first version of the program and then

refining it to improve its readability or efficiency. Modeling is also an iterative process which consists in

refining models in order to improve the solving efficiency of the model. This can be done by adding redundant

constraints, i.e., constraints that do not change neither the semantics of the model nor its solutions, but190

that can help the solver. Another method consists in changing a part of the model by some constraints that

are solved more efficiently. In this section, we propose three refinements (M1, M2, and M3) based on the

original one, where we explore some strategies to improve its effectiveness.

In the first model, M1, we try to avoid disjunctions since they are generally costly to be solved in

constraint programming. As can be seen above, Constraints (9) introduce some disjunctions. We then refine195

the aforementioned model, M0, by replacing these costly constraints by some others that can be evaluated

in a more efficient way. In particular, we determine that two vertices of the guest graph cannot correspond

to the same vertex of the host graph (grid), as follows:

∀i ∈ [1..n− 1],∀j ∈ [i+ 1..n],

grid(i, 1) ∗
⌈√

n
⌉
+ grid(i, 2) ̸= (12)

grid(j, 1) ∗
⌈√

n
⌉
+ grid(j, 2) .

Constraints (12) mean that two vertices i and j are not on the same node of the grid. Constraints (12)

replace Constraints (9). Note that (12) consist of n(n− 1)/2 inequalities. Therefore, the model M1 is thus200

given by: M1 = (12) ∧ (8) ∧ (10) ∧ (11).

In the second refinement, M2, we include global constraints that can be stated as the conjunction of

several “basic” constraints. Global constraints are thus “syntactic sugar” that simplifies modeling and

readability. Moreover, some specific algorithms are dedicated to the global constraints, and thus, they

improve the efficiency of solvers. More precisely, a global constraint captures a relation among n variables,205

n not being fixed. One of the most famous global constraint is the all different(x1, . . . , xn) constraint,

which specifies that the values of the variables x1, . . . , xn must be pairwise distinct, i.e., ∀i ∈ [1..n− 1],∀j ∈

[i+ 1..n], xi ̸= xj .

Generally speaking, solvers take advantage of the structure of part of the problem modeled with global

constraints. Then, we improve model M1 using one all different global constraint by considering that two210

vertices of the guest graph cannot correspond to the same vertex of the grid:

all different({grid(i, 1) ∗
⌈√

n
⌉
+ grid(i, 2) | i ∈ [1..n]}) . (13)

Constraints (13) mean that two vertices are not on the same node of the grid using the all different

global constraint. Constraints (13) replace the n(n − 1)/2 Constraints (12). Then, the model M2 is given

by: M2 = (13) ∧ (8) ∧ (10) ∧ (11).

9

In the third refinement, M3, we consider specific strategies for symmetry breaking. Symmetries occur in215

many constraint satisfaction or constraint optimization problems. It is thus crucial to deal with symmetries

or the solver will waste much time exploring solutions and branches of the search tree which are symmetric

to already explored parts. A usual method to take advantage of symmetries [28] consists in complementing

the model with constraints [29] that eliminate isomorphic solutions, and consequently symmetries of the

search space.220

The 2DBMP presents obvious vertical and horizontal symmetries. It is thus possible to place the first

vertex on the lower left quarter of the grid. Hence, only symmetric solutions are lost, and note that these

“lost” solutions can be deduced from the computed solutions. The search space is significantly reduced, and

the model is solved more efficiently. We then consider that the first vertex is placed on the lower left quarter

of the grid:225

grid(i, 1) ≤
⌈√

n
⌉
÷ 2 ∧ grid(i, 2) ≤

⌈√
n
⌉
÷ 2 . (14)

The refined model M3 with symmetry breaking is given by: M3 = M2 ∧ (14).

3. Heuristic approach

The main advantage of exact methods such as the CSP models, presented in Section 2, is that they are

able to provide the optimal value for a given instance of 2DBMP. However, their main drawback resides in

the computational effort, in terms of both computing time and memory usage, required for solving a specific230

instance. Therefore, these algorithms are not applicable to medium or large instances. We then additionally

introduce a metaheuristic algorithm based on Variable Neighborhood Search (VNS). This methodology was

designed for solving hard optimization problems, and its potential lies on systematic changes of neighborhood

structures. The VNS framework has been widely studied in the scientific community, resulting in a wide

variety of VNS strategies: Reduced VNS (RVNS), Variable Neighborhood Descent (VND), Basic VNS235

(BVNS), General VNS (GVNS), among others. See [30] for a complete survey on VNS variants. This

paper is focused on BVNS, since it offers extraordinary chances to move through neighborhoods, combining

deterministic and stochastic changes.

BVNS requires three input parameters: the graph to be solved, G; the initial solution in which the

search starts, φ; and the maximum neighborhood to be explored, kmax. In the framework of VNS, the initial240

solution can be generated either at random or by using a heuristic procedure. In order to start the search

from a high quality solution, we consider the latter since it usually produces better outcomes [31, 32]. See

Section 3.1 for a further description.

We show in Algorithm 1 the pseucocode for BVNS. It starts the search from the first neighborhood to

be explored, k = 1 (step 1). Then, BVNS iterates until reaching the maximum predefined neighborhood245

10

Algorithm 1 BVNS (G = (V,E), φ, kmax)

1: k = 1

2: while k ≤ kmax do

3: φ′ ← Shake(φ, k)

4: φ′′ ← LS (φ′)

5: k ← NeighborhoodChange(φ,φ′′, k)

6: end while

7: return φ

kmax (steps 2-6). Each iteration firstly perturbs the incumbent solution φ with the Shake method (step

3), producing a random neighbor solution φ′ in the current neighborhood k (see Section 3.4). Then, an

improvement procedure, LS, is applied for finding a local optimum (step 4) producing a new solution φ′′

(see Section 4). Finally, the NeighborhoodChange method selects the next neighborhood to be explored by

considering the initial and final solution obtained in the current iteration, following the rules presented in250

Section 3.5. BVNS ends when no improvement is found in any of the neighborhoods, returning the best

solution found during the search.

3.1. Initial solution

We propose two constructive procedures based on the GRASP methodology [33]. Specifically, instead

of constructing a totally greedy solution, a controlled degree of randomization is considered to favor the255

diversification of whole procedure. Both methods start from an empty solution and label a vertex in each

iteration. The first one considers the objective function as a criterion to guide the construction. Before

defining this algorithm, we need to introduce the two-dimensional bandwidth of a specific vertex when not

all vertices have been already labeled. In particular, let L and U be the set of labeled and unlabeled vertices,

respectively. Notice that L∪U = VG and L∩U = ∅. We then define the two-dimensional bandwidth (cost)260

of a vertex v of the guest graph G with respect to φ as:

B2D(v, φ,G) = min
(u,v)∈EG∧
u∈L∧v∈U

dL1
(φ(v), φ(u)) . (15)

This equation evaluates the variation in the cost of a partial solution when vertex v ∈ U is labeled with

φ(v) by considering only the adjacent vertices already labeled (those in L). As it was aforementioned, the

label indicates the row and column (i, j) where v is embedded in the host graph. We propose a constructive

procedure which only considers positions in H close to those already labeled. Actually, we define the set of265

available positions after labeling a vertex as those which differ in a single row or column (i.e., the adjacent

ones in the host graph). More formally:

AP (v) = {w ∈ VH : dL1
(φ(w), φ(v)) = 1} . (16)

11

Then, given a partial solution, the set of available positions is defined as:

AP =
⋃
v∈U

AP (v) \
⋃
u∈L

φ(u) . (17)

Notice that AP contains all positions in H adjacent to a position already labeled.

Once we have defined the set of available positions, we need to select which vertex will be placed in that270

position. Specifically, we compute the best position for an unlabeled vertex v ∈ U as:

BestPos(v) = argmin
φ(v)∈AP

B2D(v, φ,G) . (18)

As it is well-documented in the related literature of labeling problems, it is really convenient to label

first those vertices that are adjacent to an already labeled one [34, 35]. More formally, the set of adjacent

vertices to a labeled vertex v ∈ L is:

AV (v) = {u ∈ VG : (u, v) ∈ EG, v ∈ L} . (19)

We therefore define the set of available vertices to be considered for labeling as:275

AV =
⋃
v∈L

AV (v) \ L . (20)

Having defined the set of available positions and available vertices, we propose a greedy function g1 that

evaluates the cost when a vertex v ∈ U is labeled (located) in BestPos(v). For each v ∈ AV , g1 is computed

as:

g1(v) = min
φ(v)∈AP

B2D(v, φ,G) . (21)

The first GRASP-based constructive procedure for 2DBMP starts from an empty solution and, itera-

tively, adds new vertices to the incumbent solution until it becomes feasible (i.e., every vertex of VG has280

been labeled with a different 2-tuple). Algorithm 2 shows the pseudocode of this method. The first vertex

to be included in the solution is selected at random among the set of all vertices in the graph (step 1).

Then, the i, j elements of a 2-tuple determining the position of the node in the two-dimensional grid are

also selected at random in the range 1 ≤ i, j ≤
⌈√

n
⌉
. Remark that we decided to use a reduced grid with

size
⌈√

n
⌉
×

⌈√
n
⌉
, given the upper bound (see Equation 6) proposed in [24]. The corresponding vertex285

v is included in the set of labelled vertices (step 3). Next, the set of available positions and vertices are

initialized (steps 4 and 5). Then, the constructive procedure iterates until including all the vertices in the

incumbent solution (steps 6-16) returning, finally, the constructed solution (step 17). In each iteration,

the constructive method determines the set AV of candidate vertices and the set AP of available positions

where a vertex can be placed. Then, for each candidate vertex v ∈ AV , it computes the g1(v) that would290

result if the v was placed on each available position. Next, the algorithm considers these values to compute

12

gmin and gmax (step 6). After, gmin and gmax are used to calculate the threshold (step 10) and the corre-

sponding Restricted Candidate List, RCL (step 10). The α parameter balances the greediness/randomness

of the algorithm, where α = 0 configures the algorithm to generate completely greedy solutions, while α = 1

produces totally random solutions. Finally, the algorithm utilises the RCL to randomly select a candidate295

which is assigned to the best available position (step 12), updating the sets accordingly (steps 13 to 15).

Algorithm 2 Constructive(G = (V,E), α)

1: v ← Random(VG)

2: φ(v)←
(
Random(

⌈√
n
⌉
),Random(

⌈√
n
⌉
)
)

3: L← {v}

4: AP ← AP (v)

5: AV ← AV (v)

6: while AV ̸= ∅ do

7: gmin ← minv∈AV g1(v)

8: gmax ← maxv∈AV g1(v)

9: Th← (gmin + α(gmax − gmin))

10: RCL← {v ∈ AV : g1(v) ≤ Th}

11: u← Random(RCL)

12: φ(u)← BestPos(u)

13: AP ← AP ∪AP (u) \
⋃

w∈L φ(w)

14: AV ← AV ∪AV (u) \ L

15: L← L ∪ {u}

16: end while

17: return φ

The second greedy function follows the idea proposed by McAllister [36] and later adapted by Pantrigo

et al. [37] for labeling problems. Specifically, this greedy function evaluates the relevance of inserting a

vertex as the number of labeled adjacent vertices minus the number of non-labeled adjacent vertices. More

formally,300

g2(v) = |{u ∈ AV (v) ∩ L}| − |{u ∈ AV (v) ∩ U}| (22)

For the sake of brevity we omit the inclusion of a pseudocode of this method since it is equivalent to the

one presented in Algorithm 2, but substituting g1 with g2. We will study the experimental performance of

these two methods in Section 4.2.

13

3.2. Neighborhood structures

Before defining the local search methods proposed for further improving the solutions constructed with305

the method described in Section 3.1, it is necessary to define the neighborhood structures considered for

this problem. The neighborhood of a given solution φ is defined as the set of solutions that can be reached

by performing a single move in φ. Therefore, the neighborhood structure highly depends on the move

considered. We propose two different moves for the 2DBMP : exchange and insert.

The exchange of two vertices u and v in a solution φ, defined as Exc(φ, u, v) results in a new solution φ′
310

where vertex u is labeled as φ(v) and vertex v is labeled as φ(u). Let us illustrate the move with a graphical

example. Figure 3(a) shows the initial solution φ. Notice that we only show the region of the grid located

between the nodes involved in the move. For the sake of simplicity, we will consider 1 ≤ i ≤ k ≤
⌈√

n
⌉

and 1 ≤ j ≤ l ≤
⌈√

n
⌉
. Then, the result of performing Exc(φ, u, v), with φ(u) = (i, j) and φ(v) = (k, l) is

depicted in Figure 3(b), where the vertices whose label is modified during the move are highlighted in grey.315

In the case of the exchange move, only vertices located at position (i, j) and (k, l) have changed their labels.

(i,j) ...

...

...

...(k,j)

(i+1,j) (i+1,j+1)

(k,l)(k,l-1)

(k-1,l-1)

(k,l-2)

(k-1,l)

(k-2,l)

(i+2,j)

(i,j+1) (i,j+2) (i,l)(i,l-1)

(i+1,l-1)

(i,l-2)

(i+1,l)

(i+2,l)

(a) Initial solution.

(k,l) ...

...

...

...(k,j)

(i+1,j) (i+1,j+1)

(i,j)(k,l-1)

(k-1,l-1)

(k,l-2)

(k-1,l)

(k-2,l)

(i+2,j)

(i,j+1) (i,j+2) (i,l)(i,l-1)

(i-1,l-1)

(i,l-2)

(i+1,l)

(i+2,l)

(b) Exchange move.

Figure 3: Definition of the exchange move, where the vertices whose labels are modified during the move are highlighted in

grey.

The insertion of a vertex u, with label φ(u) = (i, j), in the position assigned to another vertex v, located

at φ(v) = (k, l), named as Ins(φ, u, v) consists in exchanging vertex u with the vertex located in the next

column (i.e., j + 1) until reaching the column where v is located, i.e., until φ(u) = (i, l). Then, u is

interchanged with the vertices in the next row (i.e., i+1) until reaching the row where v is located, i.e., until320

φ(u) = (k, l). In other words, vertex u is moved horizontally until reaching the column of v and, then, u is

moved vertically until reaching the row of v, where the insert move ends. Figure 4(a) again shows the initial

14

solution before performing the move. The result of performing the move Ins(φ, u, v), with φ(u) = (i, j) and

φ(v) = (k, l) is shown in Figure 4(b), where the vertices whose labels were modified are highlighted in grey.

(i,j) ...

...

...

...(k,j)

(i+1,j) (i+1,j+1)

(k,l)(k,l-1)

(k-1,l-1)

(k,l-2)

(k-1,l)

(k-2,l)

(i+2,j)

(i,j+1) (i,j+2) (i,l)(i,l-1)

(i+1,l-1)

(i,l-2)

(i+1,l)

(i+2,l)

(a) Initial solution.

...

...

...

...(k,j)

(i+1,j) (i+1,j+1)

(i,j)(k,l-1)

(k-1,l-1)

(k,l-2)

(k,l)

(k-1,l)

(i+2,j)

(i,j+1) (i,j+2) (i,j+3) (i,l)

(i+1,l-1)

(i,l-1) (i+1,l)

(i+3,l)

(i+2,l)

(b) Insert move.

Figure 4: Definition of the insertion move, where the vertices whose label is changed during the move are highlighted in grey.

As it can be derived from the figure, the label φ(w) of a vertex w is modified by the insert move if and325

only if it is located in the same row than u and in a column y between j and l, i.e., those with a label

φ(w) = (i, y) with j ≤ y ≤ l, or if it is located in the same column than v and in a row x between i and k,

i.e., those with a label φ(w) = (x, l) with i ≤ x ≤ k.

Given the definition of these moves, we define two neighborhoods. On the one hand, the neighborhood

NExc(φ) contains all the solutions that can be reached from φ by performing a single exchange move. On330

the other hand, neighborhood NIns(φ) is conformed with all the solutions derived from φ when performing

a single insert move. More precisely,

NExc(φ) = {φ′ ← Exc(φ, u, v) ∀u, v ∈ VG, u ̸= v} ,

NIns(φ) = {φ′ ← Ins(φ, u, v) ∀u, v ∈ VG, u ̸= v} .

3.3. Local Search

Having defined the neighborhood structures, it is necessary to present the local search methods proposed

to traverse the aforementioned neighborhoods NExc(·) and NIns(·). Thus, taking into account the way that335

the neighborhood structure is traversed and the moment when the improved solution is picked during the

15

search, we have developed three different strategies. Thus, we have First Improvement (FI), Best Improve-

ment (BI), and a combination of both, Hybrid first-best Improvement (HI) approaches. The strategies end

when crossing over the neighborhood until no improving solution is found. In Section 4, we will discuss the

performance of each local search method proposed.340

The First Improvement (FI) strategy accepts the first solution in the neighborhood that results in

improvement with respect to the objective function. Therefore, given a solution, the procedure iterates

through its neighborhood to select a vertex. Then, it applies an exchanging or inserting movement depending

on the operator provided. Next, if the selected solution improves the one given, the strategy will choose

it as a current solution, and the search process will start again. As we can see, the order has a significant345

influence on the effectiveness of this strategy, since if the order in which the vertices are selected is not

changed, the search will always explore the same first solutions, thus the search will be biased. A clear

example would be if the strategy selects the vertices following a lexicographical ordering. It will explore the

neighborhood in that order reducing the search diversification and provoking that the same first solutions

will be selected. However, to solve this problem, we have randomized the vertices selection process to350

improve the diversification of the search process. In the Best Improvement (BI), unlike the FI strategy, the

traversal order is not relevant because this strategy explores the complete neighborhood in each search step

selecting the solution which obtained the best objective function value. Hence, from an initial solution, the

local search iterates through its neighborhood, applying a movement over all vertices. Once the strategy

carries out a complete evaluation of all neighbors, it selects the one with the best improvement with respect355

to the current solution cost. Then, the strategy utilizes the selected solution to execute the next search step.

Due to this way of exploring the neighborhood, its computing time is expected to be considerably higher

than the FI strategy.

Finally, we propose a hybrid approach which combines FI and BI traverse methods, the Hybrid Improve-

ment (HI). Given a solution to improve, the strategy starts selecting a vertex randomly. It utilizes the FI360

method, which will move such vertex across the neighborhood until it finds the first improving solution.

However, instead of considering to pass this solution to the next search step, HI employs the BI method to

evaluate all neighbors and select the best position for the vertex under evaluation in each step. Therefore,

the HI combines the FI strategy with random selection to diversify the search in conjunction with the BI

strategy to select in each step the positions that produce more benefit considering the objective function365

value. Thus, such a combination brings together the best of both FI and BI strategies. On the one hand, it

is expected to be fast as FI since it does not have to evaluate the entire neighborhood in each step. On the

other hand, it is supposed to explore better quality solutions than FI due to the fact that it analyses the

whole search space for a given vertex as BI does.

16

3.4. Shake370

The shake method is designed in VNS methodology to diversify the search inside a local search process.

Its primary aim is to enable the local search to systematically change the neighborhood structure by applying

a different movement of such local search. Consequently, this movement helps the search process to escape

from local optimum and explore more promising regions of the search space. In particular, in this work, we

have defined the shake method by considering the moves defined in Section 3.2. Input parameters are the375

incumbent solution, φ, and the size of the maximum perturbation, usually named as kmax. The method

returns the corresponding perturbed solution, φ′. In order to favor the diversification, it uses a different

move than the one used in the local search. Then, if the local search is configured with the insert move, the

shake method uses the exchange move and vice versa. The proposed procedure works as it is customary in

VNS designs, applying the corresponding move sequentially for kmax steps.380

3.5. Neighborhood Change

The neighborhood change method is responsible for selecting the next neighborhood to be explored inside

VNS. Algorithm 3 shows the pseudocode of the neighborhood change method proposed for the 2DBMP.

Algorithm 3 NeighborhoodChange(φ,φ′, k)

1: if B2D(G,φ′) < B2D(G,φ) then

2: φ← φ′

3: k ← 1

4: else

5: k ← k + 1

6: end if

It follows the classical neighborhood change approach of VNS: if the new solution φ′ outperforms φ, an

improvement has been found, and the search starts again from the first neighborhood. Otherwise, the search385

continues with the next predefined neighborhood, k+1. It is worth mentioning that k is bounded by kmax.

4. Computational Results

This section reports a complete evaluation of the exact (CSP models) and heuristic (Basic VNS) strategies

developed to solve the 2DBMP. It has as main targets: to analyze the performance of each refinement

implemented in the proposed constraint programming models; to tune the parameters of each metaheuristic390

and to evaluate the influence of each component; and finally, to determine the efficacy and efficiency of

both approaches and, additionally, their limitations for solving the 2DBMP. CSP models (i.e., M1, M2,

17

and M3) have been compiled with MiniZinc [38, 39], into FlatZinc2 and then solved sequentially with

Gecode 6.1.1, a built-in solver included within the MiniZinc software distribution. On the other hand, all

the heuristics algorithms have been implemented in Java 11. All the experiments have been conducted on395

an Intel© Core™ i5-3470 CPU running at 3.20 GHz and with 8 Gb of RAM.

The benchmark instances used in the experiments presented in this section are divided into two subsets.

The first one is composed of 45 topologically diverse host graphs3 of small and medium size. This subset

includes 15 Cartesian products of graphs, 3 paths, 3 cycles, 5 wheels, 6 t-th powers of cycles (t ∈ {2, 10}),

6 bipartite graphs, 2 complete graphs, 4 r-level t-ary trees and 1 Petersen graph. The order and size of400

these instances range in the intervals 5 ≤ n ≤ 21 and 6 ≤ m ≤ 190, respectively. The second subset

contains 45 representative and diverse graphs taken from the Harwell–Boeing Sparse Matrix Collection4,

which were previously used in [40]. These instances have an order and size in the ranges 48 ≤ n ≤ 960

and 78 ≤ m ≤ 7442, respectively. As it was described in Section 1, each guest graph is embedded in a

bi-dimensional grid with size
⌈√

n
⌉
×
⌈√

n
⌉
, being n the number of vertices of the guest graph.405

We have conducted two types of experiments. On the one hand, preliminary experiments (Sections 4.1

and 4.2), which are designed for selecting the best CSP variant and finding the best values for the parameters

required for the BVNS. On the other hand, final experiments (Section 4.3) with the aim of evaluating the

performance of the best CSP and BVNS variants. The preliminary experiments have been conducted over

a group of 21 instances from the first subset to avoid overfitting, while the final experimentation considers410

all the 90 benchmark instances.

4.1. CSP Results

In the first set of experiments we evaluate the performance of the three proposed constraint programming

models devised for the 2DBMP. As it was described in Section 2, an instance is given by a model and some

data. In our case, the model can be one of the Mi, with 1 ≤ i ≤ 3, introduced in this paper. The data415

in our instances correspond to the adjacency information of a particular host graph, i.e., the array graph

is “filled”, along with the lower (lb) and upper (ub) bounds of each guest graph. It is given in a .dzn file.

Hence, the same model can be employed with various host graphs.

Table 1 presents the computational results obtained in our comparisons. For each selected benchmark

graph, this table lists the name of the guest graph, the number of vertices (n), the number of edges (m), the420

lower (lb), and upper (ub) bounds in the first five columns. In order to determine the effectiveness of the

proposed CSP models, we also include the number of calls to the propagation functions (Prop), where each

call indicates the reduction of the search space by removing values that cannot participate in any solution;

2A standard input language which is supported by a large number of constraint programming solvers.
3Available at https://www.tamps.cinvestav.mx/~ertello/2dbmp.php
4http://math.nist.gov/MatrixMarket/data/Harwell-Boeing

18

https://www.tamps.cinvestav.mx/~ertello/2dbmp.php
http://math.nist.gov/MatrixMarket/data/Harwell-Boeing

the number of nodes of the search tree that have been explored (Nodes), which represents the nodes of

the search tree that have been reached after a tentative enumeration for a variable; the number of explored425

nodes that failed to lead to a solution (Failures), that accounts for the explored nodes with an empty

search space; the optimal (Opt) bi-dimensional bandwidth cost found; and the computational time (T (s)),

in seconds, expended to reach the corresponding solution. All this information is presented for each one

of the three CSP models evaluated. Certain of the considered host graphs could not be solved within the

maximum CPU time allowed (72 hours), therefore the corresponding cells are marked with the symbol “–”.430

It can be observed from Table 1 that none of the analyzed models was able to provide a solution (neither

optimal, nor sub-optimal), within the prefixed maximum CPU time, for the instances wheel20, cyclePow15-

10, cyclePow20-10, and bipartite10-10. In the particular case of the graph k4k5, the model M1 found a

solution with cost value 4 (marked with symbol star). However, the solver using this basic model was

unable to prove the optimality of this solution when it reached the allotted computational time, even when435

this is in fact the optimal cost value found by the more refined models M2 and M3. For the remaining

host graphs all the proposed models found optimal solutions. When comparing the average computational

time (see last row in Table 1), expended by these models for the 2DBMP, one can remark that the slowest

model is M1. It is followed by M2, which is 9.363% faster than it, thanks to the use of the all different

global constraint. The less time consuming model is M3, which significantly reduced the search space by440

complementing M2 with symmetry breaking constraints. Indeed, M3 decremented 18.028% the average

computational time employed by M1. The search space reduction attained by M3 with respect to M1 and

M2 can be easily corroborated by contrasting the average number of nodes explored (Nodes) in the search

tree. M3 examined in average 5.33E+07 nodes while M1 and M2 traversed 1.16E+08 and 1.43E+08 nodes,

respectively. This represents a reduction of 53.907% and 62.783% attained by M3 with respect to the other445

two models. We can also remark that M3 explores less “unnecessary” nodes, i.e., failure nodes. While M1

and M2 explore respectively 5.78E+07 and 7.16E+07 failure nodes, M3 reduce this number to 2.66E+07,

and is thus more efficient.

The results of this experiment provide valuable information about the optimal solution cost found for

the selected host graphs. This information could be used to evaluate the performance of metaheuristic450

algorithms specially designed for solving the 2DBMP, as it is shown in subsequent experiments.

19

T
a
b
le

1
:
P
er
fo
rm

a
n
ce

co
m
p
a
ri
so
n
o
f
th

re
e
d
iff
er
en

t
co

n
st
ra
in
t
p
ro
g
ra
m
m
in
g
m
o
d
el
s
fo
r
th

e
2
D
B
M
P
.

M
1

M
2

M
3

G
ra

p
h

n
m

lb
u
b

P
r
o
p

N
o
d
e
s

F
a
il
u
r
e
s

O
p
t

T
P
r
o
p

N
o
d
e
s

F
a
il
u
r
e
s

O
p
t

T
P
r
o
p

N
o
d
e
s

F
a
il
u
r
e
s

O
p
t

T

p
2
p
3

6
7

1
3

2
.0
8
E
+
0
3

7
.2
0
E
+
0
1

3
.4
0
E
+
0
1

1
0
.1
4
8

1
.1
2
E
+
0
3

5
.0
0
E
+
0
1

2
.2
0
E
+
0
1

1
0
.1
7
8

4
.3
5
E
+
0
2

2
.0
0
E
+
0
1

7
.0
0
E
+
0
0

1
0
.2
0
0

p
3
p
3

9
1
2

1
4

6
.9
7
E
+
0
3

1
.6
3
E
+
0
2

7
.9
0
E
+
0
1

1
0
.2
2
1

1
.5
4
E
+
0
3

6
.0
0
E
+
0
1

2
.7
0
E
+
0
1

1
0
.1
5
6

1
.6
3
E
+
0
3

5
.1
0
E
+
0
1

2
.3
0
E
+
0
1

1
0
.2
5
7

p
4
p
5

2
0

3
1

1
6

1
.0
4
E
+
0
6

9
.1
3
E
+
0
3

4
.5
6
E
+
0
3

1
0
.5
3
6

4
.8
1
E
+
0
5

9
.3
7
E
+
0
3

4
.6
7
E
+
0
3

1
0
.3
2
8

5
.1
5
E
+
0
4

9
.9
0
E
+
0
2

4
.8
3
E
+
0
2

1
0
.2
2
0

p
2
c
3

6
9

2
3

9
.4
1
E
+
0
2

2
.3
0
E
+
0
1

1
.0
0
E
+
0
1

2
0
.1
8
7

2
.4
5
E
+
0
2

9
.0
0
E
+
0
0

1
.0
0
E
+
0
0

2
0
.1
5
0

2
.4
5
E
+
0
2

9
.0
0
E
+
0
0

1
.0
0
E
+
0
0

2
0
.2
4
3

p
3
c
3

9
1
5

2
4

5
.7
2
E
+
0
3

1
.3
2
E
+
0
2

6
.3
0
E
+
0
1

2
0
.1
7
5

7
.4
7
E
+
0
2

2
.6
0
E
+
0
1

6
.0
0
E
+
0
0

2
0
.1
9
0

7
.4
7
E
+
0
2

2
.6
0
E
+
0
1

6
.0
0
E
+
0
0

2
0
.1
9
8

p
4
c
5

2
0

3
5

2
6

3
.3
8
E
+
0
5

3
.2
8
E
+
0
3

1
.6
4
E
+
0
3

2
0
.4
0
0

6
.5
6
E
+
0
5

1
.0
9
E
+
0
4

5
.4
4
E
+
0
3

2
0
.4
4
6

7
.9
1
E
+
0
5

1
.4
4
E
+
0
4

7
.2
0
E
+
0
3

2
0
.5
2
6

c
3
c
3

9
1
8

2
4

1
.4
6
E
+
0
4

2
.8
4
E
+
0
2

1
.4
0
E
+
0
2

2
0
.1
6
8

8
.9
2
E
+
0
2

2
.1
0
E
+
0
1

5
.0
0
E
+
0
0

2
0
.1
8
3

8
.9
2
E
+
0
2

2
.1
0
E
+
0
1

5
.0
0
E
+
0
0

2
0
.2
3
6

c
3
c
4

1
2

2
4

2
4

2
.7
9
E
+
0
4

4
.6
5
E
+
0
2

2
.2
9
E
+
0
2

2
0
.1
7
9

2
.7
7
E
+
0
4

5
.2
3
E
+
0
2

2
.5
6
E
+
0
2

2
0
.1
8
6

3
.1
0
E
+
0
3

5
.8
0
E
+
0
1

2
.3
0
E
+
0
1

2
0
.2
8
3

c
4
c
5

2
0

4
0

2
6

1
.2
7
E
+
0
5

1
.2
2
E
+
0
3

6
.0
4
E
+
0
2

2
0
.3
0
9

1
.9
8
E
+
0
5

2
.3
8
E
+
0
3

1
.1
8
E
+
0
3

2
0
.2
8
5

1
.8
6
E
+
0
4

2
.3
5
E
+
0
2

1
.0
5
E
+
0
2

2
0
.2
7
8

k
3
k
4

1
2

3
0

2
4

1
.4
1
E
+
0
7

1
.6
4
E
+
0
5

8
.2
1
E
+
0
4

3
3
.7
4
4

6
.2
9
E
+
0
6

9
.2
5
E
+
0
4

4
.6
2
E
+
0
4

3
2
.6
8
4

1
.1
3
E
+
0
6

1
.6
9
E
+
0
4

8
.4
4
E
+
0
3

3
0
.5
4
8

k
4
k
5

2
0

7
0

3
6

–
–

–
⋆
4

–
6
.3
4
E
+
1
1

4
.7
1
E
+
0
9

2
.3
6
E
+
0
9

4
1
7
6
9
9
2
.2
4
1

2
.4
6
E
+
1
1

1
.8
3
E
+
0
9

9
.1
7
E
+
0
8

4
7
4
1
9
2
.7
0
8

c
3
k
4

1
2

3
0

2
4

1
.4
0
E
+
0
7

1
.6
2
E
+
0
5

8
.1
2
E
+
0
4

3
3
.5
0
9

6
.0
8
E
+
0
6

9
.2
0
E
+
0
4

4
.6
0
E
+
0
4

3
1
.8
2
3

1
.1
0
E
+
0
6

1
.6
1
E
+
0
4

8
.0
5
E
+
0
3

3
0
.6
0
4

c
4
k
5

2
0

6
0

2
6

4
.3
2
E
+
0
7

2
.8
7
E
+
0
5

1
.4
4
E
+
0
5

3
1
1
.5
4
6

1
.2
1
E
+
0
7

1
.6
4
E
+
0
5

8
.1
8
E
+
0
4

3
4
.5
5
3

5
.4
1
E
+
0
6

7
.0
4
E
+
0
4

3
.5
2
E
+
0
4

3
2
.1
8
1

p
3
k
4

1
2

2
6

2
4

3
.1
2
E
+
0
5

4
.4
7
E
+
0
3

2
.2
3
E
+
0
3

2
0
.2
9
6

3
.5
5
E
+
0
4

5
.6
0
E
+
0
2

2
.7
3
E
+
0
2

2
0
.1
9
0

3
.2
6
E
+
0
3

4
.6
0
E
+
0
1

1
.6
0
E
+
0
1

2
0
.2
7
1

p
4
k
5

2
0

5
5

2
6

2
.5
2
E
+
0
7

1
.8
1
E
+
0
5

9
.0
4
E
+
0
4

3
6
.8
8
7

9
.2
1
E
+
0
6

1
.3
5
E
+
0
5

6
.7
4
E
+
0
4

3
3
.3
1
7

4
.9
5
E
+
0
6

6
.9
1
E
+
0
4

3
.4
6
E
+
0
4

3
1
.9
3
0

p
a
th

1
0

1
0

9
1

4
1
.4
0
E
+
0
4

3
.9
2
E
+
0
2

1
.9
1
E
+
0
2

1
0
.2
4
8

5
.5
3
E
+
0
2

2
.8
0
E
+
0
1

6
.0
0
E
+
0
0

1
0
.3
9
3

6
.4
3
E
+
0
2

2
.9
0
E
+
0
1

6
.0
0
E
+
0
0

1
0
.3
0
3

p
a
th

1
5

1
5

1
4

1
5

2
.1
9
E
+
0
4

3
.3
9
E
+
0
2

1
.6
6
E
+
0
2

1
0
.3
2
3

3
.7
0
E
+
0
3

1
.2
7
E
+
0
2

5
.4
0
E
+
0
1

1
0
.3
0
6

1
.8
2
E
+
0
3

6
.6
0
E
+
0
1

2
.2
0
E
+
0
1

1
0
.3
5
1

p
a
th

2
0

2
0

1
9

1
6

3
.6
6
E
+
0
5

4
.6
8
E
+
0
3

2
.3
3
E
+
0
3

1
0
.4
2
6

3
.9
1
E
+
0
3

1
.4
4
E
+
0
2

5
.6
0
E
+
0
1

1
0
.3
6
0

3
.0
8
E
+
0
3

1
.0
9
E
+
0
2

3
.9
0
E
+
0
1

1
0
.3
0
5

c
y
c
le
1
0

1
0

1
0

1
4

1
.2
6
E
+
0
4

3
.5
0
E
+
0
2

1
.7
0
E
+
0
2

1
0
.3
4
2

6
.2
4
E
+
0
2

2
.9
0
E
+
0
1

6
.0
0
E
+
0
0

1
0
.3
5
0

6
.7
0
E
+
0
2

2
.9
0
E
+
0
1

6
.0
0
E
+
0
0

1
0
.2
4
2

c
y
c
le
1
5

1
5

1
5

1
5

6
.8
7
E
+
0
6

9
.3
4
E
+
0
4

4
.6
7
E
+
0
4

2
2
.0
8
3

2
.0
7
E
+
0
6

8
.1
1
E
+
0
4

4
.0
6
E
+
0
4

2
1
.4
6
4

4
.3
1
E
+
0
5

1
.5
9
E
+
0
4

7
.9
3
E
+
0
3

2
0
.5
0
2

c
y
c
le
2
0

2
0

2
0

1
6

3
.6
8
E
+
0
5

4
.7
3
E
+
0
3

2
.3
6
E
+
0
3

1
0
.5
1
6

1
.2
6
E
+
0
4

5
.6
2
E
+
0
2

2
.6
8
E
+
0
2

1
0
.3
4
4

1
.0
2
E
+
0
4

4
.3
4
E
+
0
2

2
.0
4
E
+
0
2

1
0
.2
7
7

w
h
e
e
l5

5
8

1
2

3
.4
8
E
+
0
3

1
.3
3
E
+
0
2

6
.5
0
E
+
0
1

2
0
.2
3
2

1
.9
8
E
+
0
3

9
.0
0
E
+
0
1

4
.3
0
E
+
0
1

2
0
.2
5
7

1
.4
6
E
+
0
3

5
.7
0
E
+
0
1

2
.8
0
E
+
0
1

2
0
.2
0
9

w
h
e
e
l7

7
1
2

2
3

1
.9
5
E
+
0
4

4
.4
1
E
+
0
2

2
.2
0
E
+
0
2

2
0
.2
4
2

9
.0
7
E
+
0
3

2
.6
3
E
+
0
2

1
.3
1
E
+
0
2

2
0
.3
4
6

4
.8
6
E
+
0
3

1
.3
4
E
+
0
2

6
.5
0
E
+
0
1

2
0
.2
3
4

w
h
e
e
l1
0

1
0

1
8

2
4

1
.9
2
E
+
0
6

3
.5
4
E
+
0
4

1
.7
7
E
+
0
4

2
0
.7
7
4

2
.4
9
E
+
0
5

5
.9
1
E
+
0
3

2
.9
5
E
+
0
3

2
0
.4
1
5

1
.3
7
E
+
0
5

3
.0
4
E
+
0
3

1
.5
2
E
+
0
3

2
0
.4
0
8

w
h
e
e
l1
5

1
5

2
8

3
5

2
.2
5
E
+
1
1

3
.9
3
E
+
0
9

1
.9
7
E
+
0
9

3
5
2
5
7
4
.3
8
1

4
.5
2
E
+
1
0

1
.0
0
E
+
0
9

5
.0
2
E
+
0
8

3
1
6
1
9
6
.8
9
7

1
.2
9
E
+
1
0

2
.8
9
E
+
0
8

1
.4
5
E
+
0
8

3
4
4
4
4
.8
5
7

C
o
n
ti
n
u
e
d

o
n

n
e
x
t
p
a
g
e
..
.

20

T
a
b
le

1
–
C
o
n
ti
n
u
ed

fr
o
m

p
re
v
io
u
s
p
a
g
e

M
1

M
2

M
3

G
ra

p
h

n
m

lb
u
b

P
r
o
p

N
o
d
e
s

F
a
il
u
r
e
s

O
p
t

T
P
r
o
p

N
o
d
e
s

F
a
il
u
r
e
s

O
p
t

T
P
r
o
p

N
o
d
e
s

F
a
il
u
r
e
s

O
p
t

T

w
h
e
e
l2
0

2
0

3
8

3
6

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–

c
y
c
le
P
o
w
1
0
-2

1
0

2
0

2
4

2
.4
2
E
+
0
4

4
.4
9
E
+
0
2

2
.2
2
E
+
0
2

2
0
.3
1
3

7
.7
5
E
+
0
3

1
.4
2
E
+
0
2

6
.6
0
E
+
0
1

2
0
.4
3
2

4
.7
1
E
+
0
3

8
.2
0
E
+
0
1

3
.6
0
E
+
0
1

2
0
.2
5
1

c
y
c
le
P
o
w
1
5
-2

1
5

3
0

2
5

7
.7
5
E
+
0
4

1
.1
1
E
+
0
3

5
.4
8
E
+
0
2

2
0
.2
9
5

1
.6
6
E
+
0
5

3
.1
8
E
+
0
3

1
.5
8
E
+
0
3

2
0
.5
1
3

8
.6
4
E
+
0
4

1
.5
9
E
+
0
3

7
.8
8
E
+
0
2

2
0
.2
7
9

c
y
c
le
P
o
w
2
0
-2

2
0

4
0

2
6

1
.4
9
E
+
0
5

1
.4
7
E
+
0
3

7
.2
9
E
+
0
2

2
0
.3
8
1

2
.5
6
E
+
0
4

3
.8
9
E
+
0
2

1
.7
7
E
+
0
2

2
0
.4
1
2

3
.9
9
E
+
0
3

6
.6
0
E
+
0
1

1
.7
0
E
+
0
1

2
0
.2
9
6

c
y
c
le
P
o
w
1
0
-1
0

1
0

4
5

4
4

4
.6
4
E
+
0
3

4
.8
0
E
+
0
1

2
.2
0
E
+
0
1

4
0
.3
1
6

1
.3
0
E
+
0
3

1
.9
0
E
+
0
1

3
.0
0
E
+
0
0

4
0
.3
6
0

1
.3
0
E
+
0
3

1
.9
0
E
+
0
1

3
.0
0
E
+
0
0

4
0
.2
0
6

c
y
c
le
P
o
w
1
5
-1
0

1
5

1
0
5

5
5

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–

c
y
c
le
P
o
w
2
0
-1
0

2
0

1
9
0

6
6

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–

b
ip
a
rt
it
e
3
-3

6
9

2
3

8
.6
4
E
+
0
2

2
.0
0
E
+
0
1

9
.0
0
E
+
0
0

2
0
.3
6
5

6
.7
0
E
+
0
2

2
.0
0
E
+
0
1

9
.0
0
E
+
0
0

2
0
.4
7
3

6
.7
0
E
+
0
2

2
.0
0
E
+
0
1

9
.0
0
E
+
0
0

2
0
.2
5
6

b
ip
a
rt
it
e
3
-4

7
1
2

2
3

5
.9
2
E
+
0
5

1
.3
7
E
+
0
4

6
.8
5
E
+
0
3

3
0
.5
0
2

4
.0
4
E
+
0
5

9
.9
7
E
+
0
3

4
.9
8
E
+
0
3

3
0
.6
1
8

1
.9
3
E
+
0
5

5
.1
1
E
+
0
3

2
.5
5
E
+
0
3

3
0
.3
3
1

b
ip
a
rt
it
e
4
-4

8
1
6

2
3

6
.2
3
E
+
0
5

1
.2
6
E
+
0
4

6
.2
9
E
+
0
3

3
0
.5
0
5

5
.8
3
E
+
0
5

1
.0
9
E
+
0
4

5
.4
3
E
+
0
3

3
0
.7
1
5

1
.8
1
E
+
0
5

4
.2
5
E
+
0
3

2
.1
3
E
+
0
3

3
0
.3
3
3

b
ip
a
rt
it
e
5
-5

1
0

2
5

2
4

3
.1
8
E
+
0
6

4
.3
3
E
+
0
4

2
.1
7
E
+
0
4

3
1
.1
5
6

2
.9
7
E
+
0
6

4
.4
6
E
+
0
4

2
.2
3
E
+
0
4

3
1
.4
9
4

1
.4
2
E
+
0
6

2
.1
3
E
+
0
4

1
.0
6
E
+
0
4

3
0
.7
7
7

b
ip
a
rt
it
e
7
-8

1
5

5
6

3
5

2
.5
2
E
+
1
0

2
.6
8
E
+
0
8

1
.3
4
E
+
0
8

4
7
2
5
4
.3
1
9

1
.4
4
E
+
1
0

1
.1
3
E
+
0
8

5
.6
6
E
+
0
7

4
4
3
3
1
.5
8
3

3
.5
1
E
+
0
9

2
.9
9
E
+
0
7

1
.4
9
E
+
0
7

4
1
0
5
0
.3
0
5

b
ip
a
rt
it
e
1
0
-1
0

2
0

1
0
0

3
6

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–

p
e
te
rs
e
n

1
0

1
5

2
4

1
.7
3
E
+
0
4

3
.7
1
E
+
0
2

1
.8
2
E
+
0
2

2
0
.3
0
2

1
.7
0
E
+
0
4

4
.4
8
E
+
0
2

2
.1
7
E
+
0
2

2
0
.2
9
7

1
.1
6
E
+
0
3

3
.8
0
E
+
0
1

1
.0
0
E
+
0
1

2
0
.3
1
0

c
o
m
p
le
te
5

5
1
0

1
2

1
.6
4
E
+
0
4

4
.1
3
E
+
0
2

2
.0
6
E
+
0
2

2
0
.2
5
8

8
.2
8
E
+
0
3

2
.3
3
E
+
0
2

1
.1
6
E
+
0
2

2
0
.3
8
9

7
.7
7
E
+
0
3

2
.1
5
E
+
0
2

1
.0
7
E
+
0
2

2
0
.2
8
0

c
o
m
p
le
te
1
0

1
0

4
5

2
4

3
.3
2
E
+
0
8

3
.3
4
E
+
0
6

1
.6
7
E
+
0
6

4
7
2
.4
5
7

2
.3
9
E
+
0
8

2
.4
1
E
+
0
6

1
.2
0
E
+
0
6

4
7
2
.3
7
3

5
.1
7
E
+
0
7

5
.4
8
E
+
0
5

2
.7
4
E
+
0
5

4
1
4
.0
2
5

tr
e
e
2
-2

7
6

1
3

2
.1
6
E
+
0
3

7
.8
0
E
+
0
1

3
.7
0
E
+
0
1

1
0
.2
3
5

1
.3
8
E
+
0
3

8
.6
0
E
+
0
1

3
.9
0
E
+
0
1

1
0
.4
7
3

2
.6
3
E
+
0
3

1
.2
7
E
+
0
2

6
.1
0
E
+
0
1

1
0
.3
0
9

tr
e
e
2
-3

1
3

1
2

1
4

8
.3
9
E
+
0
5

1
.7
5
E
+
0
4

8
.7
4
E
+
0
3

2
0
.5
1
3

1
.4
0
E
+
0
5

6
.3
4
E
+
0
3

3
.1
7
E
+
0
3

2
0
.5
0
2

1
.5
6
E
+
0
5

5
.9
3
E
+
0
3

2
.9
6
E
+
0
3

2
0
.3
0
7

tr
e
e
3
-2

1
5

1
4

1
5

1
.4
8
E
+
0
6

2
.3
5
E
+
0
4

1
.1
7
E
+
0
4

2
0
.6
4
6

2
.7
9
E
+
0
5

9
.8
2
E
+
0
3

4
.9
0
E
+
0
3

2
0
.5
4
5

1
.6
6
E
+
0
4

5
.7
0
E
+
0
2

2
.7
6
E
+
0
2

2
0
.2
4
7

tr
e
e
2
-4

2
1

2
0

2
6

2
.4
1
E
+
1
0

4
.1
8
E
+
0
8

2
.0
9
E
+
0
8

2
6
8
0
5
.3
3
9

1
.4
4
E
+
0
9

4
.0
4
E
+
0
7

2
.0
2
E
+
0
7

2
7
3
5
.8
8
1

1
.1
4
E
+
0
9

3
.1
7
E
+
0
7

1
.5
9
E
+
0
7

2
5
4
6
.7
9
0

A
v
e
ra

g
e

6
.8
6
E
+
0
9

1
.1
6
E
+
0
8

5
.7
8
E
+
0
7

3
0
2
8
3
.2
4
4

1
.7
0
E
+
1
0

1
.4
3
E
+
0
8

7
.1
6
E
+
0
7

2
7
4
4
7
.8
9
5

6
.4
4
E
+
0
9

5
.3
3
E
+
0
7

2
.6
6
E
+
0
7

2
4
8
2
3
.6
4
0

21

4.2. Algorithm parameter tuning

This section is devoted to the selection of the best parameters of the proposed algorithm. We have

selected a group of 21 representative instances from the first subset of benchmarks for this preliminary455

experiment in order to avoid overfitting. We report in this experiment the following metrics: Avg, the

average bi-dimensional bandwidth obtained by the considered algorithm; T (s), the average computing time

in seconds; Dev(%), the average deviation with respect to the best solution found in the experiment; and

#Best, the number of times that the algorithm matches the best solution of the corresponding experiment.

The first experiment is devoted to select the best value for the α parameter of the constructive procedures.460

As mentioned in Section 3.1, the smaller the value, the more greedy the algorithm is, and vice versa, so it is

recommended to test different values in the range 0-1. In particular, we have selected α = {0.25, 0.50, 0.75}

to evaluate a very greedy variant, a balanced one, and a rather random variant, respectively. In order to

test the robustness of the proposed approach, each procedure is configured to construct 100 solutions over

each instance. Notice that each method returns the best solution found among the 100 constructed ones465

and the computing time per instance is computed as the sum of time to construct those 100 solutions. This

values per instance are finally averaged over the 21 instances and reported in Table 2.

α Avg. T (s) Dev(%) #Best

C1

0.25 4.10 0.22 3.97 19

0.50 4.05 0.11 2.38 20

0.75 4.05 0.09 1.59 20

C2

0.25 4.29 0.19 16.27 16

0.50 4.19 0.09 13.49 18

0.75 4.19 0.09 10.32 17

Table 2: Effect of the α parameter in each constructive procedure.

The results show that the computing time is negligible for the constructive procedure, being always

smaller than 1 second. Regarding the quality of the solutions obtained, it can be clearly seen that C1

consistently produces better results than C2, reaching a deviation of 1.59% in its best variant (α = 0.75),470

while C2 is not able to go below 10%. Additionally, C1 is able to reach 20 out of 21 best solutions,

while the best variant of C2 matches the best solution 18 times. Notice that introducing randomness in

both constructive procedures lead us to reach better solutions. Analyzing these results, we select C1 with

α = 0.75 for the remaining experiments.

In the next experiment we test the performance of the three local search strategies described in Section475

3.3 (First, Best, and Hybrid Improvements) when exploring the two introduced neighborhoods in Section

22

3.2 (NIns(·) and NExc(·)). Table 3 shows the associated results for the corresponding 6 local search variants,

reporting the same metrics than above. In order to isolate the contribution of each local search method, all

of them start from the solutions constructed with the same algorithm (i.e., C1 with α = 0.75). As in the

aforementioned experiment, each algorithm is executed 100 iterations over each instance, returning the best480

solution found and the sum of computing times in executing 100 iterations. Then, the results are averaged

over the subset of 21 instances used in the preliminary experimentation.

Avg. T (s) Dev(%) #Best

NIns

LSFI 3.95 206.82 33.75 7

LSBI 3.80 263.34 30.83 9

LSHI 3.80 355.77 26.42 7

NExc

LSFI 3.50 21.30 20.42 11

LSBI 3.25 30.69 11.67 16

LSHI 3.25 41.85 11.67 16

Table 3: Effect of each Local Search in the NIns(·) and NExc(·) neighborhoods.

As we can see in this table, local search strategies based on the exploration of NExc(·) obtains consis-

tently better results than those based on NIns(·). This fact can be partially explained by the nature of the

2DBMP problem. Specifically, there exists some problems where the objective function is more sensitive to485

the absolute positioning of the elements in the solution than to their relative positioning. The 2DBMP prob-

lem falls into the first category, where interchange moves usually drive to better outcomes. In particular,

an interchange move produces a new solution where only two elements have changed their corresponding

positions (see Figure 3). On the other hand, insert moves modify the position of much more elements in the

resulting solution (see Figure 4).490

Among all variants, LSBI and LSHI (based on the exploration of NExc(·)) emerge as the best ones in

terms of all the considered metrics. Therefore, we embed both strategies in a Basic Variable Neighborhood

Search scheme, the first one, denoted as BVNS1, configured with C1(0.75), LSBI , and NExc(·); while

the other one, denoted as BVNS2, is composed of C1(0.75), LSHI , and NExc(·). We then conduct a

new experiment to select the best value for the kmax parameter for BVNS, which indicates the largest495

neighborhood to be explored. Figure 5 shows the average deviation obtained when considering kmax =

{0.1 · n, 0.2 · n, 0.3 · n, 0.4 · n, 0.5 · n}. It is important to remark that kmax value is dependant of the size of

the instance, facilitating the scalability of the algorithm. To complement this information, we additionally

include in this figure the associated computing time in seconds (number close to each graph point).

These results are in line with the basis of VNS methodology [30], which indicates that the value of500

23

Figure 5: Comparison of different kmax values for the configured two BVNS strategies.

kmax should not be large. The rationale behind this is that a large perturbation will result in a complete

different solution, converting VNS in a multi-start algorithm, which is not the main aim of the framework.

Symmetrically, kmax should not be too small, since the search procedure could be trapped in the same basin

of attraction.

The best results in both variants are obtained when considering kmax = 0.4 · n. As expected, the larger505

the kmax, the larger the CPU time. It is worth mentioning that these two BVNS variants present better

results than the multi-start procedure (100 iterations of construction coupled with local search) reported in

Table 3. Specifically, the objective function values of BNVS1 and BVNS2 averaged over the 21 instances

used in the preliminary experimentation are 2.50% and 12.50%, respectively.

Comparing the results obtained with each method, it seems that BVNS1 experimentally performs better510

than BVNS2. Specifically, the former obtains better results in terms of average deviation and computing

time than the latter. Therefore, we select BVNS1 as our best algorithm. For the sake of simplicity, we refer

this method to as BVNS in the remaining experiments.

4.3. Final experiments

This section is devoted to compare the best configuration of BVNS with the CSP models (Section 2)515

by considering the whole subset of 45 small and medium size instances. The main objective is to evalu-

ate whether VNS is able to find optimal values (certified with CSP) or not. Table 4 shows a summary of

the results of CSP and VNS. We report: Avg, the average bi-dimensional bandwidth obtained with each

method; T (s), the average computing time in seconds; Dev(%), the average deviation with respect to the

best solution found in this experiment; #Opt, the number of times that the algorithm matches the optimal520

value; and, #Best, the number of times that the algorithm matches the best solution of the corresponding

24

experiment. As in previous experiments each method returns the best solution found among the 100 inde-

pendent iterations, and the computing time per instance is computed as the sum of time to generate those

100 solutions. This values per instance are finally averaged over the 45 small and medium size instances

and reported in Table 4.525

Avg. T(s) Dev(%) #Opt #Best

M1 2.49 1362745.98 2.30 40 42

M2 2.49 1235155.29 2.30 41 42

M3 2.49 1117063.78 2.30 41 42

BVNS 2.55 321.66 11.11 35 39

Table 4: Comparison between BVNS and CSP models over the 45 small and medium size instances.

As expected, BVNS is extremely fast when comparing it with the three variants of CSP. It finds the

optimal value in 35 instances (out of 45) in few seconds (7.15 on average). Additionally, in the four instances

where none of the CSP variants certify the optimality, BVNS finds equal or even better results than the

corresponding upper bound of M1, M2, and M3. In those instances where CSP variants obtain better results,

the deviation achieved with VNS seems to be large. It is worth mentioning that the optimal value of most530

instances is really small (close to 1). Consequently, if the optimal value of an instance is 1 and BVNS finds

a solution with objective function value of 2, it will result in a 100% of deviation. Therefore, 11.1% can

be considered as a good result, even more considering the average objective function value (2.49 vs 2.55),

which indicates that, in those instances where BVNS is not able to reach the optimal value, it remains very

close to it.535

It is important to remark that the performance of the three CSP models for small and medium size

instances is really competitive since they find the optimal solutions for a considerable number of instances

in very short computing time. We then conduct a complementary experiment to analyze the scalability of

M3 and BVNS when solving larger instances. In order to do so, we have employed our second subset of

instances taken from the Harwell–Boeing Sparse Matrix Collection.540

Table 5 shows the individual results per instance of each considered procedure. As in Table 1, columns

1 to 3 show the name of the guest graph, number of vertices (n), and number of edges (m). Then, for M3

and BVNS, we report: the best bi-dimensional bandwidth cost (O.F.); the average gap with respect to the

best-known value (BestKnown is either the optimum or the lower bound), computed as

%Gap =
V al −BestKnown

BestKnown
· 100

25

where V al is the objective function value obtained with either M3 or BVNS ; and the computational time in545

seconds (T (s)). The cases where the instance is not solved within the maximum CPU time allowed (72 hours)

are marked with the symbol (⋆). As in the aforementioned experiments, BVNS is executed 100 iterations

over each instance, returning the best solution found, and the sum of computing times in executing 100

iterations. Then, the results are averaged over the subset of 45 Harwell–Boeing instances.

As we can see in this table, M3 finds better solutions than BVNS in only two instances. Specifically,550

M3 matches the optimal value in can 62 in less than 10 seconds (BVNS finds a solution one unit above

the optimal cost). In nos6, M3 finds a feasible solution with value 5 in 72h, while BVNS reaches a solution

with value 12 in 960 seconds. In 27 instances, M3 finds feasible solutions, but it was unable to certify the

optimality. In those instances, BVNS reaches considerably better solutions in shorter computing times.

Finally, in 16 instances, M3 was not able to even improve in 72h the initial upper bound. On the contrary,555

BVNS considerably improves the upper bound, obtaining results close to the lower bound in moderate

computing times.

To further investigate the performance of the proposed procedure, we conduct a convergence analysis

by considering time-to-target plots (TTTPlot), which is essentially a run-time distribution. It creates a

time-to-target solution value plots for measured CPU times that are assumed to be a shifted exponential560

distribution. This is often the case in local search-based heuristics for combinatorial optimization. See

[41, 42, 43, 44, 45, 46] for another alternatives of studying the convergence analysis of algorithms. Figure 6

shows the time-to-target plots of four representative instances.

The experimental hypothesis in this time-to-target plots is that running times fit a two parameter

exponential distribution. Given an instance, we store the execution time needed to find an objective function565

value at least as good as a given target value. In this case, the algorithm is executed a certain number of times

on the selected instance and using the given target solution. The random number generator is initialized with

a different seed in each run and, therefore, the executions are assumed to be independent. To compare both

empirical and theoretical distributions, we follow a standard graphical methodology for data analysis [47],

executing our proposal 30 times, and recording for each run the running time required to match the target570

value. The abscissa axis represents running time, while the ordinate axis reports the probability of obtaining

the best-known value. The resulting graph confirms the expected exponential run-time distribution of our

algorithm.

4.4. Managerials implications

The method developed in this work can find high-quality solutions reducing the time drastically if we575

compare to the exact algorithm proposed. Thus, the developed constructives offer procedures to build feasible

solutions which could have high confidence in reaching a high-quality solution that could be corresponding

to an optimal solution. Conversely, if non-well-quality solutions are built, different methods to traverse

26

M3 BVNS

Graph n m O. F. %Gap T(s) O. F. %Gap T(s)

bcsstk01 48 176 6 1.00 259200.01 5 0.67 48.00

can 62 62 78 2 1.00 9.86 3 2.00 62.00

nos4 100 247 8 3.00 259200.01 5 1.50 100.01

bcspwr03 118 179 (⋆)15 6.50 259200.09 4 1.00 118.01

bcsstk04 132 1758 (⋆)16 3.00 259200.11 10 1.50 132.01

bcsstk22 138 279 8 7.00 259200.07 4 3.00 138.01

can 144 144 576 (⋆)16 7.00 259200.07 5 1.50 144.01

bcsstk05 153 1135 (⋆)17 7.50 259200.01 7 2.50 153.01

can 161 161 608 9 3.50 259200.08 6 2.00 161.01

dwt 198 198 597 10 4.00 259200.07 3 0.50 198.01

dwt 209 209 767 10 4.00 259200.02 6 2.00 209.01

dwt 221 221 704 10 9.00 259200.09 6 5.00 221.01

can 229 229 774 (⋆)21 9.50 259200.09 5 1.50 229.01

dwt 234 234 300 (⋆)21 9.50 259200.07 2 0 234.01

nos1 237 390 10 9.00 259200.05 4 3.00 237.01

dwt 245 245 608 11 4.50 259200.04 6 2.00 245.02

lshp 265 265 744 11 10.00 259200.08 6 5.00 265.00

bcspwr04 274 669 12 5.00 259200.07 6 2.00 274.02

ash292 292 958 12 11.00 259200.06 6 5.00 292.00

can 292 292 1124 (⋆)24 7.00 259200.08 7 1.33 292.00

dwt 307 307 1108 12 5.00 259200.01 6 2.00 307.00

dwt 310 310 1069 12 11.00 259200.09 7 6.00 310.00

dwt 361 361 1296 13 12.00 259200.09 7 6.00 361.01

plat362 362 2712 13 5.50 259200.01 8 3.00 362.01

bcsstk07 420 3720 (⋆)28 13.00 259200.09 9 3.50 420.01

bcspwr05 443 590 15 6.50 259200.01 6 2.00 443.01

can 445 445 1682 15 4.00 259200.01 8 1.67 445.01

bcsstk20 485 1325 15 14.00 259200.09 6 5.00 485.01

494 bus 494 586 16 7.00 259200.04 6 2.00 494.01

dwt 503 503 2762 (⋆)31 14.50 259200.01 9 3.50 503.01

lshp 577 577 1656 16 15.00 259200.07 8 7.00 577.00

dwt 607 607 2262 (⋆)34 10.33 259200.09 4 0.33 607.00

662 bus 662 906 (⋆)36 17.00 259200.05 6 2.00 662.01

nos6 675 1290 5 4.00 259200.05 12 11.00 960.01

685 bus 685 1282 18 8.00 259200.06 7 2.50 685.01

can 715 715 2975 (⋆)37 11.33 259200.09 9 2.00 715.01

nos7 729 1944 19 8.50 259200.01 9 3.50 729.01

dwt 758 758 2618 (⋆)38 37.00 259200.02 7 6.00 758.01

lshp 778 778 2247 19 18.00 259200.01 9 8.00 778.01

bcsstk19 817 3018 (⋆)40 39.00 259200.01 8 7.00 817.00

dwt 878 878 3285 20 9.00 259200.09 9 3.50 878.00

gr 30 30 900 3422 21 9.50 259200.01 9 3.50 900.01

dwt 918 918 3233 (⋆)42 41.00 259200.08 9 8.00 918.01

nos2 957 1590 21 20.00 259200.06 6 5.00 957.01

nos3 960 7442 (⋆)43 20.50 259200.01 12 5.00 960.01

Average 12.50 4.73 253440.27 6.71 3.38 439.63

Table 5: Results obtained by BVNS in large instances where CSP model M3 finds feasible solutions, but it was unable to

certify their optimality after 72 hours.

27

Figure 6: Time-to-target plots for 4 representative instances.

28

the space search are analyzed, which enable us to reach better solutions, even the instances where the

contructives fails. Finally, for those complicated instances, a trajectorial change is applied when a local580

optimum is achieved by using BVNS strategy. The procedures and metrics designed could be directly

applicable on, for instance, VLSI design.

5. Conclusions

This work tackles the two-dimensional bandwidth reduction from both exact and heuristic perspectives.

On the one hand, several Constraint Satisfaction Problem models are proposed with the aim of finding the585

optimal solution for small instances. This algorithm becomes unpractical when dealing with large instances.

On the other hand, a metaheuristic algorithm is proposed, following the Variable Neighborhood Search

framework. The computational results show the efficacy and efficiency of both approaches and, additionally,

their limitations. Our best CSP model finds the optimal solution in small instances in few seconds but, for

large instances it reaches low-quality values in 72 hours. The BVNS is able to reach the optimal value for590

most of the instances where the optimal value is known in very short computing times. Additionally, the

method is able to provide high quality solutions for those instances in which the CSP model is not able

to reach the optimal value in reasonable computing times. We do believe that our experimental findings,

algorithms, and benchmark instances can be useful for the scientific community as a framework to compare

both, new exact and heuristic proposals.595

We have identified different avenues to continue this research. Specifically, we do believe that there is

still room to improve the current heuristic and exact approaches for this problem. Additionally, the study

of the links between the 2DBMP and VLSI design may help to develop more efficient algorithms. In this

case, circuits are usually modeled as multi-graphs (different types of components and/or connections) that

should be mapped onto a regular structure. Therefore we might need to define a different objective function600

(multiple edges between a pair of nodes, weights in either nodes or edges, etc.). This modification in the

objective function is able to guide the algorithm to explore an alternative search space, which will eventually

lead to an improvement of the solution quality. In this line, it would be also interesting to explore in the

near future the mapping to more complex structures such as 3D grids, trees, etc.

Acknowledgments605

This work has been partially founded by Research Talent Attraction Program by the Comunidad de

Madrid with grants references 2017-T2/TIC-5664, P2018/TCS-4566 and Young Researchers R+D Project.

Ref. M2173 – SGTRS (co-funded by Rey Juan Carlos University), respectively. The third author’s work was

partially supported by the Mexican Secretariat of Public Education under Grant SEP-Cinvestav (2019-2020)

No. 00114.610

29

References

[1] S. L. Bezrukov, J. D. Chavez, L. H. Harper, M. Röttger, U. P. Schroeder, Embedding of hypercubes into grids, in: L. Brim,

J. Gruska, J. Zlatuška (Eds.), Mathematical Foundations of Computer Science 1998, Springer Berlin Heidelberg, Berlin,

Heidelberg, 1998, pp. 693–701. doi:doi.org/10.1007/BFb0055820.

[2] S. N. Bhatt, F. T. Leighton, A framework for solving VLSI graph layout problems, Journal of Computer and System615

Sciences 28 (2) (1984) 300–343. doi:10.1016/0022-0000(84)90071-0.

[3] J. Opatrny, D. Sotteau, Embeddings of complete binary trees into grids and extended grids with total vertex-congestion

1, Discrete Applied Mathematics 98 (3) (2000) 237–254. doi:10.1016/S0166-218X(99)00161-4.

[4] C. H. Papadimitriou, The NP-completeness of the bandwidth minimization problem, Computing 16 (3) (1976) 263–270.

doi:10.1007/BF02280884.620

[5] V. Chvátal, A remark on a problem of harary, Czechoslovak Mathematical Journal 20 (1) (1970) 109–111.

[6] E. M. Gurari, I. H. Sudborough, Improved dynamic programming algorithms for bandwidth minimization and the mincut

linear arrangement problem, Journal of Algorithms 5 (4) (1984) 531–546. doi:10.1016/0196-6774(84)90006-3.

[7] G. M. Del Corso, G. Manzini, Finding exact solutions to the bandwidth minimization problem, Computing 62 (3) (1999)

189–203. doi:10.1007/s006070050002.625

[8] A. Caprara, J.-J. Salazar-González, Laying out sparse graphs with provably minimum bandwidth, INFORMS Journal on

Computing 17 (3) (2005) 356–373. doi:10.1287/ijoc.1040.0083.

[9] R. Mart́ı, V. Campos, E. Piñana, A branch and bound algorithm for the matrix bandwidth minimization, European

Journal of Operational Research 186 (2) (2008) 513–528. doi:10.1016/j.ejor.2007.02.004.

[10] E. Cuthill, J. McKee, Reducing the bandwidth of sparse symmetric matrices, in: Proceedings of the 1969 24th ACM630

national conference, Association for Computing Machinery, 1969, pp. 157–172. doi:10.1145/800195.805928.

[11] N. E. Gibbs, W. G. Poole, Jr, P. K. Stockmeyer, An algorithm for reducing the bandwidth and profile of a sparse matrix,

SIAM Journal on Numerical Analysis 13 (2) (1976) 236–250. doi:10.1137/0713023.

[12] R. Mart́ı, M. Laguna, F. Glover, V. Campos, Reducing the bandwidth of a sparse matrix with tabu search, European

Journal of Operational Research 135 (2) (2001) 450–459. doi:10.1016/S0377-2217(00)00325-8.635

[13] E. Pinana, I. Plana, V. Campos, R. Mart́ı, Grasp and path relinking for the matrix bandwidth minimization, European

Journal of Operational Research 153 (1) (2004) 200–210. doi:10.1016/S0377-2217(02)00715-4.

[14] A. Lim, J. Lin, B. Rodrigues, F. Xiao, Ant colony optimization with hill climbing for the bandwidth minimization problem,

Applied Soft Computing 6 (2) (2006) 180–188. doi:10.1016/j.asoc.2005.01.001.

[15] G. Czibula, G.-C. Crişan, C.-M. Pintea, I.-G. Czibula, Soft computing approaches on the bandwidth problem, Informatica640

24 (2) (2013) 169–180. doi:10.15388/Informatica.2013.390.

[16] E. Rodriguez-Tello, J.-K. Hao, J. Torres-Jimenez, An improved simulated annealing algorithm for bandwidth minimization,

European Journal of Operational Research 185 (3) (2008) 1319–1335. doi:10.1016/j.ejor.2005.12.052.

[17] N. Mladenovic, D. Urosevic, D. Pérez-Brito, C. G. Garćıa-González, Variable neighbourhood search for bandwidth reduc-

tion, European Journal of Operational Research 200 (1) (2010) 14–27. doi:10.1016/j.ejor.2008.12.015.645

[18] J. Torres-Jimenez, I. Izquierdo-Marquez, A. Garcia-Robledo, A. Gonzalez-Gomez, J. Bernal, R. N. Kacker, A dual rep-

resentation simulated annealing algorithm for the bandwidth minimization problem on graphs, Information Sciences 303

(2015) 33–49. doi:10.1016/j.ins.2014.12.041.

[19] F. R. K. Chung, Labelings of graphs, in: L. W. Beineke, R. J. Wilson (Eds.), Selected topics in graph theory volume 3,

Academic Press, 1988, Ch. 7, pp. 151–168.650

[20] L. Lin, Y. Lin, Two models of two-dimensional bandwidth problems, Information Processing Letters 110 (11) (2010) 469

– 473. doi:10.1016/j.ipl.2010.04.013.

30

http://dx.doi.org/doi.org/10.1007/BFb0055820
http://dx.doi.org/10.1016/0022-0000(84)90071-0
http://dx.doi.org/10.1016/S0166-218X(99)00161-4
http://dx.doi.org/10.1007/BF02280884
http://dx.doi.org/10.1016/0196-6774(84)90006-3
http://dx.doi.org/10.1007/s006070050002
http://dx.doi.org/10.1287/ijoc.1040.0083
http://dx.doi.org/10.1016/j.ejor.2007.02.004
http://dx.doi.org/10.1145/800195.805928
http://dx.doi.org/10.1137/0713023
http://dx.doi.org/10.1016/S0377-2217(00)00325-8
http://dx.doi.org/10.1016/S0377-2217(02)00715-4
http://dx.doi.org/10.1016/j.asoc.2005.01.001
http://dx.doi.org/10.15388/Informatica.2013.390
http://dx.doi.org/10.1016/j.ejor.2005.12.052
http://dx.doi.org/10.1016/j.ejor.2008.12.015
http://dx.doi.org/10.1016/j.ins.2014.12.041
http://dx.doi.org/10.1016/j.ipl.2010.04.013

[21] S. N. Bhatt, S. S. Cosmadakis, The complexity of minimizing wire lengths in VLSI layouts, Information Processing Letters

25 (4) (1987) 263 – 267. doi:10.1016/0020-0190(87)90173-6.

[22] Z. Miller, J. Orlin, NP-completeness for minimizing maximum edge length in grid embeddings, Journal of Algorithms655

6 (1) (1985) 10 – 16. doi:10.1016/0196-6774(85)90016-1.

[23] L. Lin, Y. Lin, Square-root rule of two-dimensional bandwidth problem, RAIRO - Theoretical Informatics and Applications

45 (4) (2011) 399–411. doi:10.1051/ita/2011120.

[24] Y. Lin, On density lower bounds of two dimensional bandwidth, Journal of Mathematical Research and Exposition 16 (3)

(1996) 343–349.660

[25] A. D. Gordon, T. A. Henzinger, A. V. Nori, S. K. Rajamani, Probabilistic programming, in: Future of Software Engineering

Proceedings, FOSE 2014, Association for Computing Machinery, New York, NY, USA, 2014, p. 167–181. doi:10.1145/

2593882.2593900.

[26] F. Rossi, P. van Beek, T. Walsh (Eds.), Handbook of Constraint Programming, Vol. 2 of Foundations of Artificial Intelli-

gence, Elsevier, 2006.665

[27] J. Jaffar, J. Lassez, Constraint logic programming, in: Conference Record of the Fourteenth Annual ACM Symposium on

Principles of Programming Languages (POPL’87), Munich, Germany, January 21-23, 1987, 1987, pp. 111–119.

[28] J. Puget, On the satisfiability of symmetrical constrained satisfaction problems, in: Methodologies for Intelligent Systems,

7th International Symposium, ISMIS ’93, Trondheim, Norway, June 15-18, 1993, Proceedings, 1993, pp. 350–361.

[29] J. M. Crawford, M. L. Ginsberg, E. M. Luks, A. Roy, Symmetry-breaking predicates for search problems, in: Proceedings670

of the Fifth International Conference on Principles of Knowledge Representation and Reasoning (KR’96), Cambridge,

Massachusetts, USA, November 5-8, 1996, 1996, pp. 148–159.

[30] P. Hansen, N. Mladenović, J. A. M. Pérez, Variable neighbourhood search: methods and applications, Annals of Operations

Research 175 (1) (2010) 367–407. doi:10.1007/s10479-009-0657-6.

[31] A. Duarte, J. Sánchez-Oro, M. G. Resende, F. Glover, R. Mart́ı, Greedy randomized adaptive search procedure with675

exterior path relinking for differential dispersion minimization, Information Sciences 296 (2015) 46–60. doi:10.1016/j.

ins.2014.10.010.

[32] J. Sánchez-Oro, A. Duarte, S. Salcedo-Sanz, Robust total energy demand estimation with a hybrid variable neighborhood

search – extreme learning machine algorithm, Energy Conversion and Management 123 (2016) 445–452. doi:10.1016/j.

enconman.2016.06.050.680

[33] T. A. Feo, M. G. Resende, S. H. Smith, A greedy randomized adaptive search procedure for maximum independent set,

Operations Research 42 (5) (1994) 860–878.

[34] J. Sánchez-Oro, M. Laguna, A. Duarte, R. Mart́ı, Scatter search for the profile minimization problem, Networks 65 (1)

(2015) 10–21. doi:10.1002/net.21571.

[35] J. Sánchez-Oro, J. J. Pantrigo, A. Duarte, Combining intensification and diversification strategies in VNS. an application685

to the vertex separation problem, Computers & Operations Research 52 (2014) 209–219. doi:10.1016/j.cor.2013.11.008.

[36] A. J. McAllister, A new heuristic algorithm for the linear arrangement problem, Tech. Rep. TR-99-126a, Faculty of

Computer Science, University of New Brunswick (1999).

[37] J. J. Pantrigo, R. Mart́ı, A. Duarte, E. G. Pardo, Scatter search for the cutwidth minimization problem, Annals of

Operations Research 199 (1) (2012) 285–304. doi:10.1007/s10479-011-0907-2.690

[38] N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J. Duck, G. Tack, MiniZinc: Towards a Standard CP Modelling

Language, in: C. Bessière (Ed.), Principles and Practice of Constraint Programming – CP 2007, Springer Berlin Heidelberg,

Berlin, Heidelberg, 2007, pp. 529–543. doi:10.1007/978-3-540-74970-7_38.

[39] P. J. Stuckey, T. Feydy, A. Schutt, G. Tack, J. Fischer, The MiniZinc challenge 2008–2013, AI Magazine 35 (2) (2014)

55–60. doi:10.1609/aimag.v35i2.2539.695

31

http://dx.doi.org/10.1016/0020-0190(87)90173-6
http://dx.doi.org/10.1016/0196-6774(85)90016-1
http://dx.doi.org/10.1051/ita/2011120
http://dx.doi.org/10.1145/2593882.2593900
http://dx.doi.org/10.1145/2593882.2593900
http://dx.doi.org/10.1145/2593882.2593900
http://dx.doi.org/10.1007/s10479-009-0657-6
http://dx.doi.org/10.1016/j.ins.2014.10.010
http://dx.doi.org/10.1016/j.ins.2014.10.010
http://dx.doi.org/10.1016/j.ins.2014.10.010
http://dx.doi.org/10.1016/j.enconman.2016.06.050
http://dx.doi.org/10.1016/j.enconman.2016.06.050
http://dx.doi.org/10.1016/j.enconman.2016.06.050
http://dx.doi.org/10.1002/net.21571
http://dx.doi.org/10.1016/j.cor.2013.11.008
http://dx.doi.org/10.1007/s10479-011-0907-2
http://dx.doi.org/10.1007/978-3-540-74970-7_38
http://dx.doi.org/10.1609/aimag.v35i2.2539

[40] A. Duarte, L. F. Escudero, R. Mart́ı, N. Mladenovic, J. J. Pantrigo, J. Sánchez-Oro, Variable neighborhood search for the

vertex separation problem, Computers & Operations Research 39 (12) (2012) 3247–3255. doi:10.1016/j.cor.2012.04.017.

[41] A. Gharaei, S. A. Hoseini Shekarabi, M. Karimi, Modelling and optimal lot-sizing of the replenishments in constrained,

multi-product and bi-objective epq models with defective products: Generalised cross decomposition, International Journal

of Systems Science: Operations & Logistics 7 (3) (2020) 262–274.700

[42] A. Gharaei, M. Karimi, S. A. Hoseini Shekarabi, Joint economic lot-sizing in multi-product multi-level integrated supply

chains: Generalized benders decomposition, International Journal of Systems Science: Operations & Logistics (2019) 1–17.

[43] S. A. Hoseini Shekarabi, A. Gharaei, M. Karimi, Modelling and optimal lot-sizing of integrated multi-level multi-wholesaler

supply chains under the shortage and limited warehouse space: generalised outer approximation, International Journal of

Systems Science: Operations & Logistics 6 (3) (2019) 237–257.705

[44] C. Duan, C. Deng, A. Gharaei, J. Wu, B. Wang, Selective maintenance scheduling under stochastic maintenance quality

with multiple maintenance actions, International Journal of Production Research 56 (23) (2018) 7160–7178.

[45] A. Gharaei, M. Karimi, S. A. H. Shekarabi, An integrated multi-product, multi-buyer supply chain under penalty, green,

and quality control polices and a vendor managed inventory with consignment stock agreement: The outer approximation

with equality relaxation and augmented penalty algorithm, Applied Mathematical Modelling 69 (2019) 223–254.710

[46] A. Gharaei, S. A. Hoseini Shekarabi, M. Karimi, E. Pourjavad, A. Amjadian, An integrated stochastic epq model under

quality and green policies: generalised cross decomposition under the separability approach, International Journal of

Systems Science: Operations & Logistics (2019) 1–13.

[47] J. M. Chambers, Graphical methods for data analysis, CRC Press, 2018.

[48] J.-X. Hao, Two-dimensional Bandwidth of Mobius Ladders and Other Graphs, Henan Science 18 (1) (2000) 15–20.715

Appendix A. Graphs with known bounds

1. For any graph G with n vertices and diameter D(G) [24],

δ(n)

D(G)
≤ B2D(G) ≤ δ(n) ,

where

δ(n) = min

{
2

⌈√
2n− 1− 1

2

⌉
, 2

⌈√
n

2

⌉
− 1

}
.

2. k-level complete binary trees. Such a tree, denoted T2,k,, has n = 2k vertices and its two-dimensional

bandwidth value has the upper bound [24]:720

B2D(T2,k,) ≥
⌈

1

k − 1

⌈√
2k+1 − 3− 1

2

⌉ ⌉
.

3. Rook graphs. These graphs are constructed as the Cartesian product two complete graphs Kn1 and

Kn2
. ⌈

n− 1

2

⌉
≤ B2D(Kn1

×Kn2
) ≤ n− 1 .

and the bounds are tight [23].

32

http://dx.doi.org/10.1016/j.cor.2012.04.017

Appendix B. Graphs with known optimal solution

1. Complete graphs. A complete graphKn is a simple undirected graph with n vertices in which every pair725

of distinct vertices is connected by an edge. The optimal two-dimensional bandwidth for a complete

graph Kn is:

B2D(Kn) = δ(n) ,

the reader is referred to [24] for details.

2. Stars. A star graph Sn is a tree of order n constructed with one central vertex and n − 1 leaves.

Thus, a star Sn is isomorphic to the complete bipartite graph K1,n−1. According to [24], the optimal730

two-dimensional bandwidth for a star Sn is:

B2D(Sn) =

⌈
δ(n)

2

⌉
.

3. Complete bipartite graphs. A complete bipartite graphKn1,n2 is a graph whose vertex set is decomposed

into two independent sets n1 = |V1| and n2 = |V2| (i.e., no two vertices within the same set are adjacent)

such that every pair of vertices, v1 ∈ V1 and v2 ∈ V2, are adjacent. In [48] it was established that for

n1 ≤ n2,735

B2D(Kn1,n2) =

⌈
δ(n1) + δ(n1 + n2)− 1

2

⌉
,

if n1, n1 + n2 are inadequate for δ(n1), δ(n1 + n2) respectively. Otherwise,

B2D(Kn1,n2
) =

⌈
δ(n1) + δ(n1 + n2)

2

⌉
.

Where an integer n is said to be inadequate to δ(n) when δ(n) = 2r, n ≤ r(2r+1); when δ(n) = 2r+1,

n ≤ (r + 1)(2r + 1)

4. Cycles. A cycle graph Cn is build as a circular arrangement of n vertices such that all of them have

degree two. If n is even,740

B2D(Cn) = 1 ;

if n is odd,

B2D(Cn) = 2 .

5. Combs. The comb Dn is a caterpillar with n nonpendant vertices each incident with exactly one

pendant vertex. According to [48] its optimal two-dimensional bandwidth cost is,

B2D(Dn) = 1 .

6. Wheels. A wheel Wn consists of an (n − 1)-cycle (called the rim) every point of which is joined to a

single common point (called the hub) by a line (called a spoke) [48].745

B2D(Dn) = max

{⌈
δ(n)

2

⌉
, 2

}
.

33

7. Möbius ladders. The Möbius ladder Mn is a cubic circulant graph with an even number n of vertices,

formed from an n-cycle by adding edges (called “rungs”) connecting opposite pairs of vertices in the

cycle [48].

B2D(Mn) = 2 .

8. Petersen. For the Petersen graph G the optimal two-dimensional bandwidth value is [23]:

B2D(G) = 2 .

9. Two dimensional meshes. These graphs are constructed as the Cartesian product of two paths Pn1
750

and Pn2 [23].

B2D(Pn1 × Pn2) = 1 .

10. Cylinder grids. These graphs are constructed as the Cartesian product of a path Pn1
and a cycle Cn2

(n1 ≥ 2, n2 ≥ 3) [23].

B2D(Pn1
× Cn2

) = 2 .

11. Torus grids. These graphs are constructed as the Cartesian product two cycles Cn1 and Cn2 (n1, n2 ≥

3) [23].755

B2D(Cn1
× Cn2

) = 2 .

12. Triangulated triangles. For the triangulated triangles Tn, the two-dimensional bandwidth is [23]:

B2D(Tn) = 2 .

34

	Introduction
	Constraint Programming Formulations for the 2DBMP
	First Constraint Satisfaction Problem model
	Refined models

	Heuristic approach
	Initial solution
	Neighborhood structures
	Local Search
	Shake
	Neighborhood Change

	Computational Results
	CSP Results
	Algorithm parameter tuning
	Final experiments
	Managerials implications

	Conclusions
	Graphs with known bounds
	Graphs with known optimal solution

