A new iterated local search algorithm for the
cyclic bandwidth problem

Jintong Ren?, Jin-Kao Hao®*"* Eduardo Rodriguez-Tello®,
Liwen Li¢, Kun Hed

a8LERIA, Université d’Angers, 2 boulevard Lavoisier, 49045 Angers, France
b Institut Universitaire de France, 1 rue Descartes, 75231 Paris, France

¢Cinvestav Tamaulipas, Km. 5.5 Carretera Victoria - Soto La Marina, 87130
Victoria Tamps., Mezxico

d Huazhong University of Science and Technology, 1037 Luoyu Road. Wuhan,
Hubei 430074, China

Revised version, 23 April 2020

Abstract

The Cyclic Bandwidth Problem is an important graph labeling problem with nu-
merous applications. This work aims to advance the state-of-the-art of practically
solving this computationally challenging problem. We present an effective heuristic
algorithm based on the general iterated local search framework and integrating ded-
icated search components. Specifically, the algorithm relies on a simple, yet powerful
local optimization procedure reinforced by two complementary perturbation strate-
gies. The local optimization procedure discovers high-quality solutions in a partic-
ular search zone while the perturbation strategies help the search to escape local
optimum traps and explore unvisited areas. We present intensive computational re-
sults on 113 benchmark instances from 8 different families, and show performances
that are never achieved by current best algorithms in the literature.

Key words: Heuristic; computational methods; cyclic bandwidth minimization;
graph labeling; combinatorial optimization.

* Corresponding author.
Email address: jin-kao.hao@univ-angers.fr (Jin-Kao Hao).

Preprint submitted to Elsevier 12 June 2020

1

11

12

13

14

15

16

17

1 Introduction

Let G(V, E) be a finite undirected graph with vertex set V' (|V| = n), edge set
E (|E| = m) and C,, a cycle graph. An embedding ¢ (also called a labeling or
an arrangement) of G in C,, is a one-to-one mapping from V' to V. The cyclic
bandwidth of ¢ for G is given by

Cp(G,) = max {[o(u) —@(v)]n}, (1)

{u,v}elE

where p(u) represents the label assigned to vertex u and |x|, = min{|z|,n —
|z|} is the cyclic distance.

The Cyclic Bandwidth Problem (CBP) is then to find a labeling ¢* € Q
which minimizes the cyclic bandwidth of a given graph, where €2 is the set of
all possible labellings. See Fig. 1 for an illustrative example.

b
(8)

@
h

(a) Graph G with n =10 (b) Cycle graph C1g

Fig. 1. An illustrative example: (a) graph G' (n = 10) with its vertices named by a
to j and a labeling (labels named by 1 to 10); (b) embedding to cycle graph Cig
by reordering all the vertices on a cycle according to their labels in the clockwise
direction. The cyclic bandwidth of the shown embedding Cp (G, ¢) equals 4, which is
defined by the edges {d, e}, {e, g} and {i, j}. One observes that the cyclic bandwidth
corresponds to the minimum steps needed to go from one endpoint to the other
endpoint of these edges either in a clockwise or counterclockwise direction on the
cycle graph.

First introduced to formulate a design problem in the area of ring intercon-
nection networks [1], the CBP has also been found to be a relevant model
for a number of additional applications including VLSI design [2], data struc-
ture representations [3], code designs [4] and parallel computer systems [5].
In terms of computational complexity, the decision version of the CBP is
NP-complete [6]. Consequently, the CBP is computationally challenging for
solution methods.

Given the relevance of the problem, a number of studies have been proposed
in the literature. A majority of early studies are of theoretical nature and
focused on finding exact cyclic bandwidths for special graphs or determin-
ing lower bounds for general graphs. For example, in [5], the relationship
between the bandwidth Bp(G) and cyclic bandwidth Bo(G) for a graph G
was identified: Bp(G) > Bo(G) > 5Bp(G). The authors of [7] showed that
for seven graph labeling problems including the CBP, there exists a labeling
that is simultaneously optimal for every unit interval graph. More investiga-
tions [8-10] were carried out to identify two extreme cases to obtain exact
cyclic bandwidths for some special graphs. An exact algorithm [11] used the
branch and bound method to solve small graphs with up to 40 vertices. The
study of [12] was devoted to a systematic method to calculate lower bounds
for Bp(G) and B¢(G) according to distance and degree-related parameters.
In [13], the authors proposed a method to obtain sharp upper bounds of a
graph by adding a new edge. Based on semidefinite programming (SDP) re-
laxations of the quadratic assignment problem, better lower bounds of Bp(G)
and B (G) were introduced in [14].

Besides these theoretical studies, practical solution methods based on meta-
heuritics began to appear in recent years. To our knowledge, there are two
such algorithms in the literature. In [15], the authors proposed the first tabu
search algorithm (7T'Scp) and compared it with a simulated annealing algo-
rithm adapted from an algorithm designed for the related Bandwidth Mini-
mization Problem [16]. Computational results confirmed the value of T'Scp
on a set of benchmark instances. Recently, a three-phase heuristic algorithm
called ITPS was presented in [17], which improved several best known results
in the literature. Very recently, the population-based evolutionary approach
was investigated in [18], where five classical permutation crossovers (order
crossover, order-based crossover, cycle crossover, partially mapped crossover,
distance preserved crossover) [19] were compared within a hybrid genetic al-
gorithm combining such a crossover and a descent search. This study found
that the order-based crossover performs the best among the five compared
crossovers. However, these hybrid genetic algorithms do not compete well
with the best performing CBP algorithms. Indeed, the experimental results
reported in the above studies showed that ITPS [17] and T'Scp [15] repre-
sent the state-of-the-art for solving the CBP. Meanwhile, these two algorithms
are complementary because they performed the best on different benchmark
instances.

In this work, we aim to enrich the solution toolbox for effectively solving
the cyclic bandwidth problem. For this, we investigate a new iterated local
search (NILS) algorithm which distinguishes itself by two original features.
First, we devise a new and effective strategy to explore candidate neighbor
solutions generated by the conventional swap operator. Second, we employ
two perturbation procedures with different intensities to better diversify the

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

search. Compared to the two existing heuristic algorithms T'Scp and ITPS,
the proposed algorithm is simpler (e.g., it uses only one neighborhood against
2 for T'Scp and ITPS) and requires fewer parameters (4 against 8 for T'Scp
and 9 for ITPS), making it much easier to use.

To assess the performance of the proposed algorithm, we show computational
results on the set of 113 well-known benchmark instances in the literature
and make comparisons with the results of T'Scp and IT PS. Our experiments
indicate that the proposed algorithm dominates the reference algorithms and
achieves a performance that has never been reported in the CBP literature.

The remainder of the paper is organized as follows. In Section 2, we present
the main algorithm and its key components. In Section 3, we show the compu-
tational results on the benchmark instances and comparisons with reference
results in the literature. In Section 4, we report additional experiments to
investigate the influences of main algorithmic components on the global per-
formance of the algorithm. Conclusions are drawn in Section 5.

2 New iterated local search algorithm

Iterated local search [20] is a general search framework with numerous suc-
cessful application examples (e.g., [21-24]. The basic idea of this approach is
to use a local optimization procedure to find local optima and a perturba-
tion procedure to move away from each local optimum discovered. The new
iterated local search algorithm (NILS) presented in this work for the CBP
follows this general approach and relies on three key components specially
designed for this problem: a dedicated tabu search procedure (DTS) with a
specific neighborhood exploration strategy, a directed perturbation procedure
(Directed_Pertub) with a randomized shift-insert operator and a strong pertur-
bation procedure with a destruction-reconstruction heuristic (Strong-Pertub).
The algorithm employs the dedicated tabu search procedure to attain high-
quality local optimal solutions and probes additional nearby local optimal
solutions with the help of the directed perturbation procedure. To better di-
versify its search, the algorithm uses the strong perturbation procedure to
displace the process to more distant unexplored regions. These three proce-
dures are iterated to ensure a large exploitation and exploration of the whole
search space.

The pseudo-code of the NILS algorithm is presented in Algorithm 1. The
algorithm starts with a random initialization solution ¢. The inner ‘while’
loop iteratively performs the dedicated tabu search procedure (Section 2.1),
followed by the directed perturbation procedure (Section 2.2). At each it-
eration, the input solution is first improved by DTS which is based on the

neighborhood Ny (Section 2.1) and the evaluation function f. (See below).
When DTS stagnates, Directed_Pertub is used to modify the incumbent solu-
tion to provide a new input solution for the next round of DTS. The process of
DTS and Directed_Pertub is repeated Lz times (L3 is a parameter called ex-
ploration limit). When the inner ‘while’ loop terminates, we consider that the
search has sufficiently examined the current and close regions. As a result, we
heavily alter the incumbent solution with the strong perturbation procedure
to move the search to a far and away region, then the ‘D'TS-Directed _Pertub’
process is triggered to explore new local optimal solutions. The whole algo-
rithm is repeated until a given cut off time limit 7},,, is reached, and the best
solution found ¢* is returned.

Algorithm 1 New iterated local search algorithm for the CBP

1: Input: Finite undirected graph G(V, E), neighborhood N, evaluation function f.,
tabu search depth L1, directed perturbation strength Lo, exploration limit L3, con-
trolling percent o and cutoff time limit T}y,4z
Output: The best solution found ¢*
¢ « InitialSolution()
i
while the cutoff time limit 7;,,4, is not reached do
Count < 0
while Count < L3 do
(p,¢*) <= DT'S(p,¢*, Ny, fe, L1) // Local optimization with dedicated
tabu search, Section. 2.1
(¢, ¢*) < Directed_Perturb(p, ¢*, fe, L2) // Directed perturbation,
Section. 2.2
10: Count < Count + 1
11: end while
12: ¢ « Strong_Perturb(y, a) // Strong perturbation, Section 2.3
13: end while
14: return o*

NN

©°

To assess the quality of a candidate solution ¢, the algorithm adopts the
extended evaluation function f.(¢) introduced in [17], which is defined as
follows.

£(0) = C(Gao) + Z(Cf;ﬂ;"‘” @)

where Z(Cg(G,¢)) = > I, represents the number of edges whose cyclic
{uv}eFE

distances equal Cp(G, ¢), and the indicator variable I, = 1if [p(u)—¢(v)|, =
Cp(G,p), and I, = 0 otherwise. The second term of f.(¢) in the range (0, 1]

is used to distinguish solutions with the same cyclic bandwidth.

10

11

12

13

14

15

16

17

18

1

2

4

5

=
o

-

1

-
N

-

3

o

4

Algorithm 2 New tabu search phase

1:

©°

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:

CONO AL

Input: input solution ¢, best solution ¢*, neighborhood N, evaluation function f,
and tabu search depth L
Output: improved solution ¢, updated best solution ¢*
[+0 // Counter of non-improving iterations
o // Copy of the current solution
©p — @ // Local best solution
Vi — @ // Best solution in inner loop
while [< L; do
C(¢") + Critical Set(¢') // Identify the critical vertices
for Each u € C(¢') do
¢ < FindBestNeighbor(N¢(p,u)) // Choose a best neighbor solution
Update tabu list
if fe(p) < fe(pip) then
Pib < ¥
end if
end for
¢
if fe(gpib) < fe(‘Pb) then
<0
Pb < Pib
else
l+—1+1
end if
if fo(pp) < fe(*) then
" —
end if
end while
return o, p*

2.1 Dedicated tabu search

The dedicated tabu search (DTS) procedure (Algorithm 2) is designed to
exploit candidate solutions with the help of the neighborhood Ny (see below).
DTS starts with an input solution ¢ and iteratively makes transitions from the
current solution to a neighbor solution. At each iteration of the outer ‘while’
loop, DTS first identifies the critical vertices relative to the current solution
(line 8, Alg. 2), and then for each critical vertex, swaps the label of this vertex
against the label of another specifically selected vertex to generate a neighbor
solution (lines 9-15, Alg. 2). After each solution transition, the performed
swap operation is recorded in the so-called tabu list [25] to avoid revisiting
the replaced solution. Once all the critical vertices are examined, operations
are performed to update the counter of non-improving iterations, local best
solution found during DTS and global best solution. DTS terminates when
the local best solution cannot be improved for L; consecutive iterations.

To transform the incumbent solution, DTS uses the conventional swap oper-
ator which operates on specifically identified vertices. Let ¢ be the current
solution, and ¢ @ swap(u, v) be the neighbor solution obtained by exchanging
the labels of vertices u and v. Like [15], we constraint the candidate vertex u
to a specific subset of critical vertices C'(¢) defined as follows.

Let Cp(u, ¢) = maxycaw){|e(u) —p(v)]n} (A(u) is the set of adjacent vertices
of u) be the cyclic bandwidth of vertex u with respect to . Then the critical
vertex set C(yp) is given by C(p) = {w € V : C(w, p) = Cp(G, ¢)}.

Now for a given critical vertex u € C(yp), let mid(u) denote the middle point
of the shortest path in the cycle graph C), containing all the vertices adjacent
to u [15]. Then we define S(u) C V to be the set of vertices which are closer
than u € C(p) to the middle point mid(u) or equal to mid(u), i.e., S(u) =
{veV:|mid(u) — @(v)|n < [mid(u) = ¢(u)ln}-

It is worth noting that S(u) is related not only to the critical vertex u but
also to the labeling .

Given a solution ¢ and a critical vertex u € C(p), we use Ny(p,u) to denote
the set of solutions that can be obtained by swapping v and a vertex in S(u).

Then, based on C'(¢) and S(+), DTS applies at each iteration the swap operator
to transform ¢ to a new (neighbor) solution. For a vertex u € C(y), the
associated S(u) is identified and the best eligible swap(u,v) (v € S(u)) is
applied (see Alg. 2, line 10) to obtain a new incumbent solution (a swap is
eligible if it is not forbidden by the tabu list or if it leads to the best solution
found so far). Then the performed swap(u,v) is added in the tabu list and the
reverse operation swap(v, u) will not be allowed for the next ¢l iterations (¢ is
called tabu tenure). In this work, we adopt the dynamic tabu tenure method
used in [15,17], which fixes ¢l according to a periodic step function.

Fig. 2 provides a simple illustration of solution transformation. According to
the definition of set S(u) above, we identify the critical set C(p) = {e,i,g,j}.
Then the swap operation is applied to a vertex u € C(y) with a suitable
vertex of S(u). For instance, starting from the critical vertex e, the middle
point mid(e) is recognized as ¢ with label 6. Then, the distance between e and
i is 1 and S(e) = {i,d}. So for the critical vertex e, there are two possible
swaps: swap(e, i) and swap(e,d). Since swap(e, d) generates a better solution
than swap(e, i) does, it is applied to obtain the new incumbent solution. Note
that when one examines next critical vertex, its S(-) will be defined relative to
the new solution. After all the critical vertices are examined, DTS terminates
its current iteration and starts its next iteration with a new critical set.

10

11

12

13

14

15

17

18

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

10

11

12

13

14

15

16

17

2.2 Directed perturbation with randomized shift-insert

When DTS stops, the search is considered to be trapped in a local optimum
(it is stagnating since it cannot improve its best solution during L, iterations).
To escape the trap, we apply a directed perturbation procedure (depicted in
Algorithm 3), which relies on a randomized version of the ShiftInsert operator
[17]. Our RandomizedShiftinsert operator works as follows. First, we identify
an edge e = {z,y} with the largest cyclic distance (i.e., Cp(G,¢)). Then,
one endpoint of the edge is chosen (say z) and used to perform £ (a random
number between 1 and Cg(G, ¢)) chained swaps where each swap involves x
and the next vertex in the direction of decreasing the cyclic distance of edge
e. Based on this operator, the directed perturbation procedure modifies the
input solution by applying Lo times the RandomizedShiftInsert operator. This
perturbation procedure has the desirable property that it changes the input
solution without deteriorating too much of its quality.

Algorithm 3 Directed perturbation

Input: input solution ¢, best solution ¢*, and perturbation strength Lo
Output: perturbed solution ¢, updated best solution ¢*
Counter < 0
while Counter < Ly do

¢ < RandomizedShiftInsert(y)

Counter < Counter + 1

if f.() < fu(¢*) then

PF

end if
end while
return @, p*

=
PO ©YXONOARWN

[y

In the example shown in Fig. 3(a), the edge with the largest cyclic distance
is {i, 7} indicated in green. The RandomizedShiftinsert operator uses i as the
starting vertex to perform 2 swaps (2 is randomly determined from 1 and 4)

Fig. 2. Hlustration for solution transformation: a graph with its labeling ¢, critical
set C(p) ={e,i,9,7} and set S(e) for the first critical vertex e.

Fig. 3. Tllustration of the RandomizedShiftInsert operator: (a) The cycle graph be-
fore the operation, (b) The cycle graph after the operation (i.e., swap(i, a) followed
by swap(i, b)).

in a clockwise direction, leading to the solution shown in Fig. 3(b).

We investigate the degree of influence of the directed perturbation procedure
over the search performance of the proposed NILS algorithm in Section 4.

2.3 Strong perturbation with destruction-reconstruction

When the process of DTS and directed perturbation stops, the search is con-
sidered to be trapped in a deep local optimum. To enable the algorithm to
continue its search, we introduce a strong perturbation to definitely bring the
search to a distant new region. The core idea is to move uncritical vertices
to get closer to the critical vertices. For this purpose, the strong perturbation
performs two steps: erase the labels of some specifically selected vertices (de-
struction step) and then re-assign new labels to them according to a greedy
strategy (reconstruction step).

To destruct a solution, we first identify the set of vertices C'r whose labels will
be removed: Cr(y) = {w € V : Cp(w,¢) < a - Cp(G,¢)} where a € [0, 1]
is a controlling parameter. Thus, Cr(p) is composed of vertices with a cyclic
bandwidth up to a - C(G, ¢). Then, we use L, to collect the labels freed by
the vertices of Cr(p): L, = {l(w) : w € Cr(y)}.

To reconstruct the solution, we re-assign the labels of L, to the vertices of
Cr(p) with a greedy heuristic. Starting from a random node u € V' \ Cg(y),
we employ a breadth first search to traverse the whole graph. In order to select
a label from L, for each vertex v € Cr(p) N A(u) (A(u) is the set of adjacent
vertices of u), we first identify the set of labels L;,(u) whose cyclic distances
to l(u) are no more than Lg: Ly, (u) = {l. : [l(u) — l¢|, < Lp,l. € L,} where

10

11

12

13

14

15

16

17

18

19

20

21

22

23

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

L is the analytical lower bound of the graph according to [8]. If L;,(u) is not
empty, a random label from L;,(u) is selected and assigned to v. Otherwise,
a random label from L, \ L;,(u) is assigned to v. Then, the same operation
is performed on each vertex v € A(u). The entire reconstruction step finishes
when all vertices in Cg(y) are re-assigned labels.

An illustrative example is shown in Fig. 4. Given a graph G(V, E) (|V| = 10,
Lg = 3), the objective value of the solution in Fig. 4(a) is 4 (Cp(G,) = 4).
For the destruction step, if we set a to be 0.8, we get Cr(p) = {a,b,c, f, h}
and L, = {2, 3,4, 7,8}; while the partial solution after removing the vertices in
Cr(p) is showed in Fig. 4(b). For the greedy reconstruction step, we starting
from a random vertex u € V\Cr(p) = {d, e,1, J, g} (say d in Fig. 4(c)), we first
allocate labels to vertices v € Cr(¢)NA(d) = {b}. According to the description
above, L;,(d) = {2, 3,4, 8} (labels 9 and 10 are already assigned to vertices). A
random label (2 in Fig. 4(c)) is chosen from {2, 3, 4, 8} to be assigned to vertex
b. Once all the adjacent vertices of d ({b,g,e}) are successfully re-assigned,
they will go through the same operation iteratively following the principle of
the breadth first search. And vertices ¢ and a are re-assigned labels 3 and 4
respectively in Fig. 4(d). When we consider allocating labels to the adjacent
vertices of ¢, L;,(c) is empty, so we choose a label from L, \ L;,(c) = {7,8} (7
in our case) for vertex f. We repeat the above operation until each vertex in
Cr(p) receives a label. And the solution in Fig. 4(e) with a cyclic bandwidth
of 4 is returned as the output of the strong perturbation procedure.

The impact of the strong perturbation procedure, introduced here, on the
behavior of the NILS algorithm is investigated in Section 4.

2.4 Relations with previous studies

NILS distinguishes itself from two previous algorithms 7'Scp [15] and ITPS
[17] by the following features. First, unlike [15,17], the dedicated tabu search
procedure of NILS relies on a single neighborhood while both T'Scp and
ITPS explore two neighborhoods in a probabilistic way. As such, the key op-
timization component of our algorithm is simpler and more focused while
making its search more effective and more computationally efficient. Sec-
ond, NILS employs two perturbation strategies which are different from
the previous studies. The directed perturbation with the randomized shift-
insert operation favors the generation of more diverse solutions, while the
destruction-reconstruction based strong perturbation provides a complemen-
tary and guided strategy to bring the search to new promising search regions.
Last but not least, the NILS algorithm requires much fewer parameters (4
against 8 for T'Scp and 9 for I'T'PS), making it much easier to use and analyze.

10

Fig. 4. Tllustration of the strong perturbation procedure using destruction and re-
construction on a graph with Cp(G,) = 4, analytical lower bound Lp=3 and
controlling parameter o = 0.8. (a) input solution; (b) partial solution after remov-
ing 5 vertices of Cg; (c) beginning of solution reconstruction from vertex d; (d)
reconstruction in progress; (e) completion of the reconstruction.

As we show in the next section on computational experiments, the NILS
algorithm integrating these specific features performs extremely well on the
set of 113 well-known CBP benchmark instances.

3 Experimental results

This section starts presenting the experimental conditions under which the
empirical comparisons were carried out. It continues by giving details about
the methodology used to identify the most appropriate combination of input
parameter values for the proposed NILS algorithm. This section concludes
by providing an in-depth comparative analysis which considers the proposed
NILS algorithm and two solution approaches which are currently considered
as the reference methods in the state-of-the-art: T'Scp [15] and ITPS [17].

11

10

11

1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

3.1 FExperimental setup

The experimentation of this work was carried out on 113 graphs which were
previously employed to assess the performance of the state-of-the-art algo-
rithms reported by Rodriguez-Tello et al. [15], and latter by Ren et al. in [17].
These graphs are organized in two different groups. The first one is made up
of 85 graphs belonging to 7 different families of standard graphs (paths, cy-
cles, two dimensional meshes, three dimensional meshes, complete r-level k-ary
trees, caterpillars and r-dimensional hypercubes). Their order |V| varies in the
range from 9 to 8192, while their size |E| goes from 8 to 53248. The values of
the optimal solutions for these graphs are known, the reader is referred to [15]
for consulting the details. Therefore, attaining the optimal solutions for these
instances is an important factor to evaluate the performance of algorithms.
The second group contains 28 graphs coming from the Harwell-Boeing Sparse
Matriz Collection ' . These instances were directly constructed from sparse ad-
jacency matrices produced in practical and engineer real world applications.
Their order fluctuates in the interval 9 < |V| < 715 and their size are in the
range 46 < |E| < 3720. The optimal solutions for 7 small graphs are known,
while for the remaining 21 graphs lower and upper bounds can be calculated
according to [8].

The performance assessment of the three analyzed algorithms was done using
the same comparison metrics previously employed in [15] and [17], i.e., the best
cyclic bandwidth attained for each instance (smaller values are preferred),
the computation time expended in seconds, the relative root mean square
error (RMSE) and the overall relative root mean square error (O-RMSE).
The RMSE indicator permits to evaluate the performance of an algorithm
over an individual benchmark instance, while the O-RMSE indicator computes
average RMSE values over a whole set of test instances.

In order to further analyze the behavior of the three compared algorithms, a
statistical significance analysis was carried out. It starts by evaluating, through
the use of Shapiro-Wilk test, the normality of data distributions. Bartletts
test is then implemented to determine whether the variances of the normally
distributed data is homogeneous or not. In case variance homogeneity is con-
firmed, ANOVA test is applied; on the contrary Welchs ¢ parametric tests are
executed. When facing non-normal data Kruskal-Wallis test is carried out. The
significance level consistently considered in all the cases is 0.05. Concretely,
we made this analysis by comparing a pair of different algorithm implementa-
tions, say A and B (denoted as A/B). Three different outcomes, represented
respectively as 4+, —, and %, can be obtained: 1) algorithm A offers a signifi-
cant better performance than B; 2) B significantly outperforms A (i.e., A is

! http://math.nist.gov/MatrixMarket/data/Harwell-Boeing

12

defeated by B); and 3) it was not possible to conclude a statistical significant
difference between the compared methods.

The proposed NILS algorithm was coded using the C++ programming lan-
guage?. Given that the source codes of the T'Scp and ITPS methods are
publicly available (see [17]), the three analyzed algorithms were compiled in
gee 4.4.7 using the optimization flag -O3. These three algorithms were in-
dependently executed 50 times, using different random seeds, over each test
instance and with a maximum running time of 600 seconds.

3.2 Tuning of parameters

In order to automatically determine the most suitable combination of input
parameter values for the proposed NILS algorithm, we have decided to em-
ploy I/F-Race, an iterated procedure based on the use of racing and Friedmans
non-parametric two-way analysis of variances by ranks. It is part of the pop-
ular irace package [26,27] for automatic parameter configuration.

For this tuning experiment, the irace parameter controlling the maximum
number of runs of the algorithm being tuned (tuning budget) was fixed to
2000. Then, a subset of 10 instances, identified as challenging for the state-of-
the-art algorithms [15,17], was selected and consistently used. This subset in-
cludes certain Harwell-Boeing instances (bcsstk06, 494 -bus, dwt_592, 662_bus,
685_bus, can_715), as well as some graphs from different standard topologies
(path1000, cycle1000, mesh2D20x50, mesh3D183, tree2x9, caterpillars4, hyper-
cubell).

Our NILS algorithm requires to define five different input parameters before
start working. The first one is the cutoff time 7},,,. It was fixed to 600 sec-
onds for all the experiments presented in this work, which is the same value
employed by the state-of-the-art algorithms [15,17]. The other four input pa-
rameters of NILS are listed in Table 1, along with their description, type,
and range of possible values.

After the execution of our automatized tuning experiments, the parameter
values for obtaining the best performance of NILS identified by irace are:
L, =100, Ly = 20, L3 = 2000, and o = 0.84. Hence, these values are consis-
tently employed along the whole experimentation reported in the following.

2 The source code of our NILS algorithm will be available at: https://github.
com/thetopjiji/NILS

13

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Table 1
Description and ranges for the input parameters of the NILS algorithm automati-
cally tuned with irace [26].

Parameter Description Type Range/Values

Ly Tabu search depth Categorical {1, 2, 5, 10, 20, 50, 100, 200, 500,
1000, 1500, 2000, 3000, 5000,
10000, 20000}

Lo Directed perturbation strength Categorical {1, 2, 5, 10, 20, 50, 100, 200, 500,
1000, 1500, 2000, 3000, 5000,
10000, 20000}

Lsg Exploration limit Categorical {1, 2, 5, 10, 20, 50, 100, 200, 500,
1000, 1500, 2000, 3000, 5000,
10000, 20000}

@ Controlling percent Real (0.0, 1.0)

3.8 Comparisons with state-of-the-art algorithms

This section presents a performance assessment of our NILS algorithm com-
pared to the two best performing algorithms in the CBP literature (i.e.,
TScp [15] and ITPS [17]). We ignore the recent hybrid genetic algorithms
studied in [18], because their results are dominated by those of these two ref-
erence algorithms. This assessment was carried out under the experimental
conditions previously detailed in Section 3.1.

Table 2 summarizes the results provided by this computational experiment or-
ganized by instance subsets (see column 1). The first seven subsets correspond
to standard graph topologies, whereas the last one is composed of graphs com-
ing directly from engineering real world problems. Column 2 (Num.) shows the
number of benchmark instances in each subset. Four columns are employed
to register the results (averaged over all the graphs in a subset) produced by
each compared algorithm: the best cyclic bandwidth reached (Avg. Cby), the
computational time (in seconds) expended to attain this objective cost (Avg.
Ty), the overall relative root mean square error (O-RMSE), and the success
percentage for finding the optimal (or best-known) solutions (% Best). De-
tailed results for each of the 113 benchmark instances used in this experiment
are shown in Tables A.1 and A.2 provided in Appendix A.

From Table 2, one observes that our NILS algorithm has reached better
average best cyclic bandwidth values (See column Avg. Cb,) than the two
state-of-the-art algorithms for all the 8 subsets of instances tested. Indeed,
NILS was able to attain new best-known results for 18 standard graphs and
for 4 Harwell-Boeing instances, respectively. For the remaining 91 benchmark
graphs it matches the best recorded results in the literature. We remark that
for the first 6 graph types NILS attained the optimal solution values (see col-
umn % Best) for each of its runs, while I7T'PS could only do this for the subsets
tree and caterpillar. In contrast, T'Scp could not ensure optimal solutions for
any subset of instances.

14

It is worth noting that the three large instances in the subset mesh3D (3-

1

dimensional meshes) and the three instances of the hypercube subset (r-dimensionad

hypercubes) are among the most difficult benchmarks. To illustrate this, con-
sider the graph mesh3D18 (with 2197 vertices and 6084 edges) for which
neither T'Scp, nor ITPS can get the optimal objective value of 133 (553 and
551, respectively). Nevertheless, NILS is able to find the optimal solution for
this graph, which represents an important improvement in solution quality
with respect to that furnished by ITPS and T'Scp (75.86% and 75.95%). It
proves the effectiveness of NILS for solving challenging instances.

Concerning the O-RMSE values scored by the three compared algorithms,
our NILS algorithm reports the ideal value of zero for 5 subsets (path, cycle,
mesh2D, tree and caterpillar). On the other hand, IT'PS did it only for one
subset (tree) and T'Scp for none of them. This means that our algorithm is
more robust than the two reference algorithms, considering it achieved the op-
timal solution at every execution for all the graphs in most of the subsets. For
the two remaining subsets of instances (mesh3D and hypercube), NILS also
achieved lower O-RMSE values (0.36 and 0.26) than those scored by T'Scp
(1.47 and 0.34) and ITPS (1.39 and 0.59). Moreover, the average computa-
tional time expended by NILS to attain these solutions (see column Avg. T})
is largely reduced with respect to that consumed by the competing algorithms.
An exception is the case of the hypercube subset, where the computational ef-
fort needed by NILS is 6.50% higher than that of T'Scp (584.21 vs. 546.23),
but NILS produced much better solutions than T'S¢p.

An in-depth statistical significance analysis, using the methodology described
in Section 3.1, was performed for validating the experimental results produced
in our performance comparisons. This analysis, presented in Table 3, and
detailed in the last four columns of Tables A.1 and A.2, revealed that NILS
was able to statistically outperform T'Scp and ITPS in 51.33% and 44.25%
of the 113 tested instances (58 and 50 graphs, respectively). For the remaining
benchmark instances, it was not possible to identify a statistical difference in
performance between NILS and the state-of-the-art algorithms.

If we check the detailed results of Tables A-1 et A-2 in the Appendix, we can
make some general comments about the behaviors of the three algorithms with
respect to the size (complexity) of the benchmark graphs. First, we observe
that within each of the 8 graph families, larger graphs with more vertices and
edges are usually more difficult to solve for all algorithms. This is especially
true for the largest instances such as path, cycle, mesh2D, mesh3D as well
as large instances of the Harwell-Boeing family. Second, between ITPS and
TScp, ITPS reached an equal or a better performance for most graphs except
some cycle, mesh2 and hypercube graphs, while T'Scp was more successful on
some large graphs. Third, our NILS algorithm performed remarkably well
on almost all graphs compared to the reference algorithms both in terms of

15

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

10

11

12

13

14

15

16

17

18

19

Ul
o
o

= ~— TScb £ —— TScb

5400 ITPS 300 ITPS

§300 —— NILS 2250 —— NILS

Q300 S0y ——

Y L9150

100 E 9100

@) 0 O 50

0 100 200 300 400 500 600 0 100 200 300 400 500 600
Time(seconds) Time(seconds)
(a) path1000 (b) mesh2D28x30
350

%300 ——— TScb %1000

'%250 ITPS 1§j 900

-§200 —— NILS é 800

o150 Y 700

9100]

O 50 > 600

0 100 200 300 400 500 600 0 100 200 300 400 500 600

Time(seconds) Time(seconds)
(c) 685 bus (d) hypercubell

Fig. 5. Convergence charts (running profiles) of T'Scp, ITPS and NILS for solv-
ing four representative difficult instances (path, mesh2D28x30, 685_bus and hyper-
cubell). The results were obtained from 50 independent executions of each com-
pared algorithm.

best solutions found and computational efficiency. This is particularly the case
for the instances which are difficult for the reference algorithms such as the
largest path, cycle, mesh2D, mesh3D and hypercube graphs.

Finally, to study the behaviors of the three compared algorithms throughout
the execution, we performed an additional experiment to obtain the conver-
gence charts (running profiles) of the algorithms on four representative and
difficult instances: two standard graphs (path1000 and mesh2D28x30) and
two Harwell-Boeing graphs (685_bus and hypercube11). For this experiment,
we ran each algorithm 50 times to solve each instance with the time limit of
600 seconds and recorded the best objective values during the executions. Fig.
5 shows the corresponding convergence charts that indicate how the average
best objective values found by each algorithm (y-axis) evolves as a function
of the running time of the algorithm (x-axis). We observe that even if all the
algorithms are able to improve the solution quality quickly at the beginning
of their search, our NILS algorithm has a better behavior on the long term.
Indeed, when the reference algorithms began to slow down their improvement
or even stagnate on their best solution after some 100 seconds, our NILS algo-
rithm continued its search to find still better solutions. This experiment shed
light on why NILS competes highly favorably with the reference algorithms.

16

L1

Table 2

Summary of the experimental performance comparison among the two reference methods in the CBP literature (i.e., T'Scp [15] and
ITPS [17]) and the NILS algorithm over 113 benchmark instances: 85 standard graphs with known optimal solutions, and 28 Harwell-
Boeing instances.

TScB ITPS NILS

Graph type Num. Avg. Cb, Avg. T, O-RMSE % Best Avg. Cb, Avg. T, O-RMSE % Best Avg. Cb, Avg. T, O-RMSE % Best
path 15 2.53 131.85 2.01 66.67 1.87 158.22 3.01 80.00 1.00 6.24 0.00 100.00
cycle 15 2.40 40.71 1.82 73.33 2.60 162.75 4.22 73.33 1.00 9.38 0.00 100.00
mesh2D 15 27.67 144.52 1.88 66.67 12.07 112.86 0.44 40.00 11.40 10.45 0.00 100.00
mesh3D 10 180.30 328.32 1.47 30.00 140.50 266.65 1.39 70.00 64.50 132.87 0.36 100.00
tree 12 55.08 75.90 0.02 91.67 54.67 23.36 0.00 100.00 54.67 1.52 0.00 100.00
caterpillar 15 15.13 75.31 0.07 93.33 15.07 60.54 0.07 100.00 15.07 18.07 0.00 100.00
hypercube 3 1551.67 546.23 0.34 0.00 2017.33 591.41 0.59 0.00 1492.00 584.21 0.26 0.00
Harwell-Boeing 28 22.21 112.70 2.65 28.57 23.50 141.24 3.90 28.57 20.39 40.69 2.15 28.57
Win/Match/Fail 26/87/0

Table 3

Summary of the statistical signification analysis from the comparison among the two reference methods in the CBP literature (i.e.,
TScp [15] and ITPS [17]) and the NILS algorithm over 113 benchmark instances: 85 standard graphs with known optimal solutions,
and 28 Harwell-Boeing instances.

NILS /| TScp NILS / ITPS

Graph type Num. + * — + * —
path 15 8 7 0 5 10 0
cycle 15 5 10 0 10 5 0
mesh2D 15 8 7 0 10 5 0
mesh3D 10 10 0 0 3 0
tree 12 4 8 0 1 11 0
caterpillar 15 6 9 0 12 0
hypercube 3 2 1 0 3 0 0
Harwell-Boeing 28 15 13 0 11 17 0

Total 185 58 55 0 50 63 0

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Table 4

Summary of comparative results between NILS and its NILS dp variant (i.e.,
without the directed perturbation component) on the 8 families of 113 benchmark
instances.

NILS _dp NILS Statistics
Graph type Num. Avg. Cb, Avg. T, O-RMSE % Best Avg. Cb, Avg. T, O-RMSE % Best + x —
path 15 1.00 9.48 0.00 100.00 1.00 6.24 0.00 100.00 0150
cycle 15 1.00 14.63 0.38 100.00 1.00 9.38 0.00 100.00 2130
mesh2D 15 58.73 98.56 2.94 66.67 1140 10.45 0.00 100.00 9 6 0
mesh3D 10 208.20 257.35 1.69 0.00 64.50 132.87 0.36 100.00 10 0 O
tree 12 54.92 66.68 0.02 91.67 54.67 1.52 0.00 100.00 3 90
caterpillar 15 17.73 174.91 0.36 73.33 15.07 18.07 0.00 100.00 8 70
hypercube 3 1586.00 550.01 0.34 0.00 1492.00 584.21 026 000 3 00
Harwell-Boeing 28 41.00 125.37 10.04 28.57 20.39 40.69 2.15 2857 1513 0
Total 113 5063 0

4 Analysis of the two perturbation strategies

The NILS algorithm applies two perturbation strategies to achieve diver-
sification effects of different intensities: directed perturbation with the ran-
domized shift-insert operation and strong perturbation using a destruction-
reconstruction process. In this section, we investigate the influence of these
perturbation strategies on the performances of the algorithm. For this pur-
pose, we created two NILS variants: NILS dp by disabling the directed per-
turbation component of NILS and NILS sp by disabling the destruction-
reconstruction based strong perturbation. We ran both variants to solve the
113 benchmark instances according to the condition specified in Section 3.1
and reported their computational results in Tables 4 and 5 together with those
produced by NILS.

In these tables, the information of the compared algorithms is shown employ-
ing the same column headings as those used in Table 2. The last three columns
(Statistics) present the statistical results obtained by using the methodology
detailed in Section 3.1.

From these tables, we observe that removing any of these perturbation strate-
gies greatly deteriorates the performance of the NILS algorithm.

Specifically, the results of Table 4 show that the directed perturbation is im-
portant for 7 out of 8 families of instances in terms of most performance indi-
cators. Without the directed perturbation, the algorithm leads to worse results
in terms of best and average objective values while its performance is less sta-
ble. Globally, the statistical analysis indicates that for 50 instances (44.25%),
the directed perturbation plays a significant and positive role. This is partic-
ular the case for instances belonging to three families (mesh2D, mesh3D, and
Harwell-Boeing).

18

Table 5

Summary of comparative results between NILS and its NILS_sp variant (i.e.,
without the strong perturbation component) on the 8 families of 113 benchmark
instances.

NILS_sp NILS Statistics
Graph type Num. Avg. Cb, Avg. T, O-RMSE % Best Avg. Cb, Avg. T, O-RMSE % Best + x —
path 15 1.00 30.22 0.45 100.00 1.00 6.24 0.00 100.00 10 50
cycle 15 1.00 20.50 2.18 100.00 1.00 9.38 0.00 100.00 11 4 0
mesh2D 15 1140 16.86 0.03 100.00 11.40 1045 0.00 100.00 114 0
mesh3D 10 64.50 136.14 0.57 100.00 64.50 132.87 0.36 100.00 010 0
tree 12 54.67 1.70 0.00 100.00 54.67 1.52 0.00 100.00 012 0
caterpillar 15 15.07 40.64 0.08 100.00 15.07 18.07 0.00 100.00 411 0
hypercube 3 1502.67 536.50 0.25 0.00 1492.00 584.21 026 000 0 21
Harwell-Boeing 28 20.39 49.47 2.53 28.57 20.39 40.69 2.15 2857 8200
Total 113 3478 1

Similarly, the results of Table 5 disclose that the strong perturbation also
impacts the performance of the NILS algorithm even if the impact is less
important compared to that of the directed perturbation. This observation is
supported by our statistical assessment, which revealed that a relevant sta-
tistical difference in favor of NILS with respect to NILS sp exists for only
34 benchmark instances (30.09%). Disabling the strong perturbation in our
algorithm leads to a less stable implementation for all the graph families ex-
cept for the tree family (observe column O-RMSE). The benefit of using the
strong perturbation is particularly visible on instances of four families (path,
cycle, mesh3D, and Harwell-Boeing). In this sense, the strong perturbation
is complementary with respect to the directed perturbation, given that they
help to improve the solution of instances from different families.

Concerning the average expended computational time, we can observe that
both NILS dp and NILS _sp consume more CPU resources than NILS for
most of the benchmark instances evaluated. Only in the case of the hypercube
graphs, NILS makes use of a higher average computational time than the
other two reference algorithms. But this is largely compensated by the better
quality solutions provided by our NILS algorithm.

To further highlight the benefits of employing the two proposed perturbation
strategies, we illustrate in Fig. 6 a detailed comparison between NILS and
the two variants NILS _dp and N1LS_sp on four representative instances (cy-
cle1000, caterpillary4, hypercubel3, and 662_bus) from different benchmark
families. The plots are based on the results of 50 independent runs of the
algorithms.

Fig. 6(a) shows that the results of NILS and NILS_dp share the same me-
dian except that there are several outliers for NILS dp, while NILS sp has
a worse performance in terms of the median and interquartile range. This
indicates the important role of strong perturbation for instance cycle1000.

19

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

10

11

12

13

14

15

" 140 T
o 12 °
S < 120
S 104 ° S
% % 100
c 8 c
© ©
o) 6 L0 80
o 9 i
9 4 Y 60
O ° O

2 °

4 40 o

NILS NILS_dp NILS_sp NILS NILS_dp NILS_sp
(a) cycle1000 (b) caterpillarj4
3100 160 °
S s
15 3050 5 140
2 2 120
T 3000 © o
c c L4
© ©
0 2950 ° Q100 8
= Y g0
;2900 P ;
60
O O
2850 8 8 i‘
o 40 == 8
NILS NILS_dp NILS_sp NILS NILS_dp NILS_sp
(c) hypercubel3 (d) 662_bus

Fig. 6. Boxplots depicting the cyclic bandwidth cost reached by NILS, NILS _dp
and NILS_sp when used for solving four representative instances from the subsets
cycle, caterpillar, hypercube, and Harwell-Boeing. The results were obtained from
50 independent executions of each compared algorithm.

On the contrary, NILS _sp performs better than NILS dp with smaller me-
dians, tighter interquartile ranges and smaller minimal values for the other
3 instances in Fig. 6(b)-6(d). It is worth noting that in Fig. 6(c), NILS_sp
shows a better performance than NILS with a smaller first quartile, median
and third quartile. That explains why there is a statistical difference against
NILS for one hypercube instance registered in Table 5 (column —). However,
NILS has obtained smaller outlier values than NILS sp, which also leads
to a better average cyclic cost (1492.00 vs. 1502.67). To sum up, this exper-
iment shows that both NILS_dp and NILS_sp report a worse performance
than NILS in each representative instance in Fig. 6, which means that the

directed perturbation and strong perturbation play complementary roles in
NILS.

5 Conclusions

The N'P-hard cyclic bandwidth problem has a number of relevant applica-
tions. The NILS algorithm presented in this work enriches the practical solu-

20

tion toolbox for effectively solving this challenging problem. For the 85 stan-
dard instances with known optimal solutions, NI LS attains the optimal cyclic
bandwidth costs for 82 instances (96.47%) while the two best performing al-
gorithms in the literature only achieve 59 (69.41%) and 63 (74.12%) optimal
solutions respectively. Remarkably, our algorithm establish 4 new record re-
sults (improved upper bounds) for 4 Harwell-Boeing instances. Moreover, the
algorithm is highly robust across the instances of most tested families with
very different structures and topologies.

Finally, the proposed algorithm has the advantage of requiring fewer parame-
ters compared to the two leading algorithms presented in [15,17]. As a result,
it is easier for the user to apply it to solve new problem instances. Given
that the source code of our algorithm will be publicly available, we hope this
work will help to better solve some practical cyclic bandwidth problems and
contribute to design other more powerful CBP algorithms.

Acknowledgment

We are grateful to the anonymous referees for their helpful comments and
suggestions, which helped us to improve the presentation of the work. This
work was partially supported by the Franco-Chinese PHC Cooperation Pro-
gram (No. 41342NC). Support for the first author from the China Scholar-
ship Council (2016-2020, No. 201608070103) and support for the third author
from the Mexican Secretariat of Public Education under Grant SEP-Cinvestav
(2019-2020, No. 00114) are also acknowledged.

References

[1] J.Y. Leung, O. Vornberger, J. D. Witthoff, On some variants of the bandwidth
minimization problem, STAM Journal on Computing 13 (3) (1984) 650-667.

[2] S.N. Bhatt, F. T. Leighton, A framework for solving vlsi graph layout problems,
Journal of Computer and System Sciences 28 (2) (1984) 300-343.

[3] A. L. Rosenberg, L. Snyder, Bounds on the costs of data encodings,
Mathematical Systems Theory 12 (1) (1978) 9-39.

[4] F. R. Chung, Labelings of graphs, Selected Topics in Graph Theory 3 (1988)
151-168.

[5] J. Hromkovi¢, V. Miiller, O. Sykora, I. Vrt’o, On embedding interconnection
networks into rings of processors, in: D. Etiemble, J.C. Syre (Eds). International
Conference on Parallel Architectures and Languages Europe, Lecture Notes in
Computer Science 605 (1992) 51-62, Springer, Berlin, Heidelberg.

21

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

[6] Y. Lin, The cyclic bandwidth problem, Systems Science and Mathematical
Sciences 7 (3) (1994) 282-288.

[7] J. Yuan, S. Zhou, Optimal labelling of unit interval graphs, Applied
Mathematics 10 (1995) 337-344.

[8] Y. Lin, Minimum bandwidth problem for embedding graphs in cycles, Networks:
An International Journal 29 (3) (1997) 135-140.

[9] P. C. Lam, W. C. Shiu, W. H. Chan, Characterization of graphs with equal
bandwidth and cyclic bandwidth, Discrete Mathematics 242 (1-3) (2002) 283~
289.

[10] P. C. B. Lam, W. C. Shiu, W. H. Chan, On bandwidth and cyclic bandwidth
of graphs, Ars Combinatoria 47.

[11] H. Romero-Monsivais, E. Rodriguez-Tello, G. Ramirez, A new branch and
bound algorithm for the cyclic bandwidth problem, in: Mexican International
Conference on Artificial Intelligence, Springer, 2012, pp. 139-150.

[12] S. Zhou, Bounding the bandwidths for graphs, Theoretical Computer Science
249 (2) (2000) 357-368.

[13] W. H. Chan, P. C. Lam, W. C. Shiu, Cyclic bandwidth with an edge added,
Discrete Applied Mathematics 156 (1) (2008) 131-137.

[14] E. De Klerk, M. E.-Nagy, R. Sotirov, On semidefinite programming bounds for
graph bandwidth, Optimization Methods and Software 28 (3) (2013) 485-500.

[15] E. Rodriguez-Tello, H. Romero-Monsivais, G. Ramirez-Torres, F. Lardeux,
Tabu search for the cyclic bandwidth problem, Computers & Operations
Research 57 (2015) 17-32.

[16] L. H. Harper, Optimal assignments of numbers to vertices, Journal of the
Society for Industrial and Applied Mathematics 12 (1) (1964) 131-135.

[17] J. Ren, J. K. Hao, E. Rodriguez-Tello, An iterated three-phase search approach
for solving the cyclic bandwidth problem, IEEE Access 7 (2019) 98436-98452.

[18] J. Ren, J. K. Hao, E. Rodriguez-Tello, A study of recombination operators for
the cyclic bandwidth problem, In L. Idoumghar et al (Eds): Selected and revised
papers from Artificial Evolution (EA 2019), Lecture Notes in Computer Science
12052 (2020) 1-15.

[19] P. Larranaga, C.M.H. Kuijpers, R.H. Murga, I. Inza, S. Dizdarevic, Genetic
algorithms for the travelling salesman problem: a review of representations and
operators, Artificial Intelligence Review 13 (1999) 129-170.

[20] H. R. Lourengo, O. C. Martin, T. Stiitzle, Iterated local search, in: Handbook
of metaheuristics, Springer, 2003, pp. 320-353.

[21] Z. H. Fu, J. K. Hao, Knowledge-guided local search for the prize-collecting
steiner tree problem in graphs, Knowledge-Based Systems 128 (2017) 78-92.

22

[22] A. Grosso, A. R. M. J. U. Jamali, M. Locatelli, Finding maximin latin hypercube
designs by Iterated Local Search heuristics, European Journal of Operational
Research, 197 (2) (2009) 541-547.

[23] D. Meignan, S. Knust, A neutrality-based iterated local search for shift
scheduling optimization and interactive reoptimization, European Journal of
Operational Research, 279 (2) (2019) 320-334.

[24] Y. Zhou, J. K. Hao, An iterated local search algorithm for the minimum
differential dispersion problem, Knowledge-Based Systems 125 (2017) 26-38.

[25] F. Glover, M. Laguna, Tabu search, Springer Science+Business Media New
York, 1997.

[26] M. Lopez-Ibanez, J. Dubois-Lacoste, T. Stiitzle, M. Birattari, The irace
package, iterated race for automatic algorithm configuration, Tech. Rep.
TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium,
published in Operations Research Perspectives (2011).

[27] M. Lépez-Ibanez, J. Dubois-Lacoste, L. P. Caceres, M. Birattari, T. Stiitzle, The
irace package: Iterated racing for automatic algorithm configuration, Operations
Research Perspectives 3 (2016) 43-58.

[28] L. Smithline, Bandwidth of the complete k-ary tree, Discrete Mathematics
142 (1-3) (1995) 203-212.

A Detailed performance evaluation

This appendix presents the detailed results of the proposed NILS algorithm
and the two reference algorithms ('S¢ [15] and ITPS [17]). Table A.1 shows
the results for the 85 standard graphs with known optimal solutions, while
Table A.2 concerns the 28 Harwell-Boeing graphs arising from engineering
applications. In these tables, columns 1 to 3 indicate the name, number of
vertices (|V]) and number of edges (|E|) of each instance. Column Cb* shows
the known optimal cost from the literature [4-6, 28|, while the theoretical
lower (Lg) and upper (Ug) bounds for the instances (Table A.2) are computed
according to the formulas Lg = [A(G)/2] and Up = [|V]/2], where A(G) is
the maximum degree of the graph [8]. The remaining columns present, for each
algorithm, the best (Cby), average (Avg. Cb) and standard deviation (Dev.) of
the cyclic bandwidth cost attained in 50 independent runs, the computation
time needed to reach this cost (Avg. T3), and the variation (D) between its
best result (Cb,) and the corresponding best-known bound (either Cb* or Lp
depending on the type of graph). A statistical significance analysis comparing
NILS against T'Scp [15] and IT'PS [17] was executed. The resulting p-values
(marked as 1 and 2) as well as the final outcome of the statistical comparison
are presented in the last four columns. A symbol + or — indicates respectively

23

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

26

27

28

29

30

31

32

33

34

35

36

37

38

1 that NILS offers a significant better or worse performance than the reference
> algorithms. A x symbol indicates implies that it is not possible to conclude a
3 statistically significant difference between the compared algorithms.

24

+ 98ed jxou WO panurjuo))

+ 0z-dS8T + TTHT09 0 LT°€C 000 00T T i 61°€0F GL°C SO i g 96’ L% 070 002 9 T 099 099 0G99[040
+ 0zdogT + TTHIT9 0 LLTT 000 00T 1 z 8C'TGE TLC 8T'S ¢ ¢ ¥6'€€ 90 99°¢ i 1 SL¥ Gy GLyo104d
+ z1dove + 61-HS9S O 186 000 00T T 0 FOPTE €6'T ST'E T 0 STTFT L90 98T T 1 00¢ 00¢ 00£0[4d
+ 60-H9Z'C * 00+HO0O'T O ¥&'S 000 00T 1 0 TV'Sel 89’1 8¥C I 0 ZI'8ST 000 00T I I 00z 002 00go[04>
+ 80-dIZ'E€ * 00+H00T O Y07 000 00T T 0 0L°00T 29T 0V%C T 0 6V'CT 000 00T T T QAT GAT GLTo14D
+ 90-d9¢L * 00+HOOT O §z’¢ 000 00T T 0 99°'L8 8TT 98T T 0 ST'6 000 00T T T 0ST 0ST 0GTO[PAD
+ €0-HS8LT * 00+HO0T O 482 000 00T 1 0 6808 €01 97T 1 0 8G'F 000 00T 1 1 ger gel GgToAD
+ €0-d9¢€ * 00+HO0T O 80z 000 00T T 0 €L6¢ 080 ¥ET T 0 16 000 00T T T 00T 00T 00TOA
X 00+H00T* 00+HO0T O 180 000 00T T 0 €0 000 00T T 0 180 000 00T T 1 0oF OF 0Fe124d
¥ 00+H00T* 00+HO0T O 650 000 00T 1 0 00 000 00T 1 0 780 000 00T 1 1 g¢ ¢g GEO[RAD
X 00+H00T* 00+HO0T O ST'0 000 00T T 0 91°0 000 00T T 0 Th0 000 00T T 1 0¢ 0¢f 0€oR4d
¥ 00+HO00T* 00+HO0T O IT0 000 00T 1 0 800 000 00T I 0 090 000 00T I I SC SC GzoP4d
¥ 00+H00T* 00+HO0T O 100 000 00T T 0 €00 000 00T T 0 Ze0 000 00T T 1 0z 0C 0T[4
+ ozdoTE 4+ 1TH9ET 0 ¢r'ee 000 00T 1 8 T1'98G 99°C 80T 6) LT'ZZT 8S0 068 8 I 666 0001 000TYy3ed
+ 0zdITE + TTH66'S 0 88'¢C 000 00T 1 e 1TSS 929 SLET ¥ 9 TL6LT 070 6L 2 1 $28 g8 gzsyred
+ 024697 + TTHSTT 0 68°ST 000 00T T m ¥PLTY $9°€ T6'9 ¢ g 09°€ET T1€0 ¥69 9 T 679 099 0g9yyed
+ gr-Ass's + 1gHLES 0 98'8 000 00T T 0 Tv6Ty STl SVT T i 9T'S0T 6%°0 09°¢S g 1 ¥.F Sl gL pyyed
+ ¢odeev + CTHETE 0 vevy 000 00T T 0 16'60¢ 9¢°0 OT'T 1 1 GZ'98T GE€0 00°¢€ 4 1 66 00€ oogyyed
X 00+H00T + TgHLTL O 86T 000 00T T 0 ¥€90T 000 00T 1 0 0L¥TE ¥20 ¥6T T 1 66T 002 0ozyyed
X 00+H00T + €I-HS8E 0 cLT 000 00T 1 0 Z8TS 000 00T 1 0 £6°¢0¥F 970 0LT 1 T ¥LT ST gL Tyyed
X 00+H00T+ 80-H6LSC 0O 9¢'T 000 00T T 0 6.9z 000 00T T 0 98T 090 97T T T 6FT 09T 0gTyYed
X 00+H00T* TOELTE O ¥ST 000 00T T 0 Ge'6 000 00T T 0 €OFLT ¥T0 TOT T 1 ¥2T Sal gz1yyed
¥ 00+HO00T* 00+HO0T O €L0 000 00T 1 0 80°L 000 00T 1 0 ZF'99 0000 00T 1 1 66 00T 00TyYed
X 00+H00T* 00+HO0T O 6T0 000 00T 1 0 9%°0 000 00T T 0 8¢F 000 00T T 1 68 OF ovyyed
X 00+HO00T* 00+H00T O 800 000 00T 1 0 €0 000 00T 1 0 19¢ 000 00T I 1 ¢ ge geyed
¥ 00+H00T* 00+HO0T O oo 000 00T T 0 610 000 00T T 0 79T 000 00T T 1 6z 0¢F ogyyed
X 00+H00T* 00+HO0T O 000 000 00T 1 0 €10 000 00T T 0 860 000 00T T 1 ¥¢ SC ggyyed
¥ 00+HO00T* 00+HO0T O 000 000 00T 1 0 00 000 00T 1 0 GT'0 000 00T 1 1 61 0¢ ogyyed
¢5S genrea-d 1gg Tonfea-d 1L "8ay a9 9D "Say 99D a L '8ay a8 9D "8Ay 17 8ay a0 9O 8AV 990 90 |Fl 1Al yder
STIN Sd.LI 406 1,
"(sequoredAy

[euolsuoWIp-.4 pue sIe[[idioyes ‘s0oI1) AIe-y [9A9]-. 939[dWOD ‘SOUSOUL [RUOISUSMIIP 90I1[} ‘SOUSOU [RUOISUSWIIP 0M) ‘SI[24D ‘stjed)
se180[0do) pIrepue)s JUSIPIP 03 SUISUO[R(Son[eA UOIIM[OS [ew}do WMOU)M SeOURISUL G JO [0} © sostrdwod 1 “[AT] Sd. LT
pue [GT] 9g [:SpOT1aW }Ie-01[})-JO-01R]S OM] 0 100dSoI YIIM WIILIOZ[R 77 T J O3 JO JULWSSasse oourtLIojad pa[resa(] i1y o[qR],

25

-+ 98ed JXoUu UO ponurjuo;)

¥ 00+H00'T* 00+HOOT O g0'0 000 009 9% 0 900 000 009 9 0 6£0T 000 009¢ 9% 92 GST 99T €Xgo0I)
¥ 00+d00T+ €I-4S8C 0 %00 000 O00GT &I 0 €90 000 00GT &I 0 €9T9T 9¥°0 OLST ST 9T 02l 1&gl pXga0I)
* 00+H00T* 00+HO0OT O 000 000 008C 8% 0 000 000 008 S 0 90 000 008c 8¢ 8¢ OIT TII gXOTo91)
¥ 00+H00'T* 00+HOOT O 000 000 00Z L 0 000 000 00L L 0 g0 000 004 L L 6 OF £Xgoa1)
¥ 00+d00°T* 00+HOOT O 000 000 O00F% ¥ 0 000 000 00V ¥ 0 960 000 00%F ¥ ¥ 0 I pXgoo1)
+ 8THI¢T + 6I-UST'S 0 ¥6'C0F SV'G6T 89°98E €€T 8IF €6'819 160 9T'€SS T4G 0cF 9T'6EV ¥L'0 TEPYS €99 €ET ¥809 L6IC €TUEYSOW
+ LTEPST + 61-ALF6 0 SEOVE €8°€L 96LYT FIT 6I€ TT'99F 090 SV'Eeh €€V TgE TG°L0S €90 009€F G€V FIT gGLY STA1 gldeysow
+ 6THEYT + 61-H6C8 0 9VLA8T T99F VWIIT 96 €¢ LT'68% ¥6'1V 8E'GeE 61T ove LT'TEE TS0 099€E 9EE 96 0£9€ TEET TTUEYSOW
+ 0zH68T + Tg-HOTT 0 I9T6T ¥I'0 008 08 0 80'8L 0.'892¢6'9T¢ 08 TLT SV'TIE LVO0 86'TSC ©Se 08 00LC 000T OTAEYsow
+ TedErss + gedLev 0 LETL 000 0099 99 0 €0CIT TLSVOVLST 99 € T9°G0E 9£°CC SE08T 89 G9 TW6T 6CL eacysow
+ ¥1-8806 + 0T-d9TT O 9¥E€L 000 00CS &S 0 L0GLT 96'SE9ETO0T €S T L97LV T90E OEVIT €5 &% TPET TIg 8 EYsow
+ orugeT + Tgdee9 0 gg¢ 000 000F OF 0 ¥9'8IE T6TCOV09 OF T I8LLT S8V ¥ILY I OV ¥PEL €F€ Lagysow
¥ 00+H00T+ 61-HS9S O G6T 000 000 OF 0 €¢€E 000 000 OF 0 €90 6L9 P¥ETE 0f Of @88 9IC 9Qeysowt
¥ 00+H00T+ 9T-HZ9E O g90 000 00T 1% 0 Tg09 000 00T 1 0 S0T6 L£'E To€e T¢I 0¥S gal gqeysow
¥ 00+H00T+ 8I-HSYF6 0 G0 000 00FL VI 0 TII'ST 000 00FT ¥T 0 TE&¥le TL0 89ST FT T 00E ¥9 paeysow
+ 0gHGLT + TCHELYE 0 gL9% 000 000Z 0T ¢ V908§ 9TTVS986E CT ¢ 1,009 €YTOT9TH8T & 0C 0L6T 000T 0SX0TALYSIW
+ 0zH9zT + Tg@OFY 0 009S 000 008C 8T T LU0V €969CEE9 6 T 98T6Y TLTY ¥6FST 0E 8T CTIT 08 0EXSTULYSIW
+ TeHLze + €gdEsT 0 0ZIE 000 009 9T T €982€ €€ 0€LC 9 6€T 86'GT 000 00F9T 9T GZ 6FCT 099 9TXGTdgysew
+ ceH6vT + €cESY9 0 168 000 006T 6T T 0678 L0 ©60C 0C 00T T9'66V 020 96'6TT 6IT 61 906 GLY STX6TACYSIW
+ TeHLee + gedore 0 6T 000 00°ST ST T 6TLEC 670 0991 9T T 009€T LE6T 80°€C 9T ST €9S 00E O0TXGIACYSOW
+ €zHese + C0-@6I'T O gL0 000 008 8 T 2.6 000 006 6 0 0£98 €£0 ¢I'S 8 8 19§ 00C GTX8UgYsoW
+ €gHegT * TOELTE O 00T 000 00 L T 879 000 008 8 0 Tg08 ¥I'0 T0L L L S8IE QLT STXLACYSOW
+ egHege + 61°H9TT 0 TT0O 000 000T 0T T L8€ 000 00TT TT 0 L4626 0£0 0607 OT OT GL O0ST SIX0Tdgysew
+ €gHEgT * 00+HO0T O 8§60 000 00 ¢ T 0€T 000 009 9 0 LT6T 000 009 & & 03¢ 9T GTXGUgysow
+ vIuvye + 60-dgg’6 0 00 000 000T OT 0 €U'SIC ¥P°0 ¥L0T OI 0 €I'6gT IS0 090T OL OT 08T 00T OTXOTUEYsOW
¥ 00+d00T* 00+dO0T O 100 000 O00G ¢ 0 €09 000 00 ¢ 0 9% 000 008 & & L9 Op SXGQgysew
¥ 00+d00°T* 00+HOOT O 000 000 O00G ¢ 0 910 000 00§ ¢ 0 66T 000 009 § G 8§ GE LXGUGYSPW
¥ 00+H00'T* 00+HO0T O TO0 000 00§ ¢ 0 gro 000 00§ ¢ 0 460 000 00¢ § & 6F 0f 9XGQEysoW
¥ 004+d00T* 00+HO0OT O 000 000 O00G ¢ 0 ¥00 000 00 ¢ 0 €% 000 008 & & OF G¢ 9XGQgysew
¥ 00+H00'T* 00+HOOT O T00 000 00F% ¥ 0 900 000 007 ¥ 0 TgE 000 00F ¥ ¥ 1€ 0T FXGAEYSOW
+ oz@eTe + TgEE0OE O €F9F 000 00T T €1 LgVIS €9L 9LGT VI L 096VT 950 9.8 8 T 000T 0001 000Te4>
+ 0HOTE + CgE6FT 0 660€ 000 00T T 9 SVeLY 99T EVT L 9 7998 80 964 L T 928 98 G284
¢SS gonrea-d 1gg Tenrea-d 1L 8ay ae@ 9O 8ay 990 @ L '8AV A 9D Say Y90 a 4r8ay s 90 Say Y90 .90 gl Al ydemp
STIN Sd.LI 4951

o%ed snoraaid woly penurjuo)) — 1y 9qR],

26

GeTI STy ¥6F GL'8L 66°CL 6S0FVSLTHT STS SF60T COTOT PG TELSLET G€F OF 10T SI1°C6 o8eIoAy
+ ST-HP99 ¥ T0HPFT LI6 STH6S S8TE ¥6'0V6C 60SC 10T 9G'86G 9G°'8 FL'896E €96 9V6 FGG6S F6FE FI°LE6T 8G8T TI6T SVEES ¢6TS groqnoradAy
+ 8T-ESL9 + OT-APET FET ST'66S 9899 ST6LIT TITT €99 96°L6S ¥9TI 96'08GT TSST LV €€°€3S SI'GE 9%°9SET SGETT 886 9.GFT 9607 greqnoiedAy
+ 9z-H88'e + ST-HIL9 6 €£°65S 8L°€ O0LEPS GES T TLLLS GE'8 $9°G9S 8PS 9¢ Z86IG SO'TT TES88S C9S¢ 928 ¥92IT 8707 TTeqnoredAy
+ 8T-H.ST + 05HIIE O 98°60T 000 00 L€ 0 ¥P99¢ €601 95°GS A€ T 1€06E €9 06V 8¢ LA €E0T ¥E0T Fhreqdiojen
+ 90-dILT + 6T-HOEF O 9G'¢L 000 00€E €€ 0 LTTHT €7'S 8068 €€ 0 9608 8¢V 0868 €€ €¢ 8IS 618 Ggreqdioyes
+ 80-d¥eL + 6T-HSOT O L70S 000 006% 6T 0 0C'GEC 98°C 89CE 6C 0 LG0T €e¢ 08°€E 6T 6C ¥99 G99 ggreqidiajes
¥ 00+H00T + 6I-HES6 0 8,9z 000 00¥%% ¥T 0 TeTs 000 00¥T ¥T 0 86°L9T €91 0z9c ¥& ¥¢ €9% ¥97 Ggredioyes
X 00+dH00T + VOHIFE 0O Y09 000 0061 61 0 IT°L. 000 0061 61 0 0068 6%0 9261 61 61 86 66¢ gereidioyes
¥ 00+H00T+ TId9L8 0 89z 000 00ST ST 0 ¥2'¢ 000 00ST ST 0 8L°9zT 8F'0 ¥9GT ST QI 80z 60C 6rreqdioyed
X 00+H00T* 00+HO0T O 460 000 00¥%T ¥T 0 790 000 00FT ¥I 0 €6°ST 000 O00FT ¥T ¥I 69T OLT LTredioyed
¥ 00+HO00T* 00+HO0T O G%'0 000 O00€T €T 0 660 000 00°€T €T 0 98¢T 000 O00€T €I €T T1ST &Sl 9rrefrdioyes
¥ 00+H00T* 00+HO0T O ATO 000 O00TT TIT 0 ¥T°0 000 00'IT 1IT 0 €8FT 000 O00TT TT IT SIT 61T Frreqdioyes
X 00+H00°T* 00+HO0T O ZI'0 000 000T O 0 gh'0 0000 000T OT 0 €8¢ 000 000T OT OI €0T %01 grreqdioyen
¥ 00+H00T* 00+HO0T O 000 000 009 9 0 000 000 009 9 0 ¥$°0 000 009 9 9 ¥¢ cg Lreqidioyes
X 00+H00T* 00+H00T O 000 000 00¢ G 0 000 000 00°¢ Q 0 190 000 00¢ G S 9z LT greqidioyes
¥ 00+HO00T* 00+HO0T O 000 000 00F i 0 000 000 00F% i4 0 080 000 00F i ¥ 61 02 gre[dioyes
¥ 00+H00T* 00+HO0T O 000 000 00¢ ¢ 0 000 000 00°¢ ¢ 0 080 000 00¢ ¢ I <) S 41 preqdioged
X 00+H00T* 00+HO0T O 000 000 00¢€ ¢ 0 000 000 00°€ S 0 000 000 00¢ S ¢ 8 6 greqidioyed
+ 90-A¥F'T + 02-H68'T 0 69T 000 0045 LS 0 61°€LC 6F0 SELSG LS g 26°€9¢ TOT 9TH9 T9 LG gcOT €501 6Xgo013
X 00+H00T+ F0-H6ELT O 060 000 008 86 0 99F 000 0086 86 0 €9°CET €70 FT86 86 86 08L TSL Fxgoo1y
X 00+H00°T* 00+HO0T O 80 000 00€9T €91 0 96'0 000 00°€9T €971 0 SO'T 000 00°€9T €91 €9T 099 1S9 TXGToa1)
¥ 00+H00T* 00+HO0T O gI'0 000 009TT 9IT O 1270 000 00°9TT 9TT 0 080 000 009TT 9IT O9IT 29% €9% TX1go013
X 00+H00T* 00+HO0T O G600 000 00LL LL 0 L000 0000 00°LL AL 0 ¥S°0 0000 00LL LL LL 90E€ L0€ TX/L 1001}
X 00+H00T+ CZHISE 0 080 000 006T 6T 0 00T 000 006T 6T 0 €e' Ly 020 000z 61T 61 %S¢ GGG LXgoo14
¥ 00+H00T* 00+HO0T O 1000 000 009% 9% 0 1000 000 009% 9% 0 €0 000 0097 9% OF ST €8I TXgTo01)
¢5S gonrea-d Igg Tonfea-d a L '8ay ae@ 9D "8ay 990 a L '8ay a8 9D 8Ay YD a 9L 8ay s 90 8ay 90 90 |Fl Al ydern
STIN Sd.LI 4061

o%ed snoraaid woly penurjuo)) — 1y 9qR],

27

eI 690y <¢I'0 €5°0c 6€0c LS'SIPCIVI €€°L 0€€E 09'¢€c 6¢VIOLCIT 670 1€ 1C'CT oFerony
+ 02-H0L'C + 9T-H686 8 IT'T9T 00°0 00°09 09 8 07'€9% 88'E€LVI'ERT 09 8 97'99¢ ¢<'0 88°09 09 LGE €S GL6C GTL GIL ueo
+ 02-dSL'T + 0T-HE6'C 9¢ 0079 000 00cCeE <C€ L9 09°€¥P VI'CI 88COT €L 8¢ LO'LTc 8T'¢ 0T'0V ¥€ ¢ve 9 T8TI 989 sSnqTGR9
+ 0CdITT + 02-H60'T ¥ g6v. 000 009T 9T ST gr¢lc 169 9T'Tc LI LT TO6VC 890 ¢€0C 61 LEE T 06CT GL9 gsou
+ 8T-dgeC + SIT-HCCT €€ L¥'vle 60°€ vLO0V 8€ 0L T16°0€S 609 0€68 GL ¥G €EEVC €LE 9L°99 69 T€E G 906 <99 Snq-g99
+ 0g-d8S’L + T12-HT0'9 ¢ 99'¢¢ 000 006C 6T ¢c L9VPS TV0S99L°8Y 6T g¢ VV'10€ G990 89'cE CE 96¢ L 99CC C69 T6STIMP
+ TI-dL8C + 0T-H¥F L ¥¢ 6€0T 000 00Lc Lo ¥¢ ¢O'L8T 6¥V'0 ¢9Le LT ve 1€LLE TS0 82'8C LT €LC € TVET 9¥¢ puewIays
+ S8T-HGEVY + TTHILC 6¢ 0V'€E 000 00TV 1¥ 6¢ IT'clc ¢I'8 ¥¢'09 1V €€ VEI6T 890 064V GV TGC CT T9LT €0S €09 P
+ 0Z2-Usc'¢ + 0T-H086 €¢ T9'8TE 8C'0 96'8C 8T 1€ ¢9°01¢ 91'¢ 9L'1¢ 9€ 0 €C'ST L9'T ¢L'8E G€ LVC & 98¢ V6V SnqTv6Y
+ 8T-US8T + T USIT oy 699¢ 000 009 97 0O 98'CLE 6£9€CCV8 IV oy ¢6vc 0¢0 9697 9¥ ¢eCc 9 T8I G¥P GypTurd
+ 6T-HL0T + T1Z2-HEO'E ¢ 809 000 00'¢E g€ L 0C'16 ¢c'9 8I'vw G€ 6¢ 89'6Cc 190 898 L€ g1g 8 L1921 ggy pr1oodur
* 00+d00° T+ T12-H9T¥ 1€ 190r 000 00V GV 1€ 60°81I¢ 000 00'Sy &% g€ L8LVC €S0 VL6V 67 0T¢ ¥1 0CLE 0TV L0¥3sSOq
* 00+H00'T + T1gHITT 1€ T00¥ 000 00'G% &V 1€ 88'GI¢ 000 00V &% g€ 98'9¥¢ €90 VL6V 6V 0T¢C ¥T 0CLE 0TV 903438S0q
* 00+HO0'T+ €T-HEST g LEC 00°0 00°0T OT g 6€'¢T 000 00°0T OT 9 ¢6'¢cl 000 00°TT 1T 69 G 6LT SIT €0imdsoq
¥ 00+HO0'T + CTTH6LT 9 6€°0 000 00'TT TIT 9 10°C 000 00°'TT 1T 9 VLL8V V10 86'TT IT 8¢ G CI9T LIT vETMMp
* 00+HOO'T* 00+HOOT L 70°0 000 00°0T OT L 60 00'0 o000T oOT L L6°0 000 00°0T OT 0¢ € Lvc 001 ysou
* 00+HO0'T* 00+HO0OT ¥ 01°0 000 00'6 6 14 0T'T 00'0 006 6 ¥ Geve 000 006 6 ¢v 9 6IC S8 ggyse
¥ 00+dO00'T* 00+dO00'T 8 c0'0 000 00°LT LT 8 €T°0 000 00°LZT AT 8 9¢°0 00°0 00°LT LT 6 6 18¢ 6g qroodur
* 00+dO00°T* 00+HO0T ! 02¢'0 00°0 009 9 T 08°0 00'0 009 9 T €6'¢cT 000 009 9 8¢ G LT LS LGIIm
* 00+HO00'T* 00+dO00T O €T°0 00°0 00'8 8 0 19°0 000 00'8 8 0 870 000 00°8 8 L 8 Vel ¥§ pesiIno
* 00+dOO'T* 00+HOOT ¥ 000 000 00°L L 14 ¥0°0 000 00°% L 4 10°0 000 00°2 L ¥e € 6% 67 goimdsoq
* 00+HO0'T* 00+HO0O'T 9 c0'0 000 00°CT ¢TI 9 LT°0 00'0 00cr 2t 9 €00 000 00'cT 2T ¥e 9 9LT 8V T0¥¥ss°oq
+ €0-HUgee + €0-Usee 0 ce'0 00°0 00'% 14 0 P8TL LE0 9TV 4 0 86 VLT LE0 9TV ¥ ¥ 61 € 9% 6¢ T10wmdsoq
* 00+HOO0'T* 00+HO0T O T0°0 000 00'6 6 0 c0'0 00'0 006 6 0 €00 000 00°6 6 6 9T 9 06 ¢c€ cemqr
* 00+HO0'T* 00+HOOT O 10°0 000 00°L L 0 10°0 000 00 L 0 ¥¢0 000 00°2 L L ST ¢ €01 0¢ 1-saz0d
* 00+d00°T* 00+HOOT O c0'0 000 00°¢ g 0 8T°0 000 00°¢ g 0 c0'0 000 00°¢ g ¢ ¢ v C6 VC ygrued
¥ 00+HO00'T* 00+dO00'T O 000 000 00°¢ g 0 000 00'0 00°¢ g 0 000 000 00°¢ g ¢ ¢ 9 9L II T1018!
* 00+d00°T* 00+HOOT O 000 000 00°¢ g 0 000 00'0 00°¢ g 0 000 000 00°¢ g ¢ ¢ ¢ 9L 01 010831
* 00+HO00'T* 00+HO0'T O 000 00°0 00'% 14 0 000 000 007 4 0 000 000 00'% 14 v v v 09 6 60018(

tgg gonpea-d Igg Tenyea-d

a

["8AY "A0(9D "8AY 99D

1r "8Ay a0 90 8AY 19D

a

1 -8ay "aed 9O 8av 990 .90 90 47 7| |Al

STIN

Sd.LI

g0g.71,

spunog

ydern

‘spunoq 1oddn pesoidwil 9yedIpul poq Ul senfep ‘umouy are spunoq (&,)) reddn
pue (€7) Iamo[[ed1391097) asoym suorjeorjdde SULIGPUISUS P[IOM [€SI WOIJ SUIUIOD SIOUR)SUI SULO-[[PMIRH 87 JO [8101 ® SasLIdurod
1 °[LT] SJ.LI pue [GT] €0g [:spoyjouwl }Ie-ay)-Jo-01elS 0M) 0} 109dsol [IIm WILIOS[R ST A OU) JO juaumssasse souruLIofnd pafrea]

GV SlqEL

28

