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Abstract The HP model for protein structure prediction abstracts the fact that hydrophobicity is
a dominant force in the protein folding process. This challenging combinatorial optimization problem
has been widely addressed through metaheuristics. The evaluation function is a key component for the
success of metaheuristics; the poor discrimination of the conventional evaluation function of the HP model
has motivated the proposal of alternative formulations for this component. This comparative analysis
inquires into the effectiveness of seven different evaluation functions for the HP model. The degree of
discrimination provided by each of the studied functions, their capability to preserve a rank ordering
among potential solutions which is consistent with the original objective of the HP model, as well as
their effect on the performance of local search methods are analyzed. The obtained results indicate that
studying alternative evaluation schemes for the HP model represents a highly valuable direction which
merits more attention.
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1 Introduction

Proteins play a very important role in per-
forming most essential biological and chemical
functions in a cell associated with life. They
are necessary for carrying out structural, enzy-
matic, transport, and regulatory functions. It
is widely accepted that protein functions are
strictly determined by their three-dimensional
conformation. To fully understand the biolog-
ical roles of a protein it is imperative, there-
fore, to first determine its structure. However,
given the limitations of the experimental meth-

ods, computational approaches to determine
the structure of proteins have become increas-
ingly necessary for the understanding of such
important biological macromolecules.

The Protein Structure Prediction (PSP)
problem is concerned with finding the native
conformation of proteins. Such a structure is
assumed to be encoded in the amino acid se-
quence forming the protein and corresponds
to the thermodynamically most stable state
[1]. Nevertheless, exploring the huge confor-
mational space to find the native structure of
a protein represents a very computationally-
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intensive task, which makes studies at atomic
resolution prohibitive even for relatively small
proteins. Thus, simplified protein models have
been proposed in the literature as valuable
tools for studying the most general and es-
sential principles governing the protein folding
process [2–6].

One of these simplified formulations of
the PSP is the Hydrophobic-Polar (HP) model
[7, 8]. This model captures the fact that
hydrophobicity is one of the main driv-
ing forces determining the functional confor-
mation of proteins. Despite its apparent
simplicity, the prediction of protein struc-
tures based on the HP model represents
a hard combinatorial optimization problem.
This problem has been proved to be NP-
complete [9, 10], which justifies the diver-
sity of metaheuristic approaches that have
been adopted to address it, see Section 2.1.

The success (or failure) of these meta-
heuristic algorithms depends heavily on a set
of key components that must be carefully de-
signed. The evaluation function is a prominent
example of these components. It is responsible
for assessing the quality of a candidate solu-
tion with respect to the optimization objective
in order to orient the search towards promising
regions of the solutions space. A good eval-
uation function is expected to be able to dis-
tinguish each potential solution from the oth-
ers, and thus to effectively guide the search
method to make the most appropriate choice
at each of its iterations. On the contrary, an
evaluation function providing a poor discrimi-
nation may produce large plateaus in the land-
scape [11–13], on which local search strategies
could fail to detect a promising search direc-
tion [14]. Hence, the evaluation issue is ex-
pected to seriously compromise the efficiency
of metaheuristic algorithms.

The conventional evaluation function of
the HP model features a very poor discrimi-
nation ability. As a consequence, no prefer-
ences can be set among potential conforma-

tions, leading the search process to be driven
almost at random. For this reason, there ex-
ist alternative evaluation functions for the HP
model that have been proposed to improve the
performance of search algorithms [14–19]. In
most of the cases, however, the proposal of
these alternative evaluation approaches was not
supported, or it was only partially supported,
by solid experimental evidence.

This paper extends a preliminary work re-
ported in [20], which was the first intend to
formally analyze and compare different alter-
native evaluation schemes for the HP model. It
assessed the discrimination potential of four al-
ternative evaluation functions for the HP model
with respect to the conventional one. Com-
parisons were carried out employing the stud-
ied evaluation functions within a basic memetic
algorithm over a reduced subset of HP bench-
mark sequences for the two-dimensional square
lattice. This preliminary study presented some
weaknesses, including: the lack of understand-
ing concerning the impact of the analyzed func-
tions on the metaheuristics efficiency when
solving sequences for the three-dimensional cu-
bic lattice, the absence of a statistical valida-
tion of the experimental results, and the ques-
tion of whether the conclusions drawn with the
basic memetic algorithm could be generalized
to other metaheuristics.

The present work extends significantly the
study reported in [20]. The main extensions
can be summarized as follows: a) a total of
seven different formulations of the evaluation
function for the HP model are considered; b) an
in-depth investigation of the discrimination po-
tential for each of the studied functions is per-
formed; c) a new property to evaluate the alter-
native evaluation functions capacity to preserve
the conventional rank ordering among poten-
tial protein conformations is introduced. This
property is called HP-compatibility, and mea-
sures the consistency of an alternative evalua-
tion scheme with respect to the original objec-
tive of the HP model. An extensive analysis
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regarding the HP-compatibility of the studied
evaluation functions is carried out; d) an assess-
ment of the practical usefulness of these eval-
uation approaches within two different meta-
heuristic algorithms, best improvement local
search and iterated local search, is presented;
e) all the experiments consider a full test-
suite composed of 30 well-known benchmark se-
quences for the HP model (including two- and
three-dimensional lattices); and f) a rigorous
statistical significance analysis of the experi-
mental results is conducted.

The remainder of this article is organized
into five other sections. Section 2 formally
introduces the Protein Structure Prediction
problem and the HP model, analyzes some
characteristics of the conventional evaluation
function and highlights its potential drawbacks.
The six considered alternative evaluation func-
tions for the HP model are described in Section
3. Section 4 details the adopted test cases and
the performance assessment methodology. Sec-
tion 5 is devoted to present our experimental
results related with a careful examination of
two important properties of the studied eval-
uation functions, the degree of discrimination
and the HP-compatibility. The effectiveness of
these approaches to guide the search process is
also evaluated within two different metaheuris-
tics. Finally, Section 6 provides our conclusions
as well as some possible directions for future re-
search.

2 Protein structure prediction

Anfinsen’s theory of protein folding states
that the three-dimensional structure of a pro-
tein is determined by the physicochemical
properties of its amino acid sequence, and that
such a native conformation corresponds to the
one that minimizes the overall free energy; i.e.,
the thermodynamically most stable state of the
molecule. This is the so-called thermodynamic
hypothesis [1]. Anfinsen’s theory laid the foun-

dation of one of the most active and challeng-
ing areas in Bioinformatics: Protein Structure
Prediction.

The Protein Structure Prediction (PSP)
problem can be defined as the problem of find-
ing the functional conformation for a protein
given as the only input data its amino acid se-
quence. In PSP, one considers a fixed energy
model E : C → R, where C is the set of all possi-
ble conformations of the protein, and the native
conformation is assumed to be the one with the
lowest energy value according to the adopted
energy model. That is, the conformation c∗ ∈ C
such that E(c∗) = min{E(c) | c ∈ C}.1

Thus, we could simply enumerate and eval-
uate all possible conformations to identify the
one with minimal energy. Nevertheless, pro-
teins are very flexible and, consequently, the
space of potential conformations is huge. This
makes studies at atomic resolution to some
extent prohibitive even for relatively small
proteins. In this context, simplified models
have emerged as important tools for theoret-
ical studies of protein structure, dynamics and
thermodynamics. These models provide a valu-
able insight to advance the understanding of
the most general and essential principles gov-
erning the protein folding process [2–6]. This
study focuses on one of such simplified protein
models: the so-called HP model [7,8], which is
described next.

2.1 The hydrophobic-polar model

Amino acids can be classified on the basis
of their affinity for water. Hydrophilic or polar
amino acids (P ) are usually found at the outer
surface of proteins. By interacting with the
aqueous environment, these amino acids con-
tribute to the solubility of the molecule. In
contrast, hydrophobic or nonpolar amino acids
(H) tend to pack on the inside of proteins,
where they interact with one another to form a
water-insoluble core. This phenomenon is usu-

1Hereafter the terms energy function and evaluation function are used indistinctly.
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ally referred to as hydrophobic collapse. The
hydrophobicity of the amino acids represents,
therefore, one of the major driving forces re-
sponsible for the final three-dimensional con-
formation of proteins.

Following these observations Dill [7] pro-
posed the Hydrophobic-Polar (HP) model,
where proteins are abstracted as chains of H-
and P -type beads. Protein sequences, which
are originally defined over a 20-letter alphabet,
are thus of the form S = (s1, s2, . . . , sL), where
si ∈ {H,P} denotes the i-th amino acid and
L the length of the sequence. The number of
H and P amino acids in S are here referred
to as LH and LP , respectively. A feasible pro-
tein conformation is modeled as a self-avoiding
walk on a given lattice, that is, as an embed-
ding of the protein chain on the lattice such
that the following two properties are satisfied:
a) self-avoidance, two different amino acids can
not be mapped to the same lattice position;
and b) connectivity, consecutive amino acids in
S are to be also adjacent in the lattice. In
this paper, we focus our attention on both, the
two-dimensional square lattice and the three-
dimensional cubic lattice [8].

With the aim of emulating the so-called
hydrophobic collapse, in the HP model the goal
is to maximize the interaction among H amino
acids in the lattice. Such interactions are to
be referred to as topological contacts. Two H
amino acids si and sj are said to form a topo-
logical contact if they are nonconsecutive in
S (i.e., |j − i| ≥ 2) but adjacent in the lattice.
The objective is thus to find a feasible protein
conformation where the number of H-H topo-
logical contacts (HHtc) is maximized. Adher-
ing to the notation of the field, an energy func-
tion, to be minimized, is defined as the nega-
tive of HHtc; maximizing HHtc is equivalent
to minimize such an energy function.

Formally, PSP under the HP model is de-
fined as the problem of finding c∗ ∈ CF such

that ED85(c
∗) = min{ED85(c) | c ∈ CF}, being

CF the set of all feasible protein conformations,
CF ( C. The energy function is denoted by
ED85 : C → R and maps protein conformations
to energy values. ED85(c), the energy of a con-
formation c ∈ C, is defined as follows:2

ED85(c) =
∑
si,sj

e(si, sj) , (1)

where

e(si, sj) =


−1 if si and sj are both H and

form a topological contact

0 otherwise

.

As an example, the optimal conforma-
tion for a protein sequence of length L = 20
on the two-dimensional square lattice is pre-
sented in Fig. 1. This example corresponds
to sequence 2d4, one of the HP benchmark se-
quences adopted for this study, see Section 4.
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Fig. 1. Optimal conformation for sequence 2d4
of length L = 20 on the two-dimensional square
lattice. Black and white balls denote H and P
residues, respectively. H-H topological contacts
have been numbered. The energy of this confor-
mation is ED85(c) = −9, since HHtc = 9.

In spite of its apparent conceptual simplic-
ity, the task of finding the optimal structure of
a protein in the HP model represents a hard
combinatorial optimization problem which has

2The acronym D85 is used to distinguish this conventional function from the other evaluation approaches con-
sidered in this study.
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been proved to be NP-complete [9,10]. Such a
complexity has motivated the use of a variety of
metaheuristics to address this problem, includ-
ing genetic algorithms [14–16, 21–24], memetic
and hybrid algorithms [17, 19, 25–29], tabu
search [30, 31], ant colony optimization [32–
35], immune-based algorithms [36–39], particle
swarm optimization [40, 41], differential evolu-
tion [42–45] and estimation of distribution al-
gorithms [46,47].

2.1.1 Protein structure representation

In the literature, most of the reported
metaheuristic algorithms for the HP model are
based on an internal coordinates representa-
tion. Using internal coordinates, a protein con-
formation is encoded as a sequence of moves
specifying the lattice position for each amino
acid with respect to the preceding one; the po-
sition of the first amino acid is fixed. Two alter-
native encoding schemes can be adopted: the
absolute moves encoding [48] and the relative
moves encoding [49].

In this study, the absolute moves encod-
ing was implemented. Given a global reference
system defined by the lattice, the absolute en-
coding represents three-dimensional conforma-
tions as sequences in {F,B, L,R, U,D}L−1, to
denote the forward, backward, left, right, up
and down moves from one amino acid to the
next; only moves {F,B, L,R} are allowed in
the two-dimensional case. An example of the
absolute moves encoding is provided in Fig. 2.

1 2

2

2

2
FB

L

R

1 2

3

4 5

6

9

7

8F

L

L

F

R

F

R

B

Fig. 2. The encoding scheme (left). An example
conformation encoded as FLLFRFRB (right).

2.2 Analyzing the conventional evalua-
tion function

It is well-known that metaheuristics rely
on an effective evaluation scheme in order to
guide the search process towards promising re-
gions in the solutions space. However, as men-
tioned before the conventional evaluation func-
tion of the HP model, originally defined in (1),
induces a very poor discrimination among po-
tential conformations. That is, there could be
many different conformations for a given pro-
tein sequence with the same energy value, see
Fig. 3.

Fig. 3. Four different structures for sequence HH-
PHPHP on the two-dimensional square lattice, all
of them with the same energy value, ED85(c) = 0.

More precisely, given a protein sequence
S, with length L and optimal energy value
E∗D85, there can be at most |E∗D85| + 1 avail-
able energy levels to classify a search space
of size3 |C| = 4L−1. As an example, con-
sider sequence 2d1, the smallest of the test
cases adopted for this study (see Section 4).
In this case, L = 18 and E∗D85 = −4, so that
there are only five different energy levels which
can be used to discriminate among a total of
417 = 17, 179, 869, 184 potential conformations.
Nevertheless, some equally ranked conforma-
tions could present better chances than others
to be further improved.

The low discrimination provided by the
conventional energy function of the HP model
translates into the existence of large plateaus
in the search landscape. In such plateaus,
metaheuristics (mainly trajectory/local search-
based methods) could fail to detect a promising

3The given size of the search space assumes the use of the absolute moves representation of the protein confor-
mations on the two-dimensional square lattice, see Section 2.1.1.



6 J. Comput. Sci. & Technol., March. 2013, ,

direction, leading the search process to be ori-
ented almost at random.

In the literature, different alternative en-
ergy functions for the HP model have been pro-
posed [14–19]. The aim of these alternative for-
mulations of the energy function is to provide
a more fine-grained discrimination, as a means
of guiding metaheuristics in a more effective
manner during the process of finding potential
solutions to the original problem. In Section
3, the main details of these alternative energy
functions are analyzed.

3 Alternative energy functions for the
HP model

This section describes several alternative
formulations of the HP model’s energy (eval-
uation) function which have been proposed in
the literature. A three-letter acronym has been
assigned to each of the studied evaluation func-
tions. The acronyms adopted are the follow-
ing: K99 [14], C04 [15], L06 [16, 50], B08 [17],
C08 [18,51] and I09 [19,26,52]. Below, each one
of these alternative energy functions is defined.

3.1 Krasnogor et al., 1999

In the conventional energy function of the
HP model, only H-H topological contacts con-
tribute to the quality assessment of conforma-
tions. Given two conformations with the same
number ofH-H topological contacts, it is possi-
ble, however, that one of them has better char-
acteristics (more compact) than the other.

Based on this observation, Krasnogor et al.
[14] proposed the following distance-dependent
energy function:

EK99(c) =
∑
si,sj

e(si, sj) , (2)

where e(si, sj) = −1 if si and sj are both
H and they form a topological contact;
e(si, sj) = −1/(d(si, sj)

kLH) if si and sj are
both H but the lattice distance between them

is d(si, sj) > 1; and e(si, sj) = 0 otherwise.
Krasnogor et al. [14] suggested to use the val-
ues k = 4 for the square lattice and k = 5 for
the cubic and triangular lattices, respectively.

According to Krasnogor et al. [14], this al-
ternative formulation of the evaluation func-
tion preserves the conventional rank ordering
of the conformations, at the same time it en-
ables a finer level of distinction among confor-
mations with the same number of H-H topo-
logical contacts. The behavior of this evalua-
tion function was investigated using a genetic
algorithm over only five relatively short protein
sequences (less than 50 amino acids). Experi-
ments were performed for the two-dimensional
square and triangular lattices, as well as for
the three-dimensional cubic lattice. No de-
tailed results are provided; the authors pointed
out that no significant improvements in per-
formance were obtained by using this modified
energy function. However, they suggest that
the advantages of using this function can be-
come more evident for larger protein sequences
and when this approach is implemented within
local search strategies. The relevance of using
this proposal needs to be further investigated.

3.2 Custódio et al., 2004

Given that the aim in the HP model is only
to maximize interactions between H amino
acids, the positioning of P amino acids is not
directly optimized. This may result in unnat-
ural structures for sequences with long P seg-
ments and, particularly, when such P segments
are located at the ends of the chain [15]. An
example of this scenario is presented in Fig. 4.

Custódio et al. [15] proposed a modified
energy function based on the assumption that
it may be preferable for an H amino acid to
have a P neighbor rather than to be in contact
with the aqueous solvent. In the proposed func-
tion, the energy of a conformation is computed
as the weighted sum of the number of H-H
contacts (HHc), H-P contacts (HPc) and H-
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Solvent contacts (HSc). A free lattice location
(not assigned to any amino acid) is said to be
occupied by the solvent. Formally, the energy
of a conformation c is given by:

EC04(c) = ω1HHc+ ω2HPc+ ω3HSc , (3)

where ω1, ω2 and ω3 denote the relative im-
portance of HHc, HPc and HSc, respectively.
Although not specified by the authors, these
weighting coefficients were set to ω1 = 0, ω2 =
10 and ω3 = 40 for the reported experiments.4

Thus, given these weights, the minimization of
(3) penalizes H-P and H-solvent contacts, H-
P contacts being favored over H-solvent con-
tacts, while H-H interactions are not penalized
(H-H contacts have no contribution to the en-
ergy value using these weights).

Custódio et al. [15] evaluated the suitabil-
ity of this proposal by using a genetic algo-
rithm. A total of 10 instances for the three-
dimensional cubic lattice were considered. 7
of the sequences have 27 amino acids and the
remaining 3 sequences are of length L = 64.
The proposed function allowed to improve the
performance of the implemented algorithm for
some of the adopted test cases. The reported
results also suggest that this function presents
a greater tendency to form more natural-like
conformations.

- 1 - - 1 -

Fig. 4. Two conformations with the same number
of H-H topological contacts (HHtc = 1). How-
ever, the structure to the left is more natural-like
(globular) than the one to the right.

3.3 Lopes and Scapin, 2006

In [16, 50], an alternative energy function
for the HP model which is based on the concept
of radius of gyration was proposed. The radius
of gyration is a measure of the compactness of
conformations; the more compact the confor-
mation, the smaller the value for this measure.
The proposed function is defined in (4):

EL06(c) = HnLB ×RadH ×RadP . (4)

The HnLB term comprises the number of
H-H topological contacts in the conformation
(HHtc) and a penalty factor which takes into
account the violation of the self-avoiding con-
straint. Formally:

HnLB = HHtc− (NC × PW ) , (5)

where NC is the number of collisions (i.e., lat-
tice nodes assigned to more than one amino
acid) in the conformation and PW is the
penalty weight. The value of PW depends on
the chain length, L, and it can be computed as
PW = (0.033× L) + 1.33 [50].5

Before defining the RadH and RadP
terms, let us first define RH as the radius of
gyration for H amino acids:

RH =

√√√√√
∑
s|s=H

(xs −XH)2 + (ys − YH)2

LH

, (6)

where xs and ys are the lattice coordinates of
amino acid s. XH and YH denote the arithmetic
mean of the coordinates for all H amino acids.
Analogously, we can compute RP , the radius of
gyration for P amino acids, by considering P
rather than H amino acids in (6).6

Once RH has been defined, the RadH term
measures how compact the hydrophobic core of

4This information was obtained through personal communication with the authors.
5In this study, only feasible protein structures are considered; the penalty factor in (5) was simply omitted.
6Note that (6) has been defined for the two-dimensional lattice, but this equation easily generalizes to the

three-dimensional case.
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the conformation is. RadH is given by:

RadH = MaxRH −RH , (7)

where MaxRH denotes the radius of gyration
for H amino acids in a totally unfolded confor-
mation; i.e., the maximum possible RH value.

Finally, the RadP term aims to push P
amino acids away from the hydrophobic core.
Given the previously defined RH and RP mea-
sures, the RadP term is computed as:

RadP =

 1 if (RP −RH) ≥ 0

1
1−(RP−RH)

otherwise
. (8)

The RadP term will always lie in the range
[0, 1]. A value of (RP − RH) > 0 means
that P amino acids are more exposed than H
amino acids. This is a convenient scenario,
so the RadP term has no contribution to the
final energy value (RadP = 1). Otherwise,
(RP − RH) < 0 suggests that H amino acids
are more spread than the P ones, so RadP is
used to penalize the energy value of the confor-
mation. Note that (4) is to be maximized.7

Lopes and Scapin [16, 50] argue that the
above described function provides an adequate
discrimination among conformations with the
same number of H-H topological contacts.
This function was implemented within a ge-
netic algorithm in order to solve several in-
stances on the two-dimensional square lattice.
However, no results are provided on the ad-
vantages of using this alternative function with
regard to the conventional energy formulation
of the HP model.

3.4 Berenboym and Avigal, 2008

Berenboym and Avigal [17] proposed an
alternative energy function called the global en-
ergy. In this function, each pair of nonconsec-

utive H amino acids contributes to the energy
value even if they are not topological neighbors.
The global energy for a given conformation c is
defined as:

EB08(c) =
∑
si,sj

e(si, sj) , (9)

where e(si, sj) = −1
(xsi−xsj )

2+(ysi−ysj )2
if si and sj

are both H and they are nonconsecutive in S
(|j − i| ≥ 2); otherwise, e(si, sj) = 0.8

In [17], the effects of using a local search
operator within a genetic algorithm were ana-
lyzed for both, the conventional and the pro-
posed energy functions. However, an explicit
comparison to demonstrate the advantages of
using a particular energy function was not re-
ported. This issue needs to be further explored.

3.5 Cebrián et al., 2008

In [18, 51], an alternative energy formula-
tion which measures the deviation that each
pair of H amino acids presents with respect to
the unit distance (i.e., topological contact dis-
tance) was introduced.

Let d(si, sj)
2 = (xsi −xsj)2 + (ysi − ysj)2 +

(zsi − zsj)
2 be the lattice distance between

amino acids si and sj, and let dv(si, sj) =
d(si, sj)

2− 1 denote its deviation from the unit
distance. The energy value of a conformation c
is given by:

EC08(c) =
∑

si,sj |si=sj=H

dv(si, sj)
k , (10)

where k ≥ 1 is a parameter of the func-
tion, whose larger values give more weight to
unit distances. We adopted k = 2 for this
study, since this value provided the best be-
havior according to the results reported in [18].
EC08(c

∗) = 0 would refer to the ideal (poten-
tially unrealistic) scenario where all pairs of H

7The negative of (4) can be used as an energy-minimization formulation of the problem which adheres to the
notation commonly used in this field.

8This definition assumes a two-dimensional lattice, but it can be extended to the three-dimensional case.
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amino acids are at a unit distance in confor-
mation c∗. In [18, 51], no experimental results
to support the benefits of using the proposed
energy function were reported.

3.6 Islam and Chetty, 2009

In [19, 26, 52], the authors reported
a memetic algorithm with a modified en-
ergy function which incorporates two addi-
tional measures: H-compliance (HC) and P -
compliance (PC).

H-compliance measures the proximity of
H amino acids to the center of a hypotheti-
cal rectangle (or cuboid in three-dimensional
space) enclosing all H amino acids, which is de-
noted by the reference point (xr, yr). Formally,
this measure is given by:

HC =

∑
s|s=H

(xr − xs)2 + (yr − ys)2

LH

, (11)

where xs and ys denote the lattice coordinates
of the s amino acid.

P -compliance computes how close P
amino acids are to the boundaries of a hypo-
thetical rectangle enclosing all P amino acids.
Such a cuboid is defined by xmin, xmax, ymin

and ymax. The P -compliance measure is for-
mally given by:

PC =

∑
s|s=P

min

{
|xmin − xs|, |xmax − xs|,
|ymin − ys|, |ymax − ys|

}
LP

.(12)

Finally, the energy of a given conformation
c is defined as:

EI09(c) = αED85 +HC + PC , (13)

where ED85 is the conventional energy function
of the HP model (as defined in (1), see Section
2.1) and α is large enough to ensure this will
be the dominant term in (13).

In [19], the authors demonstrated the ad-

vantages of using the proposed energy function
using an 85-length HP protein sequence on the
two-dimensional square lattice. However, the
influence of using this function should be fur-
ther explored for a larger set of test cases.

4 Experimental setup

A total of 30 well-known benchmark se-
quences for the HP model have been consid-
ered for the experimentation of this research
project. Out of them, 15 are for the two-
dimensional square lattice and the other 15
are for three-dimensional cubic lattice. Ta-
bles 1 and 2 present the full HP sequences,
their length (L) and the optimal or best known
energy value (E∗D85) reported in the literature
[25,38,52–55].

Table 1. HP instances for the 2D square lattice.
Sequence L E∗

D85

2d1 H2P5H2P3HP3HP 18 -4

2d2 HPHPH3P3H4P2H2 18 -8

2d3 PHP2HPH3PH2PH5 18 -9

2d4 HPHP2H2PHP2HPH2P2HPH 20 -9

2d5 H3P2HPHPHP2HPHPHP2H 20 -10

2d6 H2P2HP2HP2HP2HP2HP2HP2H2 24 -9

2d7 P2HP2H2P4H2P4H2P4H2 25 -8

2d8 P3H2P2H2P5H7P2H2P4H2P2HP2 36 -14

2d9 P2HP2H2P2H2P5H10P6H2P2H2P2HP2H5 48 -23

2d10 H2(PH)4H3P(HP3)3(P3H)3PH4(PH)4H 50 -21

2d11 P2H3PH8P3H10PHP3H12P4H6PH2PHP 60 -36

2d12 H12PHPH(P2H2P2H2P2H)3PHPH12 64 -42

2d13 H4P4H12P6(H12P3)3HP2H2P2H2P2HPH 85 -53

2d14 P6HPH2P5H3PH5PH2P4H2P2H2PH5PH10
PH2PH7P11H7P2HPH3P6HPH2

100 -48

2d15 P3H2P2H4P2H3PH2PH2PH4P8H6P2H6P9
HPH2PH11P2H3PH2PHP2HPH3P6H3

100 -50

Table 2. HP instances for the 3D cubic lattice.
Sequence L E∗

D85

3d1 HPHP2H2PHP2HPH2P2HPH 20 -11

3d2 H2P2HP2HP2HP2HP2HP2HP2H2 24 -13

3d3 P2HP2H2P4H2P4H2P4H2 25 -9

3d4 P3H2P2H2P5H7P2H2P4H2P2HP2 36 -18

3d5 P2H3PH3P3HPH2PH2P2HPH4PHP2H5PHPH2P2H2P 46 -35

3d6 P2HP2H2P2H2P5H10P6H2P2H2P2HP2H5 48 -31

3d7 H2(PH)4H3P(HP3)3(P3H)3PH4(PH)4H 50 -34

3d8 PH(PH3)2P(PH2PH)2H(HP)3(H2P2H)2
PHP4(H(P2H)2)2

58 -44

3d9 P2H3PH8P3H10PHP3H12P4H6PH2PHP 60 -55

3d10 H12PHPH(P2H2P2H2P2H)3PHPH12 64 -59

3d11 P(HPH2PH2PHP2H3P3)3(HPH)3P2H3P 67 -56

3d12 P(HPH)3P2H2(P2H)6H(P2H3)4P2(HPH)3
P2HP(PHP2H2P2HP)2

88 -72

3d13 P2H2P5H2P2H2PHP2HP7HP3H2PH2P6HP2HP
HP2HP5H3P4H2PH2P5H2P4H4PHP8H5P2HP2

103 -58

3d14 P3H3PHP4HP5H2P4H2P2H2(P4H)2
P2HP2H2P3H2PHPH3P4H3P6H2P2
HP2HPHP2HP7HP2H3P4HP3H5P4H2(PH)4

124 -75

3d15 HP5HP4HPH2PH2P4HPH3P4HPHPH4P11
HP2HP3HPH2P3H2P2HP2HPHPHP8HP3
H6P3H2P2H3P3H2PH5P9HP4HPHP4

136 -83
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Although alternative evaluation functions
for the HP model are considered in this study, it
is important to remark that the goal of the opti-
mization process remains to maximize the num-
ber of H-H topological contacts (HHtc), which
is the singular objective in the HP model (see
Section 2.1). Therefore, all the obtained ex-
perimental results are evaluated in terms of the
conventional energy function of the HP model.9

Additionally, the overall average perfor-
mance (OAP) measure was adopted in order
to assess the overall behavior of the studied ap-
proaches. OAP is defined as the average ratio
of the obtained mean values to the optimum
(E∗D85). Formally:

OAP =
100%

|T |

(∑
t∈T

mean(t)

E∗D85(t)

)
, (14)

where mean(t) denotes the arithmetic mean of
the energy values obtained when solving a par-
ticular test instance t, computed over multiple
executions of the experiment, and T is the set
of all test cases. Thus, OAP expresses the per-
formance of the evaluated approaches in a 0%
to 100% scale, being OAP(t) = 100% the pre-
ferred value for this measure. OAP(t) = 100%
suggests the ideal situation where the opti-
mal conformation for each instance was reached
during all the performed executions.

Finally, in the experiments presented in
this paper, the statistical significance analysis
was conducted as follows. First, D’Agostino-
Pearson’s omnibus K2 test was used to evaluate
the normality of data distributions. For nor-
mally distributed data, either ANOVA or the
Welch’s t parametric tests were used depend-
ing on whether the variances across the sam-
ples were homogeneous (homoskedasticity) or
not. This was investigated using the Bartlett’s
test. For non-normal data, the nonparamet-
ric Kruskal-Wallis test was adopted. A signifi-
cance level of α = 0.05 has been considered.

The algorithms used for the experiments of
this study were coded in C language and com-
piled with gcc using the optimization flag -O3.
All of them were run sequentially into a CPU
Xeon X5650 at 2.66 GHz, 2 GB of RAM with
Linux operating system.

5 Results

In this section, seven different formula-
tions of the energy function for the HP model
are evaluated and compared: the conventional
energy function of the HP model, D85 [7, 8];
and the six alternative formulations described
in Section 3. Important properties of the stud-
ied energy functions are first examined in Sec-
tions 5.1 and 5.2. Then, the effectiveness of
these approaches to guide the search process
is evaluated in Sections 5.3 and 5.4. For all
the experiments reported in this chapter, pro-
tein conformations are encoded using an inter-
nal coordinates representation based on abso-
lute moves. Moreover, only solutions encoding
feasible protein conformations have been con-
sidered (see Section 2.1).

5.1 Degree of discrimination

The discrimination potential is an impor-
tant property of the evaluation scheme which
impacts directly on the behavior of metaheuris-
tics. That is, if it is not possible to set pref-
erences among candidate solutions, then the
progress in the search could become practically
dominated by random decisions.

In this section, the degree of discrimina-
tion provided by the studied energy functions is
investigated. This is done by analyzing the dis-
tribution of ranks that these approaches induce
on a set of protein conformations. A ranking
expresses the relationship among a set of items
according to a given property. In the context
of this study, protein conformations are to be

9The same criterion used in the literature to evaluate the performance of the algorithms employed for solving
the PSP problem under the HP model.
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ranked and the property to set such a relation-
ship corresponds to the energy value. Given a
set of protein conformations, the first ranking
position is assigned to the conformation with
the best energy value, the next ranking posi-
tion to the one with the second best energy
value, and so on. If two or more conformations
present the same energy, then they will share
the same rank.

The relative entropy (RE) measure pro-
posed in [56] was adopted. Given a set of
n ranked conformations (there are at most n
ranks, and at least 1), the relative entropy of
the distribution of ranks D is defined as:

RE(D) =

∑
r

D(r)

n
log(

D(r)

n
)

log(1/n)
, (15)

where D(r) denotes the number of conforma-
tions with rank r. RE(D) tends to 1 as ap-
proaching to the ideal situation where each con-
formation has a different rank (i.e., the max-
imum discrimination). On the other hand,
when all the conformations share the same
ranking position (i.e., the poorest discrimina-
tion), RE(D) takes a value of zero.

In this experiment, 1, 000 different feasi-
ble conformations were generated at random.
For each of the studied energy functions, these
solutions were evaluated and ranked to finally
compute the RE measure. A total of 100 repe-
titions of this experiment were performed for all
the adopted test instances. The overall statis-
tics of this experiment are presented in Fig. 5.
Instance-specific results are provided in Figs. 6
and 7, where bars represent the RE values ob-
tained by the different analyzed functions.

From Fig. 5, it can be seen that some
of the studied functions discriminate stronger
than others. The obtained results are quite
similar for both the two- and the three-
dimensional lattices. In all the test cases, the
conventional energy function of the HP model,
D85, achieved the lowest RE values. This con-

firms the poor discrimination capabilities of
this function, which has been the main fac-
tor motivating the exploration of alternative
approaches. Among the alternative functions,
C04 presented the worst performance in terms
of discrimination. Function L06 reached high
RE values most of the time. However, this
function presented a moderate discrimination
for the shortest test sequences (see Figs. 6 and
7). Regarding I09, it is possible to note that the
RE values obtained by this function were al-
most always above 0.9, which indicates a strong
discrimination. Finally, it is important to re-
mark the high degree of discrimination pro-
vided by functions K99, B08 and C08. Func-
tions K99 and B08 are the most discriminative
functions according to the obtained results, fol-
lowed by C08 which suffered slight decreases on
some of the instances.
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Fig. 5. Relative entropy (RE) of the distribution
of ranks obtained using the different energy func-
tions analyzed. Overall statistics for all two- (top)
and three-dimensional (bottom) test cases.
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Fig. 6. Relative entropy (RE) of the distribution of ranks obtained by using the different energy functions
analyzed. Average of 100 independent executions. Two-dimensional test cases.
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Fig. 7. Relative entropy (RE) of the distribution of ranks obtained by using the different energy functions
analyzed. Average of 100 independent executions. Three-dimensional test cases.

The above results can be better under-
stood by analyzing the histograms with the dis-
tribution of ranks achieved by each of the stud-
ied energy functions. Figure 8 presents such
histograms for a single repetition of this ex-
periment regarding sequence 2d4 on the two-
dimensional square lattice (similar results were
obtained for other test instances).

From Fig. 8, it is possible to note how poor
the distribution of ranks achieved by function
D85 is. Only seven different ranking positions
were induced to classify the 1, 000 generated
conformations. It can be seen that there are al-
most 400 conformations sharing the sixth rank.
As stated in Section 2.2, using function D85
there can be only |E∗D85| + 1 different energy
levels. Therefore, no matter the amount of gen-
erated conformations, the maximum number of

ranks which can be assigned through function
D85 is 10, since E∗D85 = −9 for this benchmark
sequence (2d4). The second worst scenario is
presented by function C04, where only 40 dif-
ferent ranking positions were produced, out of
which one was assigned to more than 100 con-
formations.

Functions L06 and I09 enabled a more fine-
grained discrimination, since about 730 and
680 different ranking positions were occupied
to classify the totality of conformations, respec-
tively. In the case of function I09, a maximum
of seven conformations were assigned to the
same rank. On the other hand, the histogram
for function L06 presents a high peak indicat-
ing that there are about 250 equally ranked
conformations. Function L06 is defined as the
product of three terms, out of which one corre-
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Fig. 8. Density of the distribution of ranks achieved by the studied energy functions. Results for a single
repetition over sequence 2d4 (two-dimensional square lattice).

sponds to the number of H-H topological con-
tacts, HHtc (see Section 3.3). Thus, all con-
formations for which HHtc = 0 will share the
same energy value, EL06 = 0. This can be seen
as a drawback; function L06 will not be able to
discriminate among these conformations even
if some of them present better characteristics
than the others.

Finally, the histograms for K99, B08 and
C08 confirm the high degree of discrimination
that these functions provide. Function C08 al-
lowed roughly 930 different ranking positions
to be assigned. K99 and B08 exhibited the

strongest discrimination among all the stud-
ied energy functions. The corresponding his-
tograms for these functions reveal that almost
every conformation was mapped to a different
ranking position. Only a few ranks were as-
signed to at most two conformations.

5.2 HP-compatibility

Alternative energy functions for the HP
model are used in order to perform a more
effective exploration through the space of po-
tential protein conformations. Nevertheless,
they should remain consistent with the original
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objective of the HP model of the PSP prob-
lem, which consists in minimizing the conven-
tional energy function D85 (by maximizing the
number of H-H topological contacts, HHtc).
Therefore, an important issue to be investi-
gated is whether or not these alternative en-
ergy formulations are consistent with such an
original objective.

The alternative energy functions should
not contradict the conventional function D85
at the time of discriminating among potential
conformations. Otherwise, the search process
could be oriented towards solutions which dif-
fer from the original optima in the HP model
(false optima can potentially be introduced).
In this study, functions that meet this require-
ment (not contradicting function D85) are said
to feature the HP-compatibility property or, in
other words, they are HP-compatible. Thus,
HP-compatibility can be defined as the capabil-
ity of an alternative energy function to preserve
the conventional rank ordering among potential
protein conformations. More formally:10

Definition 1. An alternative energy func-
tion E : CF → R is said to be HP-compatible if
and only if E(c1) < E(c2)⇒ ED85(c1) ≤ ED85(c2)
for every pair of conformations c1, c2 ∈ CF .
Otherwise, if there exists at least a pair
of conformations c1, c2 ∈ CF such that
ED85(c1) < ED85(c2) but E(c1) > E(c2), then
function E is not HP-compatible.

Note, however, that the case where
ED85(c1) = ED85(c2) but E(c1) 6= E(c2) is not
considered a contradiction. This is a convenient
scenario, since the aim of using the alternative
function E is to enable a more fine-grained dis-
crimination.

In this section, the HP-compatibility prop-
erty is explored for all the alternative energy
functions considered in this study. An experi-
ment was conducted where 1, 000 different fea-
sible structures were generated at random and
all pairwise comparisons among them were per-
formed. The percentage of such comparisons

where the alternative energy function agrees
with (does not contradict) the conventional one
is computed. The resulting value is to be re-
ferred to as relative compatibility (RC). Al-
though a value of RC = 100% does not guaran-
tee the HP-compatibility property for a given
function, RC < 100% is enough to disprove it.
To some extent, the RC value allows us to in-
quire into the severity of the cases where the
HP-compatibility property is not satisfied. For
all the selected test instances, 100 repetitions of
this experiment were performed. The average
RC obtained for each of the instances is de-
picted in Figs. 10 and 11, while Fig. 9 provides
the overall statistics produced in this experi-
ment.
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Fig. 9. Relative compatibility (RC) obtained by
each of the alternative energy functions analyzed.
Overall statistics for all two-dimensional (top) and
three-dimensional (bottom) test cases.

10By convention, this definition assumes that lower energy values correspond to higher quality conformations.
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From Figs. 10 to 9, it is possible to note
that functions K99 and I09 showed 100% of
agreement with the conventional HP energy
function for all the instances of this experiment.
These results suggest that functions K99 and
I09 are HP-compatible. On the other hand,
the obtained results reveal that functions C04,
L06, B08 and C08 do not present the HP-
compatibility property, which becomes more
evident with the increasing of problem size.

Function L06 scored very competitive
results for the shortest two- and three-
dimensional test sequences. However, its per-
formance declined for the largest test cases, es-
pecially when facing sequences 2d12 and 3d10.

The average RC values obtained by L06 were
almost always above 95%. The performance of
function C04 gradually decreased as the prob-
lem size increased. The RC values achieved by
this approach ranged from 90% to 95% most
of the time. Function B08 presented the sec-
ond worst overall behavior in this experiment.
In the two-dimensional instances, the perfor-
mance of B08 was above RC = 90% for the
shortest sequences but at around 85% for the
largest ones. Regarding the three-dimensional
instances, B08 obtained RC values below 85%
in most of the cases.

Finally, it can be highlighted the poor per-
formance exhibited by function C08. This ap-
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proach achieved the lowest RC values for all the
adopted test cases. The average RC obtained
by function C08 was roughly 75% for 2D bench-
marks, while it was about 70% for the 3D cases.
Figure 12 presents an example scenario where
function C08 contradicts the conventional func-
tion D85.
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Fig. 12. Two conformations c1 and c2 for sequence
2d4 on the two-dimensional square lattice. This is
an example where function C08 contradicts func-
tion D85: ED85(c1) = −7 < ED85(c2) = 0 but
EC08(c1) = 5548 > EC08(c2) = 5308.

In this example, a couple of two-
dimensional conformations c1 and c2 for se-
quence 2d4 are compared with respect to each
other by using functions D85 and C08. As a
result, the conventional energy function D85
prefers conformation c1 (with HHtc = 7) to
c2 (with HHtc = 0), while function C08 in-
duces the opposite order of preferences among
them.

The low RC values obtained by some func-
tions, particularly C08, suggest serious implica-
tions. The lower the RC value, the more likely
that the global optimum induced by the alter-
native function differs from the global optimum
of the original problem. Therefore, alternative
functions which are not HP-compatible cannot
be expected to steer the search process in an
effective manner.

5.3 Search performance using a basic
local search algorithm

A best improvement local search (BILS) al-
gorithm was implemented in order to evaluate

the effectiveness of the studied energy functions
at guiding the search process (see Algorithm 1).
BILS starts with a randomly generated confor-
mation, denoted by c. Iteratively, c is replaced
by the best among all the improving conforma-
tions defined in the neighborhood of c, N (c).
The search process stops when given the cur-
rent conformation c and the adopted neighbor-
hood structure it is not possible to achieve an
improvement, i.e., c is locally optimal.

As stated at the beginning of Section 5,
only solutions encoding feasible conformations
are considered in this study. Hence, the ini-
tial solutions for the BILS algorithm were gen-
erated using the backtracking procedure pro-
posed in [22]. The implemented neighbor-
hood structure N (c) is defined by all confor-
mations which can be reached through single
1-variable perturbations of c; i.e., N (c) = {c′ ∈
CF | h(c, c′) = 1}, where h(c, c′) denotes the
Hamming distance between c and c′. Given a
protein sequence of length L, the size of such
a neighborhood is |N (c)| = 3(L − 1) in the
two-dimensional square lattice and |N (c)| =
5(L− 1) for the three-dimensional case.

The motivation for using such a simple
BILS algorithm is as follows. On the one hand,
BILS seems a suitable algorithm for evaluating
the impact of varying the evaluation scheme.
Once the neighborhood structure has been de-
fined, the behavior and performance of the al-
gorithm will be mainly determined by the dis-
crimination capabilities of the different energy
functions. “A local search is effective if it is
able to find good local minima” [57]. BILS stops
at a local optimum, on the effectiveness of the
discrimination will depend the characteristics
of such a local optimum. Moreover, due to the
low degree of discrimination provided by some
of the functions, the search process can be ex-
pected to stop early (after a reduced number
of iterations). On the other hand, no addi-
tional parameters of the algorithm have to be
adjusted, which avoids affecting (neither nega-
tively nor positively) the behavior induced by
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Algorithm 1 Best improvement local search (BILS) algorithm.

choose c ∈ C uniformly at random
repeat
c← Best Improvement(N (c))

until no improvement is possible

the studied energy functions through parame-
ter settings.

The behavior of the BILS algorithm was
evaluated when using each of the studied en-
ergy functions. A total of 100 independent exe-
cutions were performed. Figure 13 presents the
results obtained for all the two-dimensional in-
stances, while Fig. 14 details the results for the
three-dimensional case. Plots in these figures
show the average number of H-H topological
contacts (HHtc) achieved by the algorithm as
the search progressed (at each iteration), for
each considered test case.

From Figs. 13 and 14 it is possible to de-
rive some general conclusions. As expected, the
conventional energy function D85 presented a
limited performance for this experiment. For
all the test instances (except for sequence 3d9),
the algorithm reached the lowest number of it-
erations due to the poor discrimination that
function D85 provides (see Section 5.1). In
most cases, however, the poorest performance
of the algorithm was obtained when using func-
tion C08. Although functions B08 and C04 be-
haved better than function D85 in most of the
two-dimensional instances, these functions re-
ported a poorer search performance than D85
for some of the three-dimensional test cases.
Function L06 obtained very competitive results
most of the time. L06 allowed the algorithm
to score the highest HHtc values for some of
the test cases (e.g., 2d3, 2d5, 2d10, 3d2), while
showing a slight inferior performance for some
other instances (e.g., 2d1, 2d7, 3d10). Finally,
it is possible to highlight the promising behav-
ior that functions I09 and K99 consistently ex-
hibited for all the considered test cases.

A more detailed comparative and the re-

sults of the statistical significance analysis are
provided in Tables 3 and 4. For the different
analyzed energy functions and all the adopted
test cases, these tables detail the best obtained
energy value, the number of BILS executions
where this solution quality was reached, and
the arithmetic mean. The obtained OAP val-
ues are presented at the bottom of the ta-
bles. Each time that a significant perfor-
mance difference exists with respect to the con-
ventional function D85, the mean energy of
the corresponding alternative function is ei-
ther marked + or marked − depending on
whether such a difference favors the alternative
function or not. In addition, the lowest aver-
age energy for each of the instances appears
shaded in the tables.

Tables 3 and 4 confirm the superiority
that functions K99, I09 and L06 have shown
in this experiment. In the vast majority of
the instances, it can be seen from the tables
that functions K99, I09 and L06 significantly
improved the performance of the BILS algo-
rithm with respect to the conventional func-
tion D85. There were no significant differ-
ences between functions D85 and C04 except
for sequences 3d3 and 3d4, in both cases fa-
voring C04. Function B08 scored significantly
better results than function D85 in 9 out of
the 15 two-dimensional instances. Note, how-
ever, that this function was significantly out-
performed by function D85 in 5 of the largest
three-dimensional test cases. Finally, it can
also be confirmed the poor performance pre-
sented by function C08. Function C08 per-
formed significantly worse than function D85
for the largest two-dimensional instances and
for all but one of the three-dimensional cases.
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Fig. 13. Results of the BILS on the two-dimensional instances. Number of H-H topological contacts
(HHtc) obtained at each iteration. Average of 100 independent executions.
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Fig. 14. Results of the BILS on the three-dimensional instances. Number of H-H topological contacts
(HHtc) obtained at each iteration. Average of 100 independent executions.
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Table 3. Performance of the BILS algorithm when using the seven studied energy formulations. Two-dimensional test cases.

D85 K99 C04 L06 B08 C08 I09

Seq. Best (freq) Mean Best (freq) Mean Best (freq) Mean Best (freq) Mean Best (freq) Mean Best (freq) Mean Best (freq) Mean

2d1 -3 (1) -0.6 -3 (2) -1.0 + -3 (1) -0.8 -3 (2) -0.7 -3 (2) -1.0 + -2 (12) -0.7 -3 (3) -1.0 +

2d2 -7 (1) -2.9 -7 (3) -3.6 + -7 (1) -3.0 -7 (3) -3.7 + -7 (3) -3.3 + -7 (1) -3.0 -7 (2) -3.5 +

2d3 -8 (1) -4.2 -8 (1) -4.6 -8 (1) -4.2 -8 (1) -4.9 + -7 (4) -4.5 -7 (1) -3.9 -8 (1) -4.6 +

2d4 -7 (1) -3.1 -7 (3) -3.7 + -7 (1) -3.3 -7 (2) -3.9 + -7 (3) -3.7 + -7 (1) -3.1 -7 (3) -3.9 +

2d5 -6 (7) -3.2 -7 (1) -3.8 + -6 (7) -3.3 -7 (4) -4.2 + -7 (1) -3.6 -6 (6) -2.9 -7 (4) -3.9 +

2d6 -7 (2) -3.0 -7 (1) -3.7 + -7 (1) -3.2 -7 (1) -3.8 + -7 (1) -3.6 + -6 (2) -3.0 -7 (2) -3.8 +

2d7 -5 (1) -1.4 -7 (1) -2.2 + -6 (1) -1.6 -7 (1) -2.1 + -7 (1) -2.2 + -7 (1) -1.6 -7 (1) -2.4 +

2d8 -7 (2) -3.8 -8 (1) -4.7 + -7 (2) -3.8 -7 (6) -4.5 + -7 (7) -4.4 + -7 (4) -3.6 -9 (1) -4.6 +

2d9 -12 (3) -7.3 -12 (4) -8.3 + -12 (2) -7.6 -13 (1) -8.4 + -12 (4) -8.1 + -11 (7) -6.3 − -15 (1) -8.7 +

2d10 -10 (6) -6.3 -13 (1) -7.6 + -11 (1) -6.5 -12 (3) -7.9 + -13 (1) -7.1 + -11 (1) -5.6 − -13 (2) -7.7 +

2d11 -22 (2) -15.8 -24 (3) -17.1 + -22 (1) -16.0 -24 (3) -17.0 + -25 (1) -16.4 -24 (1) -14.3 − -25 (1) -17.1 +

2d12 -22 (1) -15.7 -24 (1) -17.3 + -22 (1) -15.8 -22 (2) -16.6 + -21 (4) -16.5 + -22 (1) -14.2 − -23 (1) -17.1 +

2d13 -30 (2) -22.2 -35 (1) -24.4 + -30 (3) -22.4 -35 (1) -24.4 + -31 (2) -23.1 -33 (1) -20.3 − -35 (1) -24.4 +

2d14 -28 (1) -18.8 -30 (1) -21.1 + -26 (4) -19.1 -29 (1) -20.5 + -28 (1) -19.6 -25 (1) -16.5 − -29 (1) -20.8 +

2d15 -26 (2) -19.0 -28 (3) -21.3 + -29 (1) -19.1 -28 (1) -20.9 + -26 (1) -19.4 -22 (5) -16.6 − -27 (3) -21.5 +

OAP 33.70% 39.72% 34.77% 39.64% 37.87% 31.54% 40.29%

Table 4. Performance of the BILS algorithm when using the seven studied energy formulations. Three-dimensional test cases.
D85 K99 C04 L06 B08 C08 I09

Seq. Best (freq) Mean Best (freq) Mean Best (freq) Mean Best (freq) Mean Best (freq) Mean Best (freq) Mean Best (freq) Mean

3d1 -10 (2) -5.8 -11 (2) -6.7 + -10 (1) -5.9 -11 (1) -6.8 + -11 (1) -6.2 -9 (2) -4.5 − -10 (4) -6.5 +

3d2 -9 (4) -5.2 -11 (1) -6.2 + -10 (1) -5.3 -10 (3) -6.4 + -9 (6) -5.7 + -7 (7) -4.1 − -10 (1) -6.1 +

3d3 -7 (2) -2.7 -9 (1) -4.6 + -7 (3) -3.5 + -8 (2) -4.6 + -9 (1) -4.5 + -7 (3) -2.9 -8 (2) -4.7 +

3d4 -12 (2) -6.5 -13 (2) -8.6 + -13 (1) -7.1 + -14 (1) -8.7 + -14 (2) -8.1 + -13 (1) -5.8 − -15 (1) -8.9 +

3d5 -22 (1) -13.9 -23 (1) -15.6 + -21 (1) -14.1 -22 (2) -15.3 + -22 (1) -13.2 -17 (2) -10.7 − -22 (1) -15.5 +

3d6 -19 (4) -12.4 -22 (1) -14.9 + -19 (1) -12.4 -21 (3) -15.0 + -19 (4) -13.3 + -18 (1) -10.3 − -21 (3) -14.5 +

3d7 -18 (2) -11.8 -20 (2) -13.4 + -18 (1) -11.5 -22 (1) -13.3 + -17 (2) -11.4 -17 (1) -9.1 − -18 (4) -13.5 +

3d8 -23 (2) -15.9 -25 (1) -17.5 + -22 (2) -15.6 -24 (1) -17.4 + -23 (1) -14.8 − -19 (1) -11.2 − -24 (2) -17.4 +

3d9 -36 (2) -25.8 -38 (4) -27.3 + -36 (1) -25.5 -36 (3) -27.2 + -36 (1) -24.9 -32 (1) -20.7 − -38 (2) -26.8

3d10 -34 (1) -24.8 -38 (1) -26.9 + -36 (1) -25.0 -35 (2) -25.1 -33 (1) -23.2 − -33 (1) -20.2 − -37 (1) -26.7 +

3d11 -28 (2) -18.2 -31 (1) -20.1 + -26 (2) -18.4 -29 (1) -20.3 + -27 (1) -16.9 − -25 (1) -13.6 − -31 (2) -20.3 +

3d12 -29 (5) -20.6 -31 (6) -22.7 + -30 (1) -20.0 -33 (1) -22.9 + -27 (2) -17.6 − -22 (1) -14.5 − -34 (2) -23.0 +

3d13 -22 (1) -13.0 -28 (1) -17.6 + -22 (1) -13.9 -24 (4) -16.7 + -22 (2) -13.2 -17 (1) -8.8 − -24 (3) -16.7 +

3d14 -24 (2) -16.6 -30 (1) -20.9 + -29 (1) -17.1 -32 (1) -21.0 + -26 (1) -15.6 − -20 (1) -11.0 − -34 (1) -21.1 +

3d15 -30 (1) -19.2 -36 (1) -24.0 + -30 (1) -19.3 -35 (2) -22.9 + -28 (2) -18.0 -21 (2) -12.8 − -32 (3) -22.7 +

OAP 35.16% 41.98% 36.14% 41.71% 36.51% 27.58% 41.62%
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5.4 Search performance using the iter-
ated local search algorithm

In Section 5.3, a basic local search algo-
rithm was employed as a first step in analyzing
the effectiveness of the studied energy functions
at guiding the search process. Through local
search it is possible to converge towards local
optima. However, the performance of these
algorithms is usually unsatisfactory in terms
of finding global optimum solutions [57, 58].
Therefore, it is required to implement addi-
tional strategies to foster exploration and to
allow the search process escaping from local
optima. One possible strategy consists in it-
eratively applying local search each time start-
ing from a different initial solution, such as it
is done in the iterated local search (ILS) algo-
rithm [59–61].

In this section, a basic ILS algorithm is
used for inquiring into the suitability of the
studied energy functions (outlined in Algo-
rithm 2). The ILS algorithm starts with a fea-
sible conformation generated at random11, de-
noted as c. Then, a local search strategy (em-
bedded heuristic) is applied to c until a local
optimum c∗ is found. A perturbation c′ of the
current local optimum c∗ is obtained and used
as a starting point of another round of local
search. After each local search the new local
optimum solution found c′∗ may be accepted
as the new incumbent solution c∗, based on a
given acceptance criterion. This iterative pro-
cedure is repeated until a given stop condition
is met.

In order to implement the ILS algorithm,
three basic components have to be defined: the
local search strategy, the perturbation strength
and the acceptance criterion. In this study,
these components are defined as follows:

• Local search. The best improvement lo-
cal search (BILS) algorithm described in
Section 5.3 was adopted as the embedded
heuristic.

• Perturbation strength. Six different
values for the perturbation strength are
considered: {2, 3, 4, 6, 8, 10}. The pertur-
bation strength refers to the number of
encoding positions of the conformation
which are to be affected by the pertur-
bation.

• Acceptance criterion. Three different
acceptance criteria are explored:

– IMP: the new local optimum c′∗ is
accepted if it has a better energy
value than the incumbent solution
c∗.

– IEQ: the new local optimum c′∗ is
accepted if it is at least as good as
the incumbent solution c∗.

– ALL: the new local optimum c′∗ is
always accepted.

The three different acceptance criteria, to-
gether with the six considered values for the
perturbation strength, lead to a total of 18
parameter configurations of the ILS. All these
parameter configurations were evaluated in or-
der to identify the most appropriate conditions
for the compared approaches. In all the cases,
the algorithm was allowed to run until a maxi-
mum number of 5×105 solution evaluations was
reached, and 50 independent executions were
performed. Figures 15 and 16 present (two-
and three-dimensional instances, respectively)
the overall average performance (OAP) mea-
sure obtained by each of the studied energy
functions for the different parameter settings
of the ILS. Higher OAP values are preferred,
see Section 4.

Among the alternative energy functions,
Figs. 15 and 16 show that K99, L06 and I09
consistently presented the best performance for
the different parameter configurations of the
ILS. In the two-dimensional instances, the per-
formance of function B08 was competitive for
most of the ILS configurations. In contrast,

11It is generated using the backtracking algorithm proposed in [22].
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Algorithm 2 Iterated local search (ILS) algorithm.

1: choose c ∈ C uniformly at random
2: c∗ ← LocalSearch(c)
3: repeat
4: c′ ← Perturbation(c∗)
5: c′∗ ← LocalSearch(c′)
6: c∗ ← AcceptanceCriterion(c∗, c′∗)
7: until < stop condition >

this function exhibited a low performance in
all cases when facing the three-dimensional in-
stances. Function C08 obtained the lowest
OAP values in most of the cases, followed by
function C04. Functions C08 and C04 are thus
the worst performers of this experiment. Re-
garding the conventional energy function D85,
an interesting behavior can be observed when
comparing the results obtained using the dif-
ferent acceptance criteria. While the ranking
among the alternative energy functions remains
consistent in most of the cases from one accep-
tance criterion to another, there was a signif-
icant increase in the performance of function
D85 when using the IEQ acceptance criterion.
That is, the IEQ acceptance criterion allowed
the algorithm to exploit the low discrimination
associated with function D85 as a means of es-
caping from local optima.

In order to provide a more detailed anal-
ysis, the parameters adjustment which allowed
each of the studied energy functions to reach
the highest OAP value have been selected. Ta-
ble 5 summarizes the selected ILS configura-
tions for the next experiment.

Tables 6 and 7 detail the obtained results
for all two-dimensional and three-dimensional
test cases, respectively. For each instance,
these tables show the best obtained energy
value, the number of times that this solution
was found and the arithmetic mean achieved
using the different energy functions. Also, the
OAP measure is presented at the bottom of
the tables. In these tables, values marked +
highlight a statistically significant increase in

performance achieved by the alternative energy
function with regard to the conventional func-
tion D85. Conversely, values marked − indi-
cate that a statistically significant performance
decrease was obtained as a consequence of us-
ing the alternative formulation. Additionally,
the best average performance (lowest average
energy) for each test case has been shaded in
these tables.

Table 5. Selected parameter settings for the ILS.

2D benchmarks 3D benchmarks

Accept. Perturb. Accept. Perturb.

criterion strength criterion strength

D85 ALL 2 IEQ 4

K99 ALL 2 IEQ 4

C04 ALL 2 IEQ 6

L06 ALL 2 IEQ 4

B08 ALL 2 IEQ 4

C08 ALL 2 IEQ 4

I09 ALL 2 IEQ 4

From Table 6, it is possible to observe that
function I09 reached the lowest average energy
on 73.33% of the two-dimensional studied in-
stances (11 out of 15), obtaining the highest
OAP value. In 5 of the instances, the im-
provements obtained by function I09 were sta-
tistically significant with respect to the con-
ventional energy function D85. The second
best performer was function K99, which showed
the best average performance for 7 of the in-
stances and significantly improved the results
of function D85 in 3 other cases. Function
L06 achieved significantly better results than
function D85 for 5 of the instances; note, how-
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Fig. 15. Overall average performance (OAP) obtained for all parameter configurations of the ILS algo-
rithm. Two-dimensional test cases.
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Fig. 16. Overall average performance (OAP) obtained for all parameter configurations of the ILS algo-
rithm. Three-dimensional test cases.

ever, that there was a significant difference
against function L06 in 4 of the largest test
cases. Slightly similar results were obtained by
function B08. Although the conventional func-
tion D85 does not present a remarkable per-
formance, the results of this function are still
considered competitive. Finally, the poorest
performances were obtained by functions C04
and C08, whose results were significantly worse
than those of the conventional function D85 in
most of the cases.

A quite different scenario can be observed
regarding the three-dimensional test cases. It
can be seen from Table 7 that the conventional

energy function D85 scored the best average
performance for all the considered test cases.
The statistical analysis indicates that function
D85 significantly outperformed all the alterna-
tive energy functions in the vast majority of
the cases. Among the alternative functions,
the best results were obtained by K99, followed
by functions I09 and L06, in this order. Fi-
nally, the worst overall behavior was presented
by functions B08, C04 and particularly C08.

The obtained results confirm that an ef-
fective evaluation scheme is essential in order
to guide the search process towards high qual-
ity conformations. For different parameter con-
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figurations of the ILS algorithm, the best re-
sults were obtained using alternative energy
functions which provide a fine-grained discrim-
ination. Nevertheless, a particular acceptance
criterion (IEQ, in this case) increased the per-
formance of the ILS algorithm when using the
conventional energy function, D85. Using such
an acceptance criterion, the results of func-
tion D85 were statistically superior compared
to those obtained by the different alternative
functions. This suggests that it is possible to
take advantage of the low degree of discrimina-
tion provided by the conventional energy for-
mulation of the HP model.

6 Conclusions and future work

The conventional energy function of the
HP model is known to provide a very poor
discrimination among potential conformations.
Nevertheless, an effective evaluation scheme is
an essential component of metaheuristics, be-
ing the responsible for steering the search pro-
cess towards promising regions of the solutions
space. Therefore, alternative formulations of
the energy function have been proposed in the
literature to cope with this issue. This paper
presented the results of a comparative study
where seven different evaluation functions for
the HP model were considered.

The first step in this study was concerned
with the analysis of the degree of discrimina-
tion that each of the considered energy func-
tions provides. Through such an analysis it was
possible to confirm the poor discrimination ca-
pabilities of the conventional energy function of
the HP model, D85, which has been the main
motivation for exploring alternative energy for-
mulations. All the alternative functions were
found to provide a more fine-grained discrim-
ination. From the obtained results, the most
discriminative functions are K99 and B08, fol-
lowed by C08 and I09, in this order.

The HP-compatibility property was de-
fined and investigated for each of the alterna-

tive energy functions. This important property
refers to the capability of an alternative energy
function to preserve a rank ordering among po-
tential conformations which is consistent with
the original objective of the HP model. The ob-
tained results suggest that functions K99 and
I09 feature this property. Very competitive re-
sults were also obtained by function L06. How-
ever, this was not the case for functions C04,
B08 and particularly C08, which obtained the
worst results in the conducted experiment. Al-
ternative energy functions which are not HP-
compatible may not be able to guide the search
process properly since they can potentially in-
troduce a false optimum.

The effectiveness of the studied energy
functions to guide the search process was ex-
amined using a best improvement local search
(BILS) algorithm. The conventional energy
function D85 exhibited a low performance for
this experiment. In most of the adopted test
cases, however, the worst performance of the
algorithm was obtained when using the alterna-
tive function C08. Also, functions B08 and C04
showed a poor search performance for most of
the instances. In contrast, the alternative func-
tions I09, L06 and K99 consistently presented
a very promising behavior.

In order to further explore the suitability
of the studied energy functions, a more sophis-
ticated metaheuristic was implemented: iter-
ated local search (ILS). In most of the cases, the
results of the ILS were similar to those obtained
in the previous experiment using the BILS al-
gorithm. Among the alternative energy func-
tions, K99, I09 and L06 consistently exposed a
promising behavior, while functions B08, C04
and particularly C08 presented the worst over-
all performance in this test. On the other side,
the results obtained for the conventional func-
tion D85 suggest that, using a proper accep-
tance criterion, it is possible to exploit the neu-
trality of the search landscape [13, 62] induced
by the low discrimination of this function.
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Table 6. Detailing the results of the ILS when using the seven studied energy formulations. Two-dimensional test cases.

D85 K99 C04 L06 B08 C08 I09

Seq. Best (freq)Mean Best (freq) Mean Best (freq) Mean Best (freq) Mean Best (freq) Mean Best (freq) Mean Best (freq) Mean

2d1 -4 (50) -4.0 -4 (50) -4.0 -4 (49) -4.0 -4 (50) -4.0 -4 (50) -4.0 -4 (46) -3.9 − -4 (50) -4.0

2d2 -8 (50) -8.0 -8 (50) -8.0 -8 (49) -8.0 -8 (50) -8.0 -8 (50) -8.0 -8 (36) -7.7 − -8 (50) -8.0

2d3 -9 (44) -8.9 -9 (47) -8.9 -9 (46) -8.9 -9 (50) -9.0 + -9 (49) -9.0 -9 (48) -9.0 -9 (47) -8.9

2d4 -9 (50) -9.0 -9 (50) -9.0 -9 (50) -9.0 -9 (50) -9.0 -9 (50) -9.0 -9 (45) -8.9 − -9 (50) -9.0

2d5 -10 (50) -10.0 -10 (50) -10.0 -10 (49) -10.0 -10 (50) -10.0 -10 (50) -10.0 -10 (27) -9.5 − -10 (50) -10.0

2d6 -9 (47) -8.9 -9 (50) -9.0 -9 (42) -8.8 -9 (50) -9.0 -9 (50) -9.0 -9 (47) -8.9 -9 (50) -9.0

2d7 -8 (36) -7.7 -8 (47) -7.9 + -8 (25) -7.5 − -8 (50) -8.0 + -8 (50) -8.0 + -8 (49) -8.0 + -8 (50) -8.0 +

2d8 -14 (2) -12.3 -14 (2) -12.4 -13 (1) -11.2 − -14 (7) -12.9 + -14 (9) -12.8 + -14 (5) -12.4 -14 (15) -13.0 +

2d9 -21 (3) -18.8 -22 (1) -19.6 + -20 (1) -17.4 − -21 (4) -19.5 + -21 (5) -19.1 -21 (1) -17.7 − -22 (1) -20.1 +

2d10 -20 (1) -18.2 -21 (1) -18.3 -19 (1) -16.8 − -21 (1) -18.4 -19 (1) -17.1 − -17 (4) -15.5 − -21 (1) -18.7 +

2d11 -33 (7) -31.3 -34 (1) -31.5 -33 (1) -29.3 − -33 (2) -30.7 − -33 (3) -30.9 -32 (1) -27.7 − -34 (2) -31.0

2d12 -34 (1) -30.5 -35 (2) -31.2 + -34 (1) -29.3 − -35 (1) -32.1 + -33 (1) -29.3 − -30 (3) -26.4 − -35 (2) -32.2 +

2d13 -46 (3) -42.6 -47 (1) -43.0 -45 (1) -40.2 − -46 (1) -41.9 − -46 (1) -42.2 -43 (2) -38.7 − -46 (1) -42.9

2d14 -42 (3) -38.6 -41 (2) -38.2 -38 (1) -34.4 − -40 (3) -37.2 − -40 (3) -37.2 − -38 (1) -33.1 − -41 (4) -38.4

2d15 -42 (1) -39.1 -42 (3) -39.0 -39 (1) -35.1 − -41 (1) -38.2 − -41 (2) -37.0 − -37 (1) -31.7 − -42 (5) -39.3

OAP 89.98% 90.70% 86.28% 90.61% 89.48% 84.68% 91.43%

Table 7. Detailing the results of the ILS when using the seven studied energy formulations. Three-dimensional test cases.
D85 K99 C04 L06 B08 C08 I09

Seq. Best (freq)Mean Best (freq) Mean Best (freq) Mean Best (freq) Mean Best (freq) Mean Best (freq) Mean Best (freq) Mean

3d1 -11 (50) -11.0 -11 (50) -11.0 -11 (50) -11.0 -11 (50) -11.0 -11 (50) -11.0 -11 (50) -11.0 -11 (50) -11.0

3d2 -13 (50) -13.0 -13 (49) -13.0 -13 (37) -12.7 − -13 (50) -13.0 -13 (49) -13.0 -13 (43) -12.8 − -13 (50) -13.0

3d3 -9 (50) -9.0 -9 (50) -9.0 -9 (41) -8.8 − -9 (50) -9.0 -9 (50) -9.0 -9 (49) -9.0 -9 (50) -9.0

3d4 -18 (49) -18.0 -18 (38) -17.6 − -18 (8) -16.2 − -18 (38) -17.6 − -18 (27) -17.3 − -18 (16) -16.8 − -18 (37) -17.6 −
3d5 -33 (4) -31.1 -33 (4) -30.4 − -31 (3) -27.9 − -34 (1) -30.3 − -33 (1) -30.0 − -30 (2) -26.8 − -33 (1) -30.1 −
3d6 -31 (13) -29.6 -31 (3) -28.7 − -29 (5) -26.4 − -31 (5) -29.0 − -31 (2) -28.4 − -31 (2) -27.7 − -31 (7) -28.9 −
3d7 -32 (1) -29.2 -31 (3) -28.9 -30 (1) -25.5 − -32 (3) -28.2 − -32 (1) -27.3 − -31 (1) -23.8 − -30 (8) -28.1 −
3d8 -40 (2) -36.2 -40 (1) -35.3 − -36 (1) -31.2 − -39 (1) -34.5 − -40 (1) -33.5 − -35 (1) -29.9 − -40 (1) -35.1 −
3d9 -52 (1) -48.3 -51 (1) -47.6 -49 (1) -44.5 − -50 (5) -47.2 − -50 (3) -46.3 − -49 (4) -44.8 − -51 (4) -47.6

3d10 -56 (1) -50.2 -54 (1) -48.4 − -49 (1) -43.7 − -55 (1) -48.6 − -52 (1) -45.6 − -50 (2) -41.6 − -54 (1) -49.2 −
3d11 -45 (1) -41.4 -44 (2) -39.7 − -40 (1) -35.4 − -44 (2) -39.5 − -43 (1) -37.1 − -40 (1) -32.8 − -45 (1) -39.5 −
3d12 -57 (2) -50.5 -55 (2) -48.7 − -50 (1) -41.4 − -54 (1) -48.2 − -50 (3) -43.0 − -42 (1) -35.7 − -54 (2) -48.1 −
3d13 -47 (1) -40.6 -46 (1) -39.6 -40 (1) -31.8 − -45 (2) -38.6 − -42 (1) -36.4 − -38 (1) -29.0 − -44 (4) -39.0 −
3d14 -55 (1) -49.4 -54 (2) -48.3 -49 (1) -38.2 − -55 (1) -45.8 − -47 (1) -39.5 − -47 (1) -33.1 − -57 (1) -46.4 −
3d15 -61 (1) -53.8 -59 (1) -50.0 − -50 (1) -40.1 − -58 (3) -50.0 − -55 (1) -44.7 − -48 (1) -37.0 − -57 (1) -49.0 −

OAP 84.67% 82.80% 75.04% 82.16% 79.12% 72.94% 82.31%
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From this study, it is possible to derive
some general conclusions. First, intensity of
discrimination does not necessarily imply effec-
tiveness at guiding the search process. Even
when functions K99, B08, C08 and I09 were
all identified to provide a strong discrimina-
tion, only K99 and I09 presented a promis-
ing search behavior. In contrast, functions B08
and C08 showed a poor search performance in
most of the cases. Such a poor performance
can be explained by the fact that functions B08
and C08 are not HP-compatible. Function C04
is also not HP-compatible; the low discrimi-
nation capabilities of C04 gives further expla-
nation to the reduced search performance ob-
tained when using this function. Finally, func-
tion L06 obtained very competitive results in
terms of both, degree of discrimination and HP-
compatibility. As a consequence, function L06
consistently competed at the top of the rank-
ing regarding search performance together with
functions K99 and I09. Therefore, the degree of
discrimination and the HP- compatibility prop-
erty were found to be useful as a means of ex-
plaining the success or failure of the studied
energy functions at guiding the search process.

The conventional energy function D85 pre-
sented a limited search performance for the
BILS algorithm and most parameter configu-
rations of the ILS. This supports the relevance
of exploring alternative evaluation schemes for
the HP model. There exists evidence in the lit-
erature, however, which suggests that the neu-
trality property of a fitness landscape can be
exploited for designing more efficient search al-
gorithms [62–68]. The performance of function
D85 for some parameter configurations of the
ILS provides additional clues in this regard.
Therefore, future work may focus on investigat-
ing how to benefit from a fine-grained discrimi-
nation, at the same time that the inherent neu-
trality of the HP model can be exploited. Fi-
nally, an interesting research direction involves
the evaluation of how some characteristics of
the fitness landscape (e.g., neutrality, rugged-

ness [13,62,69]) change when using the different
evaluation functions. Such an analysis would
certainly be helpful to further support the find-
ings of the study presented in this paper.
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