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Abstract

Covering arrays (CAs) are combinatorial structures specified as a matrix of N rows and k columns over an alphabet
on v symbols such that for each set of t columns (called the strength of the array) every t-tuple of symbols is covered.
Recently they have been used to represent interaction test suites for software testing given that they provide economical
sized test cases while still preserving important fault detection capabilities.

This paper introduces an improved implementation of a Simulated Annealing algorithm, called ISA, for construct-
ing CAs of strengths three through six over a binary alphabet (i.e., binary CAs). Extensive experimentation is carried
out, using 127 well-known benchmark instances, for assessing its performance with respect to an existing simulated
annealing implementation, a greedy method, and five state-of-the-art algorithms. The results show that our algorithm
attains 104 new bounds and equals the best-known solutions for the other 23 instances consuming reasonable com-
putational time. Furthermore, the implications of using these results as ingredients to recursive constructions are also
analyzed.
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1. Introduction

A covering array, CA(N; t, k, v), of size N, strength t, degree k, and order v is an N × k array on v symbols such
that every N × t sub-array includes, at least once, all the ordered subsets from v symbols of size t (t-tuples) [17]. The
minimum N for which a CA(N; t, k, v) exists is the covering array number and it is defined according to (1).

CAN(t, k, v) = min{N : ∃ CA(N; t, k, v)} (1)

Finding the covering array number is also known in the literature as the Covering Array Construction (CAC)
problem. It is equivalent to the problem of maximizing the degree k of a covering array given the values N, t, and v
[54].

There exist only some special cases where it is possible to find the covering array number using polynomial order
algorithms. For instance, the case t = v = 2 was solved (for k even) by Rényi [47] and independently (for all k) by
Kleitman and Spencer [32]. Additionally, in [39, 46] the case N = vt, t = 2, k = v + 1 was completely solved when
v = pα is a prime or a power of prime and v > t. This case was later generalized by Bush for t > 2 [8]. According to
Lawrence et al. [35] it remains still open the problem of determining the NP-completeness of the CAC problem in the
general case. However, there exist certain closely related problems which are NP-complete [52, 17, 11], suggesting
that the CAC problem is a hard combinatorial optimization problem.

A major application of covering arrays (CAs) arises in software interaction testing, where a covering array can be
used to represent an interaction test suite as follows. In a software test we have k components or factors. Each of these
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has v values or levels. A test suite is an N×k array where each row is a test case. Each column represents a component
and a value in the column is the particular configuration. By mapping a software test problem to a covering array of
strength t we can guarantee that we have tested, at least once, all t-way combinations of component values [59]. Thus,
software testing costs can be substantially reduced by minimizing the number of test cases N in the covering array
[13]. Please observe that software interaction testing is a black-box testing technique, thus it exhibits weaknesses that
should be addresses by employing white-box testing techniques. For a detailed example of the use of CAs in software
interaction testing the reader is referred to [27].

Other applications related to the CAC problem arise in diverse fields like: data compression, regulation of gene
expression, authentication, intersecting codes, universal hashing and some experimental design applications like drug
screening. The reader is referred to [10] for a detailed survey.

The binary case of the CAC problem has been extensively studied in the literature because of its theoretical and
practical importance [35]. In this paper, we aim to develop an improved implementation of a Simulated Annealing
algorithm (hereafter called ISA) for constructing binary CAs1 of strengths three through six for their use in software
interaction testing. This is because previously published empirical studies demonstrate that testing all the 6-way
combinations of components can provide high confidence that nearly all faults, triggered by a combination of 6 or
fewer factors, in a software system can be discovered [33, 34].

Contrary to existing simulated annealing implementations [15, 55], our algorithm has the merit of improving two
key features that have a great impact on its performance: an efficient heuristic to generate good quality initial solutions
and a compound neighborhood function which combines two carefully designed neighborhood relations.

The performance of ISA is assessed through extensive experimentation over a set of well known benchmark
instances [54, 10, 42, 23], which includes 127 binary CAs of strengths three through six, and compared with several
state-of-the-art algorithms. Computational results show that our ISA algorithm has the advantage of producing smaller
CAs than the other compared methods, at a moderate computational cost, and without having important fluctuations
on its average performance. Indeed, ISA attains 104 new bounds and equals the best-known solutions for the other
23 selected instances. In practical terms, ISA offers a good trade-off between the needs for small test suites, fast test
suite construction, and maximum number of errors detected in the context of software testing.

The remainder of this paper is organized as follows. In Section 2, a brief review is given to present the most
representative solution procedures for the CAC problem. Then, the components of our ISA algorithm are discussed
in detail in Section 3. Section 4 is dedicated to computational experiments aiming at comparing the ISA algorithm
with several previously published methods for constructing CAs. Some implications of the results achieved from
these computational experiments, when used as ingredients to recursive constructions, are also analyzed. Section 5
presents experiments carried out to study the influence of some key features in the global performance of the proposed
ISA algorithm. Finally, the advantages of using our ISA algorithm for generating software interaction test cases are
discussed in Section 6, which also presents some possible directions for future research.

2. Relevant related work

Addressing the problem of finding the covering array number in reasonable time has been the focus of much re-
search. Among the approximate methods that have been developed for constructing CAs are: a) recursive methods
[28, 41], b) algebraic methods [29, 10, 27], c) greedy methods [12, 6] and d) metaheuristics such as simulated an-
nealing [16, 15], genetic algorithms [55], memetic algorithms [50] and tabu search [42]. Most of these algorithms are
specially designed for constructing strength two and three CAs. Next, we give a brief review of some representative
procedures which were used in our experimental comparisons.

In 1952, a generalization of the concept of a set of orthogonal Latin squares, called orthogonal arrays of index
unity, was presented by Bush [8]. In his paper Bush introduced a very ingenious procedure for constructing these
arrays. It employs a special class of polynomials which have coefficients in the finite Galois field GF(v), where v = pα

is a prime or a power of prime and v > t. The resulting orthogonal arrays of index unity are equivalent to CAs of size
N = vt, strength t > 2 and degree k = v + 1.

1i.e., covering arrays of order v = 2
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Besides Bush’s work, Sloane published in [54] a procedure which improved some elements of the work reported
in Roux’s PhD dissertation [51]. This procedure constructs a CAN(3, 2k, 2) by combining two CAs with the following
characteristics: CA(N2; 2, k, 2) and CA(N3; 3, k, 2). It starts by appending CA(N2; 2, k, 2) to a CA(N3; 3, k, 2), which
results into a k × (N2 + N3) array. Then this array is copied below itself, producing a 2k × (N2 + N3) array. Finally, the
copied strength two array is replaced by its bit-complement array (i.e., switch 0 to 1 and 1 to 0).

Following these ideas, Chateauneuf and Kreher presented later in [10] an algebraic procedure designed for con-
structing CAN(3, 2k, v). Let A =CA(N3; 3, k, v) and B =CA(N2; 2, k, v) be two CAs on the symbol set V = {1, 2, . . . , v}
and πi the i-th cyclic permutation on the symbols of V (1 ≤ i ≤ v− 1). A CAN(3, 2k, v) can be constructed as follows:

CAN(3, 2k, v) =

(
A B B . . . B
A Bπ

1
Bπ

2
. . . Bπ

v−1

)
(2)

where Bπ
i
is the array obtained by applying πi, to each symbol of B. This polynomial time algorithm has permitted to

attain some of the best-known bounds for binary CAs of strength three.
Later, Martirosyan proposed in her PhD thesis [40] recursive methods which generalize some Roux type construc-

tions [51, 54] to produce a CAN(t, 2k, v) for any t ≥ 4 and v ≥ 2. For instance, a CAN(4, 2k, v) can be constructed by
combining three other CAs following the procedure described in [41]. Let A be a CA(N4; 4, k, v), B a CA(N3; 3, k, v),
C a CA(N2; 2, k, v), and D a CA(N1; 2, v, v), all on the symbol set V = {1, 2, . . . , v}. This procedure starts by copying
A below itself which results in E1, a 2k × N4 array. Then, a 2k × N3 array, called E2, is constructed from B as follows:

E2 =

(
B B . . . B

Bπ
1

Bπ
2

. . . Bπ
v−1

)
(3)

where Bπ
i

is the array resulting from applying the cyclic permutations πi on the symbol set V of B (1 ≤ i ≤ v − 1).
Next, a third 2k × N2 array E3 is created based on C and D as indicated in (4),

E3 =

(
C C . . . C

C f1 C f2 . . . C fN1

)
(4)

where C fi is the array obtained by applying a function fi : V → V , which maps the vector (1, 2, . . . , v) to the i-th
column of D, i.e., fi( j) = d j,i. Using the same principle employed to build E3, a last array, E4, is composed in the
following form:

E4 =

(
C f1 C f2 . . . C fN1

C C . . . C

)
. (5)

Finally the arrays E1, E2, E3 and E4 are all combined as shown in (6) to form the resulting covering array of size
N = N4 + (v − 1)N3 + 2N2N1.

CAN(4, 2k, v) =
(
E1 E2 E3 E4

)
. (6)

Some improvements to this procedure were presented later by Colbourn et al. in [20]. The improved proce-
dure permitted the authors to attain some of the best-known bounds for binary CAs of strength four. Although, this
procedure has the merit to be a polynomial time algorithm it does not return the optimal solution in all the cases.

In [19] Colbourn and Kéri proposed a method for the explicit construction of binary CAs of strengths four and
five by using existentially closed graphs and Hadamard matrices. This method is based on the observation that the
adjacency matrix of a t-existentially closed graph on v vertices is a CA(n; t, n, 2). In particular, the authors explored
connections arising from the Paley graphs and tournaments and demonstrated that the proposed approach allowed
them to obtain substantial improvements on the best-known bounds on CAN(4, k, 2) and CAN(5, k, 2) for k ≤ 10000.

A Tabu Search (TS) algorithm for solving this problem was developed by Nurmela [42]. This algorithm starts
with an N × k randomly generated matrix that represents a potential covering array. The number of uncovered t-tuples
is used to evaluate the cost of a candidate solution (matrix)2. Next an uncovered t-tuple is selected at random and
the rows of the matrix are searched to find those that require only the change of a single element in order to cover

2i.e., the number of ordered subsets from v symbols of size t not present in the candidate solution
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the selected t-tuple. These changes, called moves, correspond to the neighboring solutions of the current candidate
solution. The variation of cost corresponding to each such move is calculated and the move having the smallest cost
is selected, provided that the move is not tabu. If there are several equally good non-tabu moves, one of them is
randomly chosen. Then another uncovered t-tuple is selected and the process is repeated until a matrix with zero
cost (a covering array) is found or a predefined maximum number of moves is reached. The tabu condition prevents
changing an element of the matrix, if it has been changed during the last T moves. This feature prevents looping and
increases the exploration capacity of the algorithm.

The results produced by Nurmela’s TS implementation have demonstrated that it is able to slightly improve some
previous best-known solutions, specially the instance CA(15; 3, 12, 2). However, an important drawback of this algo-
rithm is that it consumes considerably much more computational time than any of the previously presented algorithms.

In [58], another TS algorithm was presented by Walker and Colbourn. It employs a compact representation of
CAs based on permutation vectors and covering perfect hash families [53] in order to reduce the size of the search
space. Using this algorithm, improved CAs of strengths three to five have been found, as well as the first arrays of
strength six and seven found by computational search.

A Simulated Annealing metaheuristic (hereafter called SAC) has been applied by Cohen et al. in [16] for solving
the CAC problem. Their implementation starts with a randomly generated initial solution A with cost c(A) measured
as the number of uncovered t-tuples. A series of iterations is then carried out to visit the search space according
to a neighborhood. At each iteration, a neighboring solution A′ is generated by changing the value of the element
ai, j by a different legal member of the alphabet in the current solution A. The cost of this iteration is evaluated as
∆c = c(A′) − c(A). If ∆c is negative or equal to zero then the neighboring solution A′ is accepted. Otherwise, it is
accepted with probability P(∆c) = e−∆c/Tn , where Tn is determined by a cooling schedule. In their implementation,
Cohen et al. use a simple linear function Tn = 0.9998Tn−1 with an initial temperature fixed at Ti = 0.20. At each
temperature, 2000 neighboring solutions are generated. The algorithm stops either if a valid covering array is found,
or if no change in the cost of the current solution is observed after 500 trials. The authors justify their choice of
these parameter values based on some experimental tuning. They conclude that their algorithm is able to produce
smaller CAs than other computational methods, sometimes improving upon algebraic constructions. However, they
also indicate that SAC fails to match the algebraic constructions for larger problems, specially when t = 3 [16].

In [15], Cohen et al. proposed a hybrid metaheuristic called Augmented Annealing. It employs recursive and direct
combinatorial constructions to produce small building blocks which are then augmented with a simulated annealing
algorithm to construct a covering array. This method has been successfully used to construct CAs that are smaller
than those created by using their simple SAC algorithm.

Bryce and Colbourn published in [5] a method called Deterministic Density Algorithm (DDA) which constructs
strength two CAs one row at a time using a steepest ascent approach. In this algorithm the value for each column k is
dynamically fixed one at a time in an order based on a quantity called density δ, which indicates the fraction of pairs of
assignments to columns remaining to be tested. In DDA new rows are continually added making selections to increase
the density as much as possible. This process continues until all interactions have been covered. Later the authors
extended DDA to generate CAs of strength t ≥ 3 [6]. The main advantage of DDA over other one-row-at-a-time
methods is that it provides a worst-case logarithmic guarantee on the size N of the covering array. Moreover, it is able
to produce CAs that are of competitive size, and expending less computational time than other published methods like
TS [42] and SAC [15].

More recently Forbes et al. [23] introduced an algorithm for the efficient production of CAs of strength t up to
6, called IPOG-F (In-Parameter Order-Generalized). Contrary to many other algorithms that build CAs one row at a
time, the IPOG-F strategy constructs them one column at a time. The main idea is that CAs of k − 1 columns can be
used to efficiently build a covering array with degree k. In order to construct a covering array, IPOG-F initializes a
vt × t matrix which contains each of the possible vt distinct rows having entries from {0, 1, . . . , v − 1}. Then, for each
additional column, the algorithm performs two steps, called horizontal growth and vertical growth. Horizontal growth
adds an additional column to the matrix and fills in its values, then any remaining uncovered t-tuples are covered in
the vertical growth stage. The choice of which rows will be extended with which values is made in a greedy manner:
it picks an extension of the matrix that covers as many previously uncovered t-tuples as possible.

IPOG-F is currently implemented in a software package called FireEye [36], which was written in Java. Even if
IPOG-F is a very fast algorithm for producing CAs it generally provides poorer quality results than other state-of-the-
art algorithms. An exception is the case CA(N; 6, k, 2) for 51 ≤ k ≤ 64 where IPOG produces the smallest known
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CAs [18].
In [21], a modern construction method which takes advantage of small near optimal CAs is presented. It employs

those small CAs as input ingredients, and combines them using Perfect Hash Families (PHF). In Section 4.5 we show
that several new bounds can be achieved by this construction method when it employs as input ingredients certain
CAs constructed by our ISA algorithm.

The reader is referred to [17], [27] and [35] for detailed surveys on covering array construction methods.

3. An improved implementation of a simulated annealing algorithm

Simulated Annealing (SA)3 is a general-purpose stochastic optimization technique that has proved to be an effec-
tive tool for approximating globally optimal solutions to many NP-hard optimization problems. However, it is well
known that developing an effective SA algorithm requires a careful implementation of some essential components and
an appropriate tuning of the parameters used [30, 31].

In this section we present an improved implementation of a Simulated Annealing algorithm, that we called ISA,
for constructing binary CAs of different strengths. Contrary to existing SA implementations for the CAC problem, our
algorithm has the merit of improving two key features that have a great impact on its performance: an efficient method
to generate initial solutions containing a balanced number of symbols in each column and a composed neighborhood
function. Next all the implementation details of the proposed ISA algorithm are presented.

3.1. Internal representation and search space

Let A be a potential solution in the search space A , that is a covering array CA(N; t, k, v) of size N, strength t,
degree k, and order v. Then A is represented as an N × k array on v symbols, in which the element ai, j denotes the
symbol assigned in the test configuration i to the parameter j. The size of the search space A is then given by the
following expression:

|A | = vNk (7)

3.2. Evaluation function

The evaluation function is one of the key elements for the successful implementation of metaheuristic algorithms
because it is in charge of guiding the search process toward good solutions in a combinatorial search space.

Previously reported metaheuristic methods for solving the CAC problem have commonly evaluated the quality
of a potential solution (covering array), F (A), as the number of uncovered t-tuples [15, 55, 42]. In our ISA imple-
mentation this evaluation function was also used. Its computational complexity is equivalent to O(N

(
k
t

)
). However,

an incremental cost evaluation of neighboring solutions, in O(2
(

k−1
t−1

)
) operations, is possible by using appropriate data

structures.

3.3. Initial solution

The initial solution is the starting covering array used for the algorithm to begin the search of better configurations
in the search space A . In the existing SA implementations for the CAC problem [43, 15] the initial solution is
randomly generated. In contrast, ISA creates the starting solution using a procedure, inspired by the work of Roux
[51], that guarantees a balanced number of symbols in each column of the generated covering array CA(N; t, k, v).
This procedure assigns randomly bN/2c ones and the same number of zeros to each column of the covering array
when its size N is even, otherwise it allocates bN/2c + 1 ones and bN/2c zeros to each column.

This particular method for constructing the initial covering array was selected mainly because we have observed,
from preliminary experiments (see Section 5.2), that the solutions containing a balanced number of symbols in each
column lead our algorithm to reach better final solutions.

3In the rest of this document, we will refer to the general-purpose simulated annealing algorithm as SA.
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3.4. Neighborhood function
Given that ISA is based on Local Search (LS) then a neighborhood function must be defined. The main objective of

the neighborhood function is to identify the set of potential solutions which can be reached from the current solution
in an LS algorithm. Formally, a neighborhood relation is a function N : A → A that assigns to every potential
solution (a covering array) A ∈ A a set of neighboring solutions N(A) ⊆ A , which is called the neighborhood of A.

The results of our preliminary experimentations (see Section 5.3) lead us to find a suitable neighborhood structure
for the CAC problem. It is composed by two complementary functions which allow ISA to achieve better performance.
Our compound neighborhood function is inspired by the ideas reported in [24, 49, 38], where the advantage of using
this approach is well documented.

Before introducing the proposed combined neighborhood structure, we present two preliminary concepts used
in its definition. Let us define a function switch(A, i, j) which changes the value ai, j in the current solution A by a
different legal member of the alphabet, and swap(A, i, j, l) another function allowing us to exchange the values ai, j and
al, j (ai, j , al, j) within the same column of A.

The first function N1(A, ω), in our compound neighborhood, produces a subset W ⊆ A containing ω different
neighboring solutions of A and selects the one having the minimum number of uncovered t-tuples among them. The
subset W is created by making ω successive calls to the function switch(A, i, j) using different random values of i and
j (0 ≤ i < N, 0 ≤ j < k). Formally, N1(A, ω) can be defined as:

N1(A, ω) =

{
A′ ∈ A : A′ = argmin

A′′∈W
[F (A′′)]

}
(8)

The second function N2(A, γ) constructs a subset R ⊆ A composed of γ different neighboring solutions of A
and returns the best one, i.e., that with the minimum number of uncovered t-tuples. Each of the neighboring solutions
contained in the subset R are produced by the application of the swap(A, i, j, l) function with different randomly chosen
values for i, j and l (0 ≤ i, l < N, 0 ≤ j < k). Thus, we can formally define N2(A, γ) as follows:

N2(A, γ) =

{
A′ ∈ A : A′ = argmin

A′′∈R
[F (A′′)]

}
(9)

During the search process a combination of both N1(A, ω) and N2(A, γ) neighborhood functions is employed by
our ISA algorithm. The former is applied with probability p, while the latter is employed at a (1 − p) rate. This
combined neighborhood function N3(A, x, ω, γ) is defined in (10), where x is a random number in the interval [0, 1].

N3(A, x, ω, γ) =

{
N1(A, ω) if x ≤ p
N2(A, γ) if x > p

(10)

3.5. Cooling schedule
A cooling schedule is defined by the following parameters: an initial temperature, a final temperature or a stopping

criterion, the maximum number of neighboring solutions that can be generated at each temperature (Markov chain
length), and a rule for decrementing the temperature. The cooling schedule governs the convergence of the SA
algorithm. At the beginning of the search, when the temperature is large, the probability of accepting solutions of
worse quality than the current solution (uphill moves) is high. It allows the algorithm to escape from local minima.
The probability of accepting such moves is gradually decreased as the temperature goes to zero.

Cooling schedules which rapidly decrement the temperature can lead the search process to get trapped in an early
local minima. On the contrary, a very slow cooling of the temperature guides the algorithm towards non-promising
searching regions, resulting often in a waste of computational time. A good selection of the cooling schedule is thus
critical to the SA algorithm’s performance.

The literature offers a number of different cooling schedules, see for instance [1, 26, 56, 2, 57, 48]. They can be
divided into two main categories: static and dynamic. In a static cooling schedule, the parameters are fixed and cannot
be changed during the execution of the algorithm. With a dynamic cooling schedule the parameters are adaptively
changed during the execution.

In our ISA implementation we preferred a geometrical cooling scheme (static) mainly for its simplicity. It starts
at an initial temperature Ti which is decremented at each round by a factor α using the relation T j = αT j−1. For each
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temperature, the maximum number of visited neighboring solutions is L. It depends directly on the parameters (N, k
and v) of the studied covering array. This is because more moves are required for bigger CAs.

We will see later that thanks to the two main features presented previously, our ISA algorithm using this simple
cooling scheme gives remarkable results.

3.6. Termination conditions
The ISA algorithm stops either if the current temperature attains T f , when it ceases to make progress, or when a

valid covering array is found. In our implementation a lack of progress exists if after φ (frozen factor) consecutive
temperature decrements the best-so-far solution is not improved.

4. Computational experiments

The procedure described in the previous section was coded in C and compiled with gcc using the optimization flag
-O3. It was run sequentially into a CPU Core 2 Quad at 2.4 GHz, 4 GB of RAM with Linux operating system. In all
the experiments the following parameters were used for our ISA implementation:

a) Initial temperature Ti = 4.0
b) Final temperature T f =1.0E-10.
c) Cooling factor α = 0.99
d) Maximum neighboring solutions per temperature L = (Nkv)2

e) Frozen factor φ = 11
f) The neighborhood function N3(A, x, ω, γ) is applied using a probability p = 0.6 and parameters ω = 10 and
γ = N/2.

These parameter values were chosen experimentally based on a methodology reported in [45, 25], which employs
CAs and Diophantine equations to determine the minimum number of experiments needed to find the combination
yielding the best performance. For the reason of space limitation we did not present here all these experiments, how-
ever in Section 5 the influences of certain of those parameter values on the global performance of the ISA algorithm
are analyzed.

In order to assess the performance of the ISA algorithm introduced in Section 3, a test suite composed of 127
well-known benchmark instances taken from the literature was used [54, 10, 42, 23]. It includes instances of degrees
4 ≤ k ≤ 257 and strengths 3 ≤ t ≤ 6.

The main criterion used for the comparison is the same as the one commonly used in the literature: the solution
quality, i.e., the best size N found (smaller values are better) given fixed values for k, t, and v.

4.1. Comparing ISA with an existing SA implementation
For this experiment we have contacted Myra B. Cohen, who is one of the authors of an existing SA implementation

for the CAC problem (SAC) [16], and asked her to construct some representative binary CAs using her algorithm. She
ran once (sequentially) SAC on the following instances using a CPU Dual Opteron 250 at 2.4 GHz, 4 GB of RAM with
Linux operating system [14]: CA(N; 3, 23, 2), CA(N; 3, 38, 2) and CA(N; 3, 51, 2). These are binary CAs of strength
three, however they are the only benchmark instances available for us at this moment that can be used to make a fair
comparison between ISA and SAC [16].

Table 1 summarizes Cohen’s results as well as those obtained by one execution of our ISA algorithm over the
same benchmark instances. Column 1 lists the degree k of the instance. Columns 2 and 3 show the best size N
found by SAC and the CPU time in seconds required by this algorithm for reaching that solution. Column 4 indicates
the time in seconds expended by ISA to attain the same solution quality as SAC, when it is ran on the computer
described above in this section. The best solution quality N∗ found by ISA along with its expended computational
time T (in seconds) are listed in columns 6 and 7, respectively. Column 9 presents the difference between the best
results produced by ISA and SAC, ∆C = N∗ − N. Finally, the difference of the CPU times expended by the compared
algorithms, ∆T = TISA − TSAC, is provided for indicative purposes in the last column.

The running times from the SAC and ISA algorithms presented in Table 1 cannot be directly compared, since
the computational platforms used to run them are different. Nevertheless, we have scaled, by a factor of 2.06, our
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Table 1: Comparison between ISA and SAC (an existing SA implementation [16]) over a set of selected instances of strength three. For each
instance of degree k the best size N found by SAC, its CPU time in seconds (TSAC) as well as the time expended by ISA (TISA) to attain the same
solution as SAC are presented. N∗ indicates the best solution quality found by ISA and T its computational time (in seconds). The difference
between the best results produced by ISA and SAC, ∆C = N∗ − N, and their expended CPU times ∆T = TISA − TSAC are also provided.

SAC ISA ISA

k N TSAC TISA TISA N∗ T T ∆C ∆T

23 22 810.84 2.28 4.70 20 38.92 80.15 -2 -806.14
38 28 9844.35 0.90 1.85 24 129.20 266.07 -4 -9842.50
51 31 18366.10 10.98 22.61 28 241.49 497.31 -3 -18343.49

Avg. 27.00 9673.76 4.72 9.72 24.00 136.54 281.18 -3.00 -9664.04

execution times according to the Standard Performance Evaluation Corporation (http://www.spec.org) in order to
present them in a normalized form (see columns 5 and 8).

From Table 1 we can observe that SAC is the most time-consuming algorithm, since it uses an average of 9673.76
seconds for solving these three instances. On the contrary, ISA employs only 9.72 seconds on average to equal the
results furnished by SAC. We can also remark that ISA can take advantage of longer executions. Indeed it is able to
consistently improve the best size N found by SAC, obtaining an average amelioration of 11.11% (compare columns
2 and 6). Furthermore, ISA achieves those results by employing only a small fraction of the total time used by SAC
(see columns 3 and 8).

Thus, as this experiment confirms, our ISA implementation is more effective for searching binary CAs of strength
three than the existing SA algorithm reported by Cohen et al. [16]. Below, we will present more computational results
obtained from a performance comparison carried out between ISA and a well-known greedy algorithm over larger
strength benchmark instances.

4.2. Comparing ISA with a well-known greedy algorithm
For the second of our experiments we have obtained the IPOG-F algorithm [23], which is part of the FireEye

software package (now called ACTS) and is publicly available from http://csrc.nist.gov/groups/SNS/acts.
The objective of this experiment is to make a fair comparison between IPOG-F and our ISA algorithm. Since IPOG-F
is a greedy algorithm, this comparison is mainly focused on the expended computational time needed by ISA, to attain
the same solution quality produced by IPOG-F.

The experimental comparison between ISA and IPOG-F was accomplished running once each compared method
over 60 benchmark instances of strengths 3 ≤ t ≤ 6 and degrees 4 ≤ k ≤ 30 (see Section 4). For the experiment a
CPU Core 2 Quad at 2.4 GHz, 4 GB of RAM with Linux operating system was used. IPOG-F was executed with the
parameter values suggested by its authors in [23].

The results from this experiment are summarized in Table 2, which presents in the first two columns the strength t
and the degree k of the selected benchmark instances. The best size NIPOG-F found by the IPOG-F algorithm as well as
the CPU time TIPOG-F in seconds expended for reaching these results are listed in columns 3 and 4. Column 5 shows
the execution time needed by our ISA algorithm to match the same solution quality produced by IPOG-F. Finally, the
difference between the running times of ISA and IPOG-F is displayed in column 6 (i.e., ∆ = TISA − TIPOG-F).

From the data presented in Table 2 one can see that ISA is able to easily reach the same solution quality, in terms
of the size N, as the IPOG-F method. Indeed, ISA is faster than IPOG-F for solving all the benchmark instances of
strengths 3 through 5, since it consumes only 10.00% of the computational time employed by IPOG-F. In the case of
the strength 6 benchmark instances, ISA expends more CPU time than IPOG-F for constructing the covering array
CA(375; 6, 21, 2), however for the rest of those instances ISA expends 39.23% less computational time than IPOG-F.
Thus, we can conclude from this experiment that, for the selected benchmark instances, ISA is on average faster
than IPOG-F. Next, we present a series of experiments devoted to asses the performance of ISA with respect to the
best-known methods published in the literature.

4.3. Comparing ISA with the state-of-the-art procedures
The purpose of this experiment is to carry out a performance comparison of the bounds achieved by our ISA

algorithm with respect to the best-known solutions reported in the literature [18], which were produced using the
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Table 2: Comparison between ISA and the greedy algorithm IPOG-F [23]. For each instance of strength t and degree k, the best size (NIPOG-F)
found by the IPOG-F, its CPU time (TIPOG-F) in seconds as well as the time expended by ISA to match these solutions are listed. The difference
between both running times is displayed in last column (∆ = TISA − TIPOG-F).

t k NIPOG-F TIPOG-F TISA ∆

3

4 8 0.91 0.01 -0.90
5 12 0.96 0.01 -0.95
6 15 0.98 0.01 -0.97
7 16 1.06 0.01 -1.05
9 17 1.09 0.01 -1.08

11 18 1.04 0.01 -1.03
12 19 1.22 0.01 -1.21
13 20 1.13 0.01 -1.12
15 21 1.20 0.01 -1.19
16 22 1.05 0.01 -1.04
19 24 1.25 0.01 -1.24
21 25 1.64 0.01 -1.63
24 26 1.14 0.03 -1.11
26 27 1.35 0.03 -1.32
30 28 1.46 0.08 -1.38

Avg. 19.87 1.17 0.02

t k NIPOG-F TIPOG-F TISA ∆

5

6 42 1.21 0.01 -1.20
7 61 1.80 0.01 -1.79
8 73 1.72 0.01 -1.71
9 85 1.96 0.01 -1.95

10 87 1.62 0.01 -1.61
11 95 1.67 0.01 -1.66
12 105 1.87 0.03 -1.84
13 111 2.13 0.06 -2.07
14 119 2.25 0.10 -2.15
15 127 2.90 0.25 -2.65
16 134 3.44 0.31 -3.13
17 140 3.93 0.40 -3.53
18 144 4.94 1.62 -3.32
19 148 6.50 2.62 -3.88
20 155 8.61 2.35 -6.26

Avg. 108.40 3.10 0.52

t k NIPOG-F TIPOG-F TISA ∆

4

5 22 1.05 0.01 -1.04
6 26 1.23 0.01 -1.22
7 32 2.24 0.01 -2.23
8 34 2.60 0.01 -2.59
9 37 2.67 0.03 -2.64

10 41 2.76 0.02 -2.74
11 43 2.85 0.06 -2.79
12 47 2.91 0.07 -2.84
13 49 2.95 0.14 -2.81
14 52 3.58 0.22 -3.36
15 53 3.91 0.43 -3.48
16 56 4.94 0.51 -4.43
17 57 6.51 0.76 -5.75
18 60 8.98 1.19 -7.79
19 62 11.19 0.91 -10.28

Avg. 44.73 4.03 0.29

t k NIPOG-F TIPOG-F TISA ∆

6

7 64 1.05 0.01 -1.04
8 124 1.05 0.01 -1.04
9 154 1.56 0.01 -1.55

10 165 1.78 0.06 -1.72
11 192 2.28 0.08 -2.20
12 215 2.34 0.27 -2.07
13 237 3.08 0.63 -2.45
14 256 4.31 1.33 -2.98
15 276 6.39 1.88 -4.51
16 292 10.16 4.44 -5.72
17 309 15.43 9.82 -5.61
18 327 26.23 16.30 -9.93
19 343 38.45 29.67 -8.78
20 363 60.72 41.73 -18.99
21 375 92.39 99.32 6.93

Avg. 246.13 17.81 13.70

following state-of-the-art procedures: orthogonal array constructions [8], Roux type constructions [54], doubling
constructions [10], algebraic constructions [27], Deterministic Density Algorithm (DDA) [6], Tabu Search (TS) [58],
and IPOG-F [23].

The SA implementation reported by Cohen et al. (SAC) [16] for solving the CAC problem was intentionally
omitted from this comparison because as their authors recognize this algorithm fails to produce competitive results
when the strength of the arrays is t ≥ 3.

For this experiment we have fixed the maximum computational time expended by ISA for constructing a CA to 8
hours. Due to the incomplete and non-deterministic nature of our ISA algorithm, 20 independent runs were executed
over a subset of 62 benchmark instances of strengths 3 ≤ t ≤ 6 and degrees 4 ≤ k ≤ 56 (see Section 4). The detailed
computational results produced by this experiment are listed in Table 3. The first two columns in this table indicate
the strength t and degree k of the selected instances. Next 2 columns show, in terms of the size N of the CAs, the best
solution found by TS [58] and IPOG-F [23]. Column 5 presents the smallest (Best) CAs published in the literature
[18], while column 6 reports the best solutions achieved by ISA. Column 7 lists the computational time T , in seconds,
consumed by ISA. The difference between the best result produced by ISA and the previous best-known solution
(∆ = ISA − Best) is depicted in the last column. In the case of the strength 6 benchmark instances, the column
corresponding to the TS results was omitted since they were not furnished by the authors [58].

Results in bold in column 6 indicate that the produced CAs contain two constant rows. A covering array A = N×k
contains a constant row ai if ai, j = ai,0,∀i, j | i, j ∈ {0, . . . , k − 1}, ai,0 ∈ {0, . . . , v − 1}. This characteristic of the CAs
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Table 3: Improved bounds on CAN(t, k, 2) for strengths 3 ≤ t ≤ 6 and degrees 4 ≤ k ≤ 56 produced by ISA using a computational time limited to
8 hours. For each instance of strength t and degree k, the best solution, in terms of the size N, found by TS [58], IPOG-F [23] and ISA are listed.
T represents the computational time consumed by ISA, in seconds, and Best the best-known solution reported in the literature [18]. Last column
depicts the difference between the best result produced by ISA and the previous best-known solution (∆ = ISA − Best). Results in bold indicate
that the produced CAs contain two constant rows.

N
t k TS IPOG-F Best ISA T ∆

3

4 8 9 8 8 0.01 0
5 10 11 10 10 0.01 0
8 12 17 12 12 0.01 0

11 12 18 12 12 0.01 0
12 15 19 15 15 0.03 0
14 16 21 16 16 52.45 0
16 17 22 17 17 21.72 0
20 18 25 18 18 59.10 0
22 19 26 19 19 31.70 0
23 22 26 22 20 38.92 -2
25 23 27 23 21 19.77 -2
26 23 27 23 22 67.48 -1
28 23 28 23 23 55.30 0
38 25 33 26 24 129.20 -1
44 27 33 27 25 143.98 -2
46 30 34 30 26 4644.39 -4
49 31 36 31 27 3204.58 -4
52 31 37 31 28 241.49 -3
54 31 37 31 29 378.71 -2
56 31 37 31 30 122.31 -1

Avg. 21.20 26.15 21.25 20.10 460.56

N
t k TS IPOG-F Best ISA T ∆

5

6 32 42 32 32 0.01 0
7 56 57 42 42 0.01 0
8 56 68 56 52 0.88 -4
9 62 77 62 54 20.14 -8

10 62 87 62 56 649.59 -6
14 110 119 103 64 1534.46 -39
15 152 127 110 79 1890.78 -31
16 152 134 117 99 2350.78 -18
17 176 140 123 104 5823.65 -19
18 176 144 127 107 13807.90 -20
19 176 148 135 116 18675.67 -19
20 194 155 136 119 20679.19 -17
21 261 160 136 122 22876.39 -14
22 261 163 136 124 24935.87 -12

Avg. 137.57 115.79 98.36 83.57 8088.95

N
t k TS IPOG-F Best ISA T ∆

4

5 16 22 16 16 0.01 0
6 21 26 21 21 0.01 0

12 48 47 24 24 0.01 0
13 53 49 34 32 725.67 -2
17 54 57 39 35 1876.45 -4
18 55 60 39 36 1467.89 -3
20 55 65 39 39 1476.17 0
21 80 68 42 42 1534.89 0
22 80 69 44 44 1675.45 0
24 80 71 46 46 1765.79 0
25 80 74 50 50 1894.45 0
26 91 74 52 51 2076.56 -1
28 91 77 54 53 2300.67 -1
30 92 80 58 56 2543.78 -2
32 94 83 59 58 3745.78 -1
33 96 83 64 61 3356.23 -3
35 96 85 66 64 3723.56 -2
37 96 88 67 65 8610.35 -2

Avg. 71.00 65.44 45.22 44.06 2154.10

N
t k IPOG-F Best ISA T ∆

6

7 79 64 64 0.01 0
8 118 85 85 0.03 0
9 142 111 108 179.32 -3

10 165 116 116 243.87 0
11 192 128 118 329.60 -10
15 276 160 128 3356.05 -32
16 292 230 179 432.79 -51
17 309 276 235 395.80 -41
18 327 291 280 218.00 -11
19 343 308 299 763.01 -9

Avg. 224.30 176.90 161.20 591.85

is particularly important when they are used as ingredients to some recursive procedures [10, 28, 41], since constant
rows allow us to reduce the final size N of the arrays constructed with these methods which can lead to new bounds.

The analysis of the data presented in Table 3 leads us to the following main observations. First, the solution quality
attained by ISA is very competitive with respect to that produced by the state-of-the-art procedures summarized in
column 5 (Best). In fact, it is able to improve on 39 previous best-known solutions and to equal these results for
the other 23 benchmark instances. Please notice that for several instances, like covering array CA(N; 6, 16, 2), a
significant reduction of the size N is accomplished by our algorithm when compared with the previous best-known
solution (∆ up to −51).

Second, one observes that the procedures IPOG-F [23] and TS [58] consistently return poorer quality solutions
than ISA. Indeed, ISA produces CAs which are on average 28.44% and 35.71% smaller than those constructed by
IPOG-F and TS, respectively.

Regarding the computational effort we would like to point that, in general, authors of the algorithms used in our
comparisons did not provide detailed information about their expended CPU times. Thus, the running times from
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these algorithms cannot be directly compared with ours.
Even if the results attained by our ISA algorithm are very competitive, we have observed that the average comput-

ing time consumed by our approach, to produce these results, is greater than that used by some recursive [28, 41] and
algebraic methods [29, 10, 27]. However, since ISA outperforms some of the state-of-the-art procedures, finding 39
new bounds, we think that the extra consumed computing time is fully justified. Specially, if we consider that in this
kind of experiments the main objective is to compare the best bounds achieved by the studied algorithms.

4.4. Comparing ISA on higher degree instances

This experiment aims at comparing the performance of our ISA algorithm with respect to state-of-the-art proce-
dures over a set of 65 higher degree instances (20 ≤ k ≤ 1712) of strengths 3 ≤ t ≤ 6. In order to better understand
the limits of our ISA implementation, the maximum computational time allowed for each one of the 20 independent
executions of this experiment was fixed to 72 hours.

Table 4 summarizes the computational results from this experimental comparison. Columns 1 and 2 depict the
strength t and degree k of the benchmark instances. Next 2 columns list the best solution found by TS [58] and
IPOG-F [23], in terms of the size N of the CAs, while column 5 presents the best-known solution (Best) reported in
the literature [18]. In column 6 the best results reached by ISA, within the maximum computational time allowed,
are indicated. Results in bold in this column denotes that the resulting covering array contains two constant rows.
Column 7 displays the difference between the best result produced by ISA and the previous best-known solution
(∆ = ISA − Best). Once again, we have omitted the TS column in the case of the strength 6 instances because
we do not have the results furnished by TS [58] over those CAs. The IPOG-F method does not report a result for
CAN(5, 192, 2) [23].

From Table 4, it is observed that ISA outperforms all the other compared algorithms in terms of solution quality.
ISA is able to improve the previous best-known solutions for the 65 tested instances within the maximum CPU time
fixed. When comparing the algorithms TS, IPOG-F and ISA with each other, over the instances of strengths 3 through
5, one finds that the average size N of the CAs produced by them is 331.59, 186.33 and 150.84. Therefore, for the
selected instances the CAs produced by ISA are 54.51% and 19.04% smaller than those produced by TS and IPOG-F,
respectively. In the case of the strength 6 benchmark instances, the average size N of the CAs produced by ISA is
7.06% smaller than that of IPOG-F (481.00 vs. 447.05).

These results demonstrate that our ISA implementation is highly effective and capable of surpassing the best
procedures reported in the literature in terms of solution quality. It is particularly important to note that ISA was able
to construct the covering array CA(66; 3, 1712, 2). To the best of our knowledge this is the highest degree covering
array of strength three ever found by computational search.

Next section is dedicated to analyze the implications of the results achieved by our ISA algorithm when they are
used as ingredients to some recursive constructions [10, 28, 41].

4.5. Some implications of the results

As we have seen, from the previous experimental comparisons, ISA is able to find new bounds on CAN(t, k, 2)
for strengths 3 ≤ t ≤ 6 and degrees 4 ≤ k ≤ 1712. These results, by themselves, represent an important achievement
in the study of this kind of combinatorial structures. However, they also have the additional value of being excellent
ingredients to recursive procedures which can be used to attain other new bounds.

For instance, by using the CAs CA(12; 3, 11, 2) and CA(15; 3, 12, 2) (built with ISA) as ingredients to the recur-
sive method reported in [21] we can construct CA(61; 3, 1452, 2), which improves the previous best-known solution
CA(69; 3, 1452, 2) [18]. Using this combination of ISA and recursive constructions permits to find 20 new bounds
for binary CAs of strength three and degrees 88 ≤ k ≤ 10648. The interested reader is referred to [21] for a detailed
description of those new bounds.

5. Analyzing the performance of ISA

The main objective of this section is to experimentally analyze the global performance of the ISA algorithm and
the influences that some of its key features have on it. Next, we present the results of the experiments carried out for
this purpose.
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Table 4: Improved bounds on CAN(t, k, 2) for strengths 3 ≤ t ≤ 6 and degrees 20 ≤ k ≤ 1712 produced by ISA using a computational time limited
to 72 hours. For each instance of strength t and degree k, the best solution, in terms of the size N, found by TS [58], IPOG-F [23] and ISA are listed.
Best represents the best-known solution reported in the literature [18], while last column depicts the difference between the best bound produced
by ISA and the previous best-known solution (∆ = ISA − Best). Results in bold indicate that the produced CAs contain two constant rows.

N
t k TS IPOG-F Best ISA ∆

3

68 33 39 32 31 -1
123 41 46 42 35 -6
127 41 46 42 36 -5
140 42 48 43 37 -5
141 44 48 43 39 -4
144 44 48 43 40 -3
156 44 48 44 41 -3
177 49 50 44 42 -2
242 51 55 44 43 -1
243 51 55 46 44 -2
246 51 55 46 45 -1
256 52 55 49 46 -3
257 53 55 52 47 -5

1712 86 77 69 66 -3
Avg. 48.71 51.79 45.64 42.29

N
t k TS IPOG-F Best ISA ∆

5

24 261 175 136 132 -4
128 644 366 254 252 -2
132 644 370 262 260 -2
138 644 374 274 272 -2
140 644 376 278 274 -4
150 734 386 298 289 -9
152 734 387 302 292 -10
158 734 390 314 305 -9
164 770 394 326 310 -16
168 770 398 334 318 -16
174 1002 402 346 331 -15
180 1005 406 358 338 -20
192 1005 — 359 352 -7

Avg. 737.77 368.67 295.46 286.54

N
t k TS IPOG-F Best ISA ∆

4

38 96 89 67 66 -1
89 181 120 89 87 -2
97 182 123 97 94 -3

101 182 125 101 98 -3
107 182 127 107 102 -5
109 182 127 109 105 -4
113 183 130 113 107 -6
145 189 140 138 123 -15
151 189 142 142 129 -13
156 189 145 145 130 -15
169 249 147 147 135 -12
184 252 151 151 150 -1
196 257 155 155 151 -4
208 257 157 157 154 -3
213 257 158 158 156 -2
217 257 159 159 157 -2
222 257 160 160 159 -1

Avg. 208.29 138.53 129.12 123.71

N
t k IPOG-F Best ISA ∆

6

20 363 327 314 -13
21 375 341 330 -11
22 382 355 344 -11
23 397 371 357 -14
24 411 384 372 -12
25 426 397 385 -12
26 438 409 399 -10
27 449 422 410 -12
28 463 432 421 -11
29 474 444 435 -9
30 481 454 444 -10
31 489 464 457 -7
32 500 473 468 -5
33 511 496 480 -16
34 522 502 488 -14
35 528 510 496 -14
36 535 525 505 -20
37 544 534 514 -20
38 552 545 530 -15
40 566 560 545 -15
60 695 695 694 -1

Avg. 481.00 459.05 447.05

5.1. ISA overall performance

In general, authors of the algorithms used in our experimental comparisons (Sections 4.3 and 4.4) only provide
the best solution quality, in terms of the size N, achieved by them. Thus, these algorithms cannot be statistically
compared with ISA. Nevertheless, we can illustrate and analyze the average behavior of ISA using the execution
profiles produced during the 20 independent executions of those comparative experiments. Figure 1 shows three
execution profiles which represent the evolution of the worst, average and best values of the evaluation function F (A)
attained by ISA during the search process for constructing the CAs CA(16; 3, 14, 2) and CA(52; 5, 8, 2). Each iteration
in the graphs represents a call to the evaluation function described in Section 3.2.

From Figure 1 we can observe a relatively small gap between the worst and the best solution found during these
executions. It is an indicator of the algorithm’s precision and robustness since it shows that on average the performance
of ISA does not present important fluctuations. For these particular instances the average standard deviation is 4.75
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Figure 1: Execution profiles of ISA over the instances: (a) CA(16; 3, 14, 2) and (b) CA(52; 5, 8, 2).

and 9.91, respectively. This figure allows us to summarize the overall behavior of ISA since similar results were
obtained with all the other tested instances.

5.2. Influence of the initial solution
In this experiment we compare the performance of two different procedures for constructing the initial solution of

ISA. The first one is commonly used in the literature [43, 15], and creates the initial solution by assigning randomly
a symbol in v at each element ai, j of the array. The second one is the procedure described in Section 3.3 which
guarantees a balanced number of symbols in each column of the generated covering array CA(N; t, k, v) (Balanced).
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Figure 2: Performance comparison of two different initialization procedures for ISA over the instances: (a) CA(16; 3, 14, 2) and (b) CA(56; 5, 10, 2).

Both initialization procedures (called here Random and Balanced, respectively) were integrated into the ISA
source code and executed 20 times over the benchmark instances described in Section 4. The results achieved by ISA
over the instances CA(16; 3, 14, 2) and CA(56; 5, 10, 2) are illustrated in Figure 2. The plot represents the iterations
of ISA (abscissa) against the average solution quality attained from the starting arrays generated with the compared
initialization procedures (ordinate). Figure 2 discloses that ISA using balanced initial solutions performs much better
than the ISA algorithm that starts from a randomly generated solution. Very similar results were obtained with the rest
of the analyzed benchmark instances, thus this figure correctly summarizes the behavior of the compared initialization
procedures.
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5.3. Influence of the neighborhood functions

The neighborhood function is a critical element for the performance of any local search algorithm. In order to
further examine the influence of this element on the global performance of our ISA implementation we have performed
some experimental comparisons using the following neighborhood functions (described in Section 3.4):

• switch(A, i, j)

• N1(A, ω)

• N2(A, γ)

• N3(A, x, ω, γ)

For this experiment each one of the studied neighborhood functions was implemented within ISA, compiled and
executed independently 20 times over the selected benchmark instances using the set of parameter values listed in
Section 4. The results of this experiment are summarized in Figure 3. It shows the differences in terms of average
solution quality attained by ISA, when each one of the studied neighborhood relations is used to solve the instances
CA(16; 3, 14, 2) and CA(56; 5, 10, 2) (comparable results were obtained with all the other tested instances). From
this graph it can be observed that the worst performance is attained by ISA when the neighborhood function called
switch(A, i, j) is used. The functions N1(A, ω) and N2(A, γ) produce better results compared with switch(A, i, j)
since they improve the solution quality faster. However, they also cause that our ISA algorithm gets stuck on some
local minima. Finally, the best performance is attained by ISA when it is employed the neighborhood function
N3(A, x, ω, γ), which is a compound neighborhood combining the complementary characteristics of both N1(A, ω)
and N2(A, γ).
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Figure 3: Performance comparison of four neighborhood functions using ISA over the instances: (a) CA(16; 3, 14, 2) and (b) CA(56; 5, 10, 2).

6. Conclusions

Software systems are becoming ubiquitous in modern society where numerous human activities rely on them to
fulfill their needs for information processing, storage, search, and retrieval. These software systems are usually highly
complex and contain millions of lines of source code. Furthermore, they usually have many possible configurations
which are produced by the combination of their multiple input parameters. In order to ensure the quality of these
software products any such configuration should be tested [9]. However, as the number of input values grows and
the number of discrete values for each datum item increases, exhaustive functional testing becomes impractical or
impossible due to time and cost limitations [22]. Hence, different criterion for selecting test cases were proposed in
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the literature to deal with this issue [44, 4, 37, 3, 7]. Software interaction testing distinguishes among them, because
it employs combinatorial structures called covering arrays (CAs) for representing economical sized test suites that
provide coverage of all the t-way combinations of component values [13].

In this paper, we have introduced an improved implementation of a Simulated Annealing algorithm (ISA) for
constructing binary CAs of different strengths. This algorithm integrates two key features that importantly determine
its performance. First, an efficient method to generate initial solutions containing a balanced number of symbols
in each column. Second, a carefully designed composed neighborhood function which allows the search to quickly
reduce the total cost of candidate solutions, while avoiding to get stuck on some local minima.

To assess the practical effectiveness of our ISA algorithm, we have carried out extensive experimentation using
a set of 127 benchmark instances taken from the literature [54, 10, 42, 23]. In these experiments our algorithm was
carefully compared with an existing simulated annealing implementation (SAC) [16], a greedy method called IPOG-F,
and other five state-of-the-art algorithms. The results show that ISA improves 11.11% on average the best results found
by SAC, expending for that a small fraction of the computational time employed by this existing algorithm. Regarding
IPOG-F [23] we have observed that on average it consumes more computational time than our ISA algorithm while
returning on average worse quality solutions. Compared with the representative state-of-the-art algorithms, our ISA
algorithm was able to improve on 104 previous best-known solutions and to equal these results on the other 23 selected
benchmark instances, expending a reasonable amount of time. Furthermore, it was demonstrated that certain of these
new bounds on CAN(3, k, 2) can be used as input to recursive construction methods in order to produce 20 new bounds
for binary CAs of strength three and degrees 88 ≤ k ≤ 10648 [21].

These experimental results confirm the practical advantages of using our algorithm in the software testing area.
It is a robust algorithm yielding smaller test suites than other representative state-of-the-art algorithms at competitive
computational time, which allows reducing software testing costs.

The introduction of this new simulated annealing implementation opens up an exciting range of possibilities for
future research. Currently we are working on applying directly the ISA algorithm presented here for constructing CAs
of strength t > 6 and order v > 2. More generally, we think that it would be interesting to adapt the data structures
currently used in our ISA algorithm for allowing it to construct mixed level covering arrays, i.e., CAs where the
number of component values varies.

Finally we would like to point out that the CAs constructed using the ISA algorithm reported in this paper are
available under request at the following address: http://www.tamps.cinvestav.mx/~jtj.
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