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Abstract. The cyclic bandwidth sum problem (CBSP) consists in em-
bedding a host graph into a cycle graph while minimizing the sum of
cyclic distances between guest adjacent vertices embedded in the host.
While the problem has been addressed by heuristic and metaheuristic
methods, to the best of our knowledge, this is the first effort to apply
exact methods. This work presents preliminary results on the use of con-
straint programming (CP) and a branch & bound (B&B) algorithm to
solve the cyclic bandwidth sum problem in small graphs from commonly
employed topologies.
We created a CP model of the CBSP and devised two further refined
versions by adding new constraints based in problem-specific knowledge.
For our proposed B&B algorithm, we designed a custom criterion for
search priority employing estimations of potential cost. The results pro-
vided an assessment of the pros and cons of both methodologies, with
the CP approach offering a more reliable alternative in terms of solved
instances, execution time and implementation effort.

Keywords: Cyclic bandwidth sum problem, Exact solution methods,
Constraint programming, Branch & bound

1 Introduction

The cyclic bandwidth sum problem (CBSP) is a graph embedding problem
(GEP) [2] formally defined as follows. Let G = (V,E) be a simple finite undi-
rected graph (the guest) of order n, and Cn a cycle graph (the host) with vertex
set |VH | = n and edge set EH . Given an injection ϕ : V → VH , the cyclic
bandwidth sum (CBS) is defined as:

CBS(G,ϕ) =
∑

(u,v)∈E

|ϕ(u)− ϕ(v)|n , (1)

where |x|n = min{ |x|, n − |x| } (with 1 ≤ |x| ≤ n − 1) is the cyclic distance,
and the vertex in VH associated to vertex u ∈ V is denoted by the label ϕ(u).
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The CBSP consists in finding the optimal embedding ϕ∗, such that CBS(G,ϕ∗)
is minimum, i.e., ϕ∗ = arg minϕ∈Φ{CBS(G,ϕ)} with Φ denoting the set of all
possible embeddings.

The CBSP is an NP-Hard GEP [2] that arises in the simulation of network
topologies for parallel computer systems, scheduling in broadcasting based net-
works, and compressed sensing in sensor networks [5, 6, 8]. It has been tackled
with an ad hoc constructive heuristic [3], and metaheuristic algorithms [12, 14].
However, to the best of our knowledge, there is no exact methods reported to
solve it.

In this paper we explored the use of constraint programming (CP) [11] and
branch & bound (B&B) [9] for solving small instances of the CBSP. We cre-
ated a CP model and incrementally refined it by adding more problem related
information. Then, we compared it with our B&B algorithm, which was also
designed with the CBSP in mind. These methods give us a preliminary assess-
ment of the use of exact approaches for our problem and their potential for their
improvement.

The rest of this work is organized as follows. Section 2 presents an initial CP
model and two refinements. Then, our B&B algorithm is described in Section 3.
A performance comparison for these methods is presented in Section 4. Finally,
Section 5 summarizes our findings and future work.

2 Constraint programming modeling

CP is a useful paradigm for solving satisfiability and optimization problems
by employing a declarative approach, where problems are described by models
stating their characteristics. CP models are processed by solver software using
efficient filtering algorithms for search space exploration, while the model serves
as a guide to discard regions and to recognize optimal solutions. Models use
three main types of components to describe problems: variables, domains and
constraints. The variables represent the solution to be created by exploring the
specified domains, and the constraints are conditions the variables must met,
including the problem’s objective. A problem is solved through its CP model by
producing valid solutions, in the form of assignations of domain values to the
variables, such that the constraints are not broken [13].

CP can be particularly powerful for discrete combinatorial problems, because
of the finite domain character of their variables [1]. The constraint propagation
is a key distinctive aspect in CP. It reduces the search space recursively, by
discarding constraint breaking values from the domains of the variables and
using information about those values to reduce the domain of other variables
involved in the same constraint.

Once a good model is available, the CP approach is accessible and rela-
tively easy to implement, thanks to frameworks of specialized software, providing
modeling languages, interpreters, compilers, and solvers to create and process
the models. Solvers implement advanced search algorithms based on trees, back-
tracking, and techniques from various areas, such as mathematical programming,
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operational research and artificial intelligence, to efficiently explore within the
bounds defined by a CP model. The CP models in this work were created using
Minizinc [10], an standardized modeling language that acts as an intermediary
between the user and solvers.

2.1 An initial CBSP model

Often, the same constraint can be expressed in different ways, some of which may
result more efficient. Therefore, it is key to effectively translate the features of
the problem into the CP paradigm. Performance can also benefit from a certain
redundancy in the constraints.

Data representation. CBSP instances consist of finite simple undirected
graphs. The format representation contains the number of vertices n, the number
of edges e, a 2-D array E(1..e, 1..2) listing the edges, where E(i, 1) and E(i, 2)
are the endpoints of the i-th edge.

Variables. The decision variables represent the labeling, such that g(1..n)
is an array of the labels assigned to vertices, where g(i)′ is the label mapping
guest vertex i ∈ V to host vertex g(i) ∈ V ′.

Constraints. CBSP embeddings are bijective mappings between guest and
host vertices, so the first constraint is that to each unique guest vertex cor-
responds to one unique host vertex as a label, such that ∀i, j ∈ [1..n] | i < j
with g(i) 6= g(j). This constraint would be equal to a series of pairwise con-
junctions stating that no pair of vertices can have the same label, in the form
g(1) 6= g(2)∧g(1) 6= g(3)∧· · ·∧g(1) 6= g(n)∧· · ·∧g(n−1) 6= g(n). Large conjunc-
tions can be costly to compute, so many solvers implement instead customized
efficient algorithms based on inferences. These algorithms can be accessed via
global constraints, which are concisely express relationships among several vari-
ables. In terms of representation and reasoning, they provide a higher level of
abstraction and better structure to the problem, allowing filtering algorithms to
be much more specialized and efficient. Therefore, we used the global constraint
alldifferent [7], stating that all elements in an array must be pairwise distinct.

alldifferent(g) (2)

Objective function. The cost of a solution is the sum of cyclic distances
cbs =

∑e
i=1 distance(i), where distance(i) is the cyclic distance associated to

edge i. Each cyclic distance can have a value between 1 and dmax = bn/2c.
A cyclic distance equals the length of the shortest path between two adja-
cent vertices of the guest graph embedded in the host graph, expressed as
∀i ∈ [1..e] distance(i) = min {n− |g(E(i, 1))|, |g(E(i, 2))|}. The goal of the
CBSP is to find the lowest cost embedding, therefore the objective function
for the model is to minimize the sum of cyclic distances.

minimize(cbs) (3)

The first CBSP model is M0, defined by the previously defined variables, and
the conjunction of the constraints and the objective, M0 = (2) ∧ (3).
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2.2 Refined CP models

Breaking cyclic symmetries. Since the host topology is cyclic, different label-
ings can result in isomorphic embeddings under rotation and mirror symmetries.
To remove those solutions from the search space, two constraints were added,
ensuring that only the lexicographicaly minor of the isomorphic embeddings is
computed. They state that the fist vertex must be associated to the fist label
and that the label of the second vertex must be lower than the label of the last
one, thus eliminating the rotation and mirror symmetries, respectively. The first
refined model, M1, results from adding these symmetry breaking constraints to
the initial model, thus M1 = M0 ∧ (4) ∧ (5).

g(1) = 1 (4)

g(2) < g(n) (5)

Adding upper and lower bounds. Including cost bounds can improve
the performance by discarding solutions with cost outside the bounds. The data
representation was modified to include two new input variables, the CBS lower
bound lb and upper bound ub. These values vary according to each graph topol-
ogy3. In the case of graph topologies for which there are exact formulas to
calculate the value of the optimum, both ub and lb got assigned that value. If
this is not the case, the value of ub was calculated according to topology specific
upper bound formulas, in the case where those exist, or the topology indepen-
dent upper bound formula, otherwise. The value of lb was set as e + 1. Model
M2 results from adding the upper and lower bound constraint to model M1,
therefore M2 = M1∧ (6). Notice that in the case the exact value of the optimum
is known, then ub = lb and the constraints still holds.

lb ≤ cbs ≤ ub (6)

3 A Branch and Bound algorithm for the CBSP
B&B algorithms use a tree to implicitly explore a problem’s search space

by creating partitions of smaller subproblems. The nodes of the tree contain
partially defined solutions to such subproblems. From the root of the tree, the
exploration process branches promising nodes into new ones, creating partial
solutions of higher order, and pruning branches that can not lead to the optimum.
This narrows the search, discarding search space regions that do not contain
the optimum [9]. Algorithm 1 shows our B&B. It begins by creating a solution
to use its cost as initial upper bound. This solution is created by a greedy
labeling algorithm based on a depth first search visit of the vertices of G, starting
randomly.

The tree’s root is a partially defined solution of order one, with the first label
assigned to the first vertex. This solution is inserted in a priority queue to keep
track of the exploration, which ends when the queue is empty. When a partial

3 Lower and upper bounds: https://www.tamps.cinvestav.mx/ertello/cbsp.php
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Algorithm 1: Branch and Bound algorithm

1: up← dfs(G)
2: Q← empty priority queue
3: Create root solution a by assigning a(1)← 1
4: Q.push(a)
5: while Q is not empty do
6: b← Q.pop()
7: i← first unassigned node in b
8: for j ∈ { unassigned labels in b} do
9: b′ ← b

10: b′(i)← j
11: cost(b′)→ fp(b′) + fe(b′)
12: if cost(b′) < f(up) then
13: if all vertices in b′ are assigned then
14: up← b′

15: else
16: Q.push(b′)
17: end if
18: else
19: Discard b′

20: end if
21: end for
22: end while
23: g ← up
24: return g

solution b is extracted from the queue, the branching process creates new nodes
by assigning the unused labels to the first unlabeled vertex in b. This produces
n − o(b) new partially defined solutions, where n is the number of vertices and
o(b) is the order of b. A new solution b′ is evaluated to decide if it will be further
explored or discarded. Its cost cost(b′) is the sum of a partial CBS fp(b

′) given
by the defined part of the solution, and a potential CBS fe(b

′), given by the
undefined one. The partial cost is the CBS for the assigned edges, i.e., edges
that have labels assigned to both endpoints. The potential CBS is a best-case
estimation where all the unassigned edges have cyclic distance equal to one. A
partial solution b′ is discarded if the sum of partial and estimated CBS is greater
than the CBS of the current upper bound solution up. If the sum is instead lower,
and b′ is fully defined (its order is n), then b′ is better than the current upper
bound solution up. Therefore b′ replaces up. Otherwise, b′ can not be discarded,
so it enters the queue.

The priority queue sets the exploration order using a combination of partial
solution’s order, partial cost, and a more elaborated estimation of potential cost.
Order is prioritized before potential cost to produce completed solutions as soon
as possible. Partial solutions of equal order are untied by the sum of their par-
tial CBS and estimation fb(b

′). The later is an heuristic estimation calculating
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Table 1. Performance comparison of the original CP model M0, the refined versions
M1 and M2, as well as the branch & bound algorithm.

M0 M1 M2 B&B

Graph |V | |E| den. Op∗ lb ub Best T Best T Best T Best T

path25 25 24 0.08 24 24 0.38 24 0.50 24 0.41 24 0.01

path30 30 29 0.07 29 29 0.41 29 0.51 29 0.39 29 0.01

path40 40 39 0.05 39 39 0.45 39 0.55 39 0.37 39 0.01

cycle25 25 25 0.08 25 25 0.35 25 0.61 25 0.43 25 0.01

cycle30 30 30 0.07 30 30 0.31 30 0.69 30 0.41 30 0.01

cycle40 40 40 0.05 40 40 0.41 40 1.81 40 0.45 40 0.01

wheel25 25 48 0.16 181 181 1hr 181 1hr 181 0.39

wheel30 30 58 0.13 255 255 1hr 255 1hr 255 0.40

wheel40 40 78 0.10 440 440 1hr 440 1hr 440 0.44

cycleP25-2 25 50 0.17 75 75 819.80 75 15.36 75 0.43 75 27.63

cycleP30-2 30 60 0.14 90 90 1hr 90 231.94 90 0.48 90 423.72

cycleP40-2 40 80 0.10 120 120 1hr 120 1hr 120 0.51

cycleP25-3 25 75 0.25 150 150 1hr 150 1hr 150 0.36 150 1hr

cycleP30-3 30 90 0.21 180 180 1hr 180 1hr 180 0.33 180 1hr

cycleP40-3 40 120 0.15 240 240 - 240 1hr 240 0.3 240 1hr

c4c3 12 24 0.36 25 52 52 298.18 52 15.08 52 24.31 52 9.33

p4p3 12 17 0.26 18 36 29 5.94 29 1.14 29 0.90 29 0.13

p4p4 16 24 0.20 25 60 44 876.02 44 70.92 44 51.85 44 17.73

p5p3 15 22 0.21 23 48 42 267.00 42 31.89 42 29.24 42 9.88

p6c3 18 33 0.22 34 123 69 1hr 69 2148.73 69 2,180.70 69 504.16

p6p3 18 27 0.18 28 60 55 1hr 55 3369.98 55 1,560.77 55 426.58

p3c4 12 20 0.30 21 44 40 54.55 40 5.89 40 2.95 40 1.67

p3c5 15 25 0.24 26 55 55 1hr 55 936.39 55 577.85 55 287.31

p4c3 12 21 0.32 22 57 43 65.34 43 5.00 43 4.02 43 2.08

p4c4 16 28 0.23 29 76 64 1hr 64 2458.22 64 2,558.77 64 881.27

p5c3 15 27 0.26 28 87 56 1,900.63 56 156.42 56 101.53 56 35.63

c3k4 12 30 0.45 31 88 72 1,058.78 72 76.63 72 42.17 72 29.69

p3k4 12 26 0.39 27 80 58 243.11 58 18.12 58 16.18 58 6.19

rand10-7 10 32 0.71 33 88 51 19.81 51 1.37 77 2.61 77 1.39

rand10-9 10 41 0.91 42 113 90 78.99 90 3.54 106 4.88 106 1.70

the potential cost of assigning the most suitable available label to one of the
endpoints of the first found edge that already has a labeled endpoint.

4 Experimental results

We tested 30 graphs from diverse topologies commonly employed in the CBSP
literature. Experiments were ran in a computer with an Intel® Core™ i7-8750H
CPU at 2.20GHz and 8GB in RAM and 3,600 seconds (1 hour) as time limit.
Our CP models were created and solved using Minizinc [10], while the B&B
method was coded C++. Table 1 list the results, comparing the best solution cost
and the total execution time for the algorithms. It also includes the order, size
and density of the graphs. Instances are considered solved only if the execution
finished before the time limit was reached, having produced an optimum (marked
in bold). Blank cells mean there was not any solution reported.

Model M0 solved the smallest number of instances and it took the largest
amount of computing time. Adding symmetry breaking constraints in the re-
fined model M1 was helpful to narrow the search, allowing it to solve five more
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instances than to the initial model M0. It also reduced the execution time for
instances previously solved by model M0. The constraints for upper and lower
bounds, added in the the second refined model M2, helped it achieve further im-
provements in performance. Model M2 was successful with all the graphs solved
by model M1, plus seven more. Model M2 was the only method able to con-
sistently solve wheel graphs, even when compared to the B&B algorithm. The
performance of the later was almost comparable to model M2, being faster in a
couple of cases. However, it was not capable of solving all the considered graphs.
It did not produced any solution for the wheel graphs of order larger than n = 15
or the power of cycle graph cycleP40-2. The solutions that the B&B produced
for instances cycleP25-3, cycleP30-3 and cycleP40-3 can be confirmed as opti-
mal by comparing them with the results of model M2, but the B&B could not
demonstrate this by itself, since its execution did not finished before the maxi-
mum set time. While the B&B was, in some cases, faster than the CP models
to provide an optimal result, its inability to solve several of the instances makes
the CP approach with model M2 overall more successful.

The results allowed us to evaluate the gap between the theoretical upper
bound values and the optimums. For instances belonging to the Cartesian prod-
uct topology, the theoretical upper bounds known were larger than the optimum
by an average of 17.25%. For other instances with unknown optimal value, like
the last two instances in Table 1, the gap respect to the upper bound formula
for any graph was 9.34% in average.

We consider that there is still room for improving the results. CP’s perfor-
mance responded very positively to relatively small changes in the construction
of the models that added knowledge of the problem, such as the lower and up-
per bounds. Therefore, further refining the models by adding more information
related to the problem in the form of constraints could further help to solve a
broader variety of larger instances in fewer time. It may be possible to improve
the B&B performance as well, however, the CP approach offers the advantage of
being easier to implement, in the sense that it does not require the microman-
agement of the search exploration.

5 Conclusions

This work explored CP and a customized B&B algorithm as means to solve
the CBSP. To the best of our knowledge, this work is the first proposal and
performance comparison of exact methods for the CBSP.

The CP and B&B approaches were tested on a set of topologically diverse
standard instances of order n ≤ 40, with one hour as the execution time limit.
When comparing the results, the CP approach was proven to be more reliable
than the B&B algorithm, as shown by model M2 solving the largest number
of instances across all the included topologies. In total, the CP models and
the B&B algorithm produced optimal solutions for 30 problem instances. These
optimal cost values allowed us to evaluate the gap respect to the theoretical
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upper bounds for the Cartesian product topology [4], finding that, the known
upper bound values were in average 17.25% larger than the optimal cost.

Considering the results obtained, it is worth exploring the possibility of fur-
ther refinements of the CP models, specially by adding new constraints using
tighter estimations for the cost bounds. It is also desirable to test more graph
topologies with unknown upper bound values.
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