A New Measure for the Bandwidth
Minimization Problem

Jose Torres-Jimenez and Eduardo Rodriguez-Tello

ITESM, Campus Morelos. Paseo de la Reforma 182-A Lomas de Cuernavaca
62589, MEXICO Telephone (52 7) 329 7100

jtorres@Qcampus.mor.itesm.mx, ertello@campus.mor.itesm.mx

Abstract. The Bandwidth Minimization Problem for Graphs (BMPG)
can be defined as finding a labeling for the vertices of a graph, where the
maximum absolute difference between labels of each pair of connected
vertices is minimum. The most used measure for the BMPG algorithms
is 3, that indicates only the maximum of all absolute differences.

After analyzing some drawbacks of 3, a measure, called 7y, which uses a
positional numerical system with variable base and takes into account
all the absolute differences of a graph is given.

In order to test the performance of v and 8 a stochastic search proce-
dure based on a Simulated Annealing (SA) algorithm has been applied
to solve the BMPG. The experiments show that the SA that uses v has
better results for many classes of graphs than the one that uses 3.

Keywords: Bandwidth Metric, Bandwidth Minimization Problem, Graphs,
Simulated Annealing.

1 Introduction

There are essentially two ways in which the BMP can be approached, wether as
a graph or as a matrix. The equivalence of a graph and a matrix is made clear
by replacing the nonzero entries of the matrix by 1’s and interpreting the result
as the adjacency matrix of a graph.

The Matrix Bandwidth Minimization Problem seems to have been originated
in the 1950’s when structural engineers first analyzed steel frameworks by com-
puter manipulation of their structural matrices [10][11]. In order that operations
like inversion and finding determinants take the least time as possible, many
efforts were made to discover an equivalent matrix in which all the nonzero en-
tries would lay within a narrow band near the main diagonal (hence the term
“bandwidth”) [15].

The BMP for graphs (BMPG) was proposed independently by Harper [7]
and Harary [6]. This can be defined as finding a labeling for the vertices of a
graph, where the maximum absolute difference between labels of each pair of
connected vertices is minimum.

Formally, Let G = (V, E) be a finite undirected graph, where V defines the
set of vertices (labeled from 1 to N) and F is the set of edges. And a linear layout

T ={m,72,..,7n} of G is a permutation over {1,2,...N}, where 7; denotes the
label of the vertex that originally was identified with the label i. The bandwidth
0 of G for a layout T is:

Br(G) = Maw gy pyep|m(u) — 7(v)]. (1)

Then the BMPG can be defined as finding a layout 7 for which 3.(G) is
minimum [17].

The first work that helped to understand the computer complexity of the
BMPG, was developed by Papadimitriou, who demonstrated that the decision
problem associated to the BMPG is a NP-Complete problem [14]. Later, it was
demonstrated that the BMPG is NP-Complete even for trees with a maximum
degree of three [12].

There are several algorithms reported to solve the BMPG, they can be di-
vided into two classes: exact and approximate algorithms. Exact algorithms,
guaranteed always to discover the optimal bandwidth, example of exact algo-
rithm is the one published by Gurari and Sudborough [5], it solves the BMPG
in O(N) steps, where k is the bandwidth searched for that graph. Approxi-
mate algorithms are best known as approximate in the sense that they do not
guarantee to find the actual bandwidth of the graph, examples of this sort of
algorithms are [2] [13] [4] [8].

All algorithms mentioned in last paragraph use as a measure of the quality
for a solution (. The only reported exception is a Dueck’s work in which not
only (3 is used, but he also takes into account differences among adjacent vertices
close to 3 [3]. The advantage of Dueck’s approach is the ability to distinguish
small improvements that not necessarily lower the value of 3.

Following the idea of Dueck’s work, a new measure (namely) is proposed in
this paper. This new measure is able to capture even the smallest improvement
that orients the searching of better solutions (i.e. solutions in which all the
absolute differences are minimized).

The rest of this work is organized into eight more sections. Section 2 concen-
trates on an analysis of the 3 measure, cardinality of its equivalency classes, and
possible drawbacks of 8. In Section 3 a new measure called v is proposed, which
takes into account all the edges of the graph. Section 4 makes a comparison be-
tween (and . Section 5 explains problems in the computation of v for graphs
with a big number of vertices. Section 6 shows the details of the implementation
of the SA algorithm that was used to study the performance obtained when it
uses either v or 3. Section 7 explains the computational results obtained with the
SA algorithm for both metrics v and (. Finally, in Section 8 some conclusions
of this research are presented.

2 The B measure

The (8 measure for graphs equivalent to matrices, is a special case where the
number of reflexive edges for each vertex in the graph is at most one, and the
number of edges among vertex ¢ and vertex j (i # j) is at most two.

B, is the most used measure for the BMP algorithms [2] [13] [1] [§] (an
exception is a Dueck’s work in which he uses a measure in which not only (3 is
used, but he also takes into account differences among adjacent vertices close to
B [3])- Since the number of vertices is N, then 3 can only take N different values
(from 0 to N — 1), 8 = 0 implies that a graph that has either no edges or only
reflexive edges. Thus, the space of all possible solutions (N!) is partitioned in N
different equivalency classes.

Next, some features of the 3 measure are analyzed. Let w; be the cardinality
of the equivalency class with 3 = 4. Then, it is easy to show that wy = 2V — 1
(the case of a graph with no edges is subtracted) and w; = 2V(22(V=1) —1) then:

i—1
w, =[] 22V (22V-0 — 1) (2)
j=1
Now, in order to verify that all the possible graphs are taken into account,

K3
a partial summation of cardinalities of the equivalency classes as S; =) w; is
j=0
defined; then Sy = wg, S1 = Sp + w1, and

Si=8i_1+w; = 2N H 22(N=j) _ 1 (3)
j=1
Therefore, it is straightforward to show that the summation of all cardinalities
of the equivalency classes equals the total number of graphs minus 1 (the case
of a graph without edges):
N2

where 27 is in fact the number of all possible graphs.

The (3 measure is very gross with very few equivalency classes, in consequence,
each equivalency class has high cardinality. Additionally the 3 measure does not
take into account all the absolute differences between labels of adjacent vertices,
but the maximum absolute difference. In this sense there is no way to make
distinctions between elements that belong to the same (3 equivalency class.

3 The v measure

Given the features of 3 it has been developed a new measure, called -, which
takes into account all the absolute differences of the graph (remember that it has
been referred to graphs equivalent to matrices). The proposed measure, which
represents a positional numerical system with variable base is the following:

Y=y, P(i—j]) ()

Ljl(i,5)eE

Where the sum is carried out for all the edges of the graph and P is defined
in an iterative way according to:

1 k=0

k
PN, k) = (N+1)JJCN =2/ +3)1<k<N (6)
j=2

It can be verified, that if 7 and j differ significantly, P(N, k) gives a very large
value, and that the total number of equivalency classes is given by the expression
P(N,N).

For a particular graph there are: W, absolute differences between adjacent
vertices with value zero, corresponding to reflexive edges; W; differences with
value one; ...; and Wy _; differences with value NV — 1. Then the total number
of equivalent graphs for that particular graph is:

() (%) (%) (w2 -

that can be expressed in a shorter way with the formula:

N—1
N 2(N-1)
(o) IL(*5") ®

To demonstrate that the summation of the cardinalities of all equivalency
classes equals the number of possible graphs, it is necessary to use the Formula

8 instantiated with all possible values of Wy, W1, ..., Wx_1, compute the sum,
and check if it equals to 2V *. This can be expressed as:

é(z;r) fjll”(g’ <2(Nrj)>)

but since Zﬁio (Jj) = 2N and Zi(:]g_j) (2(1\;73')) = 22(N=3) then Formula 9 is
simplified as follows:

N—1
oV I 22V (10)
j=1
rewriting Equation 10:
QNQQZ;V:T (N—=J) _ 2N22M¥2 — oN? (11)
and finally:
9N g2 _ oN® (12)

4 Comparing v and 3

In this section the 8 measure and the v measure are compared. First the number
of equivalency classes of 3 and + referred as wg(it can be verified that its value

Table 1.

N |wg|wy

5 |5

5670.0

10 |10

7.202 x 10°

70 |70

6.7587 x 10"

150|150

5.6674 x 10°8

300]300

6.1101 x 10"

wg

and w~ values for some values of N

N

2" Jwg

2V [wry

5

6.7109 x 10°

5917.9

10

1.2677 x 10%°

1.7601 x 10%°

70

1.5918 x 10™™

1.6486 x 1073

150

9.9727 x 105779

2.6395 x 10%%%%

300

1.6691 x 1077

8.1952 x 10°°°°°

Table 2. The average cardinality of 8 and v for some values of N

is V) and wy (it can be verified that w, = P(N,N)) are contrasted, then the
average of cardinalities for the equivalency classes for each of these measures are
illustrated.

In Table 1, wg and w,, for different values of N are shown, it is important to
emphasize that wg has a linear increment and w., has an exponential increment.

Table 2 show§ many average values of cardinalities for the equivalency classes
for 3 and v (2" Jwg and 2%V Jw,) according to the number of vertices N of a
graph.

As it can be observed in Tables 1 and 2, « is a finer measure than (3 since it
has the ability to create more equivalency classes with a lower cardinality.

5 Computing ~ for big values of N

A problem in computing v is that the resulting values may exceed easily the
precision of a computer when N takes large values. A possible solution could be
to use the logarithm of «y, but it seems that is not possible to obtain the logarithm
of the expression: v = Zi,j\(i,j)eE P(]i — j]), because of it is a summation.
However, an expression has been obtained that permits to compute v in terms
of logarithms and does not get involved in using huge numbers. To illustrate
this, it is assumed the graph in Figure 1.

For this particular graph: W =5, Wy =3, W =4, W3 =1, Wy = 2 (where
W; refers to the number of absolute differences with value i between adjacent
vertices); additionally it is verified that P(5,0) = 1, P(5,1) = 6, P(5,2) = b4,
P(5,3) =378, P(5,4) = 1890.

Then, v = Z?:o W,;P(5,7) =5+ 18 4+ 216 + 378 + 3780 = 4397, but v could
be expressed in the following way:

2
Il

(22 + Wy | P(5,4), taking logarithms in both sides

of this equation:

W,
ﬁ"'wl
! P(5,0))
P(5,2) +Wa
B5,1)
(5,3 + WB
(7=3)

log(v) = log (o 42)
P(5,3)

+ Wy | +log(P(5,4)) (13)

The great advantage of the previous expression is that it never computes
very large numbers, all denominators in the first term of the right side of the
equation correspond to the series: (N + 1), (2N — 1), (2N —3),(2n —5),...,7,5
and the second term can be expressed in the next way:

k
log(N +1) + log(2N —27+3)1<kE<N
log(P(N, K)) = § 128V 1)+ 3 log(j+3)1<k< 14

0 k=0

then the logarithm of ~ is:

Be
N# (Nornalized Gaina)

Fig. 2. Comparative graph between 3 and N * YNorm.-

ﬂ)_+w'
&u_;,_v[/z

DN —1 + W3 N—1
log(7) = log | —2=———+ Wi | +log(N +1)+ > _log(2N — 2 +3)
=2

(15)
Summarizing, it has been demonstrated that it is quite possible to compute
the logarithm of v without computing big numbers, and in this way, to overcome
the numeric precision problem in a computer.
Additionally, log(y) can be normalized from 0 to 1 using the formula:

log(7)
log(P(N, N))

The importance of this normalization of v is that it permits to see the sim-
ilarity with (3, this can be seen in Figure 2 (it is relevant to emphasize that

Ynorm kKeeps up the ability to represent more equivalency classes with a lower
cardinality).

(16)

YNorm =

6 A simulated annealing approach to solve the BMPG

We have developed a heuristic algorithm based on the principle of SA, that
will approximate the bandwidth of a graph G by examining randomly generated
layouts 7 of G. We generate these new layouts by interchanging a pair of distinct
labels of the set of vertices V. We have called this interchanging operation, a
move.

Our SA algorithm begins initializing some parameters as the temperature,
T'; the maximum number of accepted moves at each temperature, max_mowves;
the maximum number of moves to be attempted at each temperature, mazx_-
attempted-moves; max_frozen is the number of consecutive iterations allowed for

which the number of accepted moves is less than maz_-moves; and the cooling
rate cool_rate. The algorithm continues by randomly generating a move and then
calculating the change in the cost function for the new labelling of the graph,
either with v or (. If the cost decreases then the move is accepted. Otherwise, it
is accepted with probability P(AC) = e~2¢/T where T is the temperature and
AC is the increase in cost that would result from a particular move. The next
temperature is obtained by using the relation T, = T,,_1* cool_rate. sa_band is
the minimum bandwidth of the labellings generated by the algorithm up that
point in time. We count the number of accepted moves and if it falls below a
given limit then the system is frozen.
Next, we present the algorithm for the simulated annealing general procedure:
Procedure Anneal (G, best_map)
T = 0.00004; cool_rate = 0.85;
map = best_map = random labeling;
sa_band = Bandwidth(G, best_map);
maz-moves = 50 * | E|;
max_attempted-moves = 2% mar_mowves;
max_frozen = 50; frozen = 0;
While (frozen < mazx_frozen)
moves = attempted_moves = 0;
While ((moves < max_moves) And
(attempted_moves < maz_attempted_moves))
attempted-moves ++;
a random move is generated, map_ran;
If (bandwidth decreases Or random_number() < e~ ABandwidth/T)
map = map-ran; Mmoves +-;
If (sa-band < Bandwidth(G, map))
best_map = map;
sa_band = Bandwidth(G, map);
End If
End If
End While
T = T % cool_rate;
If (attempted-moves > mazr-attempted_moves)
frozen++;
Else
frozen = 0;
End If
End While
End Anneal
The parameters of the SA algorithm were chosen taking into account our
experience, and some related works [9][16]. It is important to remark that value of
maz-moves depends directly on the number of edges of the graph, because more
moves are required for denser graphs; the max_atternpted_mouves is set to a large
number (50 * maz_moves), because few moves will result in bigger bandwidths.

Graph | N |[SA-3|SA-vy|Best 3|% Improvement
Path50 |[50| 7 1 1 600.00
Path100 [100| 18 1 1 1700.00
Path150 (150| 32 2 2 1500.00
Cycleb0 [50(| 7 2 2 250.00
Cyclel00 (100 18 2 2 800.00
Cyclel50 [150| 28 2 2 1300.00
TreeT40 (40| 8 7 7 14.29
TreeB63 [63| 12 9 9 33.33
TreeB127(127| 28 16 15 75.00
TreeQ85 (85| 18 15 15 20.00
TreeT121(121| 27 16 16 68.75
Grid100 (100| 23 17 10 35.29
Grid169 (169 40 28 13 42.86

Table 3. Results obtained with a SA for the BMPG using v and 3

The maz_frozen parameter that controls the external loop of our algorithm is set
to 50. By modifying these three parameters one can obtain results more quickly,
but probably they will not be as close to §(G). We found in our experiments
that the above values give a good balance between the quality of the results and
the invested computational effort.

7 Computational Results and Discussion

In order to test the performance of our new metric called v we studied six
different classes of graphs of increasing sizes, including paths, cycles, binary
trees, ternary trees, Quaternary trees and grids.

Table 3 shows a column with the name of the graphs, which represents the
class of each graph. Column titled N represents the number of nodes in the
graph. Columns SA-3 and SA-y represent the bandwidth that was obtained
with the SA algorithm that uses the metric 3 or <y respectively. In column Best
B, the value of the best bandwidth obtained with the SA-v is presented. Finally
the last column presents the improvement obtained when the v metric was used.

It is important to say that we ran each SA algorithm five times with ev-
ery graph. In table 3 the results presented are the arithmetic average of those
experiments. The results of these experiments show that the SA that uses 7y
consistently has better results for many classes of graphs than the one that uses
(. So we could conclude that v is a better metric than (.

8 Conclusions

1. It has been presented a measure called v for the BMPG, which has the
advantage over (3, that it represents more equivalency classes with lower
cardinality.

2. To avoid the precision problems when computing the v measure for large
values of IV, an algorithm based on the use of logarithms was proposed.

In order facilitate the use of v measure, it has been defined a procedure to
normalize its values from 0 to 1.

The features of v seem to fit very well for optimization algorithms to solve
the BMPG, it is evidenced by the results presented in the previous section.

3.

4.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

F. Malucelli A. Esposito, S. Fiorenzo and L. Tarricone, A wonderful bandwidth
matriz reduction algorithm, Submitted to Operations Research Letters.

E. Cutchill and J. McKee, Reducing the bandwidth of sparse symmetric matri-
ces, Proceedings 24th National of the ACM (1969), 157-172.

. G. Dueck and J. Jeffs, A heuristic bandwidth reduction algorithm, Journal of

combinatorial mathematics and computers (1995), no. 18.

. A. George and W. Liu, Computer solution of large sparse positive definite

systems, Prentice Hall, Englewood Cliffs, NJ, 1981.

. EM. Gurari and I.LH. Sudborough, Improved dynamic programming algorithms

for bandwidth minimization and the min-cut linear arrangement problem, Jour-

nal of Algorithms, 5 (1984), 531-546.

. F. Harary, Theory of graphs and its aplications, 1967, p. 161.
. L.H. Harper, Optimal assignment of numbers to vertices, Journal of STAM 12

(1964), 131-135.

. F. Makedon J. Haralambides and B. Monien, An aprozimation algorithm for

caterpillars, Journal of Mathematical Systems Theory (1991), no. 24, 169-177.

. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by simulated

annealing, Science 220 (1983), 671-680.

E. Kosko, Matriz inversion by partitioning, The Aeronautical Quarterly (1956),
no. 8, 157.

R. R. Livesley, The analysis of large structural systems, Computer Journal 3
(1960), 34.

D.S. Johnson M.R. Garey, R.L. Graham and D.E. Knuth, Complezity results
for bandwidth minimization, SIAM Journal of Applied Mathematics 34 (1978),
477-495.

W.G. Poole N.E. Gibbs and P.K. Stockmeyer, An algorithm for reducing the
bandwidth and profile of a sparse matriz, SITAM Journal on Numerical Analysis
13 (1976), 235-251.

C.H. Papadimitriou, The NP-Completeness of the bandwidth minimization
problem, Journal of Computing (1976), no. 16, 263-270.

A.K. Dewdney P.Z. Chinn, J. Chvéatalovd and N.E. Gibbs, The bandwidth
problem for graphs and matrices — a survey, Journal of Graph Theory 6 (1982),
223-254.

William M. Spears, Simulated annealing for hard satisfiability problems, Tech.
Report AIC-93-015, AT Center, Naval Research Laboratory, Washington, DC
20375, 1993.

José Torres, Minimizacion del ancho de banda de un grafo usando un algo-
ritmo genético, Ph.D. thesis, Instituto Tecnologico y de Estudios Superiores
de Monterrey, Campus Morelos, 1997.

