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ABSTRACT
Even under the rather simplified HP lattice model, protein
structure prediction remains a challenging problem in com-
binatorial optimization. Recently, the multiobjectivization
of this problem was proposed. By decomposing the original
objective function, a two-objective formulation for the HP
model was defined. Such an alternative formulation showed
very promising results, leading to an increased search per-
formance in most of the conducted experiments. This paper
introduces a novel multiobjectivization for the HP model
which is based on the locality notion of amino acid interac-
tions. Using different evolutionary algorithms, this proposal
was compared with respect to both the conventional single-
objective formulation and the previously reported multiob-
jectivization. The new proposed formulation scored the best
results in most of the cases. Statistical significance testing
and a large set of test cases support the findings of this
study. Results are provided for both the two-dimensional
square lattice and the three-dimensional cubic lattice.

Categories and Subject Descriptors
I.2.8 [ARTIFICIAL INTELLIGENCE]: Problem Solv-
ing, Control Methods, and Search—Heuristic methods

Keywords
Multiobjectivization, protein structure prediction, HP model

1. INTRODUCTION
Proteins are fundamental elements of living organisms.

These chain-like molecules are composed from a set of 20
different building blocks called amino acids. The specific
sequence of amino acids determines how proteins fold into
unique three-dimensional structures defining their biological
functions [1]. The protein structure prediction problem, PSP,
is the problem of finding the native (energy-minimizing) con-
formation for a protein given only its amino acid sequence.
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The hydrophobic-polar (HP) model [12] is an abstraction
of the PSP. This model captures the fact that the hydropho-
bicity of amino acids is one of the main driving forces deter-
mining the functional conformation of proteins. The predic-
tion of protein structures using the HP model is a hard com-
binatorial optimization problem [3, 7]. Such a complexity
has motivated the use of evolutionary algorithms and a va-
riety of other metaheuristics to address this problem [25, 35].

Multiobjectivization refers to the process of reformulating
a single-objective optimization problem as a multiobjective
one [23]. This transformation has been successfully used to
deal with difficult problems, such as the PSP [2, 8, 10, 16,
32]. However, it was not until recently that this concept was
applied to the particular HP model of this problem for the
first time [14]. In [14], the conventional energy (objective)
function of the HP model was decomposed into two separate
objectives based on the parity of amino acid positions in
the protein sequence. This approach was named the parity
decomposition (PD). Experimental results reported in [14]
indicate that an important improvement in the search per-
formance can be obtained by using such an alternative for-
mulation, motivating further research in this direction.

In this paper, an improved multiobjectivization strategy
for the HP model is proposed: the locality decomposition
(LD). In LD, the decomposition of the HP model’s energy
function is carried out by segregating local from nonlocal
amino acid interactions. This locality notion is based on the
sequence distance between the interacting amino acids. The
suitability of the proposed LD is investigated by compar-
ing it with respect to both the conventional single-objective
formulation and the preceding PD multiobjectivization [14].

The remainder of this document is organized as follows.
Background concepts and notation are covered in Section 2.
Section 3 summarizes related work. In Section 4, the new
proposed formulation is described. Section 5 details the im-
plemented algorithms, test cases and the performance as-
sessment methodology. The results are presented in Section
6. Finally, Section 7 provides the conclusions of this study.

2. BACKGROUND AND NOTATION

2.1 The Hydrophobic-Polar (HP) Model
Amino acids can be classified either as hydrophobic (H)

or polar (P ) on the basis of their affinity for water. While
the H amino acids tend to clump together on the inside of
proteins, the P ones are usually found at the outer surface



interacting with the aqueous environment. Hydrophobicity
is, therefore, a dominant force in the protein folding process.

In the HP model [12], proteins are abstracted as chains of
H- and P -type beads. Protein sequences, which are origi-
nally defined over a 20-letters alphabet, are thus of the form
S ∈ {H,P}L, where L is the number of amino acids. Valid
protein conformations are modeled as Self-Avoiding Walks
of the HP chain on a lattice. That is, each lattice node
can be assigned to at most one amino acid and consecutive
amino acids in S are to be also adjacent in the lattice.

By emulating the hydrophobic effect, the HP model aims
to maximize the interaction among H amino acids in the
lattice. Formally, protein structure prediction under the HP
model is defined as the problem of finding c∗ ∈ C such that
E(c∗) = min{E(c) | c ∈ C}, being C the set of all valid
conformations. E(c) denotes the energy of conformation c:

E(c) =
X

si,sj∈S

e(si, sj) (1)

where e(si, sj) = −1 if si and sj form a hydrophobic topolog-
ical contact, denoted by htc(si, sj). Otherwise, e(si, sj) = 0.
A hydrophobic topological contact occurs when twoH amino
acids si, sj ∈ S are nonconsecutive in S but adjacent in the
lattice. An example conformation for an HP chain of length
L = 20 on the square lattice is shown in Figure 1.
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Figure 1: Hydrophobic topological contacts are
numbered. The energy of this structure is E(c) = −9.

2.2 Single- and Multiobjective Optimization
A single-objective optimization problem can be stated as

the problem of minimizing an objective function f : F → R,
where F is the set of all feasible solutions. The aim is to find
the solution(s) x∗ ∈ F such that f(x∗) = min{f(x) | x ∈ F}.

Similarly, a multiobjective optimization problem can be
defined as the problem of minimizing an objective vector
f(x) = [f1(x), f2(x), . . . , fk(x)]T , where fi : F → R is the
i-th objective function, i ∈ {1, 2, . . . , k}. The goal is to find a
set of Pareto-optimal solutions P∗ ⊂ F , such that
P∗ = {x∗ ∈ F | @x ∈ F : x ≺ x∗}. The symbol “≺” denotes
the Pareto-dominance relation, which is given by:

x ≺ y ⇔ ∀i ∈ {1, 2, . . . , k} : fi(x) ≤ fi(y) ∧ (2)

∃j ∈ {1, 2, . . . , k} : fj(x) < fj(y)

If x ≺ y, then x is said to dominate y. Otherwise (x ⊀ y), y
is said to be nondominated with respect to x. The image of
P∗ in the objective space is called the Pareto-optimal front.

2.3 Multiobjectivization
Multiobjectivization concerns the reformulation of single-

objective optimization problems in terms of two or more ob-
jective functions [23]. This can be done either by adding sup-
plementary (also called artificial or helper) objectives [4, 21],

or through the decomposition of the original objective func-
tion [17, 23]. In either case, multiobjectivization introduces
fundamental changes in the search landscape, usually lead-
ing algorithms to perform a more efficient exploration. How-
ever, the goal remains to solve the original problem, so that
the original optima are to be also Pareto-optimal with re-
gard to the multiobjectivized version of the problem.

This work is based on the decomposition approach. A
single-objective problem, with a given objective function
f : F → R, is restated in terms of k ≥ 2 objectives
fi : F → R, i ∈ {1, 2, . . . , k} such that f(x) =

Pk
i=1 fi(x), for

all x ∈ F . As the only possible effect [17], plateaus may be
defined in the search landscape. That is, originally compara-
ble solutions may become incomparable (mutually nondom-
inated) with regard to the decomposed formulation. Mul-
tiobjectivization by decomposition has been proven to be
effective as a means of escaping from local optima [17, 23].

3. RELATED WORK
There has been a great deal of research on the use of

metaheuristics to solve the HP model of the PSP. This in-
cludes genetic algorithms [18, 33], memetic and hybrid algo-
rithms [6, 19], immune-based algorithms [9], ant colony op-
timization [31], particle swarm optimization [5], differential
evolution [28] and estimation of distribution algorithms [27].
Some of the literature in this regard is reviewed in [25, 35].

Multiobjectivization has been successfully applied in or-
der to solve difficult optimization problems. Among them,
there can be mentioned well-known combinatorial problems
such as the traveling salesman problem [20, 21, 23], job-
shop scheduling [21, 24] and bin packing problems [30], as
well as important problems in the fields of mobile commu-
nications [29], computational mechanics [15] and computer
vision [34]. Multiobjectivization has also been proposed for
the PSP [2, 8, 10, 16, 32]. However, it was not until recently
that the first multiobjectivized formulation for the particu-
lar HP model of this problem was reported [14]. Such an
HP model’s formulation is briefly described in Section 3.1.

3.1 The Parity Decomposition
In the two-dimensional square and the three-dimensional

cubic lattices, topological contacts are only possible between
amino acids whose sequence positions are of opposite parity.
Based on this fact and following the multiobjectivization by
decomposition approach, Garza-Fabre et al. [14] proposed a
two-objective formulation, f(c) = [f1(c), f2(c)]T , for c ∈ C:

f1(c) =
X

si,sj∈S

e(si, sj) for i ≡ 0 (mod 2), i < j (3)

f2(c) =
X

si,sj∈S

e(si, sj) for i ≡ 1 (mod 2), i < j (4)

where both f1(c) and f2(c) are to be minimized and e(si, sj)
was defined in Section 2.1. Function f1 accounts only for
hydrophobic topological contacts htc(si, sj) where i, the se-
quence position of amino acid si, is even. On the contrary,
f2 is defined for those cases where such the i-th sequence po-
sition is odd. Notice that E(c) = f1(c) + f2(c) for all c ∈ C.

4. THE LOCALITY DECOMPOSITION
In this section, a novel multiobjectivization strategy for

the HP model is proposed. The conventional energy (objec-
tive) function of the HP model is decomposed based on the



locality notion of amino acid interactions. A hydrophobic
topological contact htc(si, sj) can be considered to repre-
sent either a local or a nonlocal interaction. It depends on
whether or not the sequence distance between the amino
acids si and sj (i.e., |j − i|) is within a given maximum δ.
From this, a two-objective formulation, f(c) = [f1(c), f2(c)]T ,
is defined over the set of valid protein conformations c ∈ C:

f1(c) =
X

si,sj∈S

e(si, sj) for j − i ≤ δ, i < j (5)

f2(c) =
X

si,sj∈S

e(si, sj) for j − i > δ, i < j (6)

where f1(c) and f2(c) are both to be minimized and e(si, sj)
has been previously defined in Section 2.1.

That is, f1 is defined for local interactions, whereas f2
accounts for the nonlocal ones. Note that the sum of the
two proposed objectives equals the conventional energy func-
tion defined in Section 2.1 (E(c) = f1(c) + f2(c), ∀c ∈ C).
This is in accordance with the decomposition approach for
multiobjectivization. It should also be noted that δ plays
a decisive role for the behavior of this proposal. Thus, the
impact of varying this parameter needs to be investigated.

5. EXPERIMENTAL SETUP

5.1 Test Cases
A total of 30 HP instances were considered. Out of them,

15 are for the two-dimensional square lattice and the other
15 are for three-dimensional cubic one. Tables 1 and 2
present the full sequences, their length (L) and the optimal
or best known energy value (E∗), to the authors’ knowledge.

Table 1: HP instances for the 2D square lattice.
Sequence L E∗

2d1 H2P5H2P3HP3HP 18 -4
2d2 HPHPH3P3H4P2H2 18 -8
2d3 PHP2HPH3PH2PH5 18 -9
2d4 HPHP2H2PHP2HPH2P2HPH 20 -9
2d5 H3P2HPHPHP2HPHPHP2H 20 -10
2d6 H2P2HP2HP2HP2HP2HP2HP2H2 24 -9
2d7 P2HP2H2P4H2P4H2P4H2 25 -8
2d8 P3H2P2H2P5H7P2H2P4H2P2HP2 36 -14
2d9 P2HP2H2P2H2P5H10P6H2P2H2P2HP2H5 48 -23
2d10 H2(PH)4H3P(HP3)3(P3H)3PH4(PH)4H 50 -21
2d11 P2H3PH8P3H10PHP3H12P4H6PH2PHP 60 -36
2d12 H12PHPH(P2H2P2H2P2H)3PHPH12 64 -42
2d13 H4P4H12P6(H12P3)3HP2H2P2H2P2HPH 85 -53
2d14 P6HPH2P5H3PH5PH2P4H2P2H2PH5PH10

PH2PH7P11H7P2HPH3P6HPH2
100 -48

2d15 P3H2P2H4P2H3PH2PH2PH4P8H6P2H6P9
HPH2PH11P2H3PH2PHP2HPH3P6H3

100 -50

Table 2: HP instances for the 3D cubic lattice.
Sequence L E∗

3d1 HPHP2H2PHP2HPH2P2HPH 20 -11
3d2 H2P2HP2HP2HP2HP2HP2HP2H2 24 -13
3d3 P2HP2H2P4H2P4H2P4H2 25 -9
3d4 P3H2P2H2P5H7P2H2P4H2P2HP2 36 -18
3d5 P2H3PH3P3HPH2PH2P2HPH4PHP2H5PHPH2P2H2P 46 -32
3d6 P2HP2H2P2H2P5H10P6H2P2H2P2HP2H5 48 -31
3d7 H2(PH)4H3P(HP3)3(P3H)3PH4(PH)4H 50 -32
3d8 PH(PH3)2P(PH2PH)2H(HP)3(H2P2H)2PHP4(H(P2H)2)2 58 -44
3d9 P2H3PH8P3H10PHP3H12P4H6PH2PHP 60 -52
3d10 H12PHPH(P2H2P2H2P2H)3PHPH12 64 -55
3d11 P(HPH2PH2PHP2H3P3)3(HPH)3P2H3P 67 -56
3d12 P(HPH)3P2H2(P2H)6H(P2H3)4P2(HPH)3

P2HP(PHP2H2P2HP)2
88 -72

3d13 P2H2P5H2P2H2PHP2HP7HP3H2PH2P6HP2HP
HP2HP5H3P4H2PH2P5H2P4H4PHP8H5P2HP2

103 -56

3d14 P3H3PHP4HP5H2P4H2P2H2(P4H)2P2HP2H2P3H2PHPH3
P4H3P6H2P2HP2HPHP2HP7HP2H3P4HP3H5P4H2(PH)4

124 -71

3d15 HP5HP4HPH2PH2P4HPH3P4HPHPH4P11HP2HP3HPH2P3
H2P2HP2HPHPHP8HP3H6P3H2P2H3P3H2PH5P9HP4HPHP4

136 -80

5.2 Algorithms
The simplest version of an EA, the so-called (1+1) EA,

is described in Algorithm 1. First, an initial individual c is
generated at random. At each generation, a new individual
c′ is created by means of mutation. If c′ is at least as good
as c, then c′ is accepted as the starting point for the next
generation. Depending on the problem formulation, this ac-
ceptance criterion is to be based either on the conventional
energy evaluation or on the Pareto-dominance relation.

Algorithm 1 Basic (1+1) Evolutionary Algorithm.

1: choose c ∈ C uniformly at random
2: repeat
3: c′ ← mutate(c)
4: if c′ not worse than c then
5: c← c′

6: end if
7: until < stop condition >

A variant of the above described (1+1) EA is presented in
Algorithm 2. An external archive stores the nondominated
solutions found along the evolutionary process. The archiv-
ing strategy influences the search behavior of the algorithm
in such a way that the mutant c′ is only accepted if it is not
dominated by any individual in the archive. If accepted, c′

is included in the archive and all individuals dominated by
c′, and those mapping to the same objective vector f(c′),
are removed. Note that this archiving strategy makes only
sense for the multiobjectivized problem formulations.

Algorithm 2 Archiving (1+1) Evolutionary Algorithm.

1: choose c ∈ C uniformly at random
2: A← {c}
3: repeat
4: c′ ← mutate(c)
5: if @ĉ ∈ A : ĉ ≺ c′ then
6: A← {ĉ ∈ A : c′ ⊀ ĉ ∧ f(ĉ) 6= f(c′)} ∪ {c′}
7: c← c′

8: end if
9: until < stop condition >

It was also considered a genetic algorithm (GA), whose
general structure is given in Algorithm 3. First, an initial
parent population P of size N is randomly generated. At
each generation, the fittest individuals in P are selected for
mating (selection-for-variation). Then, a children popula-
tion P ′ is created by applying the variation operators. Fi-
nally, parents and children compete for a place in the new
population (selection-for-survival). When applied to the
single-objective problem formulation, selection is driven by
the conventional energy value of the candidate conforma-
tions. Regarding the multiobjective formulation, the dis-
crimination among individuals is to be based on nondomi-
nated sorting and crowding distance, as in the NSGA-II [11].

Algorithm 3 Genetic Algorithm.

1: choose P ⊂ C : |P | = N uniformly at random
2: while < stop condition > do
3: P̂ ← selection-for-variation(P )

4: P ′ ← variation(P̂ )
5: P ← selection-for-survival(P ∪ P ′)
6: end while

A representation of absolute moves was adopted. Confor-
mations are encoded as sequences in {U,D,L,R, F,B}L−1,



denoting the up, down, left, right, forward and backward
lattice positions for an amino acid with regard to the pre-
ceding one. Only directions {U,D,L,R} are used in the
two-dimensional case. The implemented genetic operators
are as follows. One-point crossover (only for the GA) is ap-
plied with a given probability pc. In mutation, each encoding
position is randomly perturbed with probability pm. In all
cases, only valid solutions are accepted during the search.

5.3 Performance Assessment
For all the experiments, 100 independent executions were

performed. The results are evaluated in terms of the best
obtained energy value (β), the number of times that this so-
lution was found (f) and the arithmetic mean (µ). Addition-
ally, the overall average performance (OAP) measure [13]
was adopted in order to assess the overall behavior of the
studied approaches. OAP is defined as the average ratio of
the obtained mean values to the optimum (E∗). Formally:

OAP =
100%

|T |

 X
t∈T

µ(t)

E∗(t)

!
(7)

where T is the set of all test cases. Thus, OAP = 100% sug-
gests the ideal situation where the optimum solution for each
instance was reached during all the performed executions.

Statistical significance analysis was conducted as follows.
First, D’Agostino-Pearson’s omnibus K2 test was used to
evaluate the normality of data distributions. For normally
distributed data, either ANOVA or the Welch’s t parametric
tests were used depending on whether the variances across
the samples were homogeneous (homoskedasticity) or not.
This was investigated using the Bartlett’s test. For non-
normal data, the nonparametric Kruskal-Wallis test was
adopted. A significance level of α = 0.05 was considered.

6. RESULTS

6.1 Results for the (1+1) EA
In this section, the (1+1) EA is used for comparing among

the three studied HP model’s formulations: the conventional
single-objective formulation (SO), the parity decomposition
(PD) [14], and the locality decomposition (LD) being pro-
posed. Results are also presented for the archiving version
of the (1+1) EA, which applies only for PD and LD. A fixed
mutation probability of pm = 1

L−1
and a stopping condition

of 100, 000 evaluations were considered in all cases.
Given the importance that parameter δ has on the behav-

ior of the LD approach (see Section 4), the best adjustment
for this parameter is first investigated. A total of 10 odd
values for δ have been evaluated, starting from 3.1 Figure
2 presents the overall average performance (OAP) obtained
using LD for the different values of δ. Results are provided
for both the basic and the archiving (1+1) EA. Also, the
performance of the SO formulation is shown as a baseline.

It is evident from this figure that an important increase
in performance has been obtained by using the new pro-
posed multiobjectivization. For the different values of δ, LD
reached the best results when using the basic, non-archiving
variant of the algorithm. However, even using the archiving

1In the 2D square and the 3D cubic lattices, a topological
contact can only occur if the sequence distance between the
amino acids is odd and at least equal to 3.
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Figure 2: Varying the distance parameter δ.

(1+1) EA, LD performed better in all cases compared to the
conventional SO formulation. It can be seen that the high-
est OAP values were obtained at δ = 7, in most of the cases.
In addition, notice that the performance of the algorithms
gradually declined with the increasing value for δ.

The distance parameter δ was set to 7 for further analysis.
Tables 3 and 4 detail the obtained results for all the two-
dimensional and three-dimensional test cases, respectively.
For each instance, these tables show the best energy (β), the
frequency (f) and the mean (µ) achieved using the different
formulations. The lowest µ obtained for each instance has

been shaded . Finally, the OAP measure evaluates the
overall performance of the formulations, see Section 5.3.

From these tables, it is possible to note that the proposed
LD outperformed both the conventional SO formulation and
the previously reported PD multiobjectivization in most of
the cases. By using LD, the basic (1+1) EA reached the
lowest average energy for 12 out of the 15 two-dimensional
instances, leading to an OAP increase of (74.70 − 69.22) =
5.48% with regard to the SO formulation (see Table 3). As
previously stated, the use of the archiving strategy within
the (1+1) EA seemed not to be favorable for the proposed
LD multiobjectivization. Nevertheless, even using this algo-
rithm it was possible for LD to obtain better results than
the SO and PD formulations for most of the instances.

As shown in Table 4, the proposed LD scored the best
average performance for all the three-dimensional instances
when using the basic (1+1) EA. This was also reflected as an
OAP increase of 10.65% with respect to the conventional SO
formulation. Just as it happened for the two-dimensional in-
stances, the advantages of LD were not as remarkable when
using the archiving (1+1) EA. However, the results of LD for
this algorithm were still competitive; the OAP measure was
improved by 6.28% over the SO, being this the second best
performance achieved for the three-dimensional test cases.

Finally, Tables 5 and 6 outline how the SO, PD and LD
formulations compare statistically with respect to each other
in all the test cases. Each row in these tables compares two
formulations, say A and B, which is denoted as “A/B”. If a
significant performance difference exists between A and B,
the corresponding cells are marked either as + or − depend-
ing on whether such a difference was in favor of or against
A. Empty cells indicate that there was not a statistically im-
portant difference between the approaches. The rightmost
column shows the overall results of this analysis.

As can be seen from Table 5, both PD and LD significantly
outperformed the conventional SO formulation in most of
the cases when using the basic (1+1) EA. The proposed
LD achieved statistically better results than SO in 28 out
of the 30 adopted test cases. PD performed significantly
better than SO for 20 of the instances. By comparing the
multiobjectivized formulations, there was a significant per-
formance difference in favor of LD for 23 of the test cases.



Table 3: Results for the basic and the archiving (1+1) EA on the two-dimensional benchmarks.

Basic (1+1) EA Archiving (1+1) EA

SO PD LD PD LD

Seq. β (f) µ β (f) µ β (f) µ β (f) µ β (f) µ

2d1 -4 (4) -2.70 -4 (6) -2.71 -4 (3) -2.69 -4 (5) -2.69 -4 (2) -2.67
2d2 -8 (18) -6.81 -8 (24) -7.04 -8 (31) -7.16 -8 (21) -7.00 -8 (21) -6.99
2d3 -8 (11) -7.00 -8 (48) -7.45 -9 (2) -7.39 -8 (24) -7.12 -8 (22) -7.05
2d4 -9 (8) -6.84 -9 (4) -6.95 -9 (11) -7.23 -9 (6) -6.88 -9 (14) -7.13
2d5 -9 (3) -6.92 -10 (2) -7.08 -9 (1) -7.06 -9 (1) -6.99 -8 (14) -6.89
2d6 -8 (14) -6.81 -9 (1) -6.87 -9 (2) -7.30 -9 (1) -6.89 -9 (1) -6.95
2d7 -7 (26) -5.79 -8 (6) -5.90 -8 (7) -6.17 -8 (5) -5.80 -8 (10) -6.08
2d8 -13 (1) -9.97 -13 (1) -10.23 -13 (4) -10.61 -13 (1) -10.12 -13 (1) -10.13
2d9 -18 (5) -14.23 -19 (2) -15.20 -20 (2) -16.29 -18 (5) -15.02 -21 (1) -15.64
2d10 -18 (2) -13.79 -18 (1) -14.06 -19 (1) -15.07 -17 (4) -13.76 -18 (1) -14.40
2d11 -30 (2) -24.39 -30 (7) -25.43 -32 (1) -27.80 -31 (1) -25.32 -32 (1) -25.80
2d12 -29 (1) -23.82 -30 (1) -25.12 -30 (4) -26.61 -30 (1) -24.63 -29 (2) -24.91
2d13 -41 (1) -33.81 -41 (1) -34.54 -44 (1) -38.09 -42 (1) -34.18 -41 (1) -35.34
2d14 -41 (1) -30.80 -39 (3) -32.18 -39 (2) -34.41 -41 (1) -31.72 -39 (1) -32.58
2d15 -40 (1) -31.71 -40 (3) -32.70 -39 (7) -34.97 -40 (1) -32.57 -41 (1) -33.60

OAP 69.22% 71.39% -74.70% 70.47% 71.70%

Table 4: Results for the basic and the archiving (1+1) EA on the three-dimensional benchmarks.

Basic (1+1) EA Archiving (1+1) EA

SO PD LD PD LD

Seq. β (f) µ β (f) µ β (f) µ β (f) µ β (f) µ

3d1 -11 (57) -10.48 -11 (69) -10.64 -11 (94) -10.94 -11 (64) -10.51 -11 (60) -10.52
3d2 -13 (23) -11.30 -13 (34) -11.70 -13 (66) -12.53 -13 (27) -11.59 -13 (42) -11.87
3d3 -9 (57) -8.48 -9 (70) -8.65 -9 (95) -8.95 -9 (62) -8.51 -9 (73) -8.66
3d4 -18 (10) -15.19 -18 (13) -15.74 -18 (46) -16.97 -18 (8) -15.30 -18 (15) -15.96
3d5 -30 (2) -23.87 -30 (1) -25.38 -31 (1) -27.53 -30 (1) -24.56 -32 (1) -25.68
3d6 -29 (1) -22.79 -29 (2) -24.42 -31 (1) -26.66 -28 (3) -23.64 -31 (1) -24.64
3d7 -25 (6) -20.64 -27 (1) -22.07 -28 (1) -24.31 -27 (1) -21.22 -27 (4) -22.77
3d8 -35 (1) -27.34 -36 (1) -29.02 -36 (2) -31.98 -35 (1) -27.96 -35 (5) -29.98
3d9 -46 (1) -37.20 -47 (1) -40.03 -47 (3) -42.88 -47 (1) -38.81 -49 (1) -41.59
3d10 -45 (1) -35.59 -46 (1) -37.69 -50 (1) -43.29 -43 (2) -36.51 -49 (1) -40.28
3d11 -38 (2) -30.17 -39 (2) -32.65 -41 (1) -36.10 -38 (2) -31.17 -40 (3) -34.82
3d12 -47 (1) -36.22 -49 (1) -39.85 -53 (1) -46.13 -48 (1) -38.09 -50 (1) -42.55
3d13 -40 (1) -29.97 -41 (1) -31.31 -40 (1) -35.42 -38 (1) -29.94 -45 (1) -33.52
3d14 -43 (4) -34.51 -48 (1) -36.97 -50 (2) -43.98 -47 (1) -35.04 -49 (2) -40.83
3d15 -51 (1) -37.26 -52 (1) -42.11 -57 (1) -47.42 -50 (1) -40.43 -54 (1) -44.90

OAP 68.31% 72.20% -78.96% 70.00% 74.59%

Table 5: Statistical analysis for comparing the three
HP model’s formulations. Basic (1+1) EA.
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Overall

PD/SO + + ++ ++ ++++++++++++++ 20+ 0−

LD/SO +++ ++++++++++ +++++++++++++++ 28+ 0−

LD/PD + +++++++ +++++++++++++++ 23+ 0−

Regarding the archiving (1+1) EA, Table 6 shows that the
proposed LD significantly improved the search performance
in 22 and 15 of the instances when compared to SO and PD,
respectively. PD’s results for 8 of the test cases were statis-
tically superior to those obtained by the SO formulation.

6.2 Results for the Genetic Algorithm
In this section, the results for the implemented genetic

algorithm (GA) are analyzed. Three different problem for-
mulations are compared: the conventional single-objective
(SO), the recently proposed parity decomposition (PD) [14],
and the locality decomposition (LD) proposed in this paper.

LD is sensitive to the distance parameter δ (see Section
4). Preliminary testing was conducted in order to investigate

Table 6: Statistical analysis for comparing the three
HP model’s formulations. Archiving (1+1) EA.
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Overall

PD/SO + ++ + + + + + 8+ 0−

LD/SO + +++++++ ++++++++++++++ 22+ 0−

LD/PD ++ + ++++++++++++ 15+ 0−

the value of δ providing the best performance for the GA.
Due to space limitations, details of such an analysis were not
included in this document, but the obtained results suggest
that δ = 7 is a convenient adjustment for this parameter.

Furthermore, different settings for the GA are evaluated
in order to identify the most appropriate conditions for the
compared approaches. Three different recombination and
mutation probabilities were considered: pc = {0.8, 0.9, 1.0}
and pm = { 1

L−1
, 0.01, 0.05}. Also, the effects of preventing

duplicate individuals (clones) from the population are an-
alyzed. Thus, 18 parameter configurations for the GA are
investigated. The population size was fixed to N = 100 in
all cases, and the algorithm was allowed to run until a maxi-
mum number of 100, 000 evaluations was reached. Figures 3



and 4 present (2D and 3D, respectively) the overall average
performance (OAP) measure obtained by the studied for-
mulations when varying the different parameters of the GA.
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Figure 3: Settings for the GA, 2D benchmarks.

70

75

80

O
A

P
 (

%
)

 

 

1
/(

L
−

1
)−

0
.8

 

1
/(

L
−

1
)−

0
.9

 

1
/(

L
−

1
)−

1
.0

 

0
.0

1
−

0
.8

 

0
.0

1
−

0
.9

 

0
.0

1
−

1
.0

 

0
.0

5
−

0
.8

 

0
.0

5
−

0
.9

 

0
.0

5
−

1
.0

 

1
/(

L
−

1
)−

0
.8

 

1
/(

L
−

1
)−

0
.9

 

1
/(

L
−

1
)−

1
.0

 

0
.0

1
−

0
.8

 

0
.0

1
−

0
.9

 

0
.0

1
−

1
.0

 

0
.0

5
−

0
.8

 

0
.0

5
−

0
.9

 

0
.0

5
−

1
.0

 

Duplicates allowed

Duplicates avoidance

 p
m

 −
 p

c

SO PD LD (δ=7)

Figure 4: Settings for the GA, 3D benchmarks.

From these figures, both LD and PD performed better
than the conventional SO formulation for all the different
parameter configurations of the GA. By comparing between
LD and PD, it can be noted that there was a performance
difference in favor of the proposed LD, in all the cases. Some
general observations can be made concerning the behavior of
the GA. On the one hand, the algorithm seemed not to be se-
riously affected when varying the recombination probability.
On the other hand, it responded positively to the increased
mutation rate, being pm = 0.05 the fixed value which pro-
vided the best performance in all the cases. Finally, the
results were significantly improved in all the cases when
duplicate individuals were removed from the population.

For a more detailed analysis, the parameters adjustment
which allowed each of the formulations to reach the highest
OAP value was selected. The obtained results are presented
in Tables 7 and 8. These tables show the best energy (β), the
frequency (f) and the mean (µ) obtained for each instance
when using the different formulations. The lowest average

energy achieved for each test case has been shaded . Also,
the OAP measure is given at the bottom of the tables.

As shown in Table 7, the previously reported PD achieved
the lowest average energy for 8 out of the 15 two-dimensional
instances. The proposed LD presented the best performance
for only 7 of the test cases. However, LD allowed the GA to
reach the highest OAP value, which represents an increase
of (88.25− 87.13) = 1.12% over the SO formulation.

Regarding the three-dimensional instances, it can be seen
from Table 8 that the best average performance of the al-
gorithm was scored in most cases when using the proposed
LD multiobjectivization. An OAP increase of 1.67% was
obtained with regard to the conventional SO formulation.

Table 9 points out how the SO, PD and LD formulations
are statistically compared to each other in all the instances.
Each row in these tables compares two formulations, say A
and B, which is denoted as“A/B”. If a statistically significant
difference exists between A and B, the corresponding cells
are marked either as + or − depending on whether such a
difference favors A or not. Empty cells indicate that there

Table 7: Results for the GA, 2D benchmarks.

SO PD LD

Seq. β (f) µ β (f) µ β (f) µ

2d1 -4 (69) -3.69 -4 (78) -3.78 -4 (77) -3.77
2d2 -8 (92) -7.92 -8 (91) -7.91 -8 (90) -7.90
2d3 -9 (68) -8.68 -9 (73) -8.73 -9 (75) -8.75
2d4 -9 (99) -8.99 -9 (93) -8.93 -9 (100) -9.00
2d5 -10 (87) -9.75 -10 (94) -9.89 -10 (93) -9.87
2d6 -9 (62) -8.60 -9 (69) -8.69 -9 (75) -8.75
2d7 -8 (47) -7.40 -8 (49) -7.47 -8 (51) -7.47
2d8 -13 (12) -11.45 -14 (2) -11.49 -13 (16) -11.62
2d9 -21 (2) -17.85 -23 (1) -18.30 -22 (2) -18.45
2d10 -21 (4) -18.27 -21 (1) -18.54 -21 (3) -18.50
2d11 -34 (1) -30.27 -34 (1) -30.54 -34 (1) -30.41
2d12 -36 (2) -30.94 -35 (3) -30.75 -36 (5) -31.56
2d13 -49 (1) -41.75 -48 (1) -42.57 -47 (3) -42.05
2d14 -44 (1) -36.74 -43 (1) -37.74 -41 (2) -37.31
2d15 -43 (2) -37.14 -43 (1) -38.28 -43 (1) -38.12

OAP 87.13% 88.13% 88.25%

Table 8: Results for the GA, 3D benchmarks.

SO PD LD

Seq. β (f) µ β (f) µ β (f) µ

3d1 -11 (100) -11.00 -11 (100) -11.00 -11 (100) -11.00
3d2 -13 (95) -12.94 -13 (97) -12.94 -13 (95) -12.91
3d3 -9 (72) -8.71 -9 (87) -8.87 -9 (92) -8.92
3d4 -18 (12) -15.91 -18 (31) -16.54 -18 (22) -16.37
3d5 -32 (1) -27.72 -32 (1) -28.12 -31 (8) -28.37
3d6 -31 (1) -26.59 -30 (3) -26.89 -31 (3) -27.24
3d7 -30 (1) -26.43 -29 (12) -26.70 -31 (1) -26.85
3d8 -37 (1) -32.39 -37 (3) -33.03 -40 (1) -33.53
3d9 -50 (1) -43.46 -50 (1) -44.56 -49 (2) -44.43
3d10 -52 (1) -46.12 -53 (1) -46.15 -52 (2) -46.95
3d11 -41 (1) -36.39 -43 (1) -37.36 -43 (1) -37.62
3d12 -50 (5) -44.02 -54 (1) -44.85 -52 (1) -45.26
3d13 -41 (1) -34.99 -43 (1) -35.78 -42 (1) -35.69
3d14 -51 (1) -41.83 -50 (1) -42.80 -49 (2) -43.09
3d15 -52 (2) -45.51 -56 (2) -46.43 -54 (1) -47.17

OAP 79.01% 80.26% 80.68%

was not a significant difference between the approaches. The
rightmost column presents the overall results of this analysis.

Table 9: Statistical analysis for comparing the three
HP model’s formulations. Genetic Algorithm.
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Overall

PD/SO − + +++ ++ ++ ++++ 12+ 1−

LD/SO + + + + ++++ ++++++++ 16+ 0−

LD/PD + + + 3+ 0−

Table 9 shows that PD obtained significantly better re-
sults than the SO problem formulation for 12 of the in-
stances. Note, however, that PD was statistically inferior
to SO in solving the 2d4 instance. For 16 out of the 30
adopted test cases, the proposed LD significantly increased
the performance of the GA with respect to SO. Finally, the
statistical analysis indicates that for only 3 of the adopted
test cases there was a significant performance difference be-
tween PD and LD, all cases in favor of the proposed LD.

7. CONCLUSIONS AND FUTURE WORK
A novel multiobjectivization proposal for the HP model

of protein structure prediction (PSP) was presented. In the
proposed approach, called the locality decomposition, topo-



logical interactions on the lattice are classified either as local
or nonlocal depending on the distance (in the sequence) be-
tween the amino acids involved. By grouping and isolating
local interactions from the nonlocal ones, an alternative two-
objective formulation of the problem was defined.

Different evolutionary algorithms (EAs) were implemented
in order to investigate the suitability of the proposed locality
decomposition. This approach was evaluated and compared
with respect to both the conventional single-objective prob-
lem formulation and the recently proposed parity decompo-
sition [14]. Experiments were conducted on both the two-
dimensional square and the three-dimensional cubic lattices,
and a large set of 30 HP model’s instances was considered.

The proposed locality decomposition provided the best av-
erage performance of the implemented algorithms in most of
the cases. Thus, the suitability of this approach was demon-
strated. This supports previous evidence on the effectiveness
of multiobjectivization to overcome search difficulties such
as that of becoming trapped in local optima [17, 23].

Although competitive, both the parity and the locality
decompositions were negatively affected by the use of the
archiving strategy within the (1+1) EA. This is contrary
to what is expected in multiobjective optimization, where
archiving is essential for converging towards a set of trade-
offs among the conflicting problem objectives [22, 26]. Nev-
ertheless, in spite of being alternatively modeled and treated
as a multiobjective problem, the HP model is actually a
single-objective problem. Therefore, maintaining an approx-
imation set of nondominated solutions becomes not as im-
portant. In addition, the archiving strategy influences the
acceptance criterion of the algorithm in such a way that the
introduction of plateaus, the only achievable effect of decom-
position, may be partially reversed [17]. That is, some of the
mutually incomparable solutions can be comparable to those
in the archive. This could lead some parts of the plateaus
to become inaccessible, thus restricting the exploration.

Even when the best results for the genetic algorithm were
reached in most of the cases by using the proposed locality
decomposition, the performance differences among the three
compared formulations were not as impressive as those ob-
served for the (1+1) EA. This can be explained by the fact
that population-based approaches are inherently less suscep-
tible to get stuck in local optima. On the other hand, the
use of a multiobjective problem formulation enabled diver-
sity promotion in the objective space (through the crowding
distance operator [11]). This enhanced exploration and, to
some extent, gives an explanation to the improvements that
the parity and the locality decompositions achieved with re-
spect to the conventional single-objective formulation.

To the best of authors’ knowledge, the parity and the lo-
cality decompositions represent the first attempts on the use
of multiobjective optimization techniques to solve PSP un-
der the HP model. It is important to remark that the aim
of this study was not to improve the state-of-the-art results,
but rather to investigate the impact of using the proposed
multiobjectivization on the resolution of this problem. From
the obtained results, it is expected that the locality decom-
position can be successfully incorporated in order to improve
the performance of established state-of-the-art algorithms
(such as those mentioned in Section 3). This issue needs to
be investigated in order to derive more general conclusions.
Also, the conflicting relationship between the objectives of
the proposed formulation has to be analyzed. Finally, the

multiobjectivization of the HP model by means of the addi-
tion of supplementary objectives remains unexplored. This
can be seen as an interesting issue for future research.
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[5] A. Băutu and H. Luchian. Protein Structure
Prediction in Lattice Models with Particle Swarm
Optimization. In Swarm Intelligence, volume 6234 of
Lecture Notes in Computer Science, pages 512–519.
Springer Berlin / Heidelberg, 2010.

[6] C. Chira. A Hybrid Evolutionary Approach to Protein
Structure Prediction with Lattice Models. In IEEE
Congress on Evolutionary Computation, pages
2300–2306, New Orleans, LA, USA, 2011.

[7] P. Crescenzi, D. Goldman, C. Papadimitriou,
A. Piccolboni, and M. Yannakakis. On the Complexity
of Protein Folding. In ACM Symposium on Theory of
Computing, pages 597–603, Dallas, TX, USA, 1998.
ACM.

[8] V. Cutello, G. Narzisi, and G. Nicosia. A
Multi-Objective Evolutionary Approach to the Protein
Structure Prediction Problem. Journal of The Royal
Society Interface, 3(6):139–151, 2006.

[9] V. Cutello, G. Nicosia, M. Pavone, and J. Timmis. An
Immune Algorithm for Protein Structure Prediction
on Lattice Models. IEEE Transactions on
Evolutionary Computation, 11(1):101–117, 2007.

[10] R. Day, J. Zydallis, and G. Lamont. Solving the
Protein Structure Prediction Problem Through a
Multi-Objective Genetic Algorithm. In IEEE/DARPA
International Conference on Computational
Nanoscience, pages 32–35, 2002.

[11] K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan. A
Fast Elitist Non-Dominated Sorting Genetic
Algorithm for Multi-Objective Optimization:



NSGA-II. In Parallel Problem Solving from Nature,
pages 849–858, Paris, France, 2000. Springer. Lecture
Notes in Computer Science No. 1917.

[12] K. Dill. Theory for the Folding and Stability of
Globular Proteins. Biochemistry, 24(6):1501–9, 1985.

[13] M. Garza-Fabre, E. Rodriguez-Tello, and
G. Toscano-Pulido. Comparing Alternative Energy
Functions for the HP Model of Protein Structure
Prediction. In IEEE Congress on Evolutionary
Computation, pages 2307–2314, New Orleans, LA,
USA, 2011.

[14] M. Garza-Fabre, E. Rodriguez-Tello, and
G. Toscano-Pulido. Multiobjectivizing the HP Model
for Protein Structure Prediction. In European
Conference on Evolutionary Computation in
Combinatorial Optimisation, volume 7245 of Lecture
Notes in Computer Science, pages 182–193. Springer
Berlin / Heidelberg, Málaga, Spain, 2012.

[15] D. Greiner, J. Emperador, G. Winter, and B. Galván.
Improving Computational Mechanics Optimum Design
Using Helper Objectives: An Application in Frame
Bar Structures. In Evolutionary Multi-Criterion
Optimization, volume 4403 of Lecture Notes in
Computer Science, pages 575–589. Springer Berlin /
Heidelberg, Matshushima, Japan, 2007.

[16] J. Handl, S. Lovell, and J. Knowles. Investigations
into the Effect of Multiobjectivization in Protein
Structure Prediction. In Parallel Problem Solving from
Nature, volume 5199 of Lecture Notes in Computer
Science, pages 702–711. Springer Berlin / Heidelberg,
Dortmund, Germany, 2008.

[17] J. Handl, S. Lovell, and J. Knowles.
Multiobjectivization by Decomposition of Scalar Cost
Functions. In Parallel Problem Solving from Nature,
volume 5199 of Lecture Notes in Computer Science,
pages 31–40. Springer Berlin / Heidelberg, Dortmund,
Germany, 2008.

[18] M. Hoque, M. Chetty, A. Lewis, and A. Sattar. Twin
Removal in Genetic Algorithms for Protein Structure
Prediction Using Low-Resolution Model. IEEE/ACM
Transactions on Computational Biology and
Bioinformatics,, 8(1):234–245, 2011.

[19] M. Islam, M. Chetty, and M. Murshed. Novel Local
Improvement Techniques in Clustered Memetic
Algorithm for Protein Structure Prediction. In IEEE
Congress on Evolutionary Computation, pages
1003–1011, New Orleans, LA, USA, 2011.

[20] M. Jähne, X. Li, and J. Branke. Evolutionary
Algorithms and Multi-Objectivization for the
Travelling Salesman Problem. In Genetic and
Evolutionary Computation Conference, pages 595–602,
Montreal, Canada, 2009. ACM.

[21] M. Jensen. Helper-Objectives: Using Multi-Objective
Evolutionary Algorithms for Single-Objective
Optimisation. Journal of Mathematical Modelling and
Algorithms, 3:323–347, 2004.

[22] J. Knowles and D. Corne. Properties of an Adaptive
Archiving Algorithm for Storing Nondominated
Vectors. IEEE Transactions on Evolutionary
Computation, 7(2):100–116, 2003.

[23] J. Knowles, R. Watson, and D. Corne. Reducing Local
Optima in Single-Objective Problems by

Multi-objectivization. In Evolutionary Multi-Criterion
Optimization, pages 269–283, London, UK, 2001.
Springer-Verlag.

[24] D. Lochtefeld and F. Ciarallo. Helper-Objective
Optimization Strategies for the Job-Shop Scheduling
Problem. Applied Soft Computing, 11(6):4161–4174,
2011.

[25] H. Lopes. Evolutionary Algorithms for the Protein
Folding Problem: A Review and Current Trends. In
Computational Intelligence in Biomedicine and
Bioinformatics, volume 151 of Studies in
Computational Intelligence, pages 297–315. Springer
Berlin / Heidelberg, 2008.
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