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Abstract. Genetic algorithms have been successfully applied to many
difficult problems but there have been some disappointing results as well.
In these cases the choice of the internal representation and genetic oper-
ators greatly conditions the result.

In this paper a GA and a reordering algorithm were used for solve SAT
instances. The reordering algorithm produces a more suitable encoding
for a GA that enables a GA performance improvement. The attained
improvement relies on the building-block hypothesis, which states that
a GA works well when short, low-order, highly-fit schemata (building
blocks) recombine to form even more highly fit higher-order schemata.
The reordering algorithm delivers a representation which has the most
related bits (i.e. Boolean variables) in closer positions inside the chromo-
some.

The results of experimentation demonstrated that the proposed approach
improves the performance of a simple GA in all the tests accomplished.
These experiments also allow us to observe the relation among the in-
ternal representation, the genetic operators and the performance of a
GA.

1 Introduction

A genetic algorithm (GA) is based on three elemental parts: an internal repre-
sentation, an external evaluation function and an evolutionary mechanism. The
GA is considered to be successful if a population of highly fit individuals evolves
as a result of iterating this procedure.

The GAs, unlike other optimization algorithms, use in the search process of
a solution not only the fitness values, but also the similarities that exist between
certain patterns with high aptitude, that is to say, they change the emphasis of
searching complete strings by discovering partially adapted strings. Given this
fact it is useful to study the similarities of these patterns along with its corre-
sponding fitness values, and specially to investigate the structural correlations of



strings with exceptional fitness values. Formally, the similarities between strings
are defined by means of a schema. A schema (on the binary alphabet, this does
not mean lost of generality) is a string of the following type: (a1, ag, ..., a;, ..., a;),
a; € {0,1,%}.

The character “x” is used for representing a wildcard which can take the
values 0 or 1. A schema describes a subspace of strings [12]. For example S; =
(11x00%) is a schema in a population of strings with length k£ = 6 which represents
the strings: 111001, 111000, 110001, 110000. The schema’s order o(S), can be
defined as the length of the string minus the total number of wildcard characters,
in the previous example 0(S7) = 4; and the schema’s length §(S) is the distance
between the two, non wildcard, most separated characters of the schema (§(S7) =
4).

Given that a string is an instance of 3! possible schemata, where [ is the length
of the string, when its fitness value is verified, it is also derived an important
amount of implicit information related with its schemata. Holland called this fact
implicit parallelism[19], because the searching process is directed simultaneously
in many hyperplanes of the search space.

The schemata theorem, which is believed to be a primary source of the GA’s
search power, states that a GA works well when short, low-order, highly-fit
schemata (building blocks) recombine to form even more highly fit higher-order
schemata.

In this sense when examining GA hardness it is important to realize that the
hardness is essentially due to the internal representation of the search space, and
the way genetic operators act upon it [28]. For this reason the representation of
a problem must be designed in such a way that the gene interaction (epistasis) is
kept as low as possible and the building blocks may form to guide the convergence
process towards the global optimum.

In an internal representation each locus (bit within the chromosome) dis-
criminates between certain subsets of the search space. Only in one extreme
case (zero epistasis, [6]), all loci are of equal importance. Most often, though,
certain loci are more important than others in that they discriminate between
larger chromosome chunks. Or, correlations between different loci are explicitly
or implicitly present. Ideally we would like to order the loci by their discrimi-
nating power, and we would like correlated loci to be grouped together. In this
paper an algorithm which tries to achieve this is presented.

This algorithm is implemented by a simulated annealing algorithm (SA),
which transforms the representation of the problem by reordering its variables
in such a way that the most related ones can be placed in closer positions inside
the chromosome.

The rest of this paper is organized as follows: Section 2, presents a historical
resume of the GAs performance on the satisfiability problem. In section 3, a
detailed description of the GA representation issue for the satisfiability problem
is presented. Section 4 focuses on the proposed reordering algorithm and its
implementation details. In section 5, the experimental results and comparisons
are presented. Finally, in last section, the conclusions of this work are discussed.



2 GAs and the Satisfiability Problem

We are specially interested in applying GAs to the satisfiability (SAT) problem
given its great importance in computer science both in theory and in practice. In
theory, SAT was the first problem which has been shown to be NP-complete [4].
In practice, it has many applications in different research fields such as planning,
formal verification, and knowledge representation; to mention only some.

The SAT problem involves finding an assignment to a set of Boolean vari-
ables x1, zo, ..., xy that satisfies a set of constraints represented by a well-formed
Boolean formula in CNF format F : BY — B, B = {0,1}, i.e., a conjunction of
clauses, each of which is a disjunction of variables. If such assignment exists the
instance is called satisfiable and unsatisfiable otherwise.

Due to its theoretical and practical relevance the SAT problem has been
extensively studied and many exact and heuristic algorithms have been intro-
duced. Theoretically, exact methods are able to find the solution, or to prove
that no solution exists provided that no time constraint is present. However,
given the combinatorial nature of the problem, they have an exponential wort-
case complexity. In contrast heuristic algorithms can find solutions to satisfiable
instances quickly, but they do not guarantee to give a definitive answer to all
problem instances.

Existing heuristic algorithms for SAT are essentially based on local search
methods [1,27] and evolutionary strategies [20, 8].

Even though the GAs have been successfully applied to many NP-complete
problems, some disappointing results question the ability of GAs to solve SAT.
De Jong and Spears proposed a classical GA for SAT and concluded that their
GA could not outperform highly tuned, problem-specific algorithms [20]. This
result was confirmed experimentally in [9], they reported scarce performance of
classical GAs when compared with local search methods. In addition, Rana and
Whitley showed pure GAs being unsuitable for the MAXSAT fitness function,
which counts the number of satisfied clauses, because the corresponding domain
contains misleading low-order schema information, and the search space tends
to result in similar schema fitness averages [26]. Recent results showed that
GAs can nevertheless yield good results for SAT if equipped with additional
techniques. These techniques include adaptive fitness functions, problem-specific
genetic operators, and local optimization [8,9, 24, 13].

We have strong reasons to think that the negative results in the use of classical
GA for SAT is caused by the effect of an inappropriate representation. In the
next section, the representation issue will be described in greater detail.

3 The Representation Issue

SAT has a natural representation in GAs: binary strings of length N in which the
1 — th bit represents the truth value of the i — th Boolean variable present in the
SAT formula, surprisingly, no efficient classical genetic algorithm has been found
yet using this representation alone [14]. We have strong reasons to think that
this poor performance is caused by the effect of an inappropriate representation.
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Fig. 1. (a) Closeness’ graph for Dubois50.cnf original variable-ordering. (b) Closeness’
graph for the Dubois50.cnf with a bad variable-ordering. (c¢) Closeness’ graph for the
Dubois50.cnf with a good variable-ordering.

An easy extension of the building block hypothesis [12] is that a chromosome
representation must satisfy the fact that related variables are coded in closer
positions in the chromosome representation. As a consequence, it is very desir-
able that two variables that participate in the same clause appear close in the
chromosome representation, and through a variable reordering algorithm it is
possible to control the “closeness” of SAT instance related variables.

A graphical view of variables’ “closeness” can be constructed using the graph
of a binary matrix R s.t. R; ; = 1 if the ¢ — th variable appears related with the
Jj —th variable at least one time in a clause and (i < j), and otherwise R; ; = 0.
The graph of the binary matrix R contains a dot in position (4, j) just in case
Ri’j =1,

The SAT instance Dubois50.cnf? will be used for presenting graphs that
correspond to: a) the original variable-ordering, b) a bad variable-reordering,
and c¢) a good variable-reordering (a good reordering means that related vari-
ables appear in closer positions within the chromosome representation saw by
a GA). In Figure 1(a) the graph that corresponds to the original ordering of
the SAT instance Dubois50.cnf is presented, in this ordering two related vari-
ables are separated at most 101 positions (i.e. if the two related variables are
i and j, then max(abs(i — j)) = 101). In Figure 1(b) the graph corresponding
to a bad reordering for the SAT instance Dubois50.cnf is presented, in this
case two related variables are separated at most 149 positions (this corresponds
to a worst reordering given that two related variables appear in the most far
positions within the chromosome, i.e. first chromosome position and last chro-
mosome position). In Figure 1(c) the graph corresponding to a good reordering
is presented, in this case two related variables are separated at most 10 positions
(i.e. max(abs(i— j)) = 10, where ¢ and j are two related variables). As a general

3Tt consists of 150 wvariables and 400 clauses and can be found at
http://www.satlib.org/benchm.html



guideline if the dots appear near the main diagonal of the closeness’ graph that
indicates a variable-ordering, it implies that the representation is good.

4 The Reordering Algorithm

The proposed algorithm has as input a CNF instance, this CNF formula is then
converted into a weighted graph, where each variable is represented by a node,
and each weighted edge denotes how many times the variable ¢ is related with
the variable j. (see Figure 2(a)). A bandwidth minimization algorithm [30] is
applied to the resulting weighted graph to produce a more suitable ordering
of the weighted graph nodes. This ordering is translated back into an ordering
of variables in the original CNF instance. After that, the preprocessed CNF
formula can be used as input to a classical GA (see Figure 2(b)). Note that this
preprocessing algorithm does not change the original problem only rename its
variables.

CNF Instance

Reordering

Algorithm Weighted Graph

I Bandwidth Minimization Algorithm I

I New variable ordering for the CNF I

| Preprocessed CNF Instance |
|

Classic GA

(b)

Fig. 2. (a) Weighted graph corresponding to the SAT instance: (~ AV BV ~ C)A(AV
BV E)A(AVEV ~F)A\(~ BV DV ~ Q) (b) Reordering variable heuristic based on
a Bandwidth Minimization Algorithm.

4.1 Some Important Definitions

There are essentially two ways in which the bandwidth minimization problem
(BMP) can be approached, whether as a graph or as a matrix. The equivalence
of a graph and a matrix is made clear by replacing the nonzero entries of the
matrix by 1’s and interpreting the result as the adjacency matrix of a graph.
The Matrix Bandwidth Minimization Problem seems to have been originated
in the 1950’s when structural engineers first analyzed steel frameworks by com-
puter manipulation of their structural matrices [22,23]. In order that operations
like inversion and finding determinants take the least time as possible, many



efforts were made to discover an equivalent matrix in which all the nonzero en-
tries would lay within a narrow band near the main diagonal (hence the term
“bandwidth”) [3].

The BMP for graphs (BMPG) was proposed independently by Harper [18]
and Harary [17]. This can be defined as finding a labeling for the vertices of a
graph, where the maximum absolute difference between labels of each pair of
connected vertices is minimum.

Formally, Let G = (V, E) be a finite undirected graph, where V' defines the
set of vertices (labeled from 1 to V) and E is the set of edges. And a linear layout
7 ={m,72,...,7n} of G is a permutation over {1,2,...N}, where 7; denotes the
label of the vertex that originally was identified with the label 7. The bandwidth
B of G for a layout T is:

B-(G) = Max{yvyep|m(v) — 7(v)]. (1)
Then the BMPG can be defined as finding a layout 7 for which §,(G) is

minimum.

The first work that helped to understand the computer complexity of the
BMPG, was developed by Papadimitriou, who demonstrated that the decision
problem associated to the BMPG is a NP-complete problem [25]. Later, it was
demonstrated that the BMPG is NP-complete even for trees with a maximum
degree of three [10].

There are several algorithms reported to solve the BMPG, they can be di-
vided into two classes: exact and approximate algorithms. Exact algorithms,
guaranteed always to discover the optimal bandwidth, example of exact algo-
rithm is the one published by Gurari and Sudborough [15], it solves the BMPG
in O(N*) steps, where k is the bandwidth searched for that graph. Approxi-
mate algorithms are best known as approximate in the sense that they do not
guarantee to find the actual bandwidth of the graph, examples of this sort of
algorithms are [5,11, 16].

All algorithms mentioned in last paragraph use as a measure of the quality for
a solution 3. The only reported exceptions are: Dueck’s work in which not only 3
is used, but he also takes into account differences among adjacent vertices close
to 8 [7], and [30] where a new measure, namely =, is proposed. The advantage
of this new measure is the ability to distinguish even the smallest improvements
that not necessarily lower the value of 5.

Based in this previously reported work, we have implemented an algorithm for
improving the representation of a problem used for a GA. The new representation
produced by our algorithm satisfies the condition that the most related variables
of the problem are placed in closer positions inside the chromosome. Next the
implementation details of this algorithm are presented.

4.2 Implementation Details

The reordering algorithm approximates the bandwidth of a graph G by exam-
ining randomly generated layouts 7 of GG. These new layouts are generated by



interchanging a pair of distinct labels of the set of vertices V. This interchanging
operation is called a move.

The reordering algorithm begins initializing some parameters as the temper-
ature, the maximum number of accepted moves at each temperature, and the
cooling rate. The algorithm continues by randomly generating a move and then
calculating the change in the cost function for the new labelling of the graph.
If the cost decreases then the move is accepted. Otherwise, it is accepted with
probability P(AC) = e=2¢/T where T is the temperature and AC is the in-
crease in cost that would result from a particular move. The next temperature
is obtained by using the relation T,, = T,,_1* 0.85. The minimum bandwidth of
the labellings generated by the algorithm up that point is stored. The number
of accepted moves is counted and if it falls below a given limit then the system
is frozen.

The parameters of the SA algorithm were chosen experimentally, and taking
into account some related work reported in [21, 30, 29]. It is important to remark
that the maximum number of accepted moves at each temperature, depends
directly on the number of edges of the graph, because more moves are required
for denser graphs. Next the reordering algorithm is presented:

Procedure SA(G)

Set initial temperature (T) and all the parameters
Generate an initial random labelling for G
Calculate its bandwidth (old)
Repeat
Repeat
Generate a random move
Calculate its bandwidth (new)
If ((new-o0ld) < 0) Or (Random[0,1) < Exp(-(new-o0ld)/T))
Accept the move
If (new < old)
old = new
EndIf
EndIf
Until pre-defined number of iterations for this temperature
Reduce the temperature (7, =T, 1% 0.85)
Until temperature > minimum temperature
EndSA

5 Experimental Results

To evaluate the effectiveness the proposed reordering algorithm, a classic GA
was implemented. Its internal representation is based on binary strings of length
N in which the i —th bit represents the truth value of the i —th Boolean variable
of the problem. This chromosome definition has the following advantages: It is
of fixed length, binary, context independent in the sense that the meaning of
one bit is unaffected by changing the value of other bits, and permits the use of



classic genetic operators defined by Holland [19], which have strong mathematical
foundations.

Recombination is done in the standard way using the two-point crossover op-
erator, and the bit flipping operator. The former has been applied at a 70% rate,
and the latter at a 0.01% rate (these parameter values were adjusted through
experimentation). Selection operator is similar to the tournament selection re-
ported in [2]; randomly three elements of the population are selected and the
one with the better fitness is chosen.

The choice of the fitness function is an important aspect of any genetic op-
timization procedure. Firstly, in order to efficiently test each individual and
determine if it is able to survive, the fitness function must be as simple as possi-
ble. Secondly, it must be sensitive enough to locate promising search regions on
the space of solutions. Finally, the fitness function must be consistent: a solution
that is better than others must have a better fitness value.

For the SAT problem the fitness function used is the simplest and most
intuitive one, the fraction of the clauses that are satisfied by the assignment.
More formally:

LM
f(chromosome) = MZf(CZ) (2)

Where M is the number of clauses in the problem and the contribution of
each clause f(C;) is 1 if the clause is satisfied and 0 otherwise.

All the experiments were done using a population size fixed at: [1.6 x N,
where NNV is the number of variables in the SAT problem. The termination condi-
tion used for this algorithm is either when a solution that satisfies all the clauses
is found, or when the maximum number of 500 generations is reached.

The proposed reordering algorithm was tested on several classes of satisfiable
and unsatisfiable benchmark instances as those of the second DIMACS challenge
and flat graph coloring instances. They are easily available from the SATLIB web
site. For each of the selected instances 40 independent runs were executed, 20
using the reordering algorithm plus the classic GA (R+GA), and 20 solving the
problem with the use of the same basic GA. The results reported here, are data
averaged over the 20 corresponding runs.

Both the reordering algorithm and the GA have been implemented in C
programming language and ran into a Pentium 4 1.7 Ghz. with 256 MB of
RAM.

Table 1 presents the comparison between R+GA and the GA. Data included
in this comparison are: name of the formula; number of variables IN; number of
clauses M; B; and By represent the initial and final bandwidth obtained with the
reordering algorithm; the CPU time in seconds used by the reordering algorithm
is T. Additionally, for each approach it is presented: the number of satisfied

* http://www.satlib.org/benchm.html



clauses SC, and the CPU time in seconds 7'. It is important to remark that
the times presented for the combined approach in the column T, take into
account the CPU time used for the preprocessing algorithm.

Table 1. Comparative results between R+GA and GA.

R R+GA GA
Formulae N | M| B [B7|T|SC| T |Trotar|SC| T
aim100-1_ 6y*|{100{160| 94|37|3.1|{160| 4.95| 8.05 |159|16.81
aim100-2_ Oy%|100{200{ 96[42|5.2|200| 4.36| 9.56 [198|10.11

dubois28 84|224| 77( 9 |1.0|223| 2.08| 3.08 |221] 7.25
dubois29 87|232| 81| 9 |1.0|231| 1.09| 2.09 [231|19.89
dubois30 90|240( 87( 9 |1.0|239|13.35| 14.35 |237|27.81
dubois50 150{400]144(10|2.1{397| 1.93| 4.03 |395(39.94
flat30-1x 90{300| 85(26]2.2|300|16.61| 18.81 |299(27.41
flat30-2x 90|300| 81(24]2.2|300|11.44| 13.64 |300{17.82
pret60-75 60|160( 56({10{1.0|159| 1.75| 2.75 |159|14.67

pret150-40 150(400{143(24|2.1|399|33.63| 35.73 [396|23.84
pret150-60 150(400{140(27|3.1|399(12.75| 15.85 [397|21.31
pret150-75 150(400]142(23|3.0{397|35.82| 38.82 |397|65.76

The results of experimentation presented showed that the combined approach
R+GA outperforms the simple GA in all the tests accomplished, not only in so-
lution quality but also in computing time. The set of four satisfiable instances®
used in the experiments were solved by R+GA while only one of them could be
solved by GA. Better quality solutions for the R+GA is possible thanks to the
representation used by the GA ran after the reordering algorithm. This new rep-
resentation has two very important characteristics: it keeps the gene interaction
as low as possible and promotes the creation of building blocks. Smaller comput-
ing time for the R+GA approach is possible because the reordering algorithm
is able to find good solutions in reasonable time and also because the GA using
the new representation takes less CPU time. This can be clearly appreciated in
the Figure 3. It shows the convergence process of the two compared algorithms.
The X axis represents CPU time in seconds used by the algorithms, while the Y
axis indicates the number of satisfied clauses. It is important to point out that
the R+GA curve initiates at the time T, which is the CPU time in seconds
consumed in the reordering stage.

The behavior of a classic GA ran on the same problem with different band-
widths of the associated graph (Beta) has been explored. In Figure 4 it can be
seen that the performance of the GA is better when the bandwidth is low, i.e.
the most related variables are placed in closer positions inside the chromosome.

Next section presents the conclusions of this work.

> In Table 1 a + indicates a satisfiable formula.
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6 Conclusions

In this paper a reordering algorithm was used to improve the performance of a
classic GA when used to solve SAT problems. This combined approach has been
compared versus a simple GA using a set of SAT instances and it outperformed
the GA in all the tests accomplished. Additionally it has been observed during
the experimentation, that as the size of the problem increases, the advantage to
use the proposed reordering algorithm also increases. It allows us to conclude
that it pays to make a preprocessing of the problems in order to obtain a more
suitable representation.

The R4+GA method reported in this paper is a preliminary version. Studies
are in the way to have a better understanding of its behavior with respect of
different classes of SAT instances. Another pending issued is to improve its
performance; specially, a better stop criteria.

We think that the R+GA method is very promising and worthy to more
research. In particular it will be interesting and important to identify the classes
of SAT instances where is appropriate to apply our method and if this reordering
technique could be used in other kind of problems which will be solved by using
GAs.
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