ERA: An Algorithm for Reducing the Epistasis
of SAT Problems

Eduardo Rodriguez-Tello and Jose Torres-Jimenez

ITESM Campus Cuernavaca, Computer Science Department.
Av. Paseo de la Reforma 182-A. Lomas de Cuernavaca
62589 Temixco Morelos, MEXICO
{ertello, jtj}@itesm.mx

Abstract. A novel method, for solving satisfiability (SAT) instances
is presented. It is based on two components: a) An Epistasis Reducer
Algorithm (ERA) that produces a more suited representation (with lower
epistasis) for a Genetic Algorithm (GA) by preprocessing the original
SAT problem; and b) A Genetic Algorithm that solves the preprocesed
instances.

ERA is implemented by a simulated annealing algorithm (SA), which
transforms the original SAT problem by rearranging the variables to
satisfy the condition that the most related ones are in closer positions
inside the chromosome.

Results of experimentation demonstrated that the proposed combined
approach outperforms GA in all the tests accomplished.

1 Introduction

A genetic algorithm (GA) is based on three elements: an internal representation,
an external evaluation function and an evolutionary mechanism. It is well known
that in any GA the choice of the internal representation greatly conditions its
performance [4] [14]. The representation must be designed in such a way that
the gene-interaction (epistasis) is kept as low as possible. It is also advantageous
to arrange the coding so that building blocks may form to aid the convergence
process towards the global optimum.

We are specially interested in applying GAs to the satisfiability (SAT) prob-
lem. The most general statement of the SAT problem is very simple. Given a
well-formed boolean formula F in its conjunctive normal form (CNF)!, is there
a truth assignment for the literals that satisfies it?7. SAT, is of great importance
in computer science both in theory and in practice. In theory SAT is one of
the basic core NP-complete problems. In practice, it has become increasingly
popular in different research fields, given that several problems can be easily
encoded into propositional logic formulae: Planning [10], formal verification [1],
and knowledge representation [6]; to mention only some.

L A ONF formula F' is a conjunction of clauses C, each clause being a disjunction of
literals, each literal being either a positive (x;) or a negative (~ ;) propositional
variable.

Even though the SAT problem is NP-complete, many methods have been
developed to solve it. These methods can be classified into two large categories:
complete and incomplete methods. Theoretically, complete methods are able
to find the solution, or to prove that no solution exists provided that no time
constraint is present. However, the combinatorial nature of the problem makes
these complete methods impractical when the size of the problem increases.
In contrast incomplete methods are based on efficient heuristics, which help to
find sub-optimal solutions when applied to large optimization problems. This
category includes such methods as simulated annealing [15], local search [13],
and genetic algorithms (GAs) [8].

SAT has a natural representation in GAs: binary strings of length n in which
the i-th bit represents the truth value of the i-th boolean variable present in
the SAT formula. It is hard to imagine a better representation for this problem.
Surprisingly, no efficient genetic algorithm has been found yet using this repre-
sentation. We have strong reasons to think that this poor performance is caused
by the effect of epistasis. It is reported in [7] that generation of building blocks
will not occur when epistasis in the representation of a problem is high, in other
words if the related bits in the representation are not in closer positions inside
the chromosome.

In this paper a preprocessing method is proposed, called ERA (Epistasis
Reducer Algorithm), to reduce the epistasis of the representation for a SAT
problem, and in this way to improve the performance of a simple genetic algo-
rithm (using classical crossover) when used to solve SAT formulae. The principle
of ERA is to transform the original problem by rearranging the variables to sat-
isfy the condition that the most related ones are in closer positions inside the
chromosome.

The rest of this paper is organized as follows: Section 2, presents a description
of the epistasis problem. In section 3, a detailed description of the ERA proce-
dure is presented. Section 4 focuses on the genetic algorithm used. In section
5, the results of experiments and comparisons are presented and in last section,
conclusions are discussed.

2 Tackling Epistasis

In genetics, a gene or gene pair is said to be epistatic to a gene at another locus?,
if it masks the phenotypical expression of the second one. In this way, epistasis
expresses links between separate genes in a chromosome. The analogous notion
in the context of GAs was introduced by Rawlins [12], who defines minimal
epistasis to correspond to the situation where every gene is independent of every
other gene, whereas maximal epistasis arises when no proper subset of genes is
independent of any other gene. In this case the generation of building blocks will
not happen.

The problems of epistasis may be tackled in two ways: as a coding problem,
or as a GA theory problem. If treated as a coding problem, the solution is to

2 The locus is the position within the chromosome.

find a different representation and a decoding method which does not exhibit
epistasis. This will then allow conventional GA to be used. In [18] it is shown
that in principle any problem can be coded in such a way that it is as simple as
the “counting ones task”. Similarly, any coding can be made simple for a GA by
using appropriately designed crossover and mutation operators. So it is always
possible to represent any problem with little or no epistasis. However, for hard
problems, the effort involved in devising such a coding could be considerable.

In next section an algorithm called ERA, which is designed to tackle the
epistasis of the representation in SAT instances, is presented.

3 The ERA Method

3.1 Some Definitions

The SAT problem can be represented using hypergraphs [17], where each clause
is represented by a hyperedge and each variable is represented by a node. Given
the following SAT problem in CNF:

(~ AV BV ~C)A(AV BV ~ E)A(AV ~ EV ~ F)A(~ BV DV ~ Q)

The resulting hypergraph is shown in Figure 1. A weighted graph can be
obtained from the hypergraph SAT representation, where the weights represent
how many times the variable ¢ is related with the variable j (see Figure 2 corre-
sponding to the hypergraph in Figure 1). Under this particular representation,
the problem of rearranging the variables to satisfy the condition that the most
related variables are in closer positions inside the chromosome, is equivalent to
solve the bandwidth minimization problem for the graph.

' 6;9 v

Fig. 1. Hypergraph representing a SAT problem.

The bandwidth minimization problem for graphs (BMPG) can be defined
as finding a labeling for the vertices of a graph, where the maximum absolute
difference between labels of each pair of connected vertices is minimum [3].

Fig. 2. Weighted graph representing a SAT problem.

Formally, Let G = (V, E) be a finite undirected graph, where V defines the
set of vertices (labeled from 1 to N) and F is the set of edges. And a linear layout
7 ={7r1,72,...,7n} of G is a permutation over {1,2,...N}, where 7; denotes the
label of the vertex that originally was identified with the label i. The bandwidth
B of G for a layout 7 is:

8:(G) = Mazuvyep|T(u) = 7(v)]

Then the BMPG can be defined as finding a layout 7 for which 8,(G) is

minimum.

3.2 The Method

The ERA method is based on a simulated annealing algorithm previously re-
ported in [16], which demonstrated to have competitive results for many classes
of graphs. It will approximate the bandwidth of a graph G by examining ran-
domly generated layouts 7 of G. These new layouts are generated by interchang-
ing a pair of distinct labels of the set of vertices V. This interchanging operation
is called a mowve.

ERA begins initializing some parameters as the temperature, T'; the maxi-
mum number of accepted moves at each temperature, max_moves; the maximum
number of moves to be attempted at each temperature, max_attempted-mouves;
maz-frozen is the number of consecutive iterations allowed for which the num-
ber of accepted moves is less than max_moves; and the cooling rate cool_rate.
The algorithm continues by randomly generating a move and then calculating
the change in the cost function for the new labelling of the graph. If the cost
decreases then the move is accepted. Otherwise, it is accepted with probability
P(AC) = e~ AY/T where T is the temperature and AC is the increase in cost
that would result from a particular move. The next temperature is obtained
by using the relation T, = T,,_1% cool_rate. The minimum bandwidth of the
labellings generated by the algorithm up that point in time is min_band. The

number of accepted moves is counted and if it falls below a given limit then the
system is frozen.
Next, the ERA procedure is presented:

Procedure ERA (G, best-map)
T = 0.00004; cool_rate = 0.85;
map = best_map = random labeling;
sa_band = Bandwidth(G, best_map);
maz_moves = b * |E|;
maz-attempted-moves = 2% mar-moves;
maz_frozen = 10; frozen = 0;
While (frozen < maz_frozen)
moves = attempted_moves = 0;
While ((moves < max-moves) And
(attempted_moves < max_attempted_moves))
attempted_-moves +;
a random move is generated, map_ran;
If (bandwidth decreases Or random_number() < e~ABandwidth/T)
map = map-ran, Moves ++;
If (sa_band < Bandwidth(G, map))
best_-map = map;
sa_band = Bandwidth(G, map);
End If
End If
End While
T = T * cool_rate;
If (attempted_moves > maz_attempted_moves)
frozen++;
Else
frozen = 0;
End If
End While
End ERA

The parameters of the ERA algorithm were chosen taking into account our
experience, and some related work reported in [11] and [15]. It is important to
remark that the value of maz_moves depends directly on the number of edges
of the graph, because more moves are required for denser graphs; the value
of max_attempted_moves is set to a large number (5 * maz-moves), because
few moves will result in bigger bandwidths. The maa_frozen parameter that
controls the external loop of our algorithm is set to 10. By modifying these three
parameters one can obtain results more quickly, but probably they will not be
as close to 8(G). According the experiment results the above values give a good
balance between the quality of the results and the computational effort required.

4 GA for Solving SAT Problems

In order to demonstrate the benefits to preprocess SAT instances using ERA
a simple genetic algorithm (using classical genetic operators) was implemented.
The basic assumption in a GA is the following: a random population of chromo-
somes (strings of genes that characterize particular solutions) is initially created
and exposed to an environment represented by a fitness function; this fitness
function is evaluated for each chromosome and only the best-fitted individu-
als survive and become parents for the next generation. Reproduction is then
allowed by splitting the parent chromosomes to create new ones with different ge-
netic information. This procedure is repeated and the population evolves during
a given number of generations. Holland [9], introduced the theory of schemas in
which he shown that above average-fit schemata get an exponentially increasing
number of matches in the population as generations pass.

In the next subsections the main implementation details of the GA used in
the present work is described.

4.1 Chromosome Definition

For the particular case of the SAT problem, given that it consists in a search
over n boolean variables, this results in a search space of size 2", the most
natural internal representation is: binary strings of length n in which the i-th
bit represents the truth value of the i-th boolean variable.

This chromosome definition has the following advantages: It is fixed length,
binary, context independent in the sense that the meaning of one bit is unaf-
fected by changing the value of other bits, and permits the use of classic genetic
operators defined by Holland [9], which have strong mathematical foundations.

4.2 Fitness Function

The choice of the fitness function is an important aspect of any genetic optimiza-
tion procedure. Firstly, in order to efficiently test each individual and determine
if it is able to survive, the fitness function must be as simple as possible. Sec-
ondly, it must be sensitive enough to locate promising search regions on the
space of solutions. Finally, the fitness function must be consistent: a solution
that is better than others must have better fitness value.

In SAT problem the fitness function used is the simplest and most intu-
itive one, the fraction of the clauses that are satisfied by the assignment. More
formally:

f(chromosome) = %if(cl)

Where the contribution of each clause f(c;) is 1 if the clause is satisfied and
0 otherwise.

4.3 Operators

Recombination is done using the two-point crossover operator, and mutation is
the standard bit flipping operator. The former has been applied at a 70% rate,
and the later at a 0.01% rate (these parameters values were adjusted through
experimentation).

Selection operator is similar to the tournament selection reported in [2]; ran-
domly three elements of the population are selected and the one with the better
fitness is chosen.

4.4 Population Size

In all cases the population size has been held fixed at: |1.6 % N |, where N is the
number of variables in the problem.

4.5 Termitation Criteria

The termination condition is used to determine the end of the algorithm. This
GA is terminated when either a solution that satisfies all the clauses in the
SAT problem is found, or the maximum number of generations is reached (300
generations).

5 Computational Results

The ERA method and the GA have been implemented in C programming lan-
guage and ran into a Pentium 4 1.7 Ghz. with 256 MB of RAM. To test the
algorithms described above, several SAT instances as those of the second DI-
MACS challenge and flat graph coloring instances were used, since they are
widely-known and easily available from the SATLIB benchmarks3.

The experimentation methodology used consistently throughout this work
was as follows: For each of the selected SAT instances 20 independent runs were
executed, 10 using the ERA preprocessing algorithm plus a GA (ERA+GA),
and 10 solving the problem solely with the use of the same GA. All the results
reported here, are data averaged over the 10 corresponding runs.

Results from ERA algorithm on the selected SAT instances are presented
in Table 1. Column titled N indicates the number of nodes in the weighted
graph, which represents the original SAT problem. Columns 3; and 3 represent
the initial and final bandwidth obtained with the ERA algorithm and the last
column presents the CPU time used by ERA measured in seconds.

As can be seen in Table 1, the ERA algorithm provides a balance between
solution quality and computational effort. ERA allowed to reduce significantly
the bandwidth of the weighted graphs in 5.2 seconds or less, given that the
number of vertices was at most 150.

3 http://www.satlib.org/benchm.html

Formulas | N | 3, |B;|Ts
aim100-1_6y|100| 94|37|3.1
aim100-2_0y|100| 96| 42|5.2
dubois28 84 77 1.0
dubois29 87| 81 1.0
dubois30 90| 87| 9|1.0
dubois50 150(144] 10{2.1
flat30-1 90| 85(26|2.2
flat30-2 90| 81| 24(2.2
pret60-75 60[56| 10|1.0
pret150-40 (150(143|24|2.1
pret150-60 |150(140(27|3.1
pret150-75 150142 23|3.0
Table 1. Results from the ERA algorithm.

Ne)

=]

Table 2 presents the comparison between ERA4+GA and GA. Data included
in this comparison are: name of the formula; number of variables IV; and number
of clauses M. Additionally, for each approach it is presented: the number of
satisfied clauses S, and the CPU time in seconds. It is important to remark that
times presented for the ERA+GA approach take into account also the CPU time
used for the preprocessing algorithm.

ERA+GA| GA
Formulas N|M|S T S| T
aim100-1_6yx|100/160{160 8.05|159(16.81
aim100-2_0y%|100/200{200 9.56(198(10.11

dubois28 84|224(223 3.08(221| 7.25
dubois29 87|232|231 2.09|231{19.89
dubois30 90|240(239| 14.35|237|27.81
dubois50 150{400|397 4.03(395|39.94
flat30-1x 90|300({300| 18.81]299|27.41
flat30-2x 90|300{300| 13.64|300(17.82

pret60-75 60]160|159 2.75|159(14.67
pret150.40 |150(400(399| 35.73|396(23.84
pret150.60 |150[{400{399| 15.85|397|21.31
pret150.75 150{400|397| 38.82(397|65.76
Table 2. Comparative results between ERA+GA and GA.

The results of experimentation presented showed that ERA+GA outperforms
GA in the selected SAT instances, not only in solution quality but also in com-
puting time. The set of four satisfiable instances? used in the experiments were
solved by ERA+GA while only one of them could be solved by GA. Better

4 In Table 2 a * indicates a satisfiable formula.

quality solutions for the ERA4+GA is possible thanks to the representation used
by the GA ran after ERA, which has smaller epistasis. Smaller computing time
for the ERA4+GA is possible because the ERA algorithm is able to find good
solutions in reasonable time and the GA takes less CPU time.

Additionally it has been observed during the experimentation, that as the
size of the SAT problem increases, the advantage to use the ERA algorithm also
increases. It allows to conclude that it pays to make a preprocessing of SAT
problems to reduce the epistasis.

In Figures 3, 4, 5 and 6 is clearly appreciated the advantages to use the
proposed preprocessing algorithm when SAT problems are solved. They show
the convergence process of the compared algorithms. The X axis represents CPU
time in seconds used by the algorithms, while the Y axis indicates the number of
satisfied clauses (the results showed are the average of the 10 independent runs).
It is important to point out that the ERA+GA curve initiates at the time 7},
which is the CPU time in seconds consumed in the preprocessing stage.

6 Conclusions

In this paper a novel preprocessing algorithm was introduced, called ERA, which
improves the performance of GAs when used to solve SAT problems. This ap-
proach has been compared versus a simple GA without preprocessing using a
set of SAT instances. The ERA+GA outperforms GA in all the selected SAT
instances.

We think that the ERA+GA method is very promising and worthy to more
research. In particular it will be interesting and important to identify the classes
of SAT instances where is appropriate to apply our method.

Taking into account that NP-complete problems can be transformed into an
equivalent SAT problem in polynomial time [5], it opens the possibility to solve
through ERA+GA many NP-complete problems which do not have effective
representations in GAs.

References

1. Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Y. Zhu, Symbolic Model
Checking without BDDs, Proceedings of Tools and Algorithms for the Analysis and
Construction of Systems (TACAS’99), Number 1579 in LNCS, Springer Verlag,
1999, pp. 193-207.

2. T. Blickle and L. Thiele, A mathematical analysis of tournament selection, Pro-
ceedings of the Sixth ICGA, Morgan Kaufmann Publishers, San Francisco, Ca.,
1995, pp. 9-16.

3. E. Cutchill and J. McKee, Reducing the bandwidth of sparse symmetric matrices,
Proceedings 24th National of the ACM (1969), 157-172.

4. Y. Davidor, Epistasis Variance: A Viewpont of GA-Hardness, Proceedings of the
Second Foundations of Genetic Algorithms Workshop, Morgan Kaufmann, 1991,
pp- 23-35.

10.

11.

12.

13.

14.

15.

16.

17.

18.

M.R. Garey and D.S. Johnson, Computers and intractability: A guide to the theory
of np-completeness, W.H. Freeman and Company, New York, 1979.

E. Giunchiglia, F. Giunchiglia, and A. Tacchella, SAT-Based Decision Procedures
for Classical Modal Logics, Highlights of Satisfiability Research in the Year 2000,
2000.

David E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning, Addison-Wesley Publishing Company, Inc., 1989.

J. K. Hao, A Clausal Genetic Representation and its Evolutionary Procedures for
Satisfiability Problems, Proceedings of the International Conference on Artificial
Neural Networks and Genetic Algorithms (France), April 1995.

J. Holland, Adaptation in natural and artificial systems, Ann Arbor: The University
of Michigan Press, 1975.

Henry Kautz and Bart Selman, Planning as Satisfiability, Proceedings of the 10th
European Conference on Artificial Intelligence (ECAI 92), 1992, pp. 359-363.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by simulated anneal-
ing, Science 220 (1983), 671-680.

G. J. E. Rawlins, Foundations of Genetic Algorithms, Morgan Kaufmann Publish-
ers, San Mateo, 1991.

B. Selman, H. Levesque, and D. Mitchell, A New Method for Solving Hard Sat-
isfiability Problems, Proceedings of the Tenth National Conference on Artificial
Intelligence (San Jose CA), July 1992, pp. 440-446.

Jim Smith, On Appropriate Adaptation Levels for the Learning of Gene Linkage,
Journal of Genetic Programming and Evolvable Machines 3 (2002), 129-155.
William M. Spears, Simulated Annealing for Hard Satisfiability Problems, Tech. Re-
port AIC-93-015, AI Center, Naval Research Laboratory, Washington, DC 20375,
1993.

Jose Torres-Jimenez and Eduardo Rodriguez-Tello, A New Measure for the Band-
width Minimization Problem, Proceedings of the IBERAMIA-SBIA 2000, Number
1952 in LNAI (Antibaia SP, Brazil), Springer-Verlag, November 2000, pp. 477-486.
Isaac Vazquez-Moran and Jose Torres-Jimenez, A SAT Instances Construction
Based on Hypergraphs, WSEAS Transactions on Systems 1 (2002), no. 2, 244-247.
M. Vose and G. Liepins, Schema Disruption, Proceedings of the Fourth Interna-
tional Conference on Genetic Algorithms, Morgan Kaufmann, 1991, pp. 237-242.

o I ' T T T T T
ERA + GA
GA
Solution ---------

2es |

can
w
o
w
m H
m
o
: i
o
-
w
z
m
w

188 1 .) . . . ,

8 s 18 15 =8 5 - - -

Seconds

Fig. 3. Average curves for ERA+GA and GA on aim100-2_0y problem.

418 T T T T T
ERA + GA
GA -
485 - 4
488 |- 4

Satisfied Clauses

260 1 1 1 1 1
a =l i@ 15 2a 25 fel=)

Seconds

Fig. 4. Average curves for ERA+GA and GA on dubois50 problem.

T
ERA + GA
GA

Solution ------e

385 ~

Satisfied Clauses

1 1 1 1
5 1@ 15 za 25 38

Seconds

Fig. 5. Average curves for ERA+GA and GA on flat30-1 problem.

418 T T T T T
ERA + GA
GA -
485 |- 4
488 |- 4

Satisfied Clauses

28 2| 48 5a &a sa

Seconds

Fig. 6. Average curves for ERA4+GA and GA on pret150-75 problem.

