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Abstract The Maximum Parsimony (MP) problem aims at reconstructing a phy-
logenetic tree from DNA sequences while minimizing the total number of genetic
transformations. In this paper we propose a carefully devised simulated annealing
implementation, called SAMPARS (Simulated Annealing for Maximum PARSi-
mony), for finding near-optimal solutions for the MP problem. Different possibili-
ties for its key components and input parameter values were carefully analyzed and
tunned in order to find the combination of them offering the best quality solutions
to the problem at a reasonable computational effort. Its performance is investigated
through extensive experimentation over well known benchmark instances showing
that our SAMPARS algorithm is able to improve some previous best-known solu-
tions.
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1 Introduction

One of the main problems in Comparative Biology consists in establishing ances-
tral relationships between a group of n species or homologous genes in populations
of different species, designated as taxa. These ancestral relationships are usually
represented by a binary rooted tree, which is called a phylogenetic tree or a phy-
logeny [19].
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In the past phylogenetic trees were inferred by using morphologic characteristics
like color, size, number of legs, etc. Nowadays, they are reconstructed using the in-
formation from biologic macromolecules like DNA (deoxyribonucleic acid), RNA
(ribonucleic acid) and proteins. The problem of reconstructing molecular phyloge-
netic trees has become an important field of study in Bioinformatics and has many
practical applications in population genetics, whole genome analysis, and the search
for genetic predictors of disease [20, 35].

Given a set . = {51,52,...,5,} composed by n sequences of length k over a
predefined alphabet <7 (operational taxa previously aligned). A binary rooted phy-
logenetic tree T = (V,E) is used to represent their ancestral relationships, it consists
of asetof nodes V ={v,...,v,} andasetof edges E CV xV = {{u,v} u,y € V}.
The set of nodes V ([V| = (2n — 1)) is partitioned into two subsets: I, containing
n— 1 internal nodes (hypothetical ancestors) each one having 2 descendants; and L,
composed of n leaves, i.e., nodes with no descendant.

The parsimony sequence P, = {z1,---,z} for each internal node 1,, € I, whose
descendants are S, = {x1,--- ,x¢} and S, = {y1, -,y }, is calculated with the fol-
lowing expression:

xiUy;, ifx;Ny; =0
x; Ny, otherwise  °

Vi,lgigk,zi:{ (D

Then, the parsimony cost of the sequence P, is defined as follows:

k .
. ' o 1, ifx;Ny; =0
9(Pv) = ; G where G = { 0, otherwise  ’ 2)
and the parsimony cost for the tree T is obtained as follows:
o(T)= 3. o(P). 3)
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Thus, the Maximum Parsimony (MP) problem consists in finding a tree topology
T* for which ¢(7*) is minimum, i.e.,

¢(T*) =min{¢(T): T € T}, 4)

where 7 is the set composed by all the possible tree topologies (the search space of
the problem).

There exist many different methods reported in the literature, to solve the prob-
lem of reconstructing phylogenetic trees. These can be classified in three main dif-
ferent approaches. Distance methods [13, 32], Probabilistic methods [12, 33] and
Cladistic methods [7, 11]. In this paper we focus our attention in a cladistic method
based on the Maximum Parsimony (MP) criterion, which is considered in the liter-
ature as one of the most suitable evaluation criterion for phylogenies [24, 34].

It has been demonstrated that the MP problem is NP-complete [17], since it is
equivalent to the combinatorial optimization problem known as the Steiner tree
problem on hypercubes, which is proven to be NP-complete [14].
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The MP problem has been exactly solved for very small instances (n < 10) using
a branch & bound algorithm (B&B) originally proposed by Hendy and Penny [18].
However, this algorithm becomes impractical when the number of studied species
n increases, since the size of the search space suffers a combinatorial explosion.
Therefore, there is a need for heuristic methods to address the MP problem in rea-
sonable time.

Andreatta and Ribeiro [4] compared three greedy algorithms of different com-
plexity: /stRotuGbr, Gstep_-wR and Grstep. They concluded from their experiments
that, Gstep_-wR was more efficient than /stRotuGbr, but expending more computa-
tional time. Grstep achieved good results only when it was combined with a local
search method. Even when these methods attained good quality solutions, they were
still far away from the optimal solutions.

In 2003, Barker proposed a software, called LVB, which implemented a multi-
start simulated annealing algorithm for solving the MP problem [5]. Later, an up-
dated version of LVB was released in 2010 [6]. This new version adds a hill-
climbing phase at the end of each simulated annealing search and a new stop condi-
tion.

Ribeiro and Viana [26] in 2005 applied a greedy randomized adaptive search
procedure (GRASP) for solving the MP problem and showed that this algorithm
had the best performance with respect to the state-of-the-art algorithms. Different
evolutionary algorithms were also reported for the MP problem. Among them we
found GA+PR+LS, a genetic algorithm hybridized with local search which employs
path-relinking to implement a progressive crossover operator [27]. More recently
Richer, Goéffon and Hao [28] introduced a memetic algorithm called Hydra which
yields the best-known solutions for a set of 20 benchmark instances proposed in
[25].

This paper aims at developing a new simulated annealing (SA) algorithm imple-
mentation (hereafter called SAMPARS) for finding near-optimal solutions for the
MP problem under the Fitch’s criterion. To achieve this, different possibilities for
its key components were carefully designed and evaluated. The SAMPARS input
parameter values yielding the best quality solutions to the problem at a reasonable
computational effort were determined by employing a tunning methodology based
on Combinatorial Interaction Testing. The performance of the new proposed im-
plementation is investigated through extensive experimentation over 20 well known
benchmark instances and compared with other existing state-of-the-art algorithms,
showing that our algorithm is able to improve some previous best-known solutions.

The rest of this paper is organized as follows. In Section 2 the components of
our SAMPARS implementation are discussed in detail. Then, three computational
experiments are presented in Sect. 3 devoted to determine the best parameter settings
for SAMPARS and to compare its performance with respect to LVB, an existing
SA implementation [5, 6] and two other representative state-of-the-art algorithms:
GA+PR+LS [27] and Hydra [15]. Finally, the last section summarizes the main
contributions of this work and presents some possible directions for future research.
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2 An Improved Implementation of a Simulated Annealing
Algorithm

Simulated Annealing (SA) is a general-purpose stochastic optimization technique
that has proved to be an effective tool for approximating globally optimal solutions
to many NP-hard optimization problems. However, it is well known that develop-
ing an effective SA algorithm requires a careful implementation of some essential
components and an appropriate tuning of the parameters used [21, 22].

In this section we present an improved implementation of a SA algorithm (Algo-
rithm 1), that we called SAMPARS, for finding tree topologies (phylogenies) with
near-optimal parsimony costs under the Fitch’s criterion. The main difference of our
implementation, with respect to LVB [5, 6], occurs in the neighborhood function
(line 9) which has been tailored to fit the specificity of the MP problem. SAMPARS
employs a composed neighborhood function combining standard neighborhood re-
lations for trees with a stochastic descent algorithm on the current solution (see Sect.
2.4), while LVB randomly selects a neighbor 7/ € 7 of the current solution 7.

Algorithm 1: SAMPARS algorithm

input: 4", ¢, 1;, CL, o, B

T < GeneratelnitialSolution()

T« T

j+<0

tj <1

repeat

c+0

while ¢ < CL do

c+c+1

T’ < GenerateNeighbor(7,c,./")

Ap < (1)~ §(T)

Generate a random u € [0, 1]

if (A9 <0) or (e 29/' > u) then
T«T
ifo(T") < ¢(T*) then T* < T’

end

o 0 AN AR W N -

e
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end

j—Jj+1

tj + UpdateCurrentTemperature(; 1)
9 until < stop condition >

return T*

o
=B I

[
=l

Next all the implementation details of the proposed SAMPARS algorithm are
presented. For some of these components different possibilities were analyzed (see
Sect. 3.2) in order to find the combination of them which offers the best quality
solutions at a reasonable computational effort.
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2.1 Internal Representation and Search Space

Let T be a potential solution in the search space .7, that is a phylogenetic tree
representing the ancestral relationships of a group of n operational taxa, each one of
length k over a predefined alphabet <7 Then T is represented as a binary rooted tree
composed of n — 1 internal nodes and n leaves. The size of the search space |.7|,
i.e., the number of rooted tree topologies is given by the following expression [40]:

|7 = (2n—3)!/2"2(n—2)! 5)

2.2 Evaluation Function

The evaluation function is one of the key elements for the successful implementation
of metaheuristic algorithms because it is in charge of guiding the search process
toward good solutions in a combinatorial search space.

Previously reported metaheuristic methods for solving the MP problem have
commonly evaluated the quality of a potential solution, ¢(7), using the parsimony
cost depicted in (3) [4, 5, 26-28]. In our SAMPARS implementation this evaluation
function was also used.

2.3 Initial Solution

The initial solution is the starting phylogenetic tree used for the algorithm to begin
the search of better configurations in the search space 7.

In the existing SA implementation for the MP problem [5, 6] the initial solution
is randomly generated. In contrast, SAMPARS creates the starting solution using
a greedy procedure that guarantees a better quality initial solution. The proposed
procedure can be described as follows.

First, it generates a random permutation of the studied taxa, which is used to
indicate the order in which the leaves (taxa) will be processed. Then, the root node
of the tree is created and the first and second taxa in the permutation are binded
to it. The rest of the taxa in the permutation are appended to the tree one by one.
Each time a new taxon is added to the partial tree, the algorithm analyzes all the
possible insertion positions in order to select the one that minimizes the increase in
the tree’s parsimony cost. This process is iterated until all the remaining taxa in the
permutation are processed.
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2.4 Neighborhood Functions

The most common practice in the reported metaheuristics for the MP problem [4, 26,
27] is employing one of the following three neighborhood functions. The first one,
called Nearest Neighbor Interchange (NNI), was proposed by Waterman and Smith
[39]. It exchanges two subtrees separated by an internal node. Given that each tree
has n — 3 internal nodes and two possibles moves by branch, then there exist 2n —
6 NNI neighboring solutions [29]. The second one, is known as Subtree Pruning
and Regrafting (SPR) [36]. It cuts a branch of the tree and reinserts the resulting
subtree elsewhere generating a new internal node. For each tree there exist 2(n —
3)(2n —7) possible SPR neighboring solutions [3]. Finally, the Tree Bisection and
Reconnection (TBR) [36] consists in dividing the tree into two subtrees that will be
reconnected from one of their branches. From a given tree, the TBR neighborhood
induces at most (21 — 3)(n — 3)? neighboring trees [3].

LVB, the existing SA implementation for the MP problem [5, 6] alternates the use
of the NNI and SPR neighborhood functions at each iteration of the search process.
In the case of our SAMPARS algorithm both the SPR and the TBR neighborhood
relations are implemented. However, from our preliminary experiments it has been
observed that the separated use of these neighborhood functions is not sufficient to
reach the best-known solutions, because both of them are highly disruptive. In or-
der to achieve a better performance for SAMPARS, we have decided to use a third
complementary neighborhood structure. It is based on a stochastic descent algo-
rithm with a best-improve scheme which is occasionally applied to the neighboring
solution 7’ prior to returning it. Our compound neighborhood function is inspired
by the ideas reported in [23], where the advantage of using this approach is well
documented.

Algorithm 2: GenerateNeighbor

input: 7, ¢, N
1 randomly select T’ € A (T) // A SPR or TBR neighboring solution
2 if ¢ is a multiple of 15 then
3 | T' < Descent(T")
4
5

end
return 7’

2.5 Cooling Schedule

A cooling schedule is defined by the following parameters: an initial temperature, a
final temperature or a stopping criterion, the maximum number of neighboring so-
lutions that can be generated at each temperature (Markov chain length), and a rule
for decrementing the temperature. The cooling schedule governs the convergence of
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the SA algorithm. At the beginning of the search, when the temperature is large, the
probability of accepting solutions of worse quality than the current solution (uphill
moves) is high. It allows the algorithm to escape from local minima. The probability
to accept such moves is gradually decreased as the temperature goes to zero.

The literature offers a number of different cooling schedules, see for instance
[1, 2, 30, 37]. They can be divided into two main categories: static and dynamic.
In a static cooling schedule, the parameters are fixed and cannot be changed during
the execution of the algorithm. With a dynamic cooling schedule the parameters are
adaptively changed during the execution.

In our SAMPARS implementation we preferred a geometrical cooling scheme
(static) mainly for its simplicity. It starts at an initial temperature ¢; that can ei-
ther be defined by the user or automatically computed using the following formula:
(k+ n)(l'o/ 33) which generates values under 6.0 for most of the tested benchmark
instances. Then, this temperature is decremented at each round by a factor o = 0.99
using the relation #; = otfj_;. A reheat mechanism has also been implemented. If
the best-so-far solution is not improved during maxNIT D = 50 consecutive temper-
ature decrements, the current temperature ¢; is increased by a factor B = 1.4 using
the function #; = B¢;_;. In our implementation this reheat mechanism can be applied
at most maxReheat = 3 times, since it represents a good trade-off between efficiency
and quality of solution found.

For each temperature ¢;, the maximum number of visited neighboring solutions
is CL. It depends directly on the parameters n and k of the studied instance, since we
have observed that more moves are required for bigger trees [38]. Next, we present
the three different values that CL can take.

small: CL = 15(n+k)
medium: CL = 23(n+ k)
large: CL =40(n+k)

The parameter values presented in this section were chosen based on the results
obtained in a preliminary experimentation. For the reason of space limitation we did
not present here these experiments.

2.6 Stop Condition

The SAMPARS algorithm stops if it ceases to make progress. In our implementation
a lack of progress exists if after @ = 40 (frozen factor) consecutive temperature
decrements the best-so-far solution is not improved.

We will see later that thanks to the main features presented in this section, our
SAMPARS algorithm reaches good quality results, which are sometimes better than
the best-known solutions reported in the literature [15, 27].
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3 Computational Experiments

In this section three main experiments were accomplished to evaluate the perfor-
mance of the proposed SAMPARS algorithm and some of its components are pre-
sented. The objective of the first experiment is to determine both a component com-
bination, and a set of parameter values which permit SAMPARS to attain the best
trade-off between solution quality and computational effort. The purpose of the sec-
ond experiment is to carry out a performance comparison of SAMPARS with respect
to an existing SA algorithm called LVB [5, 6]. The third experiment is devoted to
asses the performance of SAMPARS with respect to two representative state-of-the-
art procedures: Hydra [15] and GA+PR+LS [27].

For these experiments SAMPARS was coded in C++ and compiled with g++
using the optimization flag -O3. It was run sequentially into a CPU Xeon X5650 at
2.66 GHz, 2 GB of RAM with Linux operating system. Due to the non-deterministic
nature of the studied algorithms, 30 independent runs were executed for each of the
selected benchmark instances in each experiment presented in this section.

3.1 Benchmark Instances and Performance Assessment

The test-suite that we have used in our experiments is the same proposed by Ribeiro
and Vianna [26] and later employed in other works [15, 27]. It consists of 20 ran-
domly generated instances with a number of sequences (n) ranging from 45 to 75
whose length (k) varies from 61 to 159.

For all the experiments, 30 independent executions were performed. The criteria
used for evaluating the performance of the algorithms are the same as those used in
the literature: the best parsimony cost found for each instance (smaller values are
better) and the expended CPU time in seconds.

3.2 Components and Parameters Tunning

Optimizing parameter settings is an important task in the context of algorithm de-
sign. Different procedures have been proposed in the literature to find the most suit-
able combination of parameter values [10, 16]. In this paper we employ a tunning
methodology based on Combinatorial Interaction Testing (CIT) [8]. We have de-
cided to use CIT, because it allows to significantly reduce the number of tests (ex-
periments) needed to determine the best parameter settings of an algorithm. Instead
of exhaustive testing all the parameter value combinations of the algorithm, it only
analyzes the interactions of ¢ (or fewer) input parameters by creating interaction test-
suites that include at least once all the #-way combinations between these parameters
and their values.
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Table 1 Input parameters of the SAMPARS algorithm and their selected values.

IS o 1 N CL
Greedy 0.99 6.0 SPR 15(n+k)
Random 0.85 (k4n)(10/3:3) TBR 23(n+k)

- - - - 40(n+k)

Covering arrays (CAs) are combinatorial designs which are extensively used to
represent those interaction test-suites. A covering array, CA(N;t,k,v), of size N,
strength ¢, degree k, and order v is an N X k array on v symbols such that every
N Xt sub-array includes, at least once, all the ordered subsets from v symbols of
size ¢ (t-tuples) [9]. The minimum N for which a CA(N;t,k,v) exists is the covering
array number and it is defined according to the following expression: CAN(t,k,v) =
min{N : 3CA(N;t,k,v)}.

CAs are used to represent an interaction test-suite as follows. In an algorithm
we have k input parameters. Each of these has v values or levels. An interaction
test-suite is an N x k array where each row is a test case. Each column represents
an input parameter and a value in the column is the particular configuration. This
test-suite allows to cover all the #-way combinations of input parameter values at
least once. Thus, the costs of tunning the algorithm can be substantially reduced by
minimizing the number of test cases N in the covering array.

In practice, algorithms’ input parameters do not have exactly the same number
of values (levels). To overcome this limitation of CAs, mixed level covering arrays
(MCAs) are used. A MCA(N;1,k,(vi,v2, -+ ,v)) is an N X k array on v symbols
= Zi‘{:l v;i), where each column i (1 < i < k) of this array contains only elements
from a set S;, with |S;| = v;. This array has the property that the rows of each N x ¢
sub-array cover all z-tuples of values from the ¢ columns at least once. Next, we
present the details of the tunning process, based on CIT, for the particular case of
our SAMPARS algorithm.

First, we have identified k = 5 input parameters used for SAMPARS: initial so-
lution procedure IS, cooling factor «, initial temperature ¢#;, neighborhood function
4 and maximum number of visited neighboring solutions CL. Based on some pre-
liminary experiments, certain reasonable values were selected for each one of those
input parameters (shown in Table 1).

The smallest possible mixed level covering array MCA(24;4,5,(2,2,2,2,3)),
shown (transposed) in Table 2, was obtained by using the Memetic Algorithm re-
ported in [31]. This covering array can be easily mapped into an interaction test-
suite by replacing each symbol from each column to its corresponding parameter
value. For instance, we can map O in the first column (the first line in Table 2) to
Greedy and 1 to Random. The resulting interaction test-suite contains, thus, 24 test
cases (parameter settings) which include at least once all the 4-way combinations
between SAMPARS’s input parameters and their values!.

Each one of those 24 test cases was used to executed 30 times the SAMPARS
algorithm over the 20 instances of the test-suite described in Sect. 3.1. The data

! In contrast, with an exhaustive testing which contains 3(2%) = 48 test cases.
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Table 2 Mixed level covering array MCA(24;4,5,(2,2,2,2,3)) representing an interaction test-
suite for tunning SAMPARS (transposed).

$1 o0 111 o0 0 o0 1 0 1 1 0O 1 O 1 O O O O I O 1 1

$1 0o o o 1.0 01 0 01 0 1 0 1 0 0 1 0 1 1 1 1 1

$!1 1+ o0 1 o0 1 0 1 1 0 1 1 1 OO OO O 1 1 1T O 0 O

o o0 o0 11 1 o0 o0 1 1 1 0 1 o0 0O 1 1 0 0O 1 0 1 0 1

t1 2 1 1 1 0 0O 0O 2 1 0 O 2 2 2 0 2 1 1 1 2 0 0 2
Table 3 Results from the 5 best parameter test cases in the tuning experiment.

Num. Test case Avg. parsimony Avg. CPU time

17 00012 1004.06 3512.51

14 10002 1004.14 3511.35

10 00011 1005.00 2058.93

3 10001 1005.02 2047.52

9 10112 1005.29 3136.40

generated by these 14400 executions is summarized in Fig. 1, which depicts the
average cost reached over the selected instances by each test case.

1020 TS R SO N B
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1012

Avg. Parsimony

1010

1008

1006

1004

11101
00102
10001
00110
00000
01100
10112
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11110
10100
01112
10002
01002
10010
00012
01001
00101

Test cases

Fig. 1 Average results obtained in the tuning experiments using 24 test cases over 20 standard
benchmark instances.

From this graphic we have selected the 5 test cases which yield the best results.
Their average parsimony cost and the average CPU time in seconds are presented in
Table 3. This table allowed us to observe that the parameter setting giving the best
trade-off between solution quality and computational effort corresponds to the test
case number 17 (shown in bold). The best average parsimony cost with an accept-
able speed is thus reached with the following input parameter values: initial solution
procedure IS = Greedy, cooling factor & = 0.99, initial temperature #; = 6.0, neigh-
borhood function .#” = T'BR and maximum number of visited neighboring solutions
CL = 40(n+ k). These values are thus used in the experimentation reported next.
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3.3 Comparing SAMPARS with an Existing SA Implementation

For this experiment a subset of six representative benchmark instances, taken from
the test-suite described in Sect. 3.1, was selected (comparable results were obtained
with all the other tested instances). Then, the last version of LVB was obtained,
compiled and executed in our computational platform using the input parameters
suggested by their authors [6]. SAMPARS were also executed over the same six
instances.

Table 4 displays the detailed computational results produced by this experiment.
The first three columns in the table indicate the name of the instance as well as
its number of taxa (n) and length (k). For each compared algorithm the best (B),
average (Avg.), and standard deviation (Dev.) of the parsimony cost attained in 30
independent executions and its average CPU time in seconds are listed in columns
4 to 11. A statistical significance analysis was performed for this experiment. First,
D’Agostino-Pearson’s omnibus K> test was used to evaluate the normality of data
distributions. For normally distributed data, either ANOVA or the Welch’s t paramet-
ric tests were used depending on whether the variances across the samples were
homogeneous (homoskedasticity) or not. This was investigated using the Bartlett’s
test. For non-normal data, the nonparametric Kruskal-Wallis test was adopted. A
significance level of 0.05 has been considered. The resulting P-value is presented
in Column 12. Last column shows a “+” symbol if there exists a statistically sig-
nificant increase in performance achieved by SAMPARS with regard to LVB, the
existing SA Implementation.

Table 4 Comparison between SAMPARS and LVB (an existing SA implementation [5, 6]) over a
subset of six selected instances.

LVB SAMPARS

Instance n k B Avg. Dev. T B Avg. Dev. T P-value  SS
tstO1 45 6l 549 55387 247  85.57 545 54583 0.87 29580 1.80E-11 +
tst02 47 151 1367 1375.33 477  23.63 1354 1356.13 1.33 47950 5.08E-21 +
tst03 49 111 840  850.83 4.86 68.02 833  834.00 1.05 577.12 1.38E-18 +
tst08 57 119 867 879.80 5.01 922.61 852 85453 237 66550 2.12E-11 +
tst09 59 93 1153 1160.77 4.60  58.53 1143 114550 1.11 719.24 3.48E-18 +
tst10 60 71 727 738.00 559 570.62 720 72127 0.78 500.28 1.89E-16 +
Avg. 917.17 92643 4.55 288.16 907.83  909.54 1.25 539.57

From Table 4 we can observe that SAMPARS is the most time-consuming al-
gorithm, since it uses an average of 539.57 seconds for solving these six instances.
On the contrary, LVB employs only 288.16 seconds. However, we can also remark
that SAMPARS can take advantage of its longer executions. Indeed it is able to
consistently improve the best results found by LVB, obtaining in certain instances,
like #5708, an important decrease in the parsimony cost (up to —15 = 852 — 867).
Furthermore, the solution cost found by SAMPARS presents a relatively small stan-
dard deviation (see Column Dev.). It is an indicator of the algorithm’s precision and
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robustness since it shows that in average the performance of SAMPARS does not
present important fluctuations.

The statistical analysis presented in the last two columns of Table 4 confirms that
there exists a statistically significant increase in performance achieved by SAM-
PARS with regard to LVB on the six studied instances. Thus, we can conclude that
SAMPARS is more effective than the existing SA algorithm reported in [5, 6]. Be-
low, we will present more computational results obtained from a performance com-
parison carried out between SAMPARS and some state-of-the-art procedures.

3.4 Comparing SAMPARS with the State-of-the-art Procedures

In this experiment a performance comparison of the best solutions achieved by
SAMPARS with respect to those produced by GA+PR+LS [27] and Hydra [15]
was carried out over the test-suite described in Sect. 3.1. The results from this ex-
periment are depicted in Table 5. Columns 1 to 3 indicate the instance and its size
in terms of taxa (n) and length (k). The best solutions found by GA+PR+LS and
Hydra, in terms of parsimony cost @ are listed in the next two columns. Columns
6 to 9 present the best (B), average (Avg.), and standard deviation (Dev.) of the par-
simony cost attained by SAMPARS in 30 independent executions, as well as its
average CPU time in seconds. Finally, the difference (J) between the best result
produced by our SAMPARS algorithm and the best-known solution produced by
either GA+PR+LS or Hydra is shown in the last column.

Table 5 Performance comparison among SAMPARS, GA+PR+LS [27] and Hydra [15] over 20
standard benchmark instances.

SAMPARS
Instance n k GA+PR+LS Hydra B Avg. Dev. T 1)
tst01 45 61 547 545 545 545.13 0.43 1407.57 0
tst02 47 151 1361 1354 1354 1355.30 0.97 1938.23 0
tst03 49 111 837 833 833 833.43 0.56 2506.30 0
tst04 50 97 590 588 587 588.23 0.80 1341.17 -1
tst05 52 75 792 789 789 789.00 0.00 2007.90 0
tst06 54 65 603 596 596 596.57 0.56 1164.27 0
tst07 56 143 1274 1269 1269 1270.83 1.63 4063.80 0
tst08 57 119 862 852 852 853.33 1.27 2884.73 0
tst09 59 93 1150 1144 1141 1144.73 1.09 3237.53 -3
tst10 60 71 722 721 720 720.80 0.70 2288.00 -1
tstl1 62 63 547 542 541 542.21 0.72 3807.79 -1
tst12 64 147 1225 1211 1208 1215.27 2.76 3668.40 -3
tstl3 65 113 1524 1515 1515 1517.77 1.91 2514.20 0
tstl4 67 99 1171 1160 1160 1163.03 1.82 2847.13 0
tstl5 69 77 758 752 752 753.90 1.11 4808.63 0
tstl6 70 69 537 529 529 531.00 1.23 3268.20 0
tstl7 71 159 2469 2453 2450 2456.00 2.63 8020.23 -3
tst18 73 117 1531 1522 1521 1525.67 3.96 4451.37 -1
tst19 74 95 1024 1013 1012 1016.23 2.14 6875.30 -1
tst20 75 79 671 661 659 662.82 1.44 7149.43 -2

Avg. 1009.75 1002.45 1001.65 1004.06 1.39 3512.51
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The analysis of the data presented in Table 5 lead us to the following obser-
vations. First, we clearly remark that the procedure GA+PR+LS [27] consistently
returns poorer quality solutions than Hydra and SAMPARS. Second, the best solu-
tion quality attained by the proposed SAMPARS algorithm is very competitive with
respect to that produced by the existing state-of-the-art procedure called Hydra [15],
since in average SAMPARS provides solutions whose parsimony costs are smaller
(compare Columns 5 and 6). In fact, it is able to improve on 9 previous best-known
solutions produced by Hydra and to equal these results for the other 11 benchmark
instances.

Thus, as this experiment confirms, our SAMPARS algorithm is an effective al-
ternative for solving the MP problem, compared with the two more representative
state-of-the-art algorithms: GA+PR+LS [27] and Hydra [15].

4 Conclusions

In this paper we have presented an improved simulated annealing algorithm (SAM-
PARS) for finding near-optimal solutions for the MP problem under the Fitch’s cri-
terion. SAMPARS’s components and parameter values were carefully determined,
through the use of a tunning methodology based on Combinatorial Interaction Test-
ing [8], to yield the best solution quality in a reasonable computational time.

Extensive experimentation was conducted to investigate the performance of
SAMPARS over a set of 20 well known benchmark instances. In these experiments
our algorithm was carefully compared with an existing simulated annealing imple-
mentation (LVB) [5, 6], and other two state-of-the-art algorithms. The results show
that there exists a statistically significant increase in performance achieved by SAM-
PARS with respect to LVB. SAMPARS is in fact able to consistently improve the
best results produced by LVB, obtaining in certain instances important reductions in
the parsimony cost. Regarding GA+PR+LS [27], we have observed that in average
this algorithm returns worse quality solutions than SAMPARS. Compared with the
state-of-the-art algorithm called Hydra [15], our SAMPARS algorithm was able to
improve on 9 previous best-known solutions and to equal these results on the other
11 selected benchmark instances. Furthermore, it was observed that the solution cost
found by SAMPARS presents a relatively small standard deviation, which indicates
the precision and robustness of the proposed approach. These experimental results
confirm the practical advantages of using our algorithm for solving the MP problem.

Finding near-optimal solutions for the MP problem is a very challenging prob-
lem. However, the introduction of SAMPARS opens up an exciting range of possi-
bilities for future research. One fruitful possibility is to analyze the use of different
cooling schedules, stop conditions and mechanism for adapting the maximum num-
ber of visited neighboring solutions at each temperature depending on the behavior
of the search process.
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