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Abstract. The hydrophobic-polar (HP) model for protein structure pre-
diction abstracts the fact that hydrophobic interactions are a dominant
force in the protein folding process. This model represents a hard com-
binatorial optimization problem, which has been widely addressed us-
ing evolutionary algorithms and other metaheuristics. In this paper, the
multiobjectivization of the HP model is proposed. This originally single-
objective problem is restated as a multiobjective one by decomposing the
conventional objective function into two independent objectives. By us-
ing different evolutionary algorithms and a large set of test cases, the new
alternative formulation was compared against the conventional single-
objective problem formulation. As a result, the proposed formulation
increased the search performance of the implemented algorithms in most
of the cases. Both two- and three-dimensional lattices are considered. To
the best of authors’ knowledge, this is the first study where multiobjec-
tive optimization methods are used for solving the HP model.
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1 Introduction

Proteins, the working molecules of the cell, are linear chains composed from
up to 20 different building blocks called amino acids. The specific sequence of
amino acids determines how proteins fold into unique three-dimensional struc-
tures which allow them to carry out their biological functions [1]. The protein
structure prediction problem (PSP) can be defined as the problem of finding the
functional conformation for a protein given only its amino acid sequence.

The hydrophobic-polar (HP) model [12] is an abstraction of the PSP. This
model captures the fact that hydrophobicity is one of the main driving forces
in protein folding. The prediction of protein structures using the HP model is
a hard combinatorial optimization problem which has been demonstrated to be
NP-complete [3, 7]. A variety of metaheuristic approaches have been applied
to this problem, including genetic algorithms [16, 31], memetic and hybrid algo-
rithms [6, 17], ant colony optimization [29], immune-based algorithms [9], particle
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swarm optimization [5], differential evolution [25] and estimation of distribution
algorithms [24]. Some of the work in this regard is reviewed in [22, 33].

Multiobjectivization concerns the reformulation of single-objective optimiza-
tion problems in terms of two or more objective functions [20]. This transforma-
tion introduces fundamental changes in the search landscape, potentially allow-
ing algorithms to perform a more efficient exploration [4, 15]. Multiobjectiviza-
tion has been successfully used to deal with difficult optimization problems.
Among them, there can be mentioned well-known combinatorial problems such
as the traveling salesman problem [18–20], shortest path and minimum spanning
tree problems [23], job-shop scheduling [19, 21] and bin packing problems [28], as
well as important problems in the fields of mobile communications [26, 27] and
computer vision [32]. Multiobjectivization approaches have also been proposed
for the PSP [2, 8, 10, 14, 30]. However, it was not until the present study that
this concept is applied to the particular HP model of this problem.

In this paper, the multiobjectivization for the HP model is proposed. The con-
ventional HP model’s energy function is decomposed into two separate objectives
based on the parity of amino acid positions in the protein sequence. The suit-
ability of this approach is investigated by comparing it with respect to the con-
ventional single-objective formulation. Different evolutionary algorithms (EAs)
and a large set of test cases were adopted for this sake. Results are provided for
both the two-dimensional square lattice and the three-dimensional cubic lattice.

This paper is organized as follows. Background concepts are given in Section
2. In Section 3, the proposed multiobjectivization is described. Section 4 details
the implemented EAs and the performance assessment methodology. Results are
presented in Section 5. Finally, Section 6 provides the conclusions of this study.

2 Background and notation

2.1 The HP model for protein structure prediction

Amino acids can be classified either as hydrophobic (H) or polar (P ) on the basis
of their affinity for water. In the hydrophobic-polar (HP) model [12], proteins are
abstracted as chains of H and P beads. Protein sequences, originally defined over
a 20-letters alphabet, are thus of the form S ∈ {H, P}L, where L is the number of
amino acids. Valid conformations are modeled as Self-Avoiding Walks of the HP
chain on a lattice. That is, each lattice node can be assigned to at most one amino
acid and consecutive amino acids in S are to be also adjacent in the lattice.

By emulating the hydrophobic effect, the HP model aims to maximize the
interaction among H amino acids. Two H amino acids si, sj ∈ S are said to form
a hydrophobic topological contact, denoted by htc(si, sj), if they are nonconsecu-
tive in S (i.e., |j − i| ≥ 2) but adjacent in the lattice. Following the notation of
the field, an energy minimization function E : C → R is defined as the negative
of the total number of hydrophobic topological contacts; C is the set of all valid
protein conformations. Formally, the energy of a conformation c ∈ C is given by:

E(c) =
∑

si,sj∈S|i<j

e(si, sj) (1)
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where

e(si, sj) =
{
−1 if htc(si, sj)
0 otherwise

The protein structure prediction problem using the HP model can be formally
stated as the problem of finding the conformation c∗ ∈ C such that E(c∗) =
min{E(c) | c ∈ C}. An example conformation for an HP chain of length L = 20
on the two-dimensional square lattice is shown in Figure 1.
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Fig. 1. Black and white beads denote H and P amino acids, respectively. Hydrophobic
topological contacts have been numbered. The energy is E(c) = −9.

2.2 Single-objective and multiobjective optimization

Without loss of generality, a single-objective optimization problem can be stated
as the problem of minimizing an objective function f : F → R, where F denotes
the set of all feasible solutions. The aim is to find the solution(s) x∗ ∈ F yielding
the optimum value for the objective function; that is, f(x∗) = min{f(x) | x ∈ F}.

Similarly, a multiobjective optimization problem is the problem of minimizing
an objective vector f(x) = [f1(x), f2(x), . . . , fk(x)]T , where fi : F → R is the
i-th objective function, i ∈ {1, . . . , k}. Rather than searching for a single optimal
solution, the task in multiobjective optimization is to identify a set of trade-offs
among the, usually conflicting, objectives. More formally, the goal is to find a set
of Pareto-optimal solutions P∗ ⊂ F , such that P∗ = {x∗ ∈ F | @x ∈ F : x ≺ x∗}.
The symbol “≺” denotes the Pareto-dominance relation, which is given by:

x ≺ y ⇔ ∀i ∈ {1, . . . , k} : fi(x) ≤ fi(y) ∧ (2)
∃j ∈ {1, . . . , k} : fj(x) < fj(y)

If x ≺ y, x is said to dominate y. Otherwise (x ⊀ y), y is said to be nondominated
by x. The image of P∗ in the objective space is called the Pareto-optimal front.

2.3 Multiobjectivization

Multiobjectivization refers to the process of reformulating a single-objective op-
timization problem as a multiobjective one [20]. Two different approaches are
possible. On the one hand, additional information can be incorporated and used
as supplementary (also called artificial or helper) objectives [4, 19]. On the other
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hand, in the decomposition approach the original objective is fragmented into
several different components, each to be treated as an objective function under
the new alternative formulation [15, 20]. In either approach, the idea is to alter
the search landscape in order to enable a more efficient exploration, but the goal
remains to solve the original problem. Therefore, the original optima are to be
also Pareto-optimal with regard to the multiobjectivized version of the problem.

This work is based on the decomposition approach. More formally, a single-
objective problem, with a given objective function f : F → R, is restated in terms
of k ≥ 2 objectives fi : F → R, i ∈ {1, . . . , k} such that for all x ∈ F it holds that
f(x) =

∑k
i=1 fi(x). As the only possible effect [15], plateaus may be introduced

in the search landscape. That is, originally comparable solutions may become
incomparable (mutually nondominated) with regard to the decomposed formula-
tion. This can be seen as a potential strategy to escape from local optima [15, 20].

3 Multiobjectivization proposal: the parity decomposition

In the two-dimensional square and the three-dimensional cubic lattices, adjacen-
cies (topological contacts) are only possible between amino acids whose sequence
positions are of opposite parity. Based on this fact and following the multiobjec-
tivization by decomposition approach (Section 2.3), a two-objective formulation
f(c) = [f1(c), f2(c)]T is defined over the set of feasible conformations c ∈ C:

f1(c) =
∑

si,sj∈S|i<j

ep(si, sj , 0) (3)

f2(c) =
∑

si,sj∈S|i<j

ep(si, sj , 1) (4)

where both f1(c) and f2(c) are to be minimized and

ep(si, sj , ρ) =
{
−1 if htc(si, sj) ∧ i ≡ ρ (mod 2)
0 otherwise

That is, the objective function f1 accounts only for hydrophobic topological
contacts htc(si, sj) where i, the sequence position of amino acid si, is even. On
the contrary, f2 is defined for those cases where such the i-th sequence position
is odd. Note that the sum of the two proposed objectives equals the conventional
energy function defined in Section 2.1 (i.e., E(c) = f1(c) + f2(c) for all c ∈ C),
which is in accordance with the decomposition approach for multiobjectivization.

4 Experimental setup

4.1 Algorithms

Several evolutionary algorithms (EAs) are used to investigate the suitability of
the proposed multiobjectivization. The so-called (1+1) EA is described in Algo-
rithm 1. First, an initial individual c is generated at random. At each generation,
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a new individual c′ is created by means of mutation. If c′ is at least as good as
c, then c′ is accepted as the starting point for the next generation. Depending
on the problem formulation, this acceptance criterion is to be based either on
the conventional energy evaluation or on the Pareto-dominance relation.

Algorithm 1 Basic (1+1) evolutionary algorithm.
1: choose c ∈ C uniformly at random
2: repeat
3: c′ ← mutate(c)
4: if c′ not worse than c then
5: c← c′

6: end if
7: until < stop condition >

A variant of the above described (1+1) EA is presented in Algorithm 2. An
external archive stores the nondominated solutions found along the evolutionary
process. The archive influences the behavior of the algorithm in such a way that
the mutant c′ is only accepted if it is not dominated by any archived individual.
If accepted, c′ is included in the archive and all individuals dominated by c′, and
those mapping to the same objective vector f(c′), are removed. Note that the use
of this external archive makes only sense for the multiobjectivized formulation.

Algorithm 2 Archiving (1+1) evolutionary algorithm.
1: choose c ∈ C uniformly at random
2: A← {c}
3: repeat
4: c′ ← mutate(c)
5: if @ĉ ∈ A : ĉ ≺ c′ then
6: A← {ĉ ∈ A : c′ ⊀ ĉ ∧ f(ĉ) 6= f(c′)} ∪ {c′}
7: c← c′

8: end if
9: until < stop condition >

It was also considered a genetic algorithm (GA) whose general structure is
given in Algorithm 3. First, an initial parent population P of size N is randomly
generated. At each generation, the fittest individuals in P are selected for mating
(selection-for-variation). Then, a children population P ′ is created by applying
the genetic operators. Finally, parents and children compete for a place in the
new population (selection-for-survival). When applied to the single-objective
formulation, selection is driven by the conventional energy value of the candidate
conformations. For the multiobjective formulation, the discrimination among
individuals is to be based on nondominated sorting and crowding distance [11].

Algorithm 3 Genetic algorithm.
1: choose P ⊂ C : |P | = N uniformly at random
2: while < stop condition > do
3: P̂ ← selection-for-variation(P )

4: P ′ ← variation(P̂ )
5: P ← selection-for-survival(P ∪ P ′)
6: end while
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An internal coordinates representation with absolute moves was adopted
in all cases. Conformations are encoded as sequences in {U,D, L, R, F,B}L−1,
denoting the up, down, left, right, forward and backward possible lattice
locations for an amino acid with regard to the preceding one (the position of
the first amino acid is fixed). Only directions {U,D, L,R} hold for the two-
dimensional lattice. The implemented genetic operators are as follows. One-point
crossover (only for the GA) is applied with a given probability pc. In mutation,
each encoding position is randomly and independently perturbed with probabil-
ity pm. In all cases, only valid solutions are accepted during the search process.

4.2 Test cases and performance assessment

A total of 30 HP benchmark sequences were used (15 for the two-dimensional
square lattice and 15 for the three-dimensional case). Due to space limitations,
details of these instances are not provided here, but they are available online. 1

For all the experiments, 100 independent executions were performed. Results
are evaluated in terms of the best obtained energy value (β), the number of times
this solution was found (f) and the arithmetic mean (µ). Additionally, the overall
average performance (OAP) measure [13] was defined as the average ratio of the
obtained mean values to the optimum (E∗). Formally, OAP = 100

|T |

(∑
t∈T

µ(t)
E∗(t)

)
,

where T denotes the set of all test cases. OAP is expressed as a percentage. Thus,
a value of OAP = 100% suggests the ideal situation where the optimum solution
for each benchmark was reached during all the performed executions.

Statistical significance analysis was performed for all the experiments. First,
D’Agostino-Pearson’s omnibus K2 test was used to evaluate the normality of
data distributions. For normally distributed data, either ANOVA or the Welch’s t
parametric tests were used depending on whether the variances across the sam-
ples were homogeneous (homoskedasticity) or not. This was investigated using
the Bartlett’s test. For non-normal data, the nonparametric Kruskal-Wallis test
was adopted. A significance level of α = 0.05 has been considered.

Most of the results are presented in tables, where values marked N high-
light a statistically significant increase in performance achieved by the proposed
formulation with regard to the conventional one. Conversely, values marked H
indicate that a statistically significant performance decrease was obtained as
a consequence of using the new alternative formulation. Additionally, the best
average performance (µ) for each test instance has been shaded in these tables.

5 Results

5.1 Results for the (1+1) evolutionary algorithm

In this section, the (1+1) EA is used for comparing the conventional single-
objective HP model formulation with respect to the proposed parity decompo-
sition. Results are also provided for the archiving (1+1) EA, which applies only
1 http://www.tamps.cinvestav.mx/∼mgarza/HPmodel/
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for the proposed formulation. A fixed mutation probability of pm = 1
L−1 and a

stopping condition of 100, 000 evaluations were adopted. Tables 1 and 2 present
the obtained results for the two- and three-dimensional test cases, respectively.

Table 1. Results for the (1+1) EA on two-dimensional benchmarks.
Single-objective Parity decomposition Parity dec. - archive

Seq. L E∗ β (f) µ β (f) µ β (f) µ
2d1 18 -4 -4 (4) -2.70 -4 (6) -2.71 -4 (5) -2.69
2d2 18 -8 -8 (18) -6.81 -8 (24) -7.04 -8 (21) -7.00
2d3 18 -9 -8 (11) -7.00 -8 (48) -7.45 N -8 (24) -7.12
2d4 20 -9 -9 (8) -6.84 -9 (4) -6.95 -9 (6) -6.88
2d5 20 -10 -9 (3) -6.92 -10 (2) -7.08 -9 (1) -6.99
2d6 24 -9 -8 (14) -6.81 -9 (1) -6.87 -9 (1) -6.89
2d7 25 -8 -7 (26) -5.79 -8 (6) -5.90 -8 (5) -5.80
2d8 36 -14 -13 (1) -9.97 -13 (1) -10.23 -13 (1) -10.12
2d9 48 -23 -18 (5) -14.23 -19 (2) -15.20 N -18 (5) -15.02 N
2d10 50 -21 -18 (2) -13.79 -18 (1) -14.06 -17 (4) -13.76
2d11 60 -36 -30 (2) -24.39 -30 (7) -25.43 N -31 (1) -25.32 N
2d12 64 -42 -29 (1) -23.82 -30 (1) -25.12 N -30 (1) -24.63 N
2d13 85 -53 -41 (1) -33.81 -41 (1) -34.54 -42 (1) -34.18
2d14 100 -48 -41 (1) -30.80 -39 (3) -32.18 N -41 (1) -31.72 N
2d15 100 -50 -40 (1) -31.71 -40 (3) -32.70 N -40 (1) -32.57

OAP 69.22% 71.39% 70.47%

Without using the archiving strategy, the parity decomposition improved the
average performance of the algorithm in all the 15 two-dimensional test cases (see
Table 1). For 6 out of them, such an improvement was statistically significant
with regard to the conventional formulation, leading to an OAP increase of
(71.39 − 69.22) = 2.17%. The use of the nondominated solutions archive seems
not to be favorable for the proposed multiobjectivization. However, even in this
case it was possible to score better results than the conventional single-objective
formulation for most of the instances, with a statistically important difference in
4 of them. Also, an increase of 1.25% for the OAP measure has been obtained.

Table 2. Results for the (1+1) EA on three-dimensional benchmarks.
Single-objective Parity decomposition Parity dec. - archive

Seq. L E∗ β (f) µ β (f) µ β (f) µ
3d1 20 -11 -11 (57) -10.48 -11 (69) -10.64 -11 (64) -10.51
3d2 24 -13 -13 (23) -11.30 -13 (34) -11.70 N -13 (27) -11.59
3d3 25 -9 -9 (57) -8.48 -9 (70) -8.65 N -9 (62) -8.51
3d4 36 -18 -18 (10) -15.19 -18 (13) -15.74 N -18 (8) -15.30
3d5 46 -32 -30 (2) -23.87 -30 (1) -25.38 N -30 (1) -24.56
3d6 48 -31 -29 (1) -22.79 -29 (2) -24.42 N -28 (3) -23.64 N
3d7 50 -32 -25 (6) -20.64 -27 (1) -22.07 N -27 (1) -21.22
3d8 58 -44 -35 (1) -27.34 -36 (1) -29.02 N -35 (1) -27.96
3d9 60 -52 -46 (1) -37.20 -47 (1) -40.03 N -47 (1) -38.81 N
3d10 64 -55 -45 (1) -35.59 -46 (1) -37.69 N -43 (2) -36.51
3d11 67 -56 -38 (2) -30.17 -39 (2) -32.65 N -38 (2) -31.17
3d12 88 -72 -47 (1) -36.22 -49 (1) -39.85 N -48 (1) -38.09 N
3d13 103 -56 -40 (1) -29.97 -41 (1) -31.31 N -38 (1) -29.94
3d14 124 -71 -43 (4) -34.51 -48 (1) -36.97 N -47 (1) -35.04
3d15 136 -80 -51 (1) -37.26 -52 (1) -42.11 N -50 (1) -40.43 N

OAP 68.31% 72.20% 70.00%

As shown in Table 2, the proposed decomposition reached the lowest aver-
age energy for all the three-dimensional instances when using the basic, non-
archiving, (1+1) EA. Statistical analysis indicates a significant outperformance
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over the conventional single-objective formulation in all but one of the test cases.
This was also reflected as an OAP increase of 3.89%. Again, the advantages of
the multiobjective formulation were not as impressive when using the archiving
(1+1) EA. Even so, the results were improved in most cases with regard to the
conventional formulation. This performance increase was found to be statistically
significant in 4 of the instances. The OAP measure was improved by 1.69%.

5.2 Results for the genetic algorithm

In this section, the obtained results regarding the implemented genetic algorithm
(GA) are analyzed. The behavior of this algorithm is sensitive to several param-
eters. Therefore, different parameter settings have been considered in order to
identify the most convenient adjustment for the compared approaches.

Three different recombination and mutation probabilities were considered:
pc = {0.8, 0.9, 1.0} and pm = { 1

L−1 , 0.01, 0.05}. Also, the effects of preventing
duplicate individuals (clones) from the population are analyzed. This leads to
a total of 18 different parameter configurations for the GA. The population
size was fixed to N = 100 in all cases, and the algorithm was allowed to run
until a maximum number of 100, 000 function evaluations was reached. Figure 2
presents the overall average performance (OAP) for both the conventional and
the proposed formulations when using the different GA parameter settings.
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Fig. 2. Performance for all configurations of the GA.

From this figure, it is possible to note that there was a performance difference
in favor of the proposed decomposition, in all the cases. On the one hand, the
algorithm seemed not to be seriously affected when varying the recombination
probability (pc). On the other hand, it responded positively to the increased
mutation rate, being pm = 0.05 the fixed value which provided the best perfor-
mance in all the cases. Finally, it can be seen that an important performance
increase was achieved in all cases when duplicates avoidance was enabled.

In order to provide a more detailed analysis, the parameters adjustment
which allowed each of the approaches to reach the highest OAP value has been
selected. For the two-dimensional instances, a recombination probability of pc =
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0.8 was chosen for the conventional formulation and pc = 1.0 for the proposed
one. For the three-dimensional test cases, pc = 1.0 and pc = 0.9 were respectively
selected. A mutation probability of pm = 0.05 and enabled duplicates avoidance
hold for all cases. The obtained results are presented in Tables 3 and 4.

Table 3. Results for the GA on two-dimensional benchmarks (best settings).
Single-objective Parity decomposition

Seq. L E∗ β (f) µ β (f) µ
2d1 18 -4 -4 (69) -3.69 -4 (78) -3.78
2d2 18 -8 -8 (92) -7.92 -8 (91) -7.91
2d3 18 -9 -9 (68) -8.68 -9 (73) -8.73
2d4 20 -9 -9 (99) -8.99 -9 (93) -8.93 H
2d5 20 -10 -10 (87) -9.75 -10 (94) -9.89
2d6 24 -9 -9 (62) -8.60 -9 (69) -8.69
2d7 25 -8 -8 (47) -7.40 -8 (49) -7.47
2d8 36 -14 -13 (12) -11.45 -14 (2) -11.49
2d9 48 -23 -21 (2) -17.85 -23 (1) -18.30
2d10 50 -21 -21 (4) -18.27 -21 (1) -18.54
2d11 60 -36 -34 (1) -30.27 -34 (1) -30.54
2d12 64 -42 -36 (2) -30.94 -35 (3) -30.75
2d13 85 -53 -49 (1) -41.75 -48 (1) -42.57 N
2d14 100 -48 -44 (1) -36.74 -43 (1) -37.74 N
2d15 100 -50 -43 (2) -37.14 -43 (1) -38.28 N

OAP 87.13% 88.13%

As shown in Table 3, the parity decomposition increased the average per-
formance of the algorithm for 12 out of the 15 two-dimensional test cases. Such
an increase was statistically significant for the three largest sequences. The single-
objective formulation performed best for the remaining three instances, with a
statistically important difference in one of them. An increase of (88.13−87.13) =
1% in the OAP measure was obtained by using the proposed formulation.

Table 4. Results for the GA on three-dimensional benchmarks (best settings).
Single-objective Parity decomposition

Seq. L E∗ β (f) µ β (f) µ
3d1 20 -11 -11 (100) -11.00 -11 (100) -11.00
3d2 24 -13 -13 (95) -12.94 -13 (97) -12.94
3d3 25 -9 -9 (72) -8.71 -9 (87) -8.87 N
3d4 36 -18 -18 (12) -15.91 -18 (31) -16.54 N
3d5 46 -32 -32 (1) -27.72 -32 (1) -28.12
3d6 48 -31 -31 (1) -26.59 -30 (3) -26.89
3d7 50 -32 -30 (1) -26.43 -29 (12) -26.70
3d8 58 -44 -37 (1) -32.39 -37 (3) -33.03 N
3d9 60 -52 -50 (1) -43.46 -50 (1) -44.56 N
3d10 64 -55 -52 (1) -46.12 -53 (1) -46.15
3d11 67 -56 -41 (1) -36.39 -43 (1) -37.36 N
3d12 88 -72 -50 (5) -44.02 -54 (1) -44.85 N
3d13 103 -56 -41 (1) -34.99 -43 (1) -35.78 N
3d14 124 -71 -51 (1) -41.83 -50 (1) -42.80 N
3d15 136 -80 -52 (2) -45.51 -56 (2) -46.43

OAP 79.01% 80.26%

Regarding the three-dimensional instances, it can be seen from Table 4 that
the best average performance of the algorithm was obtained in all cases when
using the proposed multiobjectivization. Statistical analysis has shown that for
8 out of the 15 test cases, the achieved improvement was significant with regard
to the conventional formulation. The OAP measure was increased by 1.25%.
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6 Conclusions and future work

The multiobjectivization of the HP model for protein structure prediction was
proposed. An alternative two-objective formulation for this problem was defined
by means of the decomposition of the original objective function. This approach,
called the parity decomposition, is based on the fact that hydrophobic interac-
tions in the lattice are only possible between amino acids of opposite parity.

Experiments were conducted using different evolutionary algorithms and a
total of 30 HP instances. Both two- and three-dimensional lattices were explored.
As the main finding, the proposed parity decomposition increased the average
performance of the implemented algorithms in most of the cases. Thus, the
suitability of this approach was demonstrated. The obtained results support
previous evidence regarding the effectiveness of multiobjectivization to overcome
search difficulties such as that of becoming trapped in local optima [15, 20].

Although still competitive, the proposed multiobjectivization was negatively
affected by the use of the nondominated solutions archive within the (1+1) EA.
This is contrary to what is expected in multiobjective optimization, where it is
the goal to converge towards different trade-offs among the problem objectives.
Nevertheless, the addressed problem of this study is actually a single-objective
problem, so that maintaining an approximation set of nondominated solutions
becomes not as important. In addition, the archiving strategy influences the
acceptance criterion, restricting the exploration behavior of the algorithm.

Even when the performance of the GA was increased in most cases by us-
ing the proposed formulation, such an increase was not as remarkable as that
achieved for the (1+1) EA. This can be explained by the fact that population-
based approaches are inherently less susceptible to get stuck in local optima. On
the other hand, the multiobjectivized formulation enabled diversity promotion in
the objective space, thus enhancing the exploration capabilities of the algorithm.

To the best of authors’ knowledge, this is the first study on the application
of multiobjective optimization techniques to the HP model for protein struc-
ture prediction. It is important to remark that the aim was not to improve the
state-of-the-art results, but rather to evaluate the impact of using the proposed
multiobjectivization on the resolution of this problem. The findings of this study
motivate further research in this direction. An important issue would be to inves-
tigate whether the proposed parity decomposition can be incorporated in order
to improve the performance of established state-of-the-art algorithms. Also, the
conflicting relationship between the objectives of the proposed formulation needs
to be analyzed. Finally, the multiobjectivization of the HP model by means of
the addition of supplementary objectives has not been addressed yet.
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