
Expert Systems With Applications 149 (2020) 113243 

Contents lists available at ScienceDirect 

Expert Systems With Applications 

journal homepage: www.elsevier.com/locate/eswa 

Solving complex problems using model transformations: from set 

constraint modeling to SAT instance solving 

Frédéric Lardeux 

a , Éric Monfroy 

b , Eduardo Rodriguez-Tello 

c , ∗, Broderick Crawford 

d , 
Ricardo Soto 

d 

a LERIA, University of Angers. 2 Boulevard Lavoisier, Angers 49045, France 
b LS2N - UMR 6004. University of Nantes. 2 Rue de la Houssiniére, Nantes 44322, France 
c Cinvestav Tamaulipas. Km. 5.5 Carretera Victoria-Soto La Marina, Victoria Tamps. 87130, Mexico 
d Pontificia Universidad Católica de Valparaíso. Avenida Brasil 2950, Valparaiso 2362807, Chile 

a r t i c l e i n f o 

Article history: 

Received 17 March 2019 

Revised 23 January 2020 

Accepted 24 January 2020 

Available online 31 January 2020 

Keywords: 

Model transformations 

Constraint programming 

Set constraints 

SAT encoding 

Combinatorial problem 

a b s t r a c t 

On the one hand, solvers for the propositional satisfiability problem (SAT) can deal with huge instances 

composed of millions of variables and clauses. On the other hand, Constraint Satisfaction Problems (CSP) 

can model problems as constraints over a set of variables with non-empty domains. They require combi- 

natorial search methods as well as heuristics to be solved in a reasonable time. 

In this article, we present a technique that benefits from both expressive CSP modeling and efficient SAT 

solving. We model problems as CSP set constraints. Then, a propagation algorithm reduces the domains 

of variables by removing values that cannot participate in any valid assignment. The reduced CSP set con- 

straints are transformed into a set of suitable SAT instances. They may be simplified by a preprocessing 

method before applying a standard SAT solver for computing their solutions. 

The practical usefulness of this technique is illustrated with two well-known problems: a) the Social 

Golfer, and b) the Sports Tournament Scheduling. We obtained competitive results either compared with 

ad hoc solvers or with hand-written SAT instances. Compared with direct SAT modeling, the proposed 

technique offers higher expressiveness, is less error-prone, and is relatively simpler to apply. The auto- 

matically generated propositional satisfiability instances are rather small in terms of clauses and variables. 

Hence, applying the constraint propagation phase, even huge instances of our problems can be tackled 

and efficiently solved. 

© 2020 Elsevier Ltd. All rights reserved. 

1

 

e  

2  

t  

i  

a  

a  

o  

a  

fl  

u

b

m  

n  

m  

s  

s  

a  

A  

t  

s  

c

 

J  

h

0

. Introduction 

Constraint Satisfaction Problems (CSP) can generally be used to

asily model combinatorial problems ( Rossi, van Beek, & Walsh,

006 ). A CSP consists of a set of variables (generally given with

heir domains or candidate values) and some constraints impos-

ng conditions that these variables must satisfy. A solution is thus

 particular assignment for those variables that does not violate

ny of the given constraints. One of the essential characteristics

f CSP is their expressiveness. Indeed, variables of several types

re allowed, e.g. , finite integer domains, intervals of real numbers,

oating-point domains, Boolean, and sets. Moreover, constraints
∗ Corresponding author. 

E-mail addresses: Frederic.Lardeux@univ-angers.fr (F. Lardeux), Eric.Monfroy@ 

niv-nantes.fr (É. Monfroy), ertello@tamps.cinvestav.mx (E. Rodriguez-Tello), 

roderick.crawford@ucv.cl (B. Crawford), ricardo.soto@ucv.cl (R. Soto). 

c  

ttps://doi.org/10.1016/j.eswa.2020.113243 

957-4174/© 2020 Elsevier Ltd. All rights reserved. 
ay have various syntax and semantics such as set constraints,

on-linear polynomial, Boolean, equality of terms, and linear arith-

etic. Also, a particular type of constraints, called global con-

traints, significantly increase solving efficiency as well as expres-

iveness. Indeed, they introduce some new relations between vari-

bles and some new powerful and specific reduction algorithms.

mong the numerous global constraints, we can mention two of

he most common ones: the alldifferent constraint that imposes as-

igning different values to variables of a list; and the cardinality

onstraint that links a set to its number of elements. 

The propositional satisfiability problem (SAT), see ( Garey &

ohnson, 1979 ), represents an alternative for the formulation of

ombinatorial problems. Given a well-formed Boolean formula,

https://doi.org/10.1016/j.eswa.2020.113243
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2020.113243&domain=pdf
mailto:Frederic.Lardeux@univ-angers.fr
mailto:Eric.Monfroy@univ-nantes.fr
mailto:ertello@tamps.cinvestav.mx
mailto:broderick.crawford@ucv.cl
mailto:ricardo.soto@ucv.cl
https://doi.org/10.1016/j.eswa.2020.113243


2 F. Lardeux, É. Monfroy and E. Rodriguez-Tello et al. / Expert Systems With Applications 149 (2020) 113243 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

f  

t

 

s  

p  

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

usually expressed in Conjunctive Normal Form (CNF), 1 The SAT

problem consists of finding a truth assignment for the literals that

satisfies it. SAT expressiveness is, however, limited by its nature to

propositional formulae and Boolean variables. It is thus a tedious

task to directly code complex constraints into SAT, e.g. , see ( Triska

& Musliu, 2012 ), or ( Gent & Lynce, 2005 ) for the coding of set con-

straints. Moreover, optimizing models concerning the number of

variables and clauses could immediately produce very complicated

models that are unreadable and more susceptible to include errors.

Nowadays, the main strength of SAT solvers is the huge size of SAT

instances (composed of millions of variables and clauses) that they

can treat. 

Thus, it is very interesting to design an efficient system for solv-

ing (engineering) problems modeled with sets constraints to: 

• Encode CSPs into SAT formulas, such as in the work of

Bessière, Hebrard, and Walsh (2004) and Bacchus (2007) , in

order to take advantage of CSP expressiveness and modeling,

as well as from the advanced capabilities of the state-of-the-

art SAT solvers. 
• Bring in a higher level of expressiveness into SAT model-

ing, e.g. , by introducing the use of some well-known global

constraints like alldifferent ( Lardeux, Monfroy, Saubion,

Crawford, & Castro, 2009 ), and cardinality ( Bailleux &

Boufkhad, 2003 ). 

Compared to models based on matrices or integers, sets are

convenient since they reduce the number of symmetries. Thus, it is

well-known that numerous problems may be easily modeled with

set constraints. Consequently, various constraint systems for deal-

ing with set constraints appeared. Among them we find specialized

systems and solvers ( Azevedo, 20 02; 20 07 ), set specific libraries of

constraint programming systems ( Correas, Martín, & Sáenz-Pérez,

2018; Gervet, 1994 ), and set constraints integrated into the CHOCO

solver ( Prud’homme, Fages, & Lorca, 2017 ), to mention the most

relevant of them. 

We are interested in various aspects of set constraints: CSP

models with set constraints, reduction of finite domain and set

variables, and the “encoding” of set constraints into SAT instances,

which are finally solved with a standard SAT solver. The main ob-

jective of this work is not to outperform well-established CSP set

solvers in terms of efficiency, but to ease the solving of set con-

straints with standard SAT solvers by using efficient model trans-

formations. However, we obtained very good practical results in

terms of efficiency. Indeed, for the Sports Tournament Scheduling

problem, our generic technique is competitive with ad hoc solvers

(see Section 8 ). 

In a previous work ( Lardeux, Monfroy, Crawford, & Soto, 2015 ),

we proposed an efficient system, including a group of encoding

rules that could be straightly applied to the CSP set constraint

models. Nevertheless, some elements from set definitions could be

eliminated without neither losing any solution nor changing the

problem semantics. Hence, set variables domains could be made

smaller, producing, in consequence, a narrower search space which

translates into smaller SAT instances. Later, in Lardeux and Mon-

froy (2014) , we proposed reductions for set variables as a con-

straint propagation process. This reduction was rather weak and

could remove only some undesired elements from set variable do-

mains. Although promising and fast, this reduction was not strong

enough for drastically contracting the generated SAT instances.

Thus, it has a reduced impact on SAT solving. Furthermore, the

set representation that we had was not enough for modeling some

relations, such as those for some symmetry breakings. In spite of
1 A CNF formula F is a conjunction of clauses C , each clause being a disjunction 

of literals, each literal being either a positive ( x i ) or a negative ( ¬x i ) propositional 

variable. 

 

 

hese issues, the preliminary work presented in Lardeux and Mon-

roy (2016) showed that promising results could be obtained for

he well-known Sports Scheduling problem. 

In this article, we carry on building on our previous work pre-

ented in Lardeux et al. (2015) and Lardeux and Monfroy (2014) by

roposing our new efficient system with the following new char-

cteristics: 

• A new language for modeling CSP problems with set con-

straints (such as intersection, union, min, cardinality,...).

Although simple, our language contains every constraint

provided in standard set solvers. Moreover, it is expressive

and very intuitive. In comparison with the language previ-

ously introduced in Lardeux et al. (2015) and Lardeux and

Monfroy (2014) , we can claim that: 

◦ Our new language has been complemented with finite

domain variables, i.e. , variables having finitely many

candidate values such as bounded integer values. 

◦ Some comparison constraints between these new fi-

nite domain variables have been added, such as A < B .

◦ The cardinality constraint connects now a variable

having a finite domain with a set variable. In con-

trast, in Lardeux et al. (2015) and Lardeux and Mon-

froy (2014) , it was only an attribute of a set that could

not appear directly within other constraints. 

◦ Correas et al. (2018) proposed the addition of new

types of set constraints as well as a more produc-

tive cooperation between finite domain variables and

set variables. Similarly, we have also introduced con-

straints for connecting the minimum and maximum

elements of a set with the set itself. These minimum

and maximum are also finite domain variables that

other constraints can use. We found them of great

utility for breaking symmetries ( e.g. , for ordering sev-

eral sets) and reducing sets. 
• A new set of stronger rules ( ⇒ red ) for reducing CSP mod-

els during the propagation process: 

◦ Every rule in this set corresponds to a reduction func-

tion ( Apt, 2003 ) for finite domain variables and sets.

Thus, the fixed point application of these rules defines

a propagation algorithm. 

◦ The reduction depends on the computing of lower and

upper bounds for the analyzed sets as well as their

minimum and maximum cardinalities (whereas that

presented in Lardeux and Monfroy (2016) employed

only upper bounds). This reduction is similar to the

one introduced by Azevedo (2002) . 

◦ The new proposed reduction scheme is much stronger

than that previously presented in Lardeux and Mon-

froy (2016) . It is stronger than bound consistency for

set constraints ( e.g. , Gervet, 1994 ), and weaker than

the one presented by Yip and Van Hentenryck (2011) .

This choice is discussed and justified in Section 9 . 

◦ Last but not least, we have also added some rules

for manipulating disjunctions of constraints. We are

thus able to remove some tautologies ( i.e. , some com-

plete disjunctions may vanish), and some contradic-

tions ( i.e. , some disjuncts of a disjunction may vanish).

To our knowledge, this had never been proposed in a

CSP set solver. 
• Some more efficient encoding rules ( ⇔ enc ) for translating

CSP models into propositional satisfiability instances: 

◦ Additional rules complete those presented in ( Lardeux

& Monfroy, 2014 ). They permit to convert the new set

constraints implemented in this paper. 



F. Lardeux, É. Monfroy and E. Rodriguez-Tello et al. / Expert Systems With Applications 149 (2020) 113243 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s  

W  

t  

(  

l  

e  

o  

i  

g  

l  

m  

i  

p  

t  

o  

r  

i  

p  

p  

o

 

m  

s  

s  

d  

i  

T  

s  

f  

a  

e  

m  

o  

W

2

 

i  

b  

e  

v  

s

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

◦ These additional rules apply to constraints without

or after propagation, and without generating useless

clauses (as it was sometimes the case in our previ-

ous work). Succinctly, the process is the following for

each type of constraint: for every set participating in

a given constraint and for every element of the uni-

verse, we consider three mutually exclusive member-

ship cases: 

∗ The element is in the lower bound of the set, i.e. ,

the element is effectively in the set. 

∗ The element is not in the lower bound of the set,

but it is in the upper bound, i.e. , the set could

eventually contain the element. 

∗ The element is not in the upper bound of the set,

i.e. , the set definitively does not contain this ele-

ment. 

Hence, for a single ternary constraint ( e.g. , A = B ∩ C),

27 cases should be considered. After applying our new

reduction rules ( ⇒ red ), some of these cases may never

be fulfilled. Hence, our new encoding rules do not

generate any clauses in these cases, and consequently,

the generated SAT instances are smaller. 

We applied our technique successfully to diverse clas-

ic problems, including Sudoku, n -queens, car sequencing, and

hoWithWhom. To illustrate this paper, we have decided

o use two challenging problems: the Social Golfer Problem

SGP) ( Harvey, 2019 ) and the Sports Tournament Scheduling prob-

em (STS) ( Walsh, 2019 ). The complexity of our automatically gen-

rated propositional satisfiability instances is similar to that of

ther improved and hand-written SAT instances. Moreover, our SAT

nstances appear to be much smaller than the ones we used to

enerate before. Thus, larger problems can be tackled, even prob-

ems which used to cause memory overflow problems. Further-

ore, solving our automatically generated SAT instances by us-

ng a standard propositional satisfiability solver ( e.g., MiniSAT re-

orted in Eén & Sörensson (2004) ) could produce very competi-

ive results compared to other SAT solving methods. For instance,

ur approach can match the global performance of the algorithm

eported in Hamiez and Hao (2014) for the STS problem, which

s, as far as we know, the most efficient algorithm for the STS

roblem. This algorithm was specially devised for solving the STS

roblem. However, it may produce unsatisfiable instances given its

ver-constrained problem definition. 

The following section ( Section 2 ) gives an overview of our

ethod and some motivations. Section 3 presents the notion of

et CSP and our set constraint language. In Section 4 , we present

ome of our reduction rules, over finite domain variables, sets, and

isjunctions. In Section 5 , we then discuss some implementation

ssues to obtain a more efficient constraint propagation process.

he rules for encoding CSP instances into SAT instances are de-

cribed in Section 6 . Section 7 illustrates the use of set constraints

or modeling the STS and SGP problems. These two problems are

lso used in Section 8 to evaluate our approach by considering the

fficiency of reduction rules and SAT preprocessing. We analyze the

ethods in the literature and their limits, and then we show how

ur method can overcome some of these problems in Section 9 .

e finally conclude in Section 10 . 

. Overview of the approach 

Our main goal is to provide expressive techniques for generat-

ng propositional satisfiability instances, which can be then solved

y an existing SAT solver. To this end, we work at the level of mod-

ls, instances, and model and instance transformations and con-
ersions. In this article, our approach is made up of the following

teps ( Fig. 1 gives a simplified view): 

1. A problem is modeled with CSP set constraints: this gives

a CSP model. The CSP model can be generated by a modeler,

such as Savile Row ( Nightingale & Miguel, 2018 ) or MiniZ-

inc ( Nethercote et al., 2007; Stuckey, Feydy, Schutt, Tack, &

Fischer, 2014 ). However, our language evolves continuously.

For example, we are currently experimenting with some

specific partitioning constraints and patterns of conjunctions

of constraints which have special reduction and encoding

rules. Thus, we preferred to use standard languages to keep

flexibility, either C ++ or Prolog (SWI-Prolog proposed by

Wielemaker, Schrijvers, Triska, & Lager, 2012 ). The CSP mod-

els are thus Prolog or C ++ programs that formulate the vari-

ables and the constraints. 

We consider usual sets constraints (such as ∪ and ∩ ), con-

straints enforcing minimum and maximum values of sets

(such as in Correas et al. (2018) ), and minimum and maxi-

mum cardinality of sets. These minimum and maximum val-

ues and cardinality are finite domain variables. These con-

straints did not exist in our previous work. 

2. A CSP model, together with some data, leads to a CSP

instance. For example, let us consider we have the Social

Golfer model. Then, this CSP model ( Model CSP ) and the

number of players set to 5, the number of groups set to 3,

and the number of weeks set to 4 leads to the CSP instance

5-3-4 of the Social Golfer. 

Since XCSP3 ( Boussemart, Lecoutre, & Piette, 2017 ) was not

released when we started this work, we designed our XML-

like format for CSP instances. Thus, the Prolog and C ++ pro-

grams that represent CSP models (and data) generate the

CSP instances in our XML-like format. 

3. A CSP instance is reduced by a propagation process in or-

der to get a reduced CSP instance. The propagation process

computes a fixed point of our reduction rules, leading to a

reduced CSP instance. CSP_R is the CSP instance reduced by

all the rules. CSP models can also lead directly to CSP_R in-

stances using dynamic reduction (see Section 5.4 for details).

Reduction without rules for disjunction constraints leads to

CSP _ R \ D instances. For finite domain variables, we use arc-

consistency like in Mackworth (1992) . A reduction rule tries

to push up lower bounds and to push down upper bounds

of set variables using the current bounds, and the minimum

and maximum cardinalities. This consistency for sets has

been defined in Azevedo (2002) (see Section 4 for details).

We complete this reduction by removing constraints that be-

come tautologies: indeed, these useless constraints can gen-

erate extra variables and clauses in the SAT instances. 

Another novelty is also to treat the disjunctions of con-

straints ( CSP_R ). This reduction consists in detecting dis-

junctions that are tautologies to remove them. Disjuncts that

are contradictions are also detected and removed. This sim-

plification can drastically reduce some instances. More de-

tails are given in Section 4.4 . Note that our new reduc-

tion is much stronger than the one of Lardeux and Mon-

froy (2014) which only treated upper bounds of sets. 

4. A CSP instance (reduced or not) is encoded into a SAT in-

stance. Our new encoding is more efficient than the one

of Lardeux et al. (2015) . Indeed, we can now consider ei-

ther reduced or non-reduced CSP instances as input, without

generating useless SAT variables and clauses (see Section 6 ).

We then respectively obtain reduced SAT models ( SAT CSP R )

or SAT models ( SAT CSP ). 

5. SAT instances ( SAT CSP ) can be processed before being sent

to the SAT solver. For example, one can perform unit propa-



4 F. Lardeux, É. Monfroy and E. Rodriguez-Tello et al. / Expert Systems With Applications 149 (2020) 113243 

Fig. 1. Models, instances, and their processing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

gation or some steps of resolution. In this article, we used

the SatELite ( Eén & Biere, 2005 ) preprocessor. We report

about its effects on resolution in Section 8.2 . Note that

SAT CSP _UP, SAT CSP _CM, and SAT CSP R are not necessarily

the same. Reduction is processed before the SAT encoding

for SAT CSP R and after for SAT CSP _UP and SAT CSP _CM. All

SAT instances suffixed by _UP correspond to SAT instances

only preprocessed by unit propagation. Similarly, all SAT in-

stances suffixed by _CM correspond to SAT instances pre-

processed by a complete CNF minimizer (see Section 8.2 for

details). 

6. A SAT instance is solved with a SAT solver. In our case, we

use MiniSAT because it is a standard, classical, and complete

solver ( i.e., if there is a solution, it finds the solution; other-

wise, it proves the unsatisfiability of the instance). None of

the processings modifies the solution space of the problem.

However, we are interested in the first solution returned by

the solving. Thus, each branch can lead to a different solu-

tion. 

Some of these steps are not mandatory. We see later that we

can skip Step 5: Preprocessing SAT instances is not always bene-

ficial ( Subsection 8.2.2 ). Step 3 is optional: indeed, the approach

presented in Lardeux et al. (2015) corresponds to Steps 1-2-4-6.

However, we show in this paper that the reduction step is crucial,

in terms of the size of produced SAT instances, and also in terms

of the total solving time (Step 6). The method in Lardeux and Mon-

froy (2014) corresponds to 1-2-3-4-6, but with a much weaker re-

duction than the one we are using now. We also show that Steps

2 and 3 can be achieved at the same time (see Section 5.4 ): In this

case, CSP instances are reduced sooner, and some larger problems

can be tackled and reduced. However, in this case, we do not have

the raw initial CSP instance (but this is also the case with MiniZ-

inc ( Nethercote et al., 2007; Stuckey et al., 2014 ) which generates

a FlatZinc instance, which is already transformed, for example, by

some reductions, and modifications of variables.) 

The advantages of our approach are: 

• Problems are expressively modeled as CSPs, and we have a

better expressiveness than before ( Lardeux & Monfroy, 2014;

Lardeux et al., 2015 ). We have added disjunctions, finite do-
main variables, minimum and maximum cardinalities, and

minimum and maximum of sets as variables. We now have

the expressiveness of the set constraint language of Car-

dinal ( Azevedo, 2007 ) plus disjunction. Symmetry breaking

techniques can be easily added as extra constraints. 
• This technique is less error-prone than hand-written propo-

sitional satisfiability instances. For instance, in ( Triska &

Musliu, 2012 ) the authors had to revise the model for the

Social Golfer Problem presented in ( Gent & Lynce, 2005 ),

since they found some corrections to the ranges of different

disjunctions ( ∨ ) and conjunctions ( ∧ ) composing the clauses

of the hand-written SAT instances. 
• The generated SAT instances are even more compact than

those presented in Lardeux et al. (2015) . In the particu-

lar case of the SGP, the SAT instances generated with our

new technique are smaller (in terms of clauses) than the in-

stances presented in Triska and Musliu (2012) . 
• Our generated SGP instances are more appropriate for SAT

solvers, as they can be solved faster than those reported

in ( Triska & Musliu, 2012 ). Concerning the STS problem

( Section 7.2 ), the proposed approach attains a performance

that successfully compares with that of the best-known ad

hoc solver ( Hamiez & Hao, 2014 ), which has the disadvan-

tage of producing an over-constrained model that leads to a

loss of solutions (unsatisfiable instances). 
• The reduction process (which is stronger than be-

fore Lardeux & Monfroy, 2014 ) is an overhead which is

generally compensated by faster solving times. When

instances contain a huge number of disjunctions, the re-

duction is efficient in terms of SAT instance size but may

become inefficient in terms of expended CPU time (see

Section 8 ). 
• The model is reduced before generating SAT instances, and

the encoding process is more efficient than before (it does

not generate useless clauses or variables). Hence, generated

SAT instances are consequently smaller, and SAT solvers can

now handle larger problems (that could not be treated be-

fore because of their size). 

To show the difference with our previous work, Fig. 2 illustrates

he processes presented in Lardeux et al. (2015) . 



F. Lardeux, É. Monfroy and E. Rodriguez-Tello et al. / Expert Systems With Applications 149 (2020) 113243 5 

Fig. 2. Models, instances, and processing presented in Lardeux et al. (2015) . 

3

 

c  

a

3

D  

t

 

 

 

 

 

 

 

 

 

 

F  

F  

t  

g  

b  

3

 

l

 

 

 

 

 

a  

t

fi
fi
(
s
i
d
i
u
p
s
s
s

 

f

 

t  

c  

a

E  

G

 

8  

a  

1

4

 

b  

t  

t  

2  

T  

f  

t

. CSP set constraints 

In this section, we define the set constraint language that we

onsider in the remaining sections: notion and declaration of vari-

bles, universe, and set constraints. 

.1. Set-CSP 

efinition 1 (Set-CSP) . A Set-CSP is a four-tuple ( U , X, F , C) such

hat: 

• U denotes the universe, i.e. , a finite set of integers. 
• X = { x 1 , . . . , x n } is a set of variables, where each variable

x i ∈ X has a finite domain D x i ⊆ U . The Cartesian product

D x 1 × . . . × D x n is represented as D. 
• F is a set of set variables, and for each F ∈ F : 

◦
˙ 
F ⊆ U , which denotes the greatest lower bound of F , is a

set that contains elements of the universe that are neces-

sarily in F . 

◦ ˙ F ⊆ U , which denotes the lowest upper bound of F , is a

set that contains elements of the universe that may be in

F . 

◦ Also, � F 
 ∈ N , � F � ∈ N represent the minimum and

maximum cardinality of F , respectively. 

Given a set F with cardinality | F |, then the following condi-

tions are fulfilled: 
˙ 
F ⊆ F ⊆ ˙ F , � F 
 ≤ | F | ≤ � F � , | 

˙ 
F | ≤

� F 
 , and � F � ≤ | ̇ F | . 
• C is used to express a set of constraints relating variables

defined over the Cartesian product D 

| X| × U | F | . 

˙ F \ F ? = 

˙ 
F represents those elements required in F , while

 

? = 

˙ F \ 
˙ 
F stands for the elements that could be eventually in

 . Hence, 
˙ 
F ⊆ F ⊆ ˙ F , as well as the solutions for F , belong to

he powerset 2 
˙ F . Moreover, they include all the elements in the

reatest lower bound (that also always pertain to the least upper

ound), and their cardinality is an integer in the interval [ � F 
 .. � F � ].

.2. Elementary set constraints 

In this work, the constants and the variables are defined as fol-

ows: 

• Let U :: � be the universe, with � representing a set. 
• Let x : : D x defines a finite domain variable x with domain D x 

being a set of elements. 
• Let F :: ( 
˙ 
F , ˙ F , � F 
 , � F � ) be a se t variable, with the se ts of

elements 
˙ 
F , ˙ F denoting its lower and upper bounds, and

the integer values � F 
 , � F � representing its minimum and

maximum cardinalities. 
• Let ∅ : : ( ∅ , ∅ , 0, 0) represent a set variable having no ele-

ments (empty). 

Assume that F, G, H , and F i ( i ∈ [1.. n ]) are set variables. Assume

lso that x is a finite domain variable. Our modeling language con-

ains the following usual set constraints: 

nite domain (dis)equality x = y (x � = y ) 
nite domain (strict) inequality x ≤ y (x < y ) 

non)membership x ∈ F (x �∈ F ) 
et (dis)equality F = G (F � = G ) 
nclusion F ⊆ G (F �⊆ G ) 
ifference H = F \ G 

ntersection F = 

⋂ n 
i =1 F i 

nion F = 

⋃ n 
i =1 F i 

artition F = 

⊔ n 
i =1 F i 

et cardinality x = | F | 
et variable minimum x = min (F ) 
et variable maximum x = max (F ) 

Note that F = 

⊔ n 
i =1 F i is equivalent to F = 

⋃ n 
i =1 F i , and F i ∩ F j = ∅

or all i � = j. 

Constraints are linked by conjunctions and disjunctions (and

hus implication). We also include quantification ( ∃ , and ∀ ) over

losed sets, which are syntactic sugar (respectively disjunctions

nd conjunctions). 

xample 1. ∀ i ∈ [1 ..n ] G i ⊆ G i +1 enforces a chain of included sets

 j . 

G :: ({ 1 , 2 , 3 , 4 } , { 1 , 2 , 3 , 4 } , 4 , 4) ∧ J :: (∅ , { 1 , 2 , 3 , 4 , 5 , 6 , 7 ,
 } , 3 , 3) ∧ ∀ p ∈ G, p �∈ J creates a closed set G = { 1 , 2 , 3 , 4 } ,
 set J of cardinality 3 which contains three elements among

,2,3,4,5,6,7,8. Then, elements of G are forced not to be in J . 

. Reduction rules 

Rules are an elegant way to describe and formalize changes to

e applied to an object (either a simple object or a complex struc-

ure). Furthermore, this formalism is rather classic for expert sys-

ems and constraint transformations. See, for example, ( Frühwirth,

009; Ftulis, Giordano, Plüss, & Vota, 1998; Lee & Kwon, 1995;

opaloglu, Salum, & Supciller, 2012 ). That is the reason why we

ormalize our reduction algorithm as the fixed point of a set of

ransformation rules. 



6 F. Lardeux, É. Monfroy and E. Rodriguez-Tello et al. / Expert Systems With Applications 149 (2020) 113243 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m

|  

|  

4

 

a  

t  

s  

o  

m  

t  

s  

v  

s  

b

H

 

 

w  

v  

t  

s

 

p  

c  

e

H

 

The goal of the reduction rules ( ⇒ red ) is to bring down the size

of the CSP search spaces. A constraint propagation method for re-

ducing sets, as well as finite domains, is defined by a fixed point

application of these rules. Every reduction rule may: 

• Add (respectively eliminate) some elements to lower bounds

(respectively from upper bounds) of set variables. 
• Increase (respectively decrease) minimum cardinalities (re-

spectively maximum cardinalities) of set variables. 
• Eliminate integers from the domains of finite domain vari-

ables. 
• Lead to failure cases when there is no solution ( e.g. , when a

domain is empty, or a minimum cardinality is bigger than a

maximum cardinality). 
• Also, remove some constraints that became tautologies, and

thus useless. 

Note that it is not mandatory to have reduction rules for each

constraint: their role is only to simplify the encoding and, thus, the

work of the SAT solver. However, we have rules for each of the con-

straints presented above. The fixed point application of our reduc-

tion rules enforces bound consistency with cardinality ( Azevedo,

20 02; 20 07 ). In the next subsections, we present a selection of our

reduction rules. Classical logical operators as ← or � are also used

to define ⇒ red . 

4.1. Finite domains 

When the domain of a variable x is empty, there is no solution

for the CSP: 

D x = ∅ ⇒ red fail (1)

If we declare twice a variable x , both declarations are contracted

into a single one: 

x :: D x , x :: D 

′ 
x ≡red x :: D x ∩ D 

′ 
x (2)

4.2. Sets 

Some rules may add some elements to the set 
˙ 
F that may

not belong to ˙ F . Thus, Rule (4) is essential because it leads to

a failure in these circumstances. Rules (3), (5) , and (6) are similar:

they are beneficial when modifications are made to the lower or

upper bound of a set cardinality. 

� F 
 > � F � ⇒ red fail (3)

˙ 
F �⊆ ˙ F ⇒ red fail (4)

| 
˙ 
F | > � F � ⇒ red fail (5)

| ̇ F | < � F 
 ⇒ red fail (6)

If � F � = 0 , then F corresponds to a set having no elements

(moreover, if 
˙ 
F � = ∅ , then applying Rule (4) results in a fail-

ure): 

� F � = 0 ⇒ red 
˙ F = ∅ (7)

Rule (8) fixes the set F when the upper bound cardinality equals

its minimum cardinality. Respectively, Rule (9) fixes the set F when

the lower bound cardinality equals its maximum cardinality. 

� F 
 = | ̇ F | , 
˙ 
F ⊂ ˙ F , � F 
 ≤ � F � ⇒ red 

˙ 
F ← 

˙ F , � F � ← � F 
 (8)

� F � = | F | , F ⊂ ˙ F , � F 
 ≤ � F � ⇒ 

˙ F ← F , � F 
 ← � F � (9)

˙ ˙ 

red 
˙ 
Moreover, Rules (10) and (11) can only be triggered once to

atch the different fields of a set declaration: 

 

˙ 
F | > � F 
 ⇒ red � F 
 ← | 

˙ 
F | (10)

 ̇

 F | < � F � ⇒ red � F � ← | ̇ F | (11)

.3. Set constraints 

Rule (12) allows us to reduce three different set variables, F, G ,

nd H , which are related by a set difference constraint. It is impor-

ant to remark that in the right-hand side of a rule, multiple as-

ignments ( ← ) are achieved at the same time. We mean that sets

n the right-hand side (respectively left-hand side) of an assign-

ent are the values of the set before (respectively after) applying

he rule. Thus, if a set S appears several times on the right hand-

ide of some assignments, it always has the same value ( i.e. , its

alue before applying the rule). Note also that min { a 1 , . . . , a n } (re-

pectively max { a 1 , . . . , a n } ) returns the smallest (respectively the

iggest) integer a i . 

 = F \ G ⇒ red 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

˙ H ← ( ˙ H ∩ 

˙ F ) \ 
˙ 
G 

˙ F ← 

˙ F ∩ ( ˙ H ∪ 

˙ G ) 
˙ G ← 

˙ G \ 
˙ 
H 

˙ 
H ← 

˙ 
H ∪ ( 

˙ 
F \ ˙ G ) 

˙ 
F ← 

˙ 
H ∪ 

˙ 
F 

˙ 
G ← 

˙ 
G 

� H
 ← max { � H
 , | 
˙ 
H ∪ ( 

˙ 
F \ ˙ G ) |} 

� F 
 ← max { � F 
 , | 
˙ 
H ∪ 

˙ 
F |} 

� G 
 ← � G 
 
� H� ← min { � H� , | ( ˙ H ∩ 

˙ F ) \ 
˙ 
G |} 

� F � ← min { � F � , | ̇ F ∩ ( ˙ H ∪ 

˙ G ) |} 
� G � ← min { � G � , | ˙ G \ 

˙ 
H|} 

(12)

Once Rule (12) has been applied, if F ? ∩ 

˙ G = ∅ then H = F \ G al-

ays evaluates to true. Hence, this constraint is useless and can

anish. Such conditions are evaluated for every class of constraints:

hey can scale down the CSP instance size, and in consequence, the

ize of the generated propositional satisfiability instance. 

We have also integrated some redundant rules that do not im-

act the reduction strength of our method. These rules are spe-

ializations of some other generic rules, and they apply faster. For

xample, the generic rule for the constraint H = F ∩ G is: 

 = F ∩ G 

⇒ red 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

˙ H ← 

˙ H ∩ 

˙ F ∩ 

˙ G 

˙ 
H ← 

˙ 
H ∪ ( 

˙ 
F ∩ 

˙ 
G ) 

˙ 
F ← 

˙ 
F ∪ 

˙ 
H 

˙ 
G ← 

˙ 
G ∪ 

˙ 
H 

˙ F ← 

˙ F \ ( 
˙ 
G \ ˙ H) 

˙ G ← 

˙ G \ ( 
˙ 
F \ ˙ H) 

� F 
 ← max { � F 
 , | 
˙ 
F ∪ 

˙ 
H|} 

� G 
 ← max { � G 
 , | 
˙ 
G ∪ 

˙ 
H|} 

� H
 ← max { � H
 , | 
˙ 
H ∪ ( 

˙ 
F ∩ 

˙ 
G ) |} 

� F � ← min { � F � , | ̇ F \ ( 
˙ 
G \ ˙ H) |} 

� G � ← min { � G � , | ˙ G \ ( 
˙ 
F \ ˙ H) |} 

� H� ← min { � H� , � F � , � G � , | ˙ H ∩ 

˙ F ∩ 

˙ G |} 

(13)



F. Lardeux, É. Monfroy and E. Rodriguez-Tello et al. / Expert Systems With Applications 149 (2020) 113243 7 

 

t

∅  

4

 

i  

t

 

s  

t  

s  

a

c  

c  

V  

 

e

 

 

o

 

 

w  

t  

s

 

i  

w  

s

 

s  

t  

b  

t

c

 

o  

o  

q

c

5

 

o  

r

 

 

 

 

i  

4

 

 

 

5

 

t  

v  

o

i  

c  

a  

fi  

t  

j  

t  

o

5

 

s  

s  

r  

o  

g  

n  

o  

t  

d  

c

 

 

 

 

 

 

 

 

 

 

 

2 Consider I = a..b, and J = c..d. Then, I and J are disjoint iff b < c or d < a , and 

I ≺J iff b < c . 
When H = ∅ , the rule is much simpler but still equivalent. Prac-

ically, less computation steps and less tests are needed: 

 = F ∩ G ⇒ red 

⎧ ⎪ ⎨ 

⎪ ⎩ 

˙ F ← 

˙ F \ 
˙ 
G 

˙ G ← 

˙ G \ 
˙ 
F 

� F � ← min { � F � , | ̇ F \ 
˙ 
G |} 

� G � ← min { � G � , | ˙ G \ 
˙ 
F |} 

(14)

.4. Disjunctions 

Disjunctions may be practical for modeling problems since they

ntroduce even more expressivity. However, their treatment in

erms of propagation quickly becomes tedious. 

Consider a CSP given as V ∧ C ∧ (d 1 ∨ . . . ∨ d n ) where V repre-

ents variable declarations (set and finite domain variables), C and

he d i ’s are formulas built with conjunctions and disjunctions of

et constraints. We consider that each d i does not contain any vari-

ble declaration (this is not a restriction: declarations in each d i 
an raise to V ). Propagation from V ∧ C to (d 1 ∨ . . . ∨ d n ) thus only

onsists of removing constraints. Propagation from d 1 ∨ . . . ∨ d n to

 ∧ C is not correct in the general case. Consider d 1 ∨ . . . ∨ d n ≡ d ∧
(d ′ 

1 
∨ . . . ∨ d ′ n ) . Then, propagation from d to V ∧ C can apply. How-

ver, we consider that in such a case, d can raise to C . 

We are thus concerned here with propagation from V ∧ C to

(d 1 ∨ . . . ∨ d n ) to remove constraints, either complete disjunctions

r just some disjuncts: 

1. If V ∧ C �d i , then d 1 ∨ . . . ∨ d n can be replaced by true 

2. If V ∧ C �¬d i , then d 1 ∨ . . . ∨ d n can be simplified into d 1 ∨ . . . ∨
d i −1 ∨ d i +1 ∨ . . . ∨ d n 

The first case always works, while the second case is tractable

hen we have the negation of the constraint ( e.g. , = and its nega-

ion � = ). In our case, only set difference and disjoint union con-

traints do not have direct negation. 

Each type of constraint d i requires its proper rules for test-

ng V ∧ C �d i or V ∧ C �¬d i and treating disjunction. In the following,

e give disjunction reduction rules for the non-membership con-

traint ( �∈ ). 

The first rule enables us to remove a disjunct (which is a �∈ con-

traint) from a disjunction. The c i ’s are conjunctions and disjunc-

ions of set constraints. If the domain of x is included in the lower

ound of G , then, x �∈ G is always false and it can be removed from

he disjunction: 

 1 ∨ . . . ∨ c i −1 ∨ x �∈ G ∨ c i +1 ∨ . . . ∨ c n , D x ⊆
˙ 
G 

⇒ red 

c 1 ∨ . . . ∨ c i −1 ∨ c i +1 ∨ . . . ∨ c n 

(15) 

The next rule replaces a disjunction by true . When the domain

f x does not have any value in common with the upper bound

f the set G , then the constraint x �∈ G is always true, and conse-

uently, the disjunction c 1 ∨ . . . ∨ c n can be replaced by true : 

 1 ∨ . . . ∨ c i −1 ∨ x �∈ G ∨ c i +1 ∨ . . . ∨ c n , D x ∩ 

˙ G = ∅ 
⇒ red 

true 

(16) 

. Some implementation considerations for the reduction rules 

In this section, we present some aspects of the implementation

f the reduction rules. The whole software is composed of 3 sepa-

ate parts: 

1. The modelization module, which is written in SWI-

Prolog ( Wielemaker et al., 2012 ). 
2. The reduction module, which is written in

CHR ( Frühwirth, 2009 ). Note that we use the SWI-Prolog

version of CHR. 

3. The encoding module, which is written in C ++ . 

The reduction module thus consists of CHR rules (correspond-

ng to our ⇒ red rules) and some Prolog predicates. We present here

 aspects of the reduction module: 

1. The input syntax. 

2. The structure we used for domains. 

3. The splitting of ⇒ red rules into several CHR rules for effi-

ciency reasons. 

4. The dynamic reduction to apply ⇒ red rules as soon as a new

constraint of the model is formulated; this overcomes some

memory problems. 

.1. Syntax 

Without loss of expressivity, we restrict CSP instances to be of

he form V ∧ C where D is a conjunction of set, and finite domain

ariable declarations and C is a conjunction of basic constraints

r disjunctions of basic constraints, i.e. , C = c 1 ∧ . . . ∧ c n where c i 
s either a basic constraint or a disjunction of basic constraints

 i = ∨ j c i, j . If this syntax is not respected, this is not a problem,

nd the encoding still works. However, propagation will be less ef-

cient and will treat only a part of the CSP (constraints respecting

his format). For efficiency reasons, it is thus advised to put dis-

unctions at the end of the model (once again, this is not manda-

ory). To simplify modeling, we plan to automate constraint re-

rdering in the future. 

.2. Domains 

To represent domains of finite domain variables and domains of

et variables, we need to represent sets. A representation in exten-

ion of sets ( e.g. , with some Prolog lists) is enough. However, our

eduction rules require applying numerous set operations ( e.g. , ∪
r ∩ ) on these domains either to perform some tests before trig-

ering some rules or to achieve computation inside the rule ( e.g. ,

ew lower and upper bounds, and new variable domain). These

perations are very costly for sets given in extension. Thus, we use

he concept of s_interval for lower and upper bounds of sets and

omains of variables. Set operations ( e.g. , ∪ or ∩ ) are more effi-

ient over this structure: 

• An interval I of integers is denoted by n .. m where n and

m are integers; I = n..m represents every integer between

n and m ; the lower bound of I is denoted I and the upper

bound I . 
• An s_interval is an ordered sequence of disjoint intervals: 2 

Li = (L 1 , . . . , L l ) 

The empty s_interval is denoted by ⊥ . An s_interval I =
(I 1 , . . . , I n ) is included in an s_interval J = (J 1 , . . . , J m 

) if each

integer appearing in I also appears in J : 

I ⊆ J ⇔ ∀ I i , ∀ v ∈ [ I i .. I i ] , ∃ J k , J k ≤ v ≤ J k 

The cardinality | I | of an s_interval I = (I 1 , . . . , I n ) is given

by: | I| = 

∑ n 
i =1 ( I i − I i + 1) . The minimum min ( I ) (respectively

maximum) of an s_interval I = (I 1 , . . . , I n ) is min (I) = I 1 (re-

spectively max (I) = I n ). Other operations (such as ∪ , ∩ , ...)

on s_intervals are defined similarly. Note that these opera-

tions can be implemented simply by reasoning on bounds of

intervals. 



8 F. Lardeux, É. Monfroy and E. Rodriguez-Tello et al. / Expert Systems With Applications 149 (2020) 113243 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Impact of reduction on the Social Golfer instance 5-4-5. 

Non-reduced Reduced 

instances instances 

sets 26 26 

variables 50 50 

constraints 98 20 

disjunctions of size 4 47 500 18 000 

disjunctions of size 3 0 0 

disjunctions of size 2 0 864 

w  

a  

a  

i

 

(  

(  

c  

t

5

 

c  

o  

S  

p  

n

 

t  

w  

C  

a  

u  

a

 

p  

d  

s  

t  

i  

t

 

a  

2  

f  

n  

i  

c

6

 

c  

a  

s  

r  

p  

c  

t

6

 

5.3. Splitting rules 

Constraint Handling Rules (CHR) ( Frühwirth, 2009 ) have been

employed to implement the ⇒ red rules. CHR is a declarative, rule-

based language whose concrete syntax depends on the host lan-

guage, in our case SWI-Prolog. A CHR program, then, consists of

rules that manipulate a multi-set of terms, called the constraint

store : terms may be added or removed from the store. In our im-

plementation, terms either represent variables (set or finite do-

main variables) together with their domains or constraints over

these variables. Reducing the domain of a variable thus consists

in removing the previous declaration of the variable, and adding a

new declaration containing the reduced domain. 

When added to the store, a constraint is active. This means that

each rule where it matches the left-hand side is tried again. For ef-

ficiency reasons, it is thus crucial to change (remove, and then add)

variable declaration only when the change is effective (otherwise,

the system spends much time doing the same useless work again).

Most of our reduction rules eventually reduce several sets or finite

domain variables at once. For example, Rule (13) for the constraint

H = F ∩ G may reduce H, F , and G . Such rules are split into several

rules, one for each set that it eventually reduces. For example, Rule

(13) is implemented as 3 rules (one for reducing H , one for reduc-

ing F , and one for G ). Moreover, some guards verify that the rule

effectively reduces the set or finite domain variables before being

triggered. Thus, rules are applied only when they effectively reduce

a (set or finite domain) variable. The CHR rule for reducing the set

H with an intersection constraint H = F ∩ G is as follows: 

1 set_intersection(H,F,G), 
2 set(F,support(Fs,FS),card(Fc,FC)), 
3 set(G,support(Gs,GS),card(Gc,GC)) \ 
4 set(H,support(Hs,HS),card(Hc,HC)) < = > 

5 % NHS is the new upper bound for H 
6 ord_int_intersection([FS,GS,HS],NHS), 
7 % NHs is the new lower bound for H 
8 ord_int_intersection(Fs,Gs,FGs), 
9 ord_int_union(Hs,FGs,NHs), 
10 % NHC is the new max card for H 
11 ord_int_length(NHS,SNHS), 
12 min_list([HC,FC,GC,SNHS],NHC), 
13 % Trigger rule if at least one 

change is effective 
14 (NHs \ == Hs ; NHS \ == HS ; 

NHC \ == HC) | 
15 % NHc is the new min card for H 
16 ord_int_length(NHs,SNHs), 
17 NHc is max(Hc,SNHs), 
18 set(H,support(NHs,NHS),card(NHc,NHC)).
This rule is triggered when it encounters: a set constraint

between 3 sets ( H = F ∩ G where H, F , and G are abstract

names) in Line 1, the declarations of the sets F and G to-

gether with their domains (Lines 2 and 3), and the declara-

tion of the set H (Line 4). The declaration of the set F is given

by set(F,support(Fs,FS),card(_Fc,FC)) where F is the

name of the set, support(Fs,FS) gives the lower bound ( Fs )
and upper bound ( FS ) of F , and card(Fc,FC) gives its minimum

cardinality ( Fc ) and maximum cardinality ( FC ). Lines 5 to 14 de-

fines a guard (between < = > and | ), i.e. , a condition that must

be fulfilled to trigger the rule. Here, this guard specifies that either

the lower bound, or the upper bound, or the maximum cardinal-

ity of H must effectively be modified to trigger the rule. We can

see that the new upper and lower bounds and maximum cardi-

nality of H are computed in the guard. In this rule, the constraint

H = F ∩ G, as well as the definitions of F and G cannot be altered.

Only the declaration of the set variable H is effectively modified

t  
hen the rule is triggered (the declaration of H in Line 4 appears

fter the backslash “\ ”). Thus, if the rule matches and is triggered,

 new declaration of H (with at least its lower or upper bound or

ts maximum cardinality modified) is added to the store (line 18). 

Some other rules can also be split. For example, Rules (15) and

16) can be specialized when the finite domain variable x is closed

 i.e. , its domain is reduced to a singleton). In this case, some less

ostly tests (membership instead of inclusion) can be performed in

he guard before applying the rules. 

.4. Dynamic reduction 

When instances are enormous, our CHR implementation for

onstraint propagation becomes less and less efficient, and mem-

ry problems can appear (see, for example, large instances of the

GP problem in Section 8 ). We thus propose a way to bypass this

roblem: while we generate the CSP model with data, we also dy-

amically reduce it. 

Each time we generate a new constraint of the CSP instance,

he reduction is triggered. Hence, the reduced CSP instances that

e obtain are the same, making propagation dynamically on the

SP model or applying it to the CSP instance. However, we have

 gain of memory: by reducing sets and variables and removing

seless constraints on the fly, we can reduce the instances sooner,

nd hence tackle larger instances. 

The difference is even more evident with disjunctions by ap-

lying Rules (15) and (16) on the fly. Indeed, tautologies and false

isjuncts are immediately removed dynamically. For example, con-

ider the Social Golfer instance 5-4-5 (see Section 7 ). Table 1 shows

he difference between the reduced and the non-reduced instances

n terms of the number of sets, variables, constraints, and disjunc-

ions. 

However, reduction discards the original CSP instances. This is

lso the case with MiniZinc ( Nethercote et al., 2007; Stuckey et al.,

014 ), which generates FlatZinc instances that are already trans-

ormed by some reductions or modifications of variables. This may

ot be a problem, except if some more tools have to process the

nstances or if the user wants to trace the whole transformation

hain. 

. Encoding rules 

The main objective of encoding rules ( ⇔ enc ) is to translate set

onstraints from the original CSP model into propositional satisfi-

bility clauses. There must be a translation for each type of con-

traint; otherwise, a generated SAT instance would be a kind of

elaxation of the original problem. It is worth noting that the rules

resented in the following subsection can apply to reduced set

onstraints, but also non-reduced ones. We only present a selec-

ion of the complete set of encoding rules. 

.1. Finite domain variable 

The finite domain variable encoding rule is designed to enforce

he condition that every finite domain variable is associated with



F. Lardeux, É. Monfroy and E. Rodriguez-Tello et al. / Expert Systems With Applications 149 (2020) 113243 9 

o

∨

∧

T

6

 

a

a  

a  

b

{
 

x  

t

6

 

c  

d

 F ∩
 enc 

true 

x G 
false

x F 
x F ∧ 

false
false

false

false

x H 
x H ↔
¬ x H 
x H ↔
x H ↔
¬ x H 

¬ x H 
¬ x H 
¬ x H 
false

¬ x G 
−
¬ x F 
¬ x F 
−
−
−
−

6

 

s  

t  

p  

h  

B  

B

a

 

a  

v  

a  

s  

s  

t  

C  

s  

a  

f  

e

0

0

w

 

i  

t  

3 An integer k ∈ [0.. n ] is defined by a sequence of k ones followed by a sequence 
ne and only one value from its corresponding domain: 

v :: D v 
⇔ enc 

 

x ∈ D v (∧ y ∈ D v ,x � = y (¬ y v ) ∧ x v ) 

Thus, in CNF the rule becomes: 

v :: D v 
⇔ enc 

 

x,y ∈ D v ,x � = y (¬ x v ∨ ¬ y v ) ∧ 

∨ 

x ∈ D v x v 
(| D v | 

2 

)
binary clauses and 

one | D v | − ary clause 

he number of generated Boolean variables is | D v |. 

.2. Set variable 

For encoding a set F :: ( 
˙ 
F , ˙ F , � F 
 , � F � ) , some Boolean vari-

bles have to be created, and all variables of the lower bound 

˙ 
F 

re set to true. For a given constant x from the universe, the cre-

tion of a variable expressing that it is part of a set F is denoted

y x F . 

F :: ( 
˙ 
F , ˙ F , � F 
 , � F � ) 

⇔ enc 

∀ x ∈ 

˙ F , a Bool ean v ariabl e x F is a v ail abl e 0 cl auses ∧ 

x ∈ 
˙ 
F x F | 

˙ 
F | unit clauses 

Thus, for each variable of the upper bound, we create a variable

 F . If it is also in the lower bound, we force it to be true by adding

he unit clause x F . 

.3. Set intersection constraint 

To be extensive and clear, we must consider all the possible

ases with regards to the sets ˙ H, 
˙ 
H, ˙ F , 

˙ 
F , ˙ G, and 

˙ 
G . We

enote useless and impossible cases with the “-” symbol. 

H =
⇔

∀ x ∈ U 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

x ∈ 

˙ 
H 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

x ∈ 

˙ 
F 

{ 

x ∈ 

˙ 
G 

x ∈ G 

? 

x �∈ 

˙ G 

x ∈ F ? 

{ 

x ∈ 

˙ 
G 

x ∈ G 

? 

x �∈ 

˙ G 

x �∈ 

˙ F 

{ 

x ∈ 

˙ 
G 

x ∈ G 

? 

x �∈ 

˙ G 

x ∈ H 

? 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

x ∈ 

˙ 
F 

{ 

x ∈ 

˙ 
G 

x ∈ G 

? 

x �∈ 

˙ G 

x ∈ F ? 

{ 

x ∈ 

˙ 
G 

x ∈ G 

? 

x �∈ 

˙ G 

x �∈ 

˙ F 

⎧ ⎨ 

⎩ 

x ∈ 

˙ 
G 

x ∈ G 

? 

x �∈ 

˙ G 

x �∈ 

˙ H 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

x ∈ 

˙ 
F 

{ 

x ∈ 

˙ 
G 

x ∈ G 

? 

x �∈ 

˙ G 

x ∈ F ? 

⎧ ⎨ 

⎩ 

x ∈ 

˙ 
G 

x ∈ G 

? 

x �∈ 

˙ G 

x �∈ 

˙ F 

{ 

x ∈ 

˙ 
G 

x ∈ G 

? 

x �∈ 

˙ G 
o

 G 

| 
˙ 
H ∩ 

˙ 
F ∩ G 

? | unitclauses 

 

| 
˙ 
H ∩ F ? ∩ 

˙ 
G | unitclauses 

x G | 
˙ 
H ∩ ( ̇ F \ 

˙ 
F ) ∩ G 

? | binaryclauses 

 

 

 

 

| H 

? ∩ 

˙ 
F ∩ 

˙ 
G | unitclauses 

 x G | H 

? ∩ 

˙ 
F ∩ G 

? | ×2 binaryclauses 

| H 

? ∩ ( 
˙ 
F \ ˙ G ) | unitclauses 

 x G | H 

? ∩ F ? ∩ 

˙ 
G | ×2 binaryclauses 

 x F ∧ x G | H 

? ∩ F ? ∩ G 

? | ×3 binaryclauses 

| H 

? ∩ ( F ? \ ˙ G ) | unitclauses 

| H 

? ∩ 

˙ 
G \ ˙ F | unitclauses 

| H 

? ∩ G 

? \ ˙ F | unitclauses 

| H 

? \ ˙ F \ ˙ G | unitclauses 

 

| 
˙ 
F ∩ ( G 

? \ ˙ H) | unitclauses 

| F ? ∩ 

˙ 
G \ ˙ H| unitclauses 

∨ ¬ x G | F ? ∩ G 

? \ ˙ H| binaryclauses 

.4. Set cardinality constraint 

The set cardinality constraint x = | F | links the cardinal of the

et F to the finite domain variable x . Some efficient encodings of

his global constraint have already been proposed, see for exam-

le Abío, Mayer-Eichberger, and Stuckey (2015) ; Abío, Nieuwen-

uis, Oliveras, and Rodríguez-Carbonell (2013) or Bailleux and

oufkhad (2003) . The encoding presented in Bailleux and

oufkhad (2003) is based on the unary representation of integers 3 

nd the use of two essential elements. 

The first one is a balanced binary tree called the totalizer . It

ssociates an auxiliary output variable to each input variable in-

olved in the cardinality constraint and permits to sort these new

uxiliary variables by giving priority to those having a true value. A

et of internal variables, called linking variables, is employed to as-

ociate the input and output variables. Each internal node N in the

otalizer represents the union of its corresponding children, C 1 and

 

2 , which are sets of Boolean variables. The α-th variable of the

et C 1 is denoted as C 1 α . Moreover, the input and output variables

re in the leaves and the root of the binary tree, respectively. The

ollowing propositional satisfiability clauses are required to encode

ach node of the totalizer binary tree: ∧ 

 ≤ α ≤ | C 1 | , 
 ≤ β ≤ | C 2 | , 

0 ≤ γ ≤ | N| , 
α + β = γ

(
¬ C 1 α ∨ ¬ C 2 β ∨ N γ

)
∧ 

(
C 1 α+1 ∨ C 2 β+1 ∨ ¬ N γ +1 

)
, 

ith C 1 
0 

= C 2 
0 

= N 0 = 1 , and C 1 | C 1 | +1 
= C 2 | C 2 | +1 

= N | N| +1 = 0 . 

The second essential element of the encoding presented

n Bailleux and Boufkhad (2003) is the comparator . It forces k to

ake a value equal to the cardinal of the set by fixing the value of
f n − k zeros. 



10 F. Lardeux, É. Monfroy and E. Rodriguez-Tello et al. / Expert Systems With Applications 149 (2020) 113243 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

 

n

 

 

 

 

 

 

 

4 Moreover, we did some experiments, and Constraint (19) does not allow more 

reduction and does not speed up propagation. 
the first k output variables of the totalizer binary tree, denoted as

s i . The following expression can be used to encode the compara-

tor: ∧ 

1 ≤i ≤k 

s i 
∧ 

k +1 ≤ j≤n 

¬ s j 

Suppose that | ̇ F | = n, then the total number of clauses and vari-

ables generated by the constraint | G | = k are computed as follows:

• n + 

∑ n 
i =1 2 u 

n 
i 
(� u n i 

2 
 + 1)(� u n i 
2 � + 1) − ( 

u n 
i 

2 + 1) clauses, 
•

∑ n 
i =1 u 

n 
i 

variables. 

with u n n = 1 , u n 
1 

= n and u n 
i 

= u n 
2 i −1 

+ 2 u n 
2 i 

+ u n 
2 i +1 

. 

6.5. Disjunction constraint 

The disjunction constraint is a “meta-constraint” working with

several constraints: 

constraint 1 ∨ . . . ∨ c onstraint n 

To generalize the encoding of the disjunction constraint into SAT,

we reuse the classical transformations of the constraints into CNF.

However, the raw encoding does not provide a formula in CNF.

We have thus to apply the well-known De Morgan’s laws that in-

crease the number of clauses exponentially. If each constraint c ∈ C

used in the disjunction is composed of n c clauses, then n = 

∏ 

c∈ C n c 

clauses are generated by the encoding. However, this encoding

generates the same number of variables as if the constraints were

handled separately. 

7. Models 

In this section, we propose some models for two well-known

problems: the Social Golfer Problem and the Sport Tournament

Scheduling problem. 

7.1. Social golfer problem 

The Social Golfer Problem, listed as problem number 10 in the

CSPLib ( Harvey, 2019 ), is defined as follows. There exist q golfers

that play every week during a period of w weeks. Golfers are split

into g groups of p golfers, each one ( q = p · g). The objective of

the SGP is to construct a schedule of play for the q golfers, such

that no golfer plays in the same group as any other golfer more

than once. It is a very attractive problem since SGP, and closely re-

lated problems arise in different research areas like encryption and

covering problems ( Hsiao, Bossen, & Chien, 1970; Stinson, 1994 ).

Furthermore, there exist various SGP instances that are still open

( Pegg, 2007 ). 

A set constraint model for this problem can be easily obtained.

The universe is the set of players, i.e. , the set containing the identi-

fication number of each golfer. To model the groups of golfers, we

need w · g set variables. 

• Universe (the golfers): U :: ( [1 , q ] , [1 , q ] , q, q ) 
• The set of golfers: P :: U
• g groups of p golfers for w weeks: ∀ i ∈ [1 , w ] , ∀ j ∈

[1 , g] , G i, j :: (∅ , U , p, p) 

The constraints used to model the SGP are now detailed. 

• There are exactly p golfers in each group on a given week: 

∀ i ∈ [1 , w ] , ∀ j ∈ [1 , g] , | G i, j | = p (17)

Note that this constraint is present in the initial definition of

the SGP, but it is now redundant with the definition of G i,j 

variables. 
• All the golfers play every week: 

∀ i ∈ [1 , w ] 
⋃ 

j∈ [1 ,g] 

G i, j = P (18)

• During the same week, no one can play in two different

groups: 

∀ i ∈ [1 , w ] 
⋂ 

j∈ [1 ,g] 

G i, j = ∅ (19)

Nevertheless, given that Constraint (19) is implied by Con-

straints (17) and (18) , then it is not necessary. 4 

• A couple of golfers is not allowed to play together in

two different weeks in the same group (socialization con-

straints): 

∀ w 1 , w 2 ∈ [1 , w ] , p i , p j ∈ P, g 1 , g 2 ∈ [1 , g] , 

w 1 > w 2 ∧ i > j ∧ 

p i ∈ G w 1 ,g 1 ∧ p j ∈ G w 1 ,g 1 ∧ p i ∈ G w 2 ,g 2 → p j �∈ G w 2 ,g 2 

(20)

Constraint (20) means: given a couple of golfers currently

playing in a group g 1 , if p 1 plays in another group g 2 , then

p 2 cannot play in this group g 2 . We can alternatively define

these constraints by using cardinality constraints in the fol-

lowing way: 

∀ w 1 , w 2 ∈ [1 , w ] , g 1 , g 2 ∈ [1 , g] , w 1 > w 2 ∧ 

| G w 1 ,g 1 ∩ G w 2 ,g 2 | ≤ 1 (21)

• Symmetry breaking 

◦ The first week is fixed: 

∀ i ∈ [1 , p] , p i ∈ G 1 , ((i −1) di v q )+1 (22)

◦ The second symmetry breaking complements Con-

straint (22) by distributing the first group of p golfers

(that have already played together during the first

week) among distinct groups in the following weeks.

Note that the inequality g < p should always be satis-

fied; otherwise, there is no solution: 

∀ i ∈ [2 , w ] , ∀ j ∈ [1 , p] , p j ∈ G i, j (23)

◦ Ordering groups every week: groups can be ordered

inside a week with respect to their first player. For the

first p groups, Constraint (23) already does it. 

∀ i ∈ [1 , w ] , ∀ j ∈ [1 , g − 1] , min (G i, j ) < min (G i, j+1 ) 

(24)

◦ Ordering weeks: weeks can be ordered with respect

to the maximum element of each first group. 

∀ i ∈ [1 , w − 1] , max (i, 1) < max (i + 1 , 1) (25)

.2. Sports tournament scheduling problem 

The Sports Tournament Scheduling problem, listed as problem

umber 26 in the CSPLib ( Walsh, 2019 ), is defined as follows. 

“The problem is to schedule a tournament of n teams over n − 1

weeks, with each week divided into n /2 periods, and each pe-

riod divided into two slots. The first team in each slot plays at

home, while the second plays the first team away. A tourna-

ment must satisfy the following three constraints: Every team

plays once a week; every team plays at most twice in the

same period over the tournament; every team plays every other

team.”



F. Lardeux, É. Monfroy and E. Rodriguez-Tello et al. / Expert Systems With Applications 149 (2020) 113243 11 

 

t  

(  

i  

e

 

 

T

 

 

 

 

 

 

 

8

 

r  

l  

g  

t  

s  

t  

c

 

⇒  

t  

c

(  

p  

S

 

t  

o  

s  

t  

⇔  

i  

m  

S  

f

8

 

l  

s  

n  

p  

B  

t  

e  

i  

(

s  

T  

f  

c  

p  

T  

i  

(  

t  

a  

s  

w  

a  

t  

C  

s  

S  

m  

t

 

(  

c  

a  

p  

t

8

 

s  

o  

T  

t  

r  

c

 

u  

p  

i  

a  

t  

a  

c  

t  

4  

t  

a  

s  

t  

(  

5 As the CARD model did not use disjunction constraints, we only analyze the 

reduced instances without reduction rules corresponding to the disjunction con- 

straints. 
From this definition, it is easy to observe that an instance of

he STS problem is fully specified by the unique input parameter n

number of sportive teams to be scheduled). In the following, we

ntroduce a set constraint model for a total of w = n − 1 weeks,

ach one of them divided into p = n/ 2 periods: 

• Universe (the sportive teams): U :: ( [1 , n ] , [1 , n ] , n, n ) 
• The set of teams: T :: (U , U , n, n ) 
• For every week of the tournament, and every single period,

games are specified as sets of two teams: ∀ i ∈ [1 , w ] , ∀ j ∈
[1 , p] , G i, j :: (∅ , U , 2 , 2) 

he constraints used to model the STS are now detailed. 

• Each week of the tournament, each team must play: 

∀ i ∈ [1 , w ] , T = 

⋃ 

j∈ [1 ,p] 

G i, j (26) 

• Each team must play at most twice during the same period

of two different weeks: 

∀ q ∈ [1 , p] , ∀ i ∈ [1 , w − 2] , ∀ j ∈ [ i + 1 , w − 1] , 

∀ k ∈ [ j + 1 , w ] , G i,q ∩ G j,q ∩ G k,q = ∅ (27) 

• Each team must play every other team. As required above,

in each of the n − 1 weeks of the tournament, each team

must play a match; it is thus enough to constrain that two

matches cannot be equal: 

∀ i ∈ [1 , w − 1] , ∀ j ∈ [ i + 1 , w ] , ∀ p 1 , p 2 ∈ [1 , p] , 

G i,p 1 � = G j,p 2 (28) 

• Symmetry breaking 

◦ We can fill the first week as follows: Teams 1 and 2

play together during the first period; Teams 3 and 4

play during the second one, and so on: 

∀ i ∈ [1 , n ] , i ∈ G 1 , ((i −1) di v 2)+1 (29) 

◦ Starting from the second week, we can place the first

team in “diagonal” during p weeks: 

∀ i ∈ [1 , p] , 1 ∈ G i +1 ,i (30) 

. Experimental results 

In this section, we analyze the resolution of SAT instances cor-

esponding to CSP instances of the SGP and STS problems trans-

ated by our ⇔ enc rules. These instances are named by the triple

 _ p _ w for SGP and by the number of teams for STS. For SGP, we

est and compare the two ways of modeling the socialization con-

traint of the problem: CARD and IMP models. The first one uses

he cardinality Constraint (21) (“C”) and the second one the impli-

ation Constraint (20) (“I”). 

For each instance of the studied problems (SGP and STS), the

 red rules compute a reduced instance. Reduced instances for

he STS problem are identified by adding the suffix “_ R” to its

orresponding name, while those of the SGP are labeled “I _ R \ D”

 \ D stands for treatment without the disjunction reduction rules

roposed in Section 4.4 ). The use of dynamic reduction (see

ection 5.4 ) corresponds to the line with “DynI _ R”. 

The experiments presented in this work were run on a CPU In-

el® Xeon® E5-2670 at 2.3 GHz, 16GB of RAM with 64 bits Linux

perating system (Ubuntu 18.04). For experiments with large in-

tances of STS ( Table 6 ), a huge RAM of 230 GB was available only

o limit the tests by time. All times are CPU times in seconds. The

 enc rules were coded in C ++ and compiled with g ++ (7.4.0) us-

ng the optimization flag -O3, while the ⇒ red rules were imple-

ented as Constraint Handling Rules (CHR) ( Frühwirth, 2009 ) in

WI-Prolog 7.6.2. The propositional satisfiability solver employed

or all our experiments is MiniSAT (version 2.2). 
.1. Models 

We have presented two different models for the SGP prob-

em corresponding to two ways for treating the socialization con-

traints: one based on cardinalities of intersections of an expo-

ential number of sets (the CARD model), and one based on im-

lications, and thus disjunctions of constraints (the IMP model).

oth models give the same solutions. We report two experiments

o show the difference between the CARD and the IMP mod-

ls. In Table 2 , we illustrate our discussion by comparing two

nstances. The first column contains the name of the instance

groups_players-per-group_weeks). The second one provides the 

atisfiability of the instance (S for satisfiable, U for unsatisfiable).

he third one explains the encoding method (C for cardinality, I

or implication, C_R for cardinality with reductions, and I_R \ D for

ardinality with reductions without disjunction). The next column

rovides the reduction time (n/a when no reduction is performed).

he last three groups of columns correspond to model character-

stics for the SAT instance (number of clauses (#cl) and variables

#var)), the encoding time, and finally the solving time (just for

he SAT instance and for the global process (reduction, encoding

nd solving)). Here only raw instances (noted as Unrefined) are ob-

erved to highlight the impact of model choice. Tests are realized

ith the 7 _ 2 _ 11 and 7 _ 2 _ 15 instances: the first one is satisfiable,

nd the second one is unsatisfiable (U). For the 7 _ 2 _ 11 instance,

he difference between the raw instance solving times (C for the

ARD model and I for the IMP model) and the reduced instances

olving times (C _ R and I _ R \ D 

5 ) are still affordable. For the 7 _ 2 _ 15

GP, the difference is already significant (1083.63 seconds for the C

odel and 425.65 seconds for the C_R model). For larger instances,

he CARD model cannot be solved (or even encoded) anymore. 

Whereas the CARD model is competitive for small instances

both in terms of solving time and instance size), it quickly be-

omes intractable as instances grow. Indeed, the number of vari-

bles for encoding the cardinality constraints in SAT quickly ex-

lodes. We thus focus on the IMP model for the SGP problem in

he following. 

.2. Efficiency of reduction rules and SAT preprocessing 

A preprocessing can be used to decrease the size of CNF in-

tances. Though those preprocessed instances are smaller than the

riginal raw instances, they are not necessarily easier to solve.

he preprocessing may remove easy to reach symmetrical solu-

ions and keeps only farther solutions. It may also happen that the

eduction changes the structure of the instance, and consequently

hanges the search space and position of solutions. 

SatELite ( Eén & Biere, 2005 ) is a CNF minimizer that we have

sed for SAT preprocessing. SatELite can be applied either as a sim-

le initial unit propagation process ( UP Sat ) or as a complete min-

mizer ( CM Sat ) achieving subsumption, self-subsuming resolution,

nd elimination of variables using substitution. We now use the

erm “unit propagation” for SatELite applied as a simple unit prop-

gation process, and “CNF minimizer” as its complete process. We

ompare these two different SAT reduction approaches over the

wo problems addressed in this paper (SGP and STS). Tables 3 and

 summarize the results. The three first columns of Table 3 provide

he instance name, the satisfiability of the problem (S for satisfi-

ble, U for unsatisfiable, and ? when MiniSAT cannot provide an an-

wer), and the encoding type. In Table 4 , the first column provides

he name. The next column in both tables is the reduction time

n/a when there is no reduction). The next three blocks of columns



12 F. Lardeux, É. Monfroy and E. Rodriguez-Tello et al. / Expert Systems With Applications 149 (2020) 113243 

Table 2 

CARD vs. IMP for 2 SGP instances: Explosion of the number of variables for the CARD models. 

Reduction time Model characteristics Encoding time Solving time 

Inst. SAT Enc. ⇒ red Unrefined ⇔ enc Unrefined 

sec. #cl #var sec. sec. sum 

7_2_11 S C n/a 307 43 008 1.03 0.10 1.13 

I n/a 272 117 5 278 0.93 0,07 1.00 

C_R 0.92 238 676 30 426 0.82 0.38 1.82 

I_R \ D 0.37 166 686 4 096 0.53 0,05 0.95 

7_2_15 U C n/a 720 909 79 212 5.41 1 083.63 1 089.04 

I n/a 504 819 7 182 1.64 249.82 251.46 

C_R 1.04 469 084 58 422 4.88 425.65 431.57 

I_R \ D 0.66 324 562 5 712 1.08 54.70 56.44 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c  

m

 

s  

o

 

 

 

 

 

 

 

 

r  

i  

n

 

r  

-  

r  

t  

F  

6  

s

 

S  

t  

3  

t  

T  

i

 

r  

c

8

 

p  

t  

b

 

p  

i  

i  
are split in three, corresponding to the different models (unrefined,

preprocessed by unit propagation, and preprocessed by CNF min-

imizer). Each block corresponds respectively to the model charac-

teristics (number of clauses and variables), the encoding time, and

the solving time (with a sum column corresponding to the total

running time of all the process). Bold values correspond to the best

values. Numerical values are replaced by the symbol “-” when an

instance is not solved (because of time-out). Note that we refer to

the model produced by the ⇔ enc encoding procedure as the unre-

fined one, and the total running time is limited to 3600 seconds. 

8.2.1. Reduction rules 

Tables 3 and 4 show that reduction rules decrease the final size

of the encoded instances. However, these reduction rules may pro-

vide an extra cost in terms of computational solving time. In the

case of certain SGP instances (mainly those encoded by DynI_R)

and all small STS instances, the application of the reduction rules

seems to consume most of the total running time needed for solv-

ing an instance. Furthermore, shorter solving times were also ob-

served over these reduced instances (most of instances reduced by

I_R \ D and DynI_R for SGP, and all instances suffixed by _R for STS).

Recall that SGP models use disjunction constraints which do not

appear in STS models. For large SGP instances that are reduced by

all the reduction rules except those for disjunction (I_R \ D), the re-

duction process is even more interesting in terms of total solving

times. 

Reduction rules for disjunction constraints are time-consuming

and do not help to provide faster results. For large instances, dis-

abling the specific reduction rules for disjunction permits us to

reach a good trade-off between the final size of the preprocessed

SAT instance and the total solving time. Hence, only rules for re-

ducing variable domains are triggered, and the SAT solver solves

the disjunctions remaining in the encoded instances. 

8.2.2. SAT preprocessing 

Based on the results presented in Tables 3 and 4 , we now an-

alyze the effect of SAT preprocessing on the resolution chain. In

Table 5 , we also summarize the comparisons of the non-reduced

and unrefined instances (I - Unrefined) with all the other gener-

ated instances (I - UP Sat , I - CM Sat , I_R \ D - Unrefined, I_R \ D - UP Sat ,

I_R \ D - CM Sat , DynI_R - Unrefined, DynI_R - UP Sat , and DynI_R -

CM Sat ). 

Analysis based on Tables 3 and 4 

In Tables 3 and 4 , it can be observed that unit propagation,

as well as the CNF minimizer, are able to significantly decrease

the size (in terms of the number of variables and clauses) of the

analyzed unrefined instances. For both unrefined and reduced in-

stances ( i.e. , the _ R instances), the application of unit propagation

seems to provide instances of similar size. 

As can be seen, the CNF minimizer always returns smaller or

equal instances than unrefined or UP instances. Therefore, we
Sat 
ould deduce that CSP reduction rules do not avoid encoding nu-

erous redundant or subsumed clauses. 

Although the CNF minimizer and unit propagation reduce the

ize of instances, we mainly obtain the best resolution times with-

ut SAT preprocessing (either UP Sat or CM Sat ). 

Analysis based on Table 5 

Table 5 proposes two types of analyses: 

• Model characteristics: the average percentages of reduc-

tion (and the standard deviation into brackets) in terms of

clauses and variables. 
• Solving time: concerning the unrefined non-reduced in-

stances (grey cells), the triplets “+ ; = ; −” represent the num-

ber of instances respectively improving, equalizing, and de-

teriorating the solving time of the different solving chains.

The cells “+ %; = %; −%” are similar but in terms of percent-

ages of instances. 

Note that values presented in Table 5 include, in particular, the

esults of Tables 3 and 4 . They also include the broad set of exper-

ments we realized on the SGP and STS problems but that we do

ot present in this paper. 

Table 5 shows that reduction associated with SAT preprocessing

educes a lot the number of clauses and variables. Instances I_R \ D
 CM Sat for SGP and instances I_R - CM Sat for STS produce the best

eduction. However, the solving times of these instances are longer

han for the unrefined instances without reduction (I - Unrefined).

or the SGP instances I_R \ D - CM Sat , only 2 improve, 3 equalize, and

 deteriorate. For the I_R - CM Sat STS instances, only 2 improve the

olving time, and the others deteriorate it. 

The best results are obtained by instances I_R \ D - Unrefined for

GP, where 6 over the 11 instances improve the solving times. For

he STS problem, instances I_R - Unrefined and I_R - UP Sat improve

 times and deteriorate only once. Unit propagation is very cheap

o apply. However, it is a standard process of classic SAT solvers.

hus, it is not useful to apply it twice ( i.e. , as a preprocessing and

n the SAT solver). 

For efficiency reasons, it seems better only to apply our CSP

eduction, since the SAT preprocessing seems to be too expensive

ompared to the gain of solving time. 

.3. Large instances 

Table 3 shows that some large instances (in terms of groups,

layers, and weeks) of the SGP could not be solved. In this section,

he analysis focuses on solving large instances of the STS problem

y applying our reduction rules. 

Table 6 discloses the significance of our CSP reduction rules for

ropositional satisfiability encoding. The first column provides the

nstance name. The next two blocks correspond to non-reduced

nstances, followed by reduced instances. For the first block, the



F.
 La

rd
eu

x,
 É

.
 M

o
n

fro
y
 a

n
d
 E

.
 R

o
d

rig
u

ez-Tello
 et

 a
l.
 /
 E

xp
ert

 Sy
stem

s
 W

ith
 A

p
p

lica
tio

n
s
 14

9
 (2

0
2

0
)
 113

2
4

3
 

1
3
 

Table 3 

Results for SGP instances with the IMP model. 

Model characteristics Encoding or Solving time 

Preprocessing time 

Inst. SAT Enc. ⇒ red Unrefined UP Sat CM Sat ⇔ enc UP Sat CM Sat Unrefined UP Sat CM Sat 

sec. #cl #var #cl #var #cl #var sec. sec. sec. sec. sum sec. sum sec. sum 

6_2_12 U I n/a 175 894 4 068 96 250 1 672 83 060 1 122 0.57 1.81 3.19 2.61 3.18 7.67 10.05 1.43 5.19 

I_R \ D 0.39 104 130 3 084 96 074 1 562 76 824 1 078 0.37 0.28 1.98 1.10 1.86 1.10 2.15 1.68 4.42 

DynI_R 2.31 104 130 3 084 96 074 1 562 82 958 1 078 0.40 0.23 1.86 54.02 56.73 2.53 5.47 42.05 46.62 

6_2_13 U I n/a 205 992 4 404 114 840 1 824 99 100 1 224 0.49 2.27 5.15 7.82 8.31 3.54 6.30 2.72 8.36 

I_R \ D 0.45 123 432 3 360 114 648 1 704 91 656 1 176 0.35 0.22 2.55 17.23 18.03 1.82 2.83 2.02 5.36 

DynI_R 2.73 123 432 3 360 114 648 1 704 98 854 1 176 0.38 0.28 1.98 1.93 5.04 17.71 21.10 82.94 88.02 

6_5_6 U I n/a 280 981 6 498 123 500 2 905 123 500 2 905 0.36 5.10 5.56 − − − − − −
I_R \ D 0.58 140 300 4 585 123 260 2 840 123 260 2 840 0.19 0.37 0.40 − − − − − −
DynI_R 3.94 140 300 4 585 123 260 2 840 123 260 2 840 0.16 0.31 0.31 − − 2 819.91 2 824.32 2 467.53 2 471.94 

7_2_13 S I n/a 379 550 6 230 225 144 2 616 200 771 1 824 1.30 5.39 8.32 0.10 1.40 0.04 6.73 0.07 9.69 

I_R \ D 0.46 239 108 4 904 224 796 2 472 184 464 1 680 0.55 0.62 3.71 0.08 1.10 0.04 1.68 0.06 4.79 

DynI_R 5.82 239 108 4 904 224 796 2 472 194 152 1 680 1.20 0.56 5.85 0.08 7.11 0.07 7.66 0.06 12.93 

7_2_15 U I n/a 504 819 7 182 308 280 3 052 274 705 2 128 1.64 13.72 20.58 249.82 251.46 1 205.26 1 220.62 436.83 459.05 

I_R \ D 0.66 324 562 5 712 307 874 2 884 252 560 1 960 1.08 0.92 9.02 54.70 56.44 234.23 236.89 411.10 421.86 

DynI_R 8.81 324 562 5 712 307 874 2 884 265 659 1 960 0.74 0.78 8.35 675.06 684.60 39.79 50.11 509.21 527.10 

7_4_7 U I n/a 445 154 8 120 221 508 3 672 220 525 3 258 2.17 12.61 11.37 − − − − − −
I_R \ D 0.57 244 180 5 992 221 172 3 576 179 203 2 808 2.25 0.73 4.60 − − − − − −
DynI_R 5.19 244 180 5 992 221 172 3 576 217 424 2 904 2.46 0.58 1.46 − − − − 1 671.73 1 680.84 

7_7_7 ? I n/a − − − − − − − − − − − − − − −
I_R \ D − − − − − − − − − − − − − − − −
DynI_R 23.76 745 885 11 956 682 521 7 728 682 521 7 728 0.99 1.72 1.68 − − − − − −

8_4_4 S I n/a 237 324 6 240 84 900 2 436 84 876 2 400 3.30 3.13 3.04 0.03 3.33 0.02 6.45 0.02 6.36 

I_R \ D 0.32 102 668 4 148 84 648 2 388 72 035 2 088 1.78 0.21 0.84 0.02 2.12 0.03 2.33 0.02 2.95 

DynI_R 1.35 102 668 4 148 84 648 2 388 84 112 2 160 0.40 0.24 0.45 0.04 1.79 0.03 2.03 0.03 2.23 

8_4_5 S I n/a 375 984 7 776 161 808 3 248 161 776 3 200 1.01 7.89 7.22 0.05 1.06 0.06 8.96 0.03 8.27 

I_R \ D 0.46 185 456 5 488 161 472 3 184 136 591 2 784 0.45 0.32 1.54 0.03 0.94 0.03 1.26 0.05 2.50 

DynI_R 3.1 185 456 5 488 161 472 3 184 160 475 2 880 0.72 0.43 0.70 0.06 3.89 0.06 4.31 0.06 4.58 

8_4_6 S I n/a 546 388 9 312 263 020 4 060 262 980 4 000 1.50 9.45 9.46 0.09 1.59 0.06 11.01 0.06 11.02 

I_R \ D 0.61 292 548 6 828 262 600 3 980 221 420 3 480 0.93 0.85 5.11 0.11 1.65 0.09 2.48 0.08 6.73 

DynI_R 5.68 292 548 6 828 262 600 3 980 261 227 3 600 0.78 0.71 0.74 0.11 6.57 0.09 7.27 0.07 7.27 

8_4_7 S I n/a 748 536 10 848 388 536 4 872 388 488 4 800 1.99 16.12 14.67 0.68 2.67 0.22 18.33 0.77 17.43 

I_R \ D 0.75 423 944 8 168 388 032 4 776 326 519 4 176 1.05 1.12 8.04 0.49 2.28 0.17 3.09 0.53 10.37 

DynI_R 8.43 423 944 8 168 388 032 4 776 385 980 4 320 2.08 0.91 1.73 0.29 10.80 0.40 11.82 0.14 12.39 



14 F. Lardeux, É. Monfroy and E. Rodriguez-Tello et al. / Expert Systems With Applications 149 (2020) 113243 

Table 4 

Efficiency of SAT preprocessing - STS. 

Model characteristics Encoding or Solving time 

Preprocessing time 

Inst. ⇒ red Unrefined UP Sat CM Sat ⇔ enc UP Sat CM Sat Unrefined UP Sat CM Sat 

sec. #cl #var #cl #var #cl #var sec. sec. sec. sec. sum sec. sum sec. sum 

8 n/a 23 812 5 528 13 794 3 867 6 422 1 040 0.00 0.04 0.28 0.01 0.01 0.01 0.05 0.01 0.29 

8_R 0.08 16 606 4 549 13 345 3 902 2 649 426 0.00 0.02 0.26 0.00 0.08 0.00 0.10 0.00 0.34 

10 n/a 77 135 17 170 46 917 12 530 29 233 5 194 0.00 0.12 0.91 3.37 3.37 1.18 1.30 5.32 6.23 

10_R 0.11 58 235 14 788 45 918 12 650 13 729 2 352 0.00 0.07 0.74 0.01 0.12 0.01 0.19 − −
12 n/a 198 198 42 612 124 980 32 297 85 581 15 576 0.02 0.40 3.08 143.96 143.98 509.24 509.64 266.26 269.34 

12_R 0.22 148 364 35 188 112 467 29 541 40 188 6 624 0.02 0.22 2.22 0.04 0.28 0.03 0.49 0.01 2.47 

14 n/a 436 541 91 154 280 964 70 707 205 706 38 492 0.04 0.76 8.05 − − − − − −
14_R 0.41 342 805 78 104 257 290 65 772 93 320 15 339 0.03 0.42 5.42 0.22 0.66 0.06 0.92 0.04 5.90 

Table 5 

Percentage of reduction in terms of clauses, variables, and solving time w.r.t. the unrefined instances without reduction (grey cells). 

2

Table 6 

Results produced by applying CSP reduction rules to a set of large instances of the STS problem. 

Inst. Non-reduced Reduced 

Unrefined ⇔ enc Solving ⇒ red Unrefined ⇔ enc Solving 

#cl × 10 3 #var × 10 3 sec. sec. sum sec. #cl × 10 3 #var × 10 3 sec. sec. sum 

14 437 91 0.04 − − 0.41 343 78 0.03 0.22 0.66 

16 861 175 0.09 − − 0.66 700 154 0.05 0.45 1.16 

18 1 569 314 0.17 − − 0.98 1 307 281 0.14 0.89 2.01 

20 2 676 528 0.32 − − 1.34 2 275 479 0.24 1.69 3.28 

22 4 331 842 0.49 − − 1.92 3 742 773 0.41 3.43 5.76 

24 6 713 1 289 0.75 − − 2.65 5 879 1 194 0.66 4.82 8.13 

26 10 041 1 905 1.15 − − 3.71 8 890 1 779 0.98 9.24 13.93 

28 14 567 2 735 1.62 − − 5.34 13 020 2 569 1.37 12.37 19.08 

30 20 591 3 827 2.26 − − 6.13 18 551 3 616 2.03 20.20 28.36 

32 28 453 5 241 3.18 − − 8.11 25 813 4 974 2.92 31.93 42.96 

34 38 581 7 059 4.00 − − 10.62 35 203 6 719 3.89 36.17 50.68 

36 51 396 9 343 5.54 − − 12.67 47 151 8 925 5.04 83.38 101.09 

38 67 397 12 178 7.26 − − 14.96 62 129 11 668 6.64 124.25 145.85 

40 87 144 15 655 9.29 − − 12.78 80 678 15 041 8.44 114.74 135.96 

50 266 070 46 637 27.93 − − 36.93 250 325 45 254 27.38 880.50 944.81 

52 323 676 56 497 33.62 − − 46.99 305 266 54 901 31.79 1 240.79 1 319.57 

54 390 835 67 948 40.61 − − 69.64 369 437 66 116 39.13 1 492.06 1 600.83 

56 468 687 81 175 48.36 − − 60.58 443 952 79 083 46.24 1 803.75 1 910.57 

58 558 459 96 375 67.49 − − 60.19 530 012 93 996 55.61 2 362.21 2 478.01 

60 661 467 113 760 70.66 − − 78.28 628 906 111 067 64.76 2 952.74 3 095.78 

62 779 123 133 556 79.58 − − 87.63 742 017 130 519 77.08 3 367.36 3 532.07 

64 912 933 156 005 95.06 − − 100.48 870 823 152 592 92.14 4 903.03 5 095.65 

66 1 064 779 181 500 109.51 − − 115.36 1 017 067 177 625 105.45 5 247.73 5 468.54 

68 1 236 149 210 203 126.70 − − 135.61 1 182 405 205 875 122.12 − −
70 1 428 864 242 406 145.71 − − 154.44 1 368 535 237 589 139.81 − −
72 1 644 854 278 418 172.92 − − 182.35 1 577 355 273 071 167.62 − −



F. Lardeux, É. Monfroy and E. Rodriguez-Tello et al. / Expert Systems With Applications 149 (2020) 113243 15 

Table 7 

SGP: I_R vs. DynI_R. 

Inst Reduction ⇒ red Model characteristics 

I_R DynI_R Unrefined UP Sat CM Sat 

sec. sec. #cl #var #cl #var #cl #var 

4_3_2 0.10 0.00 793 218 362 98 287 65 

4_3_3 3.30 0.00 2 141 388 1 327 196 1 100 130 

4_3_4 22.38 0.00 4 092 558 2 895 294 2 408 195 

4_3_5 86.59 0.06 6 646 728 5 066 392 4 256 260 

4_3_6 151.93 0.11 9 803 898 7 840 490 6 613 325 

4_4_3 17.47 0.01 3 624 560 2 384 312 2 334 256 

4_4_4 92.04 0.04 7 060 808 5 232 468 5 138 384 

4_4_5 343.23 0.13 11 600 1 056 9 184 624 9 054 512 

4_4_6 501.90 0.58 17 244 1 304 14 240 780 14 059 640 

4_4_7 997.76 0.36 23 992 1 552 20 400 936 20 160 768 

5_2_7 333.58 0.20 15 124 1 072 12 660 540 9 463 318 

5_2_8 574.15 0.31 20 144 1 244 17 276 630 12 917 371 

5_2_9 869.15 0.26 25 880 1 416 22 608 720 16 954 424 

5_2_10 1 197.05 0.37 32 332 1 588 28 656 810 21 499 477 

5_2_11 1 862.15 0.61 39 500 1 760 35 420 900 26 634 530 

5_3_5 472.36 0.19 16 016 1 252 12 920 712 11 298 504 

5_3_6 1 201.21 0.36 24 220 1 550 20 365 890 18 004 630 

5_3_7 1 685.81 0.54 34 110 1 848 29 496 1 068 26 283 756 

c  

a  

7  

b  

(  

c  

i  

s  

s  

a

 

s  

t  

t  

t  

l  

w

 

f  

a  

t  

t  

n  

a  

s  

t  

d

8

 

o  

t  

t  

s  

c

 

 

 

Table 8 

Complete analysis of SAT encoding for the SGP instance 5-4-5. 

I I_R I_R \ D DynI_R 

Variable Count 2 760 1 792 1 792 1 792 

Literals 230 396 97 200 98 928 97 200 

Positive Literals 19 346 11 216 11 216 11 216 

Negative Literals 211 050 85 984 87 712 85 984 

Clause Count 63 096 28 064 28 064 28 064 

1-ary clauses 596 432 432 432 

2-ary clauses 5 400 4 256 3 392 4 256 

3-ary clauses 9 500 5 312 5 312 5 312 

4-ary clauses 47 500 18 000 18 864 18 000 

6-ary clauses 100 64 64 64 

 

 

 

f

 

i  

I  

(  

e  

t  

a  

w  

e  

t  

a  

e  

t  

w  

e  

I  

a  

b

 

d  

t  

i  

r  
olumns correspond to the number of clauses, the number of vari-

bles, the encoding time, the MiniSAT solving time (limited to

200 seconds), and the total solving time. For the reduced instance

lock, we have the same columns preceded by the reduction time

also limited to 7200 seconds). Instances up to a size of 66 teams

an be solved after applying our reduction rules, while the larger

nitial instance for which a solution can be computed has only 12

portive teams (c.f. Table 4 ). In our experiments, some larger in-

tances (68 to 72) could be encoded into SAT, but MiniSAT was un-

ble to solve them. 

As said in Section 8.2 , it may be more complicated to solve

maller reduced instances than larger non-reduced ones. However,

he CSP reduction rules proposed in this paper reduce the size of

he instances, but they also seem to simplify the problem struc-

ure. For example, the non-reduced instance 16 of the STS prob-

em is smaller than the reduced instance 18, but it is not solved,

hereas instance 18 is solved. 

MiniSAT immediately quits the solving process for instances

rom 68 to 72: this is due to the excessive total number of clauses

nd variables. Some ad hoc solvers were specially designed for

his problem. For example, in ( Hamiez & Hao, 2014 ), the au-

hors over-constrained the problem by adding extra (eventually

on-redundant) constraints. They removed some symmetrical, but

lso some non-symmetrical solutions which help them to solve in-

tances up to a size of 70 teams. Nevertheless, we have observed

hat half of the instances became unsatisfiable because of the ad-

itional constraints used to remove non-symmetrical solutions. 

.4. Treating disjunctions: I _ R vs. DynI _ R and CSP vs. encoding 

In Table 7 , we show some comparative executions of two ways

f treating disjunctions in the CSP instances: I _ R (instantiation,

hen reduction) and DynI _ R (instantiation with dynamic reduc-

ion), as described in Section 5.4 . They lead to the same CSP _ R in-

tances (see Fig. 1 ). Based on Table 7 , we can draw the following

onclusions: 

• The reduction time of DynI _ R is much shorter than the one of

I _ R. When instances are larger (increasing either the number

of groups, weeks, or players), the difference can be of several

orders of magnitude. 
• I _ R cannot be used for large instances. 
• The only drawback of DynI _ R is that the raw instance is never

generated; however, the raw instance could easily be generated

using the modeler, and this is a very cheap task. 

To summarize, the DynI _ R approach is much more efficient and

aster than I _ R. 

Now, let us compare handling disjunctions at the level of CSP

nstances (see Section 5.4 ) or during the encoding (see Section 6.5 ).

n Table 3 , we can see that disjunction constraint reduction rules

both I_R and DynI_R) do not reduce the number of clauses. How-

ver, these rules reduce the size of some clauses as we show in

his section. In-depth analyses of SGP instances were done, and

ll provided similar results. In Table 8 , we illustrate these results

ith SGP instance 5-4-5. Each column corresponds to a differ-

nt processing before encoding. There is a small difference be-

ween instances when treating disjunctions at the CSP level (I_R

nd DynI_R) or during the encoding (I_R \ D). The encoding can ben-

fit from the CSP domain reduction to detect tautologies and con-

radictions as well, except some few cases that would require more

ork to be detected. For example, in Table 8 , the encoding gen-

rates 864 clauses that are 4-ary with I_R \ D and only 2-ary with

_R or DynI_R. We can see this difference in the number of liter-

ls (here only negative literals), which differs by 1728 (2 × 864)

etween I_R (or DynI_R) and I_R \ D. 

In terms of CPU time, as can be seen in Table 7 , dealing with

isjunction during encoding is much faster. However, it can be in-

eresting to manage the disjunction during the CSP reduction: this

s the case when SAT encoded instances become too large to be

ead by the SAT solver, see for example the 7 _ 4 _ 7 SGP instance in



16 F. Lardeux, É. Monfroy and E. Rodriguez-Tello et al. / Expert Systems With Applications 149 (2020) 113243 

Fig. 3. Best solving chain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w  

S  

a  

c  

i  

m

 

o  

L  

e  

s  

s  

r

 

S

 

s  

j  

d  

a  

t  

a  

d  

i  

w  

n  

s  

p  

f  

a  

t  

t  

c  

i  

a  

(  

t  

i

 

&  

w  

c  

t  

f  

&  

o  
Table 3 : only the CSP treatment of disjunctions enable to gener-

ate a SAT instance that can be read and solved using the SatELite

preprocessing and MiniSAT . 

8.5. Which is the “best” solving combination? 

To summarize, for both the STS and SGP problems, the “best”

solving combination consists in reducing variable domains at the

CSP level, in handling disjunctions during the encoding, and to

avoid the use of SAT preprocessing. Fig. 3 shows this solving chain

(it is one path of Fig. 1 ). Remember that the different processes

do not modify the solution space of the problem. However, since

we keep only the first solution returned by the solving chain, each

branch can lead to a different solution in Fig. 1 . 

9. Comparisons with previous works 

In comparison with our previous published

work ( Lardeux et al., 2015 ), the advantages of the approach

presented in this paper are: 

• The modeling language has been enhanced and enables the

use of finite domain variables for modeling problems. Finite

domain variables can now be associated with set variables

through the use of the minimum, maximum, and cardinality

constraints. It is an improvement of the language both for

expressiveness, intuitiveness, and facility of use. 
• The constraint propagation process became stronger than

before. It produced smaller search spaces thanks to two new

additions in the reduction rules: a) The use of upper and

lower bounds of sets, and b) the implementation of mini-

mum and maximum cardinalities of sets. 
• Handling disjunctions now enables us to remove some com-

plete tautologies and certain contradictions inside disjunc-

tions. Consequently, the generated SAT instances contain a

smaller number of clauses. 
• The new ⇔ enc encoding rules became more general than the

former ones. Moreover, they may apply to reduced as well

as original raw CSP set constraints. Finally, they can produce

SAT instances of a much smaller size. 

To sum up, more problems can now be modeled, they can be

solved more efficiently, and finally, larger instances can be tackled.

Let us now make some comparisons concerning other ex-

isting techniques for SAT encoding from the literature reported

in Bacchus (2007) and Bessière et al. (2004) . These works link the

solving process of both CSP and SAT for some properties ( e.g. , lo-

cal consistencies for finite domain CSP). In contrast, the present
ork considers a distinct class of constraints (set constraints).

ome solving chains are designed to produce SAT instances that

re as small as possible, and as suitable as possible to be effi-

iently solved by classic SAT solvers. Moreover, the works reported

n Bacchus (2007) and Bessière et al. (2004) lack of reduction

echanisms similar to our ⇒ red rules presented above. 

The approach presented in Lardeux et al. (2009) is anal-

gous to the methodology that we propose in this paper.

ardeux et al. (2009) propose to expressively handle the alldiffer-

nt global constraints, as well as the overlapping alldifferent con-

traints before using rewrite rules to translate them into SAT in-

tances. However, in Lardeux et al. (2009) , only those constraints

elated to the alldifferent constraint are treated. 

To achieve the encoding of the cardinality global constraint into

AT, we used the results reported by Bailleux & Boufkhad (2003) . 

By using cardinality as proposed by Azevedo (2002) , our con-

traint propagation process is stronger than the one of Con-

unto ( Gervet, 1994 ). In Correas et al. (2018) , the authors intro-

uced some new types of constraints linking finite domain vari-

bles and set variables. The interest of these constraints is double:

hey allow more expressiveness as shown for scheduling problems,

nd they make finite domains and set domains cooperate by re-

ucing the search space and improving the efficiency of the exist-

ng set solvers for some specific cases. We thus also followed the

ork of Correas et al. (2018) by introducing constraints for con-

ecting the minimum and maximum elements of a set with the

et itself. The result is a more expressive language and some more

owerful reductions. They are handy for breaking symmetries and

or obtaining some more powerful reduction rules, both for sets

nd finite domains. In Correas et al. (2018) , the authors show how

o model some scheduling problems elegantly and how efficiently

hey are solved much faster than without these domain connecting

onstraints. Correas et al. (2018) also introduce a constraint enforc-

ng all the elements of a set to be smaller than all the elements of

 second set. This constraint is comparable to a global constraint

thus, with more reduction capacities) linking all the elements of

he two sets. This constraint is also very powerful, and we plan to

ntegrate it into our language in the future. 

It is possible to obtain stronger reduction mechanisms ( e.g. , Yip

 Van Hentenryck, 2011 ) by using the length-lex order together

ith enhanced set representations. Even though the worst-case

omplexity of this class of constraint propagation methods is worse

han for bound consistency, the length-lex order shows better per-

ormance than bound consistency over specific benchmarks ( Yip

 Van Hentenryck, 2011 ). Nevertheless, in our work, we aim at

btaining a good reduction-genericity trade-off for our technique.



F. Lardeux, É. Monfroy and E. Rodriguez-Tello et al. / Expert Systems With Applications 149 (2020) 113243 17 

M  

t  

n

 

R  

s  

t  

a  

m  

s  

t  

f  

c  

a  

i  

i  

t

 

a  

h  

b  

o  

e  

2  

t  

b  

6  

o  

e  

o  

c

 

i  

l  

o  

q

 

t  

S  

s  

s  

i  

c  

i  

i  

w  

i  

M  

o  

c  

t

1

 

a  

p

 

 

 

 

t  

s  

t  

t  

l  

s  

i  

m

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

oreover, the length-lex order is stronger for a complete solver in-

erleaving reduction and enumeration, but in our work, we only

eed reduction. 

In Hawkins, Lagoon, & Stuckey (2005) , the authors employ

educed Ordered Binary Decision Diagrams to compile set con-

traints. This structure is then exploited in the corresponding order

o solve the problem at hand. It seems to be an efficient method,

nd the authors claimed that it could be adapted for working with

ulti-sets and integer numbers. In our case, preserving the con-

traint structures is of the utmost importance to guarantee that

hese constraints can be handled with other existing tools different

rom the ones presented in this paper. Thus, our further work also

onsists of adding additional global constraints that do not require

ny specific internal structure. Finally, as already said, we are not

nterested in implementing a solver, but at transforming and mak-

ng suitable models and instances to generate better SAT instances

o be solved by a classic SAT solver. 

Concerning efficiency, solving the STS problem with our method

nd tools is a competitive alternative to the best (as we know) ad

oc solver ( Hamiez & Hao, 2014 ). The largest instance size solved

y this ad hoc STS solver is 70, whereas our tools only reached one

f size 66. In terms of solving time, our method is faster. How-

ver, experimental conditions are different (CPU Intel® Xeon® E5-

670 at 2.3 GHz, 16 GB of RAM with 64 bits Linux operating sys-

em vs. CPU Intel® PIV processor at 2 GHz, 2 GB of RAM with 64

its Linux operating system). For instance, the STS problem of size

6 is solved in 7500 seconds by the ad hoc solver and 5500 sec-

nds by our tools. Note that this ad hoc solver was specifically and

xclusively realized for the STS problem. Additionally, it consists of

ver-constraining the problem, and thus, some instances may be-

ome unsatisfiable. 

We have shown in Lardeux et al. (2015) that our technique

s competitive with hand-written SAT instances ( Triska & Mus-

iu, 2012 ) for the SGP problem. With our new method and tools,

ur generated SAT instances are even smaller and solved more

uickly with MiniSAT than in Lardeux et al. (2015) . 

Although our goal was not to compete with solvers off-

he-shelf, we ran different classic constraint solvers for the

GP problem. We gave our CSP set models to the Conjunto

olver ( Gervet, 1994 ). Only straightforward instances could be

olved; for larger instances, it seems that the enumeration phase

s a problem (with our system, we do not have this problem in the

onstraint programming part since the SAT solver is in charge of

t). We also gave the same CSP set model to the well-known MiniZ-

nc solver with its standard solver. It also got stuck quite quickly

hen instance size grows. We have tried other models with MiniZ-

nc, i.e. , models consisting of finite integer domains issued from the

iniZinc GitHub. 6 Once again, the results were not better than the

nes we obtained and reported in this paper. Thus, our approach

an be considered competitive with classic CSP solvers applied to

he SGP. 

0. Summary of the method and conclusions 

In this paper, we presented a method and some tools to reduce

nd encode set constraints into SAT instances. We can sketch the

rocess as follows: 

1. The modeling is achieved using set constraints with a very

high expressiveness and declarativity. 

2. By adding data to the model, we obtain CSP instances. 

3. The application of our ⇒ red rules reduces CSP instances. 

4. Reduced CSP instances are automatically encoded ( ⇔ enc )
into SAT instances. 

6 https://github.com/MiniZinc/minizinc-benchmarks . 

 

5. SAT instances may eventually be preprocessed. 

6. Finally, a classic SAT solver solves the (preprocessed) SAT in-

stances. 

The proposed solution approach was illustrated in detail with

wo different hard problems: the SGP and the STS. We obtained

ome good results by applying reduction and encoding rules. For

he STS problem, the results of our solution approach almost match

hose of the best-known solver designed explicitly for this prob-

em ( Hamiez & Hao, 2014 ). Furthermore, unlike this existing ad hoc

olver, our solution approach prevents losing any solutions (unsat-

sfiable instances) by avoiding the production of over-constrained

odels. 

We can observe several advantages when using our method and

ools: 

• Compared with direct SAT modeling, the proposed approach

offers higher expressiveness, is relatively simpler to apply,

and is independent from the selected solver (considering

both CSP and SAT solvers). 
• Our approach is less susceptible to include errors than direct

hand-written propositional satisfiability encodings. 
• CSP instances are made smaller (reduction of the search

space, and withdrawal of useless constraints) with a propa-

gation process applying reduction both on set and finite do-

main variables. We also treat disjunctions by removing some

tautologies (useless constraints and tautology disjunctions), 

and contradictions inside disjunctions. 
• The automatically generated SAT instances contain a smaller

number of clauses and variables. They can undergo a prepro-

cessing ( e.g. , with SatELite ) before resolution in a standard

SAT solver ( MiniSAT in our case). From our experiments, it

appeared that these automatically generated SAT instances

are suitable for being solved by MiniSAT . 
• Adding our reduction process to the generation in most

cases produces a total running time (which includes the re-

duction time, the encoding time, as well as the resolution

time) smaller than that for non-reduced instances. 

Although we have already pushed back the limits of our system

n this paper, some limitations still exist: 

• We have introduced some new constraints for finite domain

variables, but some arithmetic constraints are still missing.

In the future, we will focus on complementing the language

with finite domain arithmetic constraints. To achieve it, a se-

ries of new reduction rules and encoding rules are necessary.
• Although powerful, our reduction process may sometimes

not be worth it with regards to the total solving time. We

thus plan to speed it up. To this end, we have already started

some work about more powerful reductions for constraints

such as the partitioning constraint. We are also considering

special reductions for some patterns of conjunctions of set

constraints. Last but not least, a new implementation in a

language faster than CHR could also be considered. 
• Encoding can still lead to too huge SAT instances, and thus

it may cause memory problems. We think of several cardi-

nality constraint encodings, each one with some specific ad-

vantages. 
• The last point concerns the syntax of our models. Our XML-

like syntax is convenient because we can enlarge it each

time we want to try a new constraint. However, it would

be interesting to use a standard format (such as XCSP3

( Boussemart et al., 2017 )) to re-use already designed mod-

els. 

https://github.com/MiniZinc/minizinc-benchmarks


18 F. Lardeux, É. Monfroy and E. Rodriguez-Tello et al. / Expert Systems With Applications 149 (2020) 113243 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F  

F  

 

G  

 

 

 

H  

H  

H  

 

L
 

 

L  

 

L  

 

L  

 

 

 

L  

 

M  

N  

 

 

N  

P

 

 

S  

S  

T  

 

 

 

W  

W  

Y  

 

 

Declaration of competing interest 

None. 

Credit authorship contribution statement 

Frédéric Lardeux: Conceptualization, Investigation, Methodol-

ogy, Data curation, Formal analysis, Validation, Writing - re-

view & editing. Éric Monfroy: Conceptualization, Investigation,

Methodology, Formal analysis, Validation, Writing - review & edit-

ing. Eduardo Rodriguez-Tello: Methodology, Data curation, For-

mal analysis, Validation, Writing - review & editing. Broderick

Crawford: Data curation, Visualization, Validation, Writing - review

& editing. Ricardo Soto: Data curation, Visualization, Validation,

Writing - review & editing. 

Acknowledgments 

The Mexican Secretariat of Public Education has partially sup-

ported the research of the third author under Grant SEP- Cinvestav

(2019-2020) no. 00114 . 

References 

Abío, I., Mayer-Eichberger, V., & Stuckey, P. J. (2015). Encoding Linear Constraints

with Implication Chains to CNF. In G. Pesant (Ed.), Principles and practice of con-

straint programming (pp. 3–11). Springer International Publishing. doi: 10.1007/
978- 3- 319- 23219- 5 _ 1 . 

Abío, I., Nieuwenhuis, R., Oliveras, A., & Rodríguez-Carbonell, E. (2013). A
parametric approach for smaller and better encodings of cardinality con-

straints. In C. Schulte (Ed.), Principles and practice of constraint program-
ming (pp. 80–96). Berlin, Heidelberg: Springer Berlin Heidelberg. doi: 10.1007/

978- 3- 642- 40627- 0 _ 9 . 

Apt, K. (2003). Principles of constraint programming . Cambridge University Press.
doi: 10.1017/CBO9780511615320 . 

Azevedo, F. (2002). Constraint solving over multi-valued logics - application to digital
circuits . Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Ph.D.

thesis . 
Azevedo, F. (2007). Cardinal: A finite sets constraint solver. Constraints, 12 (1), 93–

129. doi: 10.1007/s10601-006- 9012- 6 . 

Bacchus, F. (2007). GAC via unit propagation. In C. Bessière (Ed.), Principles and
practice of constraint programming – cp 2007 (pp. 133–147). Berlin, Heidelberg:

Springer Berlin Heidelberg. doi: 10.1007/978- 3- 540- 74970- 7 _ 12 . 
Bailleux, O., & Boufkhad, Y. (2003). Efficient CNF encoding of Boolean cardinality

constraints. In F. Rossi (Ed.), Principles and practice of constraint programming
– cp 2003 (pp. 108–122). Berlin, Heidelberg: Springer Berlin Heidelberg. doi: 10.

1007/978- 3- 540- 45193- 8 _ 8 . 

Bessière, C., Hebrard, E., & Walsh, T. (2004). Local Consistencies in SAT. In
E. Giunchiglia, & A. Tacchella (Eds.), Theory and applications of satisfiability test-

ing (pp. 299–314). Berlin, Heidelberg: Springer Berlin Heidelberg. doi: 10.1007/
978- 3- 540- 24605- 3 _ 23 . 

Boussemart, F., Lecoutre, C., & Piette, C. (2017). XCSP3: an integrated format for
benchmarking combinatorial constrained problems. The Computing Research

Repository , 1–235. arXiv: 1611.03398 . 
Correas, J., Martín, S. E., & Sáenz-Pérez, F. (2018). Enhancing set constraint solvers

with bound consistency. Expert Systems with Applications, 92 , 4 85–4 94. doi: 10.

1016/j.eswa.2017.09.056 . 
Eén, N., & Biere, A. (2005). Effective preprocessing in SAT through variable and

clause elimination. In F. Bacchus, & T. Walsh (Eds.), Theory and applications of
satisfiability testing (pp. 61–75). Berlin, Heidelberg: Springer Berlin Heidelberg.

doi: 10.1007/11499107 _ 5 . 
Eén, N., & Sörensson, N. (2004). An extensible SAT-solver. In E. Giunchiglia,

& A. Tacchella (Eds.), Theory and applications of satisfiability testing

(pp. 502–518). Berlin, Heidelberg: Springer Berlin Heidelberg. doi: 10.1007/
978- 3- 540- 24605- 3 _ 37 . 
rühwirth, T. (2009). Constraint handling rules (1st). Cambridge, UK: Cambridge Uni-
versity Press . 

tulis, S., Giordano, M., Plüss, J., & Vota, R. (1998). Rule-based constraints program-
ming: Application to crew assignment. Expert Systems with Applications , 15 (1),

77–85. doi: 10.1016/S0957-4174(98)0 0 013-X . 
arey, M. R. , & Johnson, D. S. (1979). Computers and Intractability, A Guide to the

Theory of NP-Completeness . San Francisco: W.H. Freeman & Company . 
Gent, I. P. , & Lynce, I. (2005). A sat encoding for the social golfer problem. IJCAI’05

workshop on modelling and solving problems with constraints . 

Gervet, C. (1994). Conjunto: Constraint propagation over set constraints with finite
set domain variables. In Proceedings of the eleventh international conference on

logic programming (p. 733). Cambridge, MA, USA: MIT Press . 
amiez, J., & Hao, J. (2014). A note on a sports league scheduling problem. The Com-

puting Research Repository . arXiv: 1410.2721 . 
arvey, W. (2019). CSPLib problem 010: Social golfers problem. http://www.csplib.

org/Problems/prob010 . 

awkins, P. , Lagoon, V. , & Stuckey, P. J. (2005). Solving Set Constraint satisfaction
problems using ROBDDs. Journal of Artificial Intelligence Research, 24 , 109–156 . 

Hsiao, M. Y., Bossen, D. C., & Chien, R. T. (1970). Orthogonal latin square codes. IBM
Journal of Research and Development, 14 (4), 390–394. doi: 10.1147/rd.144.0390 . 

ardeux, F., & Monfroy, E. (2014). From declarative set constraint models to “good”
sat instances. In G. A. Aranda-Corral, J. Calmet, & F. J. Martín-Mateos (Eds.), Ar-

tificial intelligence and symbolic computation (pp. 76–87). Cham: Springer Inter-

national Publishing. doi: 10.1007/978- 3- 319- 13770- 4 _ 8 . 
ardeux, F., & Monfroy, E. (2016). From set constraint models to SAT instances. In

2016 ieee 28th international conference on tools with artificial intelligence (ic-
tai) (pp. 231–238). doi: 10.1109/ICTAI.2016.0044 . 

ardeux, F., Monfroy, E., Crawford, B., & Soto, R. (2015). Set constraint model and
automated encoding into SAT: Application to the social golfer problem. Annals

OR , 235 (1), 423–452. doi: 10.1007/s10479-015-1914-5 . 

ardeux, F., Monfroy, E., Saubion, F., Crawford, B., & Castro, C. (2009). SAT encod-
ing and CSP reduction for interconnected Alldiff constraints. In A. H. Aguirre,

R. M. Borja, & C. A. R. Garciá (Eds.), Micai 2009: Advances in artificial intel-
ligence (pp. 360–371). Berlin, Heidelberg: Springer Berlin Heidelberg. doi: 10.

1007/978- 3- 642- 05258- 3 _ 32 . 
ee, J. K., & Kwon, S. B. (1995). ES ∗: An expert systems development planner using a

constraint and rule-based approach. Expert Systems with Applications, 9 (1), 3–14.

doi: 10.1016/0957-4174(94)0 0 043-U . 
ackworth, A. (1992). Constraint satisfaction. In S. Shapiro (Ed.), Encyclopedia on

artificial intelligence (pp. 285–293). John Wiley . 
ethercote, N., Stuckey, P. J., Becket, R., Brand, S., Duck, G. J., & Tack, G. (2007).

MiniZinc: Towards a Standard CP modelling language. In C. Bessière (Ed.), Prin-
ciples and practice of constraint programming – cp 2007 (pp. 529–543). Berlin,

Heidelberg: Springer Berlin Heidelberg. doi: 10.1007/978- 3- 540- 74970- 7 _ 38 . 

ightingale, P., & Miguel, I. (2018). Savile Row. http://savilerow.cs.st-andrews.ac.uk/ .
egg, E., Jr. (2007). Social golfer problem. Math Games, mathpuzzle.com. 

Prud’homme, C., Fages, J.-G., & Lorca, X. (2017). Choco documentation. TASC - LS2N
CNRS UMR 6241, COSLING S.A.S. 

(2006). In F. Rossi, P. van Beek, & T. Walsh (Eds.), Handbook of constraint program-
ming (1st). Elsevier Science . 

tinson, D. R. (1994). Universal hashing and authentication codes. Designs, Codes and
Cryptography, 4 (3), 369–380. doi: 10.1007/BF01388651 . 

tuckey, P. J., Feydy, T., Schutt, A., Tack, G., & Fischer, J. (2014). The MiniZinc chal-

lenge 2008-2013. AI Magazine, 35 (2), 55–60. doi: 10.1609/aimag.v35i2.2539 . 
opaloglu, S., Salum, L., & Supciller, A . A . (2012). Rule-based modeling and constraint

programming based solution of the assembly line balancing problem. Expert
Systems with Applications, 39 (3), 34 84–34 93. doi: 10.1016/j.eswa.2011.09.038 . 

Triska, M., & Musliu, N. (2012). An improved SAT formulation for the social
golfer problem. Annals of Operations Research, 194 (1), 427–438. doi: 10.1007/

s10479-010-0702-5 . 

alsh, T. (2019). CSPLib problem 026: Sports tournament scheduling. http://www.
csplib.org/Problems/prob026 . 

ielemaker, J., Schrijvers, T., Triska, M., & Lager, T. (2012). SWI-Prolog. Theory and
Practice of Logic Programming, 12 (1-2), 67–96. doi: 10.1017/S14710684110 0 0494 . 

ip, J., & Van Hentenryck, P. (2011). Checking and filtering global set constraints.
In J. Lee (Ed.), Principles and practice of constraint programming – cp 2011

(pp. 819–833). Berlin, Heidelberg: Springer Berlin Heidelberg. doi: 10.1007/

978- 3- 642- 23786- 7 _ 61 . 

https://doi.org/10.13039/501100008688
https://doi.org/10.1007/978-3-319-23219-5_1
https://doi.org/10.1007/978-3-642-40627-0_9
https://doi.org/10.1017/CBO9780511615320
http://refhub.elsevier.com/S0957-4174(20)30069-5/sbref0004
http://refhub.elsevier.com/S0957-4174(20)30069-5/sbref0004
https://doi.org/10.1007/s10601-006-9012-6
https://doi.org/10.1007/978-3-540-74970-7_12
https://doi.org/10.1007/978-3-540-45193-8_8
https://doi.org/10.1007/978-3-540-24605-3_23
https://arxiv.org.abs/1611.03398
https://doi.org/10.1016/j.eswa.2017.09.056
https://doi.org/10.1007/11499107_5
https://doi.org/10.1007/978-3-540-24605-3_37
http://refhub.elsevier.com/S0957-4174(20)30069-5/sbref0013
http://refhub.elsevier.com/S0957-4174(20)30069-5/sbref0013
https://doi.org/10.1016/S0957-4174(98)00013-X
http://refhub.elsevier.com/S0957-4174(20)30069-5/sbref0015
http://refhub.elsevier.com/S0957-4174(20)30069-5/sbref0015
http://refhub.elsevier.com/S0957-4174(20)30069-5/sbref0015
http://refhub.elsevier.com/S0957-4174(20)30069-5/sbref0015
http://refhub.elsevier.com/S0957-4174(20)30069-5/sbref0016
http://refhub.elsevier.com/S0957-4174(20)30069-5/sbref0016
http://refhub.elsevier.com/S0957-4174(20)30069-5/sbref0016
http://refhub.elsevier.com/S0957-4174(20)30069-5/sbref0016
http://refhub.elsevier.com/S0957-4174(20)30069-5/sbref0017
http://refhub.elsevier.com/S0957-4174(20)30069-5/sbref0017
https://arxiv.org.abs/1410.2721
http://www.csplib.org/Problems/prob010
http://refhub.elsevier.com/S0957-4174(20)30069-5/sbref0019
http://refhub.elsevier.com/S0957-4174(20)30069-5/sbref0019
http://refhub.elsevier.com/S0957-4174(20)30069-5/sbref0019
http://refhub.elsevier.com/S0957-4174(20)30069-5/sbref0019
http://refhub.elsevier.com/S0957-4174(20)30069-5/sbref0019
https://doi.org/10.1147/rd.144.0390
https://doi.org/10.1007/978-3-319-13770-4_8
https://doi.org/10.1109/ICTAI.2016.0044
https://doi.org/10.1007/s10479-015-1914-5
https://doi.org/10.1007/978-3-642-05258-3_32
https://doi.org/10.1016/0957-4174(94)00043-U
http://refhub.elsevier.com/S0957-4174(20)30069-5/sbref0026
http://refhub.elsevier.com/S0957-4174(20)30069-5/sbref0026
https://doi.org/10.1007/978-3-540-74970-7_38
http://savilerow.cs.st-andrews.ac.uk/
http://refhub.elsevier.com/S0957-4174(20)30069-5/sbref0028
https://doi.org/10.1007/BF01388651
https://doi.org/10.1609/aimag.v35i2.2539
https://doi.org/10.1016/j.eswa.2011.09.038
https://doi.org/10.1007/s10479-010-0702-5
http://www.csplib.org/Problems/prob026
https://doi.org/10.1017/S1471068411000494
https://doi.org/10.1007/978-3-642-23786-7_61

	Solving complex problems using model transformations: from set constraint modeling to SAT instance solving
	1 Introduction
	2 Overview of the approach
	3 CSP set constraints
	3.1 Set-CSP
	3.2 Elementary set constraints

	4 Reduction rules
	4.1 Finite domains
	4.2 Sets
	4.3 Set constraints
	4.4 Disjunctions

	5 Some implementation considerations for the reduction rules
	5.1 Syntax
	5.2 Domains
	5.3 Splitting rules
	5.4 Dynamic reduction

	6 Encoding rules
	6.1 Finite domain variable
	6.2 Set variable
	6.3 Set intersection constraint
	6.4 Set cardinality constraint
	6.5 Disjunction constraint

	7 Models
	7.1 Social golfer problem
	7.2 Sports tournament scheduling problem

	8 Experimental results
	8.1 Models
	8.2 Efficiency of reduction rules and SAT preprocessing
	8.2.1 Reduction rules
	8.2.2 SAT preprocessing

	8.3 Large instances
	8.4 Treating disjunctions: IR vs. DynIR and CSP vs. encoding
	8.5 Which is the “best” solving combination?

	9 Comparisons with previous works
	10 Summary of the method and conclusions
	Declaration of competing interest
	Credit authorship contribution statement
	Acknowledgments
	References


