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Abstract

Multi-objectivization represents a current and promising research direction which has led to the development of more competitive
search mechanisms. This concept involves the restatement of a single-objective problem in an alternative multi-objective form,
which can facilitate the process of finding a solution to the original problem. Recently, this transformation was applied with success
to the HP model, a simplified yet challenging representation of the protein structure prediction problem. The use of alternative multi-
objective formulations, based on the decomposition of the original objective function of the problem, has significantly increased
the performance of search algorithms. The present study goes further on this topic. With the primary aim of understanding and
quantifying the potential effects of multi-objectivization, a detailed analysis is first conducted to evaluate the extent to which this
problem transformation impacts on an important characteristic of the fitness landscape, neutrality. To the authors’ knowledge, the
effects of multi-objectivization have not been previously investigated by explicitly sampling and evaluating the neutrality of the
fitness landscape. Although focused on the HP model, most of the findings of such an analysis can be extrapolated to other problem
domains, contributing thus to the general understanding of multi-objectivization. Finally, this study presents a comparative analysis
where the advantages of multi-objectivization are evaluated in terms of the performance of a basic evolutionary algorithm. Both

the two- and three-dimensional variants of the HP model (based on the square and cubic lattices, respectively) are considered.
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1. Introduction

The term multi-objectivization was originally coined by
Knowles et al. to refer to the process of reformulating a single-
objective optimization problem in terms of two or more objec-
tive functions, i.e., as a multi-objective problem [1]. This trans-
formation can be either based on the addition of new supple-
mentary objectives [2, 3], or it can be based on the decompo-
sition of the original objective function of the problem [1, 4].
In either case, multi-objectivization may result in fundamental
changes to the fitness landscape of the problem. Since the per-
formance of search algorithms is dictated by their interaction
with the underlying fitness landscape [5], multi-objectivization
can thus significantly impact on the ability of these algorithms
to solve a given optimization task.

It is commonly assumed that the higher the number of ob-
jective functions, the more difficult a problem is; and this is
usually the case [6, 7]. A single-objective to multi-objective
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transformation, however, has led to the development of more
competitive search mechanisms. A considerable number of
successful applications of multi-objectivization have been re-
ported in the literature. For a recent review on applications of
multi-objectivization, the reader can be referred to [8]. Multi-
objectivization has been largely studied in the context of well-
known combinatorial problems such as the traveling salesman
problem [1, 2, 9, 10], the job-shop scheduling problem [2, 11],
the bin packing problem [12, 13], the vehicle routing problem
[14], and the shortest path and minimum spanning tree prob-
lems [15]. Also, multi-objectivization has found interesting
applications in the fields of mobile communications [16, 17],
computational mechanics [18], power system planning [19],
structural topology optimization [20], computer aided manu-
facturing [21], robotics [22] and computer vision [23]. Finally,
multi-objectivization has also been proposed to deal with bioin-
formatic problems, such as those related to gene regulatory net-
works [24] and protein structure prediction [25-33].

Recently, the concept of multi-objectivization was applied
with success to the hydrophobic-polar (HP) model, a reduced
representation of the protein structure prediction problem [34].
This model abstracts the fact that hydrophobicity is a major de-
terminant of the folded state of proteins. Despite its limited bi-
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ological significance, from the computational point of view this
model still represents an interesting and challenging problem
in combinatorial optimization [35, 36]. Three different multi-
objectivization schemes for the HP model have been proposed,
all of them based on the decomposition of the original energy
(objective) function of the problem [37-39]. Decomposition in-
troduces plateaus of incomparable solutions, an effect that can
be exploited in order to overcome search difficulties such as that
of becoming trapped in local optima [1, 4]. In this way, the use
of alternative multi-objective formulations of the HP model has
led to an important increase in the performance of search algo-
rithms [37-39], motivating further research in this direction.

The present study significantly extends preliminary research
regarding the multi-objectivization of the HP model. While pre-
vious analyses were concerned only with the benefits of multi-
objectivization in terms of search performance [37-39], the pri-
mary goal of this study is to thoroughly investigate the poten-
tial effects that this transformation has on the characteristics of
the problem. As pointed out before, multi-objectivization influ-
ences the comparability relation among solutions. As a means
of illustrating and, to some extent, quantifying this effect, it is
first evaluated how the comparability between the different de-
fined fitness classes can be affected. The alteration in the com-
parability of solutions directly impacts on an essential property
of the fitness landscape, neutrality. Hence, a detailed analysis is
conducted with the aim of understanding multi-objectivization
from a fitness landscape perspective, by focusing on neutral-
ity. Finally, a comparative study is presented where the three
multi-objectivization proposals are evaluated with respect to
each other, and with respect to the conventional single-objective
formulation of the HP model, in terms of the performance of a
basic single-solution-based evolutionary algorithm.

The remainder of this document is organized as follows.
Section 2 provides background concepts and sets the nota-
tion used in this study. The three studied multi-objectivization
approaches for the HP model are described in detail in Sec-
tion 3. Section 4 is devoted to the analysis of the effects of
multi-objectivization. The comparative study which focuses on
search performance is covered in Section 5. Finally, Section 6
discusses the main findings and presents the conclusions of this
study. Appendices at the end of this document contain supple-
mentary information with regard to implementation details of
the considered search algorithms, performance measures, test
instances, the methodology followed for the statistical signifi-
cance analyses, and the utilized experimental platform.

2. Background concepts and notation

2.1. Single-objective and multi-objective optimization
Without loss of generality, a single-objective optimization
problem can be formally stated as follows:

f(x), 60

x € X#,

Minimize
subject to

where X is a solution vector; X is the feasible set, i.e., the set
of all feasible solution vectors in the search space X, X¢& C X
and f : X — R is the objective function to be optimized.

Similarly, a multi-objective optimization problem can be for-
mally defined as follows:

fx) = [/i(®), LX), fi]", @

x € Xg,

Minimize
subject to

where f(x) is the objective vector and f; : X — R is the i-th
objective function, i € {1,2, ..., k}. Rather than searching for a
single optimal solution, the task in multi-objective optimization
is to identify a set of trade-offs among the conflicting objec-
tives. More formally, the goal is to find a set of Pareto-optimal
solutions P*, such that P* = {x* € X | #x € X# : x < x*}. The
symbol “<” denotes the Pareto-dominance relation [40]:

x<X o Viell,...,k}: fix) < fix’) A 3)
e ll,.. k) fix) < fiX).

If x < X/, then x is said to dominate x’. Otherwise, X’ is said to
be nondominated with respect to x, denoted by x £ x’. The im-
age of #* in the objective space is the so-called Pareto-optimal
front or trade-off surface.

2.2. Multi-objectivization

Multi-objectivization refers to the process of reformulating
an originally single-objective problem in terms of two or more
objective functions [1].! Two main directions exist to perform
such a transformation: (i) by incorporating additional informa-
tion in the form of supplementary objectives, also referred to
as artificial or helper objectives [2, 3]; or (ii) by means of the
decomposition of the original objective function of the problem
[1,4]. In either case, the goal remains to solve the original prob-
lem, so that the original optima are to be also Pareto-optimal
with regard to the alternative multi-objectivized formulation.

When multi-objectivization is based on the addition of
supplementary objectives, the single-objective problem is re-
stated as a multi-objective problem of the form f(x) =
[f(x), g1(X), ..., gn(x)]"; where f is the original objective func-
tion of the problem and g; denotes the i-th supplementary ob-
jective, 1 < i < h. In the literature, this has been the
most extensively studied approach to multi-objectivization. In
a recent review [8], a distinction is made between multi-
objectivization proposals where supplementary objectives are
problem-dependent and are computed based solely on informa-
tion from the solution under consideration [2, 9, 11, 18, 42], and
those where they act as diversity measures [20, 22, 43-46]. Sep-
arate treatment is given also to those proposals where additional
objectives are implemented to handle constraints [21, 47, 48].

In multi-objectivization by decomposition, the focus of this
research, the original objective is fragmented into several dif-
ferent components, each to be treated as an objective function
under the new alternative formulation of the problem. More
formally, the problem is restated in terms of d > 2 objec-
tives, f(x) = [fi(X), f>(X), ..., f2(x)]7, such that the sum of all

The term multi-objectivization was originally coined by Knowles et al. [1],
but the first studies on this kind of problem transformation date back to the work
of Louis and Rawlins [41].



the new objectives equals the original objective function; i.e.,
fx) = le fi(x), for all x € X#.? It has been demonstrated that
the only possible effect of decomposition is the introduction of
plateaus in the search landscape [4]. That is, originally compa-
rable solutions may become incomparable (mutually nondomi-
nated) with regard to the new decomposed formulation. Some
of the works reported in this direction include the following
[1, 4, 23]. Also, multi-objective optimization approaches for
the protein structure prediction problem fall into this category
[25-31]. Note, however, that such approaches are based on de-
tailed energy models. It was not until the proposal of the meth-
ods studied herein that multi-objectivization was applied to the
particular HP model of this problem [37-39].

2.3. Fitness landscapes and neutrality

The notion of a fitness landscape, first introduced by Wright
[49], has been found to be useful in understanding the most
essential characteristics of certain optimization problems, or
problem classes. By analyzing the fitness landscape, it is pos-
sible to gain further insight into problem difficulty as a means
of explaining, or even predicting, the performance of search al-
gorithms. Fitness landscape analysis is expected to provide im-
portant clues for guiding the development of more competitive
search mechanisms, which are able to deal with (or to take ad-
vantage of) the particular characteristics of the given optimiza-
tion task. Some fundamental definitions on this topic, which
are relevant according to the scope of this study, are presented
below. For a more comprehensive literature review on fitness
landscapes analysis the reader can be referred to [S0-54].

A fitness landscape can be generally defined in terms of a
triplet (X, N,£). The first element, X, represents the set of
all potential solutions to the problem, i.e., the search space.
The notion of connectedness among solutions in X is intro-
duced by the so-called neighborhood structure, N : X — 2X
which maps each possible solution x € X to a set of solutions
N(x) € X. Hence, N(x) is referred to as the neighborhood of x
and each X’ € N(x) is called a neighbor of x. Finally, & denotes
the evaluation scheme, consisting of 1) a measure (or set of
measures) to serve as an indicator of the quality of the different
solution candidates; and 2) a mechanism to impose an ordering
relation given the adopted quality measure(s). As the evalua-
tion scheme, in single-objective optimization a fitness function
(usually directly related to the objective function of the prob-
lem) is considered and a simple ordering sets the preference
relation among solutions.? In the multi-objective context, how-
ever, a number of (conflicting) criteria determine the quality of
solutions, so that defining an ordering relation is not as straight-
forward. The partial order induced by the Pareto-dominance
relation is assumed in this study.

The fitness landscape of a problem can be studied in terms of
different properties, being the neutrality property of particular

2Though other different decompositions are possible, this definition ensures
that the original optimum coincides with one of the Pareto-optima in the multi-
objective version of the problem [1].

3In this study, a fitness function is assumed to be always maximized (the
goal is to search for the fittest solution candidate).

importance given the purposes of the present study. The stan-
dard definition of neutrality, in the single-objective case, refers
to the degree to which a landscape contains connected areas of
equal fitness [53]. Considering a broader notion to cover also
the multi-objective case, neutrality can be understood as the re-
sult of the incomparability that the adopted evaluation scheme
¢ induces. The term incomparability is used in this study to
indicate the situation where no preferences can be imposed be-
tween a pair of solutions, so that these solutions are consid-
ered equivalent when evaluated under £. Two different solu-
tions X, X, € X are said to be neutral (incomparable), denoted
by neutral(x;,X;), if either they share the same fitness value
(single-objective case), or they are nondominated, in the Pareto
sense, with respect to each other (multi-objective case).
Having defined neutrality, a series of related basic concepts
can be introduced as follows. The neutral neighborhood of a
solution x € X is given by the subset of all its neutral neigh-
bors: N,,(x) = {x’ € N(X) | neutral(x,x’)}. The total number of
neutral neighbors of x, i.e., the cardinality of N,(x), is known
as the neutrality degree of x, and the ratio of the neutrality de-
gree to the size of the neighborhood is referred to as the neu-
trality ratio. A neutral fitness landscape is characterized by
a large number of solutions presenting a high degree of neu-
trality. This leads to (potentially large) connected areas of in-
comparable solutions called plateaus, more formally referred to
as neutral networks. Consider the neutrality graph G = (X, &E,)
where &, = {(X],X2) € X? | X, € N,(x;)}. Each connected com-
ponent of the graph G corresponds to a different neutral net-
work. In other words, a neutral network is a connected sub-
graph G’ = (X', &) of G, X’ € X and &, € &,, where 1) there
exists a path connecting any pair of solutions x;,x, € X’, and
2) there exists no edge (X;,X2) € &, \ &, such that x; € X’ and
X, € X \ X’. The neutral network of a solution x will be de-
noted as NN(x). Finally, another important concept is that of a
neutral walk. A neutral walk from x; to x; refers to a sequence
of solutions (X1, Xy, ...,X,) such that x;;; € N,(x;), 1 <i<k.
That is, a neutral walk represents a path on a neutral network.

2.4. The HP model for protein structure prediction

Proteins are fundamental elements of living organisms.
These chain-like molecules are composed from a set of 20
different building blocks called amino acids. The specific se-
quence of amino acids of a protein determines how it folds into
a unique compact conformation responsible for its biological
functioning. Among all the possible conformations that a pro-
tein can adopt, it is believed that the optimal conformation, of-
ten referred to as the native state, corresponds to the one min-
imizing the overall free-energy [55]. Thus, the protein struc-
ture prediction (PSP) problem, can be stated as the problem of
finding the functional, energy-minimizing conformation for a
protein given only its amino acid sequence.

Amino acids can be classified on the basis of their affinity
for water. Hydrophilic or polar amino acids (P) are usually
found at the outer surface of proteins. By interacting with the
aqueous environment, P amino acids contribute to the solubil-
ity of the molecule. In contrast, hydrophobic or nonpolar amino



acids (H) tend to pack on the inside of proteins, where they in-
teract with one another to form a water-insoluble core. This
phenomenon, usually referred to as hydrophobic collapse, is a
major driving force in protein folding, representing the reason-
ing and motivation behind the hydrophobic-polar (HP) model
of the PSP problem studied in this paper [34, 56].

In the HP model, proteins are abstracted as chains of
H- and P-type beads. Protein sequences, which are origi-
nally defined over a 20-letters alphabet, are now of the form
S ={ay,ay,...,ar), where a; € {H, P} denotes the i-th amino
acid and ¢ is the length of the sequence. A valid protein con-
formation is modeled as a self-avoiding walk on a given lat-
tice, that is, as an embedding of the protein chain on the lat-
tice such that the following two properties are satisfied: (i)
self-avoidance, two different amino acids can not be mapped
to the same lattice position; and (ii) connectivity, consecutive
amino acids in S are to be also adjacent in the lattice. This re-
search work focuses on both, the two-dimensional square and
three-dimensional cubic lattices. With the aim of emulating the
so-called hydrophobic collapse, the goal in the HP model is to
maximize the interaction among H amino acids in the lattice.
Such interactions are to be referred to as H-H topological con-
tacts. Two H amino acids a; and a; are said to form a topo-
logical contact if they are nonconsecutive in S (i.e., |j —i| > 2)
but adjacent in the lattice. The objective is thus to find a valid
structure where the number of H-H topological contacts, HH1c,
is maximized. Adhering to the notation of the field, an energy
function, to be minimized, is defined as the negative of HHtc.

Let X be the set of all potential protein conformations, i.e.,
the search space, and let X# denote the subset of all the feasible
states (X& C X). PSP under the HP model can be formally
defined as the problem of finding x* € X# such that E(x*) =
min{E(x) | x € X#}. The energy function £ : X — R maps
each possible conformation x € X to an energy value; formally,

EX) =) elai,a)), @)
where
-1, if g; and a; are both H and
e(a,a)) = they form a topological contact;

0, otherwise.

As an example, the optimal structure for a protein sequence
of length £ = 20 on the two-dimensional square lattice is pre-
sented in Figure 1. This example corresponds to sequence 2d4,
one of the test cases considered in this study, see Appendix A.l.

An internal coordinates representation based on absolute
moves has been implemented in this study. A protein confor-
mation is encoded as a sequence of moves specifying the lattice
position for each amino acid with regard to the preceding one
(the position of the first amino acid is fixed). On the three-
dimensional cubic lattice, conformations are thus defined as se-
quences in {F,B,L,R, U,D}*"', to denote the forward, back-
ward, left, right, up and down moves from one amino acid to
the next. Only moves {F, B, L, R} are considered when using
the two-dimensional square lattice, see Figure 2.

. Hydrophobic (H)

O Polar (P)

H-H
topological
contact

Figure 1: Optimal conformation for sequence 2d4 of length £ = 20 on the two-
dimensional square lattice. Black and white beads denote H and P amino acids,
respectively. Amino acids have been numbered from 1 to £ according to their
positions in the protein sequence S. The energy of this conformation is £ = -9,
since there are 9 H-H topological contacts, HHtc = 9.

Figure 2: Internal coordinates representation based on absolute moves. Encod-
ing scheme (left). Example conformation encoded as FLLFRFRB (right).

The prediction of protein structures based on the HP model
is a hard combinatorial optimization problem which has been
proved to be NP-complete [35, 36]. An extensive literature ex-
ists on the use of metaheuristics to address this problem, includ-
ing genetic algorithms [57, 58], memetic and hybrid algorithms
[59-61], tabu search [62], ant colony optimization [63, 64],
immune-based algorithms [65, 66], particle swarm optimiza-
tion [67, 68], differential evolution [69, 70], estimation of dis-
tribution algorithms [71, 72], artificial plant optimization [73],
and firefly-inspired algorithms [74].

3. Multi-objectivization of the HP model

Three different multi-objectivization schemes for the HP
model are analyzed in this study: the parity decomposition [37],
the locality decomposition [38] and the H-subsets decomposi-
tion [39]. As their name indicates, these approaches are based
on the decomposition of the original energy (objective) func-
tion of the HP model. Decomposition, as discussed in Sec-
tion 2.2, has the potential effect of introducing incomparability
among solution candidates. In this way, these alternative multi-
objective formulations of the problem can be useful as a means
of accepting degrading moves (i.e., replacement of a solution
with an inferior one), and thus can be implemented as a mech-
anism to prevent search algorithms from becoming trapped in
local optima. The parity, locality and H-subsets decompositions
are described in detail in Sections 3.1, 3.2 and 3.3, respectively.

3.1. Parity decomposition

In the two-dimensional square and three-dimensional cubic
lattices, the two variants of the HP model covered by this re-



Figure 3: Parity decomposition. Interactions on the lattice are only possible
between amino acids whose sequence positions are of opposite parity. In this
example conformation, f; = 0 and f» = -9.

search project, adjacencies (topological contacts) are only pos-
sible between amino acids whose positions in the protein se-
quence are of opposite parity, see Figure 3. Based on this fact, a
two-objective formulation f(x) = [f1(x), /(x)]” is defined over
the set of all potential protein conformations x € X:

fix) = Z e(aj,a;), i=0(mod?2),i<j 5)
H(x) = Z e(aiay), i=1(mod2),i<j; (©6)

where both fi(x) and f>(x) are to be minimized and e(a;, a;) rep-
resents the conventional energy contributions of the HP model
as defined in Section 2.4. That is, the objective function f;
accounts only for H-H topological contacts between pairs of
amino acids a;, aj, where i, the sequence position of amino acid
a;, is even (i < j). On the contrary, f> is defined for those cases
where such the i-th sequence position is odd. Note that the sum
of the two new alternative objectives equals the conventional
energy function of the HP model presented in Section 2.4 (i.e.,
E(x) = fi(x) + f2(x) for all x € X), which is in accordance with
the decomposition approach for multi-objectivization, see Sec-
tion 2.2. Figure 3 presents the optimal conformation for protein
sequence 2d4 on the two-dimensional square lattice. In the par-
ticular case of this conformation, the values for the objective
functions are f; = 0 and f, = -9.

3.2. Locality decomposition

In this multi-objectivization scheme, the conventional energy
function of the HP model is decomposed based on the locality
notion of amino acid interactions. An H-H topological contact
between amino acids a; and a; can be considered to represent
either a local or a nonlocal interaction. This classification de-
pends upon whether or not the sequence distance between a;
and a; (i.e., | j — i) is within a given maximum ¢, see Figure 4.

From this, a two-objective problem formulation,
f(x) = [fi(x), £(x)]", is defined for every potential pro-

) Local H-H
interaction
13 ’ Nonlocal H-H
7 interaction
12 ®

(Assume 0 =17)

Figure 4: Locality decomposition (§ = 7). This structure presents seven local
and two nonlocal H-H interactions. Therefore, in the particular case of this
example, fi = =7 and fo = -2.

tein conformation x € X:

A=Y eanap,  j-i<i<j; @
A =Y eazap,  j-i>i<j; ®)

ai,a,'

where functions fi(x) and f>(x) are both to be minimized and
e(a;, a;) denotes the conventional energy contributions defined
previously in Section 2.4. Thus, the objective function f; is de-
fined for all the local interactions, whereas the objective func-
tion f> accounts for the nonlocal ones. In this way, the evalua-
tion of the example conformation illustrated in Figure 4 under
this alternative formulation leads to objective values f; = =7
and f, =-2. Note that E(X) = fi(x) + f2(x) forall x € X,
which is consistent with the decomposition approach for multi-
objectivization, as defined in Section 2.2.

It is worthy to mention that parameter ¢ plays a decisive role
for the behavior of this proposal. In [38], an analysis was con-
ducted in order to investigate the influence of varying this pa-
rameter on the performance of two different evolutionary algo-
rithms. All odd values in the range [3,21] were considered in
the analysis.* As a result, the best performance for the evaluated
algorithms were observed when § assumes low values around 7.

3.3. H-subsets decomposition

In the H-subsets decomposition, all H amino acids in the pro-
tein sequence are first assigned to one of two possible groups,
H, or H,. In this study, H; and H, are to be referred to as the
H-subsets and such an assignment of H amino acids to these
groups is to be called the H-subsets formation process. Fig-
ure 5 illustrates one of different H-subsets formation strategies
which are described later at the end of this section.

Once the H-subsets have been formed, an alternative two-
objective formulation f(x) = [fi(x), f2(x)]” of the problem can

“In the two-dimensional square and the three-dimensional cubic lattices, a
topological contact can only occur if the sequence distance between the amino
acids is odd and at least equal to 3.



H-subsets formation

° B

Figure 5: H-subsets decomposition. H-subsets formation (FIX strategy).

be defined as follows (x € X):

AR = ) eana) + Y elaray, ©)
ajaj€H, aj,a;€H,

A = ) eaiay, (10)
aieHy,a;eH,

where fi(x) and f>(x) are both minimization functions and
e(a;,a;) denotes the conventional energy contributions of the
HP model (Section 2.4). In this way, function f; accounts
for H-H topological contacts where the two amino acids be-
long to the same H-subset, either to H; or to H,. On the
contrary, f> is defined for H-H topological contacts between
amino acid pairs where each amino acid belongs to a different
H-subset. Notice that E(x) = fi(x) + f>(x) for all x € X, which
adheres to the definition of the decomposition approach for
multi-objectivization, as provided in Section 2.2.

Given the assignment of H amino acids to the H-subsets il-
lustrated in Figure 5, the structure in Figure 6 presents four H-H
topological contacts defined between amino acids belonging to
the same H-subset, while the remaining five H-H interactions
occur between amino acids from different H-subsets. In this
example the objective values are thus f; = —4 and f, = -5.

The H-subsets formation process plays a major role for this
decomposition proposal. Different strategies can be adopted in
order to accomplish this task; three of them have been explored
in [39], namely (i) FIX: the first half of H amino acids in S
are assigned to i, all others to H,, as shown in Figure 5; (ii)
RND: each H amino acid can be assigned to H; or to H, with
equal probability; and (iii) DYNy: it is based on the RND strat-
egy, but the H-subsets are recomputed after k iterations of the
search algorithm without achieving an improvement. From the
results reported in [39], the best performance can be achieved
by implementing the DYN} strategy. This suggests that the ef-
fect of decomposition for allowing algorithms to escape from
local optima can be further enhanced by changing the landscape
dynamically throughout the search process.

4. Effects of multi-objectivization

This section is devoted to investigating the potential effects
that can be achieved by multi-objectivization. Although three
different multi-objectivization schemes for the HP model are
covered by this research work, only the locality decomposition
(defined in Section 3.2), using a value of § = 7, is considered in
this section due to the high computational demands of the con-
ducted analyses. The locality decomposition has been found, in

o8 8

H-H (same H-subset)

o8

H-H (different H-subsets)

Figure 6: H-subsets decomposition. Four H-H topological contacts are defined
between amino acids from the same H-subset, while the other five are given
between amino acids from different H-subsets. Therefore, fi = —4 and f, = 5.

the authors’ previous work [38, 39], to provide a quite promis-
ing behavior, as it will also be shown in subsequent sections
of this document. For convenience, hereafter the locality de-
composition will be simply referred to as the multi-objective
(MO) formulation of the problem. Similarly, two (relatively)
small test instances, sequences 2d4 and 3d1, are investigated
in this section (refer to Appendix A.1 for details).” It is ex-
pected, however, that other different multi-objectivization pro-
posals and test cases can be explored with similar results.

As stated in Section 2.4, the quality of a candidate solution
in the HP model is evaluated in terms of an energy function,
E, defined as the negative of the total number of H-H topolog-
ical contacts that the encoded protein structure presents, HHtc.
Nevertheless, the use of positive rather than negative values, as
well as the adoption of the term fitness (to be maximized) rather
than that of energy (to be minimized), is considered more ap-
propriate for the analysis here reported. Therefore, in the re-
mainder of this section the fitness of a solution x, Fitness(X),
will assume the value of HHtc(x), i.e.,

Fitness(x) = HHtc(x) = —E(x). (11

It is worthy to mention that the term fitness is used in this study
to refer to the quality of solutions under the conventional single-
objective (SO) evaluation scheme of the HP model.’ In addi-
tion, it is important to briefly introduce the concept of a fitness
class; a solution x € Xg will be said to belong to the fitness
class c if it presents a fitness value of Fitness(x) = c.

The analyses conducted in this section are based on an initial
set of sampled solutions. Hence, the implemented sampling
methodology is first introduced in Section 4.1. In Section 4.2,
the effects of multi-objectivization are investigated in terms of
how this transformation influences the comparability relation
among solutions. Finally, Section 4.3 evaluates the extent to
which such an alteration in the comparability of solutions can
be translated into fundamental changes on the fitness landscape
structure of the problem.

SNotwithstanding, given the absolute moves encoding described in Section
2.4, the size of the search space for these (relatively) small instances is huge,
namely 419 for 2d4, and 6! for 3d1.

6Although alternative multi-objective formulations of the HP model are
studied, the goal remains always to solve the original single-objective problem.



Algorithm 1 Sampling of the initial solution sets.
Input: M
Output: S

: S« 0
2: FC « {Fitness(x) | x € X¢}
3: while |S| < M do
4. U « search_algorithm()
5. forall ce ¥Cdo
6
7
8
9

U, — {x e U | Fitness(x) = c}
X « arg max,.q, diversity(x,S)
if diversity(X,S) > 0 then
: S — SU{R}
10 end if
11:  end for
12: end while

4.1. Sampling of initial solutions

The implemented sampling strategy was conceived by taking
into account the following considerations: (i) a total of M dif-
ferent feasible solutions for the given problem instance are to be
generated; (ii) the M generated solutions are to be, if possible,
evenly distributed over the different available fitness classes (all
fitness classes should be well represented in the collected sam-
ple); and finally, (iii) the diversity among solutions belonging
to the same fitness class should be maximized.

Algorithm 1 outlines the adopted sampling strategy. The pro-
cedure starts by initializing the sample set S and by identify-
ing the set of all possible fitness classes for the given prob-
lem instance, FC (lines 1 and 2 in Algorithm 1). Iteratively,
a search algorithm is executed and all solutions that this algo-
rithm reaches during the search process are kept in U (line 4).
Then, the subset U, of solutions in U belonging to each pos-
sible fitness class ¢ € ¥ C is identified (line 6). Finally, the so-
lution X € U, that best contributes to increasing the diversity in
S, if any, is included in the sample (lines 7 to 9). This process
continues until completing the required sample.

Any metaheuristic could be implemented as the embedded
search method. An Iterated Local Search (ILS) algorithm [75],
based on the SO problem formulation, was used in this study;
refer to Appendix B.2 for details. Due to its distinctive explo-
ration behavior, the ILS method can potentially reach a different
local optimum at each iteration. Each time the ILS was invoked
during the sampling procedure, this algorithm was allowed to
run for a total of 5 x 10° solution evaluations.

The diversity contribution estimates have been partially
based on the diversification mechanism proposed by Chira [76].
Instead of measuring diversity in genotype (encoding) space,
in [76] diversity was computed from the contact fingerprint
of candidate solutions. The contact fingerprint for a solu-
tion is given by the binary vector cf, where each component
cfi € {0, 1} indicates whether a particular pair of amino acids
in the encoded structure defines a topological contact or not.
Vector cf considers as many components as the total number of
amino acid pairs which can potentially form a topological con-

Table 1: Sample sets generated for instances 2d4 and 3d1. Instance 2d4 in-
volves 10 different fitness classes, and instance 3d1 involves 12.

Fitness class

Seq. 0o 1 2 3 4 5 6 7 8 9101 Total

2d4 119 118 119 119 119 119 119 119 47 2 - -
3d1 84 83 83 83 83 83 83 84 84 84 83 83

1,000
1,000

tact.” The use of the contact fingerprint rather than the encoding
of solutions certainly fosters the development of more effective
diversity promotion mechanisms. This can be explained by the
fact that very different encodings may represent the same pro-
tein structure (after rotation or reflection). Note, however, that
significantly different structures may also present the same con-
tact fingerprint vector if they share the same set of topological
contacts. This has motivated the use of a more fine-grained ver-
sion, referred to in this study as the distance fingerprint.

The distance fingerprint for a given solution is defined by the
vector df, each of whose components d f; measures the distance
between the lattice coordinates of a particular pair of amino
acids. The Manhattan distance was employed for this sake. A
total of (5) —2{+3 components describe the distance fingerprint
vector df; i.e., only amino acid pairs (a;, a;) such that [j—i| > 3
require to be considered. Finally, the diversity contribution for a
new candidate x with respect to the already collected sample S,
diversity(x, S), has been computed as the minimum Hamming
distance (H,;) between the distance fingerprint vector of x and
that of any X’ € S with the same fitness value as x. Formally,

diversity(x, S) = min{ H,;(df(x), df(x"))
|x"eS A (12)
Fitness(x) = Fitness(x’) }.

The size of the sample was set to M = 1, 000 for both the 2d4
and 3d1 instances. Ideally, it is expected to generate a sample
such that about M/|# C| different solutions represent each possi-
ble fitness class. This was the case of the sample set constructed
for the three-dimensional instance 3d1, where a total of 83 or
84 different solutions were obtained for each of the |FC| = 12
available fitness classes, see Table 1. Note, however, that due
to the funnel-like energy landscape which characterizes the HP
model [77], not all fitness classes for some of the instances can
be equally sampled. As detailed in Table 1, only a reduced
number of solutions with a high fitness value (Fitness = 8 and
Fitness = 9) were obtained when sampling the search space of
the 2d4 instance, so that a greater number of representatives for
the remaining fitness classes were accepted in order to complete
the M required solutions.

4.2. Incomparability of solutions

The three multi-objectivization proposals considered in this
study are all of them based on the decomposition of the orig-
inal energy (objective) function of the HP model, see Section

7In order for an amino acid pair (a;, a ;) to form a topological contact, i and
Jj need to be of opposite parity and |j — i| > 3.



Locality decomposition (6 = 7)
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Fitness =9 Fitness =3
f,=5 =2 1,70, =3

Figure 7: This figure illustrates how a pair of originally comparable solutions
x; (left) and x; (right), with Fitness(x;) = 9 and Fitness(x2) = 3, can become
incomparable by multi-objectivization (locality decomposition, § = 7).

3. As stated in Section 2.2, the only possible effect that can be
achieved through decomposition is that originally comparable
solutions may become incomparable (nondominated in terms of
the Pareto-dominance relation) under the new multi-objective
formulation of the problem. To illustrate this, consider the ex-
ample provided in Figure 7. In this figure, conformation x;
(to the left) presents 9 H-H topological contacts, while con-
formation x;, (to the right) involves only 3. These originally
comparable solutions (i.e., X; is clearly superior to x;) have be-
come mutually nondominated when comparing them under the
multi-objective formulation defined by the locality decomposi-
tion (6 = 7). The goal of this section is not only to illustrate
such an effect of decomposition, but also to explore the extent
to which solutions belonging to different fitness classes can be-
come incomparable as a consequence of this transformation.

An experiment was performed as follows. A sample set of
M = 1,000 different solution candidates was generated by im-
plementing the methodology detailed previously in Section 4.1.
Then, all possible pairwise comparisons among the sampled so-
lutions were performed. From this, it was computed the ratio
between the number of incomparable solution pairs found and
the total number of pairwise comparisons carried out; this mea-
sure is to be referred to as the incomparability ratio (IR). IR
is thus defined in the range [0, 1], and IR = 1 indicates that
all the evaluated solution pairs were found to be incompara-
ble. This experiment was replicated for both the conventional
single-objective HP model formulation, SO, and the alternative
multi-objective formulation, MO. The comparison of solutions
under the MO formulation relies on the Pareto-dominance re-
lation and the locality decomposition. Both the 2d4 and 3d1
instances were considered. The obtained results are summa-
rized in Table 2. As it can be seen from this table, 70,616 out
of the (1’300) = 499,500 total pairs of sampled solutions for
instance 2d4 became incomparable when evaluated under the
MO formulation. This represents an IR increase of 0.14 with
regard to the conventional SO formulation. Similarly, multi-
objectivization increased the IR measure by 0.13 when focusing
on the 3d1 instance. Such an increase of 0.13 results from the
63, 760 comparable solution pairs for which the original prefer-

Table 2: Incomparability ratio (IR) presented by the studied SO and MO for-

mulations of the HP model. For both the 2d4 and 3d1 test instances, a total of

(1%00) = 499,500 solution pairs have been evaluated.

SO MO Increase (MO-SO)

2d4 0.11(57,132)
3d1 0.08 (41, 168)

0.26 (127,748)
0.21 (104, 928)

0.14 (70,616)
0.13 (63, 760)

ence relation has been suppressed.?

Finally, the results obtained using the MO formulation are
broken down in Figures 8 and 9 in order to gain further insights
into the likelihood of incomparability taking place among dif-
ferent fitness classes. Figures 8 and 9 show (for the 2d4 and 3d1
instances, respectively) the IR measure computed separately for
each possible pair of fitness classes (i.e., fitness classes with re-
spect to the conventional SO formulation). Heat maps in these
figures are symmetric along the diagonal. From Figures 8 and 9,
it is possible to see that multi-objectivization makes incompara-
bility possible even for pairs of solutions which are distant with
respect to their fitness values. As an example, Figure 8 high-
lights that incomparability has been introduced between fitness
classes 3 and 9 of instance 2d4 (as illustrated in Figure 7). A
similar scenario can be found with regard to fitness classes 4
and 10 from the collected sample for sequence 3d1, see Figure
9. Note, however, that the closer the fitness classes for the se-
lected pairs of solutions, the higher the IR values indicated in
these figures (the highest IR values appear close to the diago-
nal). This can be understood by the fact that the increase in the
fitness distance between a pair of solutions increases also the
probability for a solution to be dominated (in the Pareto sense)
by the other. Finally, it should be observed that in the case of
both the 2d4 and 3d1 instances, no solution at fitness class O
became incomparable with respect to any other solution from a
higher fitness class. This is due to the fact that any solution x;
with Fitness(x;) =0, fi(x;) = 0 and f>(x;) = 0 after applying
decomposition, will always be dominated by any other solution
X, with Fitness(x;) > 0, no matter how Fitness(x,) is decom-
posed into the new set of objectives.

4.3. Fitness landscape analysis

As discussed in Section 4.2, multi-objectivization by de-
composition exerts an influence on the comparability relation
over the search space, in such a way that solutions from dif-
ferent fitness classes may become incomparable when evalu-
ated under the new multi-objective formulation of the prob-
lem. This notion of incomparability is equivalent to that of
neutrality used in the context of fitness landscapes analysis.
Two solutions are said to be neutral (i.e., incomparable) if ei-
ther they share the same fitness value (single-objective case), or
they are Pareto-nondominated with respect to each other (multi-
objective case), see Section 2.3. Hence, the potential effect
of multi-objectivization, previously described in terms of in-
troducing incomparability among solutions, will be referred in

8$Note that, by definition, only solutions having the same fitness value are
incomparable under the SO formulation of the problem.
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Figure 9: IR among the different fitness classes. 3d1 test instance.

this section to as that of increasing the neutrality in the fitness
landscape. This section is intended to contribute in understand-
ing and, to some extent, quantifying such an effect of multi-
objectivization on the HP model’s fitness landscape.

As detailed in Section 2.3, three important components de-
fine a fitness landscape (X, N, &). While the search space X and
the neighborhood structure N were kept constant in this study,’
¢ has been varied from the conventional single-objective, SO
evaluation scheme of the HP model to the alternative multi-
objective, MO one (based on the locality decomposition and
the Pareto-dominance relation). By analyzing and comparing
the landscapes induced by the SO and MO evaluation schemes,
it will then be possible to evaluate the extent to which multi-
objectivization has impacted on essential problem characteris-
tics, those related to neutrality. Neutrality is here investigated
by evaluating different properties of neutral networks (NNs);
since neutral fitness landscapes, as those in the HP model, are
known to be mainly described by their NNs [78]. Nevertheless,
NN in a neutral fitness landscape can be of a considerable size,
so that their exhaustive exploration becomes computationally
prohibitive even for relatively small problem instances. In the
literature, NNs are usually sampled through neutral walks, i.e.,
series of (neutral) neighboring solutions. In this study, however,
an alternative approach was taken, as described below.

Given a sample set S of M different solution candidates, col-
lected following the methodology previously detailed in Sec-
tion 4.1, the neutral network NN(x) for each solution x € S

9X is given by the absolute moves encoding (Section 2.4). Likewise, N(x)
is defined by all solutions which can be reached through a single change in the
encoding of x. Thus, IN(x)| = 3({ - 1) and [N(x)| = 5(¢{ — 1) in the two- and
three-dimensional cases, ¢ denoting the length of the protein sequence.

Algorithm 2 pNN() - Partial NN computation
Input: x, depthLevel, maxDepth
Output: NN(x)
I: NNX) « (V,E):V={x}, E=0
2: if depthLevel < maxDepth then
for all X’ € N,(x) do
4 NNX') « pNN(X',depthLevel + 1, maxDepth)
5 NN(x) « NN(x) U NN(X")
6: E« SU{x,X)}
7
8

w

end for
. end if

has been partially computed based on the pNN() procedure out-
lined in Algorithm 2. As shown in this algorithm, NN(x) is con-
structed recursively in a depth-first manner by allowing this pro-
cedure to reach a maximum defined depth level (maxDepth).
The initially given solution X is assumed to be at depth level 0,
so that depthLevel = 0 is used in the first call to pNN(). At
each call to the pNN() method, NN(x) is first initialized to the
graph containing no edges and including the provided solution
x as the only node (line 1 in Algorithm 2). If the maximum al-
lowed depth level has not been reached (line 2), the sub-network
NN(x’) for every neutral neighbor x’ of x is obtained from a
subsequent execution of the pNN() method (by giving x’ as the
new starting point and by increasing the value of depthLevel,
see line 4). The resulting sub-network NN(x’) is then merged
with the parent network NN(x) by means of a graph union op-
eration, here denoted as |J (line 5).!° Finally, edge (x,x’) is
included in NN(x) in order to establish the linkage between
NN(x) and the NN(x") sub-network. Partially computing the
NN for a given solution X, is equivalent to traversing all possi-
ble neutral walks departing from x, by restricting the length of
the walks to the maximum defined depth level (maxDepth).

The 2d4 and 3d1 test instances have been considered for this
analysis, and the size of the initial sample sets was fixed to
M = 1,000 in both cases. Thus, a total of 1,000 (potentially
different) NNs for each of the instances have been explored by
using both, the SO and MO evaluation schemes, as the basis for
neutrality verification. In this way, changing the problem for-
mulation from SO to MO will be reflected as an alteration in the
properties of the sampled NNs. In the remainder of this section,
the neutral network for a given solution x will be either referred
to as NNgo(x) or NNyo(x), depending on whether the neutral-
ity relation among solutions was determined based on the SO or
MO evaluation schemes during the network computation. Fi-
nally, in order to overcome the high computational cost of the
conducted analysis, the maximum allowed depth level was set
to maxDepth = 10 and maxDepth = 7 for the 2d4 and 3d1 test
sequences, respectively.'!

The remaining of this section proceeds as follows. In Sec-
tion 4.3.1, the fitness landscape transformation is first inves-

OGiven G| = (V1,81) and Gs = (V2,&), the graph union operation
G1 U Gz produces Gz = (V3,E3) such that V3 = V1 UV, and E3 = & U E,.

Despite the use of such low maxDepth values, the resulting NNs were
considerably large, as it will be analyzed in Section 4.3.2.
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Figure 11: Average neutrality ratio (ANR). 3d1 test instance.

tigated in terms of how multi-objectivization impacted on the
neutrality degree of solutions. This is captured by means of
the average neutrality ratio. Then, Section 4.3.2 evaluates the
extent to which such alteration on the neutrality degrees led to
the increase in the size of the computed NNs. Finally, these in-
creases in the size of the NNs are explained in Section 4.3.3 as
aresult of the connectivity that multi-objectivization introduces
between NNs from different fitness classes.

4.3.1. Average neutrality ratio

As a means of evaluating the increase on neutrality caused
by multi-objectivization, the average neutrality ratio (ANR) of
the sampled NNs is investigated. The ANR is defined as the
mean of the neutrality ratios (as defined previously in Section
2.3) considering all solutions in a NN [52, 79]. This measure
assumes values in the range [0, 1], where 1 corresponds to the
highest neutrality. Figures 10 and 11 contrast, for the 2d4 and
3d1 instances, respectively, the ANR values obtained when us-
ing the SO and MO formulations (i.e., the ANR values com-
puted from NNgp(x) and NNy p(x), for all x € S). In these
figures, the obtained ANR values appear organized according
to the fitness of the solution given as the starting point for the
NN sampling. In addition, the mean of the ANR values in each
fitness class is indicated for both the SO and MO formulations.
From Figures 10 and 11, a general tendency can be perceived
with regard to the neutrality of the HP model’s fitness land-
scapes. In all the cases, ANR rapidly decreases with the in-
crease in fitness. That is, while poor quality solutions (with low
fitness values) are usually surrounded by a considerable number
of neutral neighbors, leading to large NNs (see Section 4.3.2),
solutions at the highest fitness classes tend to be more isolated

10

and enclosed by infeasible states.!? In most fitness classes, it
is evident from the figures that there was a slight increase in
the ANR measure as a consequence of using the MO formula-
tion (see fitness classes 2 to 7 of the 2d4 instance, and fitness
classes 3 to 11 of the 3d1 instance). It is important to note that
no increase in the ANR is possible for NNs at fitness class 0.
This is due to the fact that, as discussed at the end of Section
4.2, a solution at this fitness class can not become neutral with
respect to any other solution at a higher fitness class. After
multi-objectivization, any solution x with Fitness(x) = 0 will
still be considered inferior (dominated in the Pareto sense) with
regard to any solution x’ with Fitness(x’) > 0. Thus, NNs for
solutions at fitness class 0 will be exactly the same regardless
of whether they are computed based on the SO or MO formu-
lations (this applies also for subsequent analyses presented in
Sections 4.3.2 and 4.3.3).

4.3.2. Size of the neutral networks

Despite the minor increases in the average neutrality ratio
(ANR) obtained through the use of a multi-objective formula-
tion, a small variation in the neutrality degree of solutions can
still contribute significantly to increasing the size (number of
solutions) of a NN. Therefore, in this section the size of the
computed NNs is analyzed. For each sampled solution x € S,
the size of the NNgp(x) and NNy o(x) networks is shown in
Figures 12 (for instance 2d4) and 13 (for instance 3d1). The
results are presented separately for each fitness class, and the
arithmetic mean in each of the cases is also indicated. Plots are
given in a logarithmic (base 10) scale. These figures expose the
high neutrality that characterizes the fitness landscapes in the
HP model. Even when the sampling of NNs was restricted in
this study by setting a maximum allowed depth level, as stated
in Section 4.3, it is possible to see from the plots that NNs at fit-
ness class 0 involve above 10° and around 108 solutions for the
2d4 and 3d1 instances, respectively. From Figures 12 and 13,
it is also possible to confirm that, as suggested in Section 4.3.1,
the size of the NN is usually larger for low fitness classes, but
neutrality tends to decrease as higher quality solutions are con-
sidered. An important increase in the size of the NNs can be
observed in most of the cases due to the use of the MO for-
mulation. As the plots indicate, NNs computed based on the
MO formulation can be several orders of magnitude larger than
those computed based on the SO formulation.

To go further in this analysis, the neutral network size ra-
tio (NSR) is defined as the ratio of the size of NNgo(x) to that
of NNyo(x). In fact, NNyo(x) will always be a supergraph
containing all nodes and edges of NNgo(x), but including also
those nodes and edges which result from the neutrality intro-
duced by the multi-objectivization. Thus, NNyo(x) will have
at least the same size as NNg(x), so that NSR is defined in the
range [0, 1] and NSR = 1 indicates that no change in the NN

12The fitness, defined as the number of H-H topological contacts, is directly
related to the compactness of the encoded structures; the higher the fitness
value, the more compact the structure tends to be. Hence, it is easy to think
that most perturbations to the encoding of a compact structure could lead either
to an infeasible solution, or to a less folded state which worsens the fitness.
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Figure 13: Size of the sampled neutral networks (NS). 3d1 instance.

size was achieved when varying the problem formulation. Fig-
ures 14 and 15 show the NSR for all the sampled NNs along
with the mean values calculated for each fitness class. Multi-
objectivization led to an important rise in the size of the ex-
plored NNs for most fitness classes of the 2d4 instance (Figure
14). The sharpest increase in the NNs size can be observed
at fitness class 3, for which the lowest average NSR value has
been scored. In average, the size of NNgo(X) is only about 65%
of the size of NNy;0(x) when Fitness(x) = 3. The impact of us-
ing the MO formulation becomes more evident when focusing
on the 3d1 instance (Figure 15). The average NSR values for
most fitness classes are below 0.5. This evinces that NNyo(X)
at least doubled the size of NNgo(x) in the vast majority of the
cases. Finally, it is possible to note from Figures 14 and 15
that a considerable number of very low NSR values (close to 0)
have been accounted for, indicating a highly significant increase
in the size of the corresponding NNs.

4.3.3. Connectivity between neutral networks

The observed increments with regard to the size of the NN,
as analyzed in Section 4.3.2, can be understood as the result of
allowing neutral connections to be established between NNs.
While in the single-objective case all solutions in a NN share,
by definition, the same fitness value, in a multi-objectivization
scenario such a strict definition of a NN can no longer be sup-
ported. That is, given the adopted notion of neutrality for the
multi-objective case, which is based on the Pareto-dominance
relation (see Section 2.3), a NN constructed using as the ba-
sis the MO formulation may involve solutions from varying
fitness classes, thus connecting the corresponding NNs. Con-
sider two NNs, NN; and NN,, such that the fitness of NN; is
Fitness(NNp) = A and the fitness of NN, is Fitness(NN,) = B,
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Figure 15: Neutral network size ratio (NSR). 3d1 test instance.

A # B. If, as a result of using the MO formulation, at least
a solution x; from NN; comes to be neutral with respect to a
neighboring solution x, which belongs to NN,, then this neu-
tral connection between NN; and NN, will merge the two NN
together into a single NN where both the fitness classes A and
B are represented. To further illustrate these ideas, refer to the
example provided in Figure 16. This figure presents a series
of neutral moves between neighboring solutions, i.e., a neu-
tral walk, based on the MO formulation. The neutrality that
the MO formulation introduced between these solutions led to
the formation of neutral connections between three different
NNs: NN(x;) at fitness class 5, NN(X,, X3) at fitness class 4 and
NN(x4) at fitness class 6. The four solutions X, X5, X3 and X4,
and all solutions belonging to their respective NNs, became part
of a single larger NN as a consequence of multi-objectivization.

From the above introduced notion of neutral connections,
it becomes relevant for this study to investigate the extent to
which neutral connections took place, between the different fit-
ness classes, during the performed sampling of NNs. Figures
17 and 18 summarize the results obtained for the 2d4 and 3d1
instances. The NNs constructed for each fitness class ¢ were
analyzed (i.e., c is the fitness of the initially given solution for
the NN computation), and these figures indicate whether neu-
tral connections were identified between these NNs and NN at
each other possible fitness class ¢’. The total number of neutral
connections found of each type, if any, is shown in parentheses.
Diagonals in Figures 17 and 18 are used only as a reference
(i.e., all NNs connect to themselves at their corresponding fit-
ness classes) to illustrate the single-objective case, so that all
other connections not appearing along the diagonal are due to
the landscape transformation. As an example, Figure 17 in-
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Figure 16: Neutral walk, based on the MO formulation, from a solution x
with Fitness = 5 to a solution x4 with Fitness = 6. The connection of x; and
X4 was possible by traversing inferior solutions x, and x3 with Fitness = 4.
Neutral connections were formed between NNs at fitness classes 5, 4 and 6,
leading to a single NN. The objective values, obtained by means of the LD
multi-objectivization (6 = 7), are presented for each solution.

dicates (regarding sequence 2d4) that, out of the 118 sampled
NN for fitness class 1, only 16 formed neutral connections to
NN at fitness class 6. Through these figures it is then possible
to gain an insight into the diversity of fitness classes that a NN,
computed based on the MO formulation, may involve. Figures
17 and 18 highlight that a significant number of neutral con-
nections were originated by multi-objectivization. On the one
hand, NNs from fitness classes 2 to 6 of instance 2d4 presented
neutral connections to all fitness classes between 1 and 7 (at
least one connection in each of the cases can be observed from
the plot). Note also that only a few neutral connections, all of
them to inferior fitness classes, were produced from NNss at fit-
ness classes 7 and 8. No NN at fitness class 9 connected to oth-
ers. On the other hand, a higher number of neutral connections
were generated with regard to the 3d1 test instance. As it can be
seen from Figure 18, connections were established, in one di-
rection or the other, between almost all pairs of fitness classes.
That is, even though the NNs computed for fitness classes 2 to
5 did not form connections to fitness class 11, multiple connec-
tions from class 11 to all such lower fitness classes were created.
This points out the fact that inferior fitness classes are easier to
reach than the superior ones (because of the funnel-like search
landscape that characterizes the studied problem [77]).

A neutral connection from a fitness class c to a fitness class ¢’
indicates that, given an arbitrary solution x with Fitness(x) = c,
a neutral walk departing from x could potentially lead to a so-
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Figure 18: Neutral connections formed between fitness classes. 3d1 instance.

lution X’ with Fitness(x’) = ¢’. Nevertheless, as Figures 17 and
18 suggest, the more distant the fitness classes ¢ and ¢’, the
lower the likelihood that these classes can connect to each other
through a neutral walk (in the plots, higher number of neutral
connections are shown closer to the diagonal). Such a behavior
is certainly accentuated if the length of the walks is bounded
(as done in this study with the use of parameter maxDepth).
In addition, although (relatively) distant fitness classes can di-
rectly connect to each other, i.e., in a single step of the neutral
walk, the increase in the fitness distance between a pair of so-
lutions decreases the probability for these solutions to become
incomparable after multi-objectivization, as analyzed at the end
of Section 4.2. Thus, the connection between distant fitness
classes is more likely to occur through a series of intermedi-
ate states. This point can be better explained by considering
Figure 19. Taking as examples the fitness class 5 for instance
2d4 and fitness class 10 for instance 3d1, this figure illustrates
how the neutral connections to the different fitness classes arose
as each allowed depth level was reached during the NNs com-
putation.!® The mean depth level at which connections to the
different fitness classes were produced is also provided. It is
possible to see from the plots that neutral connections to differ-
ent fitness classes were given directly at depth level 1. Classes
{2,3,4, 6} were directly connected from NN at fitness class 5
of instance 2d4. Similarly, classes {4,6,7,8,9, 11} were con-
nected in a single step from NNs at fitness class 10 of instance
3d1. Note, however, that the mean depth level values in these
plots confirm the above suggested tendency, that the distance

13Similar results to those presented in Figure 19 were obtained for the differ-
ent fitness classes of the considered test instances.
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Figure 19: Neutral connections generated in relation to the depth levels reached
during the NNs computation. Fitness class 5 of instance 2d4 (left) and fitness
class 10 of instance 3d1 (right). Connections to the respective fitness classes (5
and 10) occurred at depth level O (starting point of the NN exploration).

between fitness classes is closely related to the number of neu-
tral steps that will be usually required to connect different NNs.

Finally, it is important to address the question of how the for-
mation of neutral connections may impact on the behavior of
a search algorithm. As it has been seen, multi-objectivization
can affect the neutrality relation for a given solution x in two
possible directions: (i) x becoming neutral with respect to an
inferior solution, i.e., connection to a lower fitness class; or (ii)
x becoming neutral with respect to a superior solution, i.e., con-
nection to a higher fitness class. In the former scenario, multi-
objectivization can be thought of as enhancing the mobility of
the search algorithm. By connecting to lower fitness classes,
the algorithm is allowed to traverse landscape areas which were
originally inaccessible under the conventional SO evaluation
scheme. In the neutral walk illustrated in Figure 16, for ex-
ample, to move from fitness class 5 (x;) to fitness class 6 (x4) it
was required to accept a degrading move to fitness class 4 (x;
and x3). In this way, the movement through inferior solutions
constitutes the basis for a potential strategy to escape from lo-
cal optima. It should be noted, therefore, that the design of the
search algorithm will play a critical role for achieving success
through the problem transformation. The new defined neutral
paths can only be exploited if the algorithm is designed so as
to accept moves between neutral solutions (or, in the words of
Barnett, if the algorithm is able to crawl the NNs [80]). The
formation of neutral connections to superior fitness classes, the
later scenario, can be analyzed from two different perspectives.
On the one hand, these connections (indeed all neutral connec-
tions in general) reduce what is called selective pressure in the
context of evolutionary optimization [81], which can boost the
exploration behavior of an algorithm. On the other hand, neu-
tral connections to superior fitness classes can be interpreted
as a loss in gradient information. Rather than benefiting from
multi-objectivization, for instance, a search algorithm based on
a strictly-better acceptance criterion could easily stagnate due
to its inability to perform a proper discrimination. By relax-
ing the comparability relation among solutions, thus, multi-
objectivization may also hinder the ability of an algorithm to
identify a promising search direction.
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Table 3: Results scored by the (1+1) EA when using the studied SO, PD, LD
and HD formulations. Two-dimensional test cases.

SO PD LD HD

Seq. E,(vv E E,(vv E E,(vv E E,(vv E
2d1 4(4) 2.7 -4(6) -2.7 -4(3) 2.7 -4(4) -2.8
2d2 -8(19) -6.9 -8(32) -72 -8(35 -13 -8(94) -1.9
2d3 -8(16) -7.1 -8(62) -7.6 9@3) 15 9(62) -8.6
2d4 9(9) -7.0 9(9) -73 9(16) -7.6 -9 (66) -8.6
2d5 9@3) 7.0 -102) -72 9(1) 7.1 -10(4) -7.9
2d6 -8(16) -6.9 9(1) -6.9 9(3) 14 9(@8) -715
2d7 7(32) -59 -8(6) -6.0 -8(8) -6.3 -8(26) -6.8
2d8 -13 (1) -10.0 -13(1) -10.4 -13(5) -10.8 -13(1) -11.3
2d9 18 (6) -14.4 -19 (3) -15.7 21(1) -16.7 21 (3) -18.6
2d10 -18(2) -13.9 -18 (1) -14.2 -19(1) -15.5 220 (1) -17.1
2d11 230 (2) -24.6 -32 (1) -26.0 -33(1) -28.3 -33(3) -30.3
2d12 229 (1) -24.2 230 (1) -25.5 -32(1) -27.1 -32(7) -29.2
2d13 41 (1) -34.1 -42 (1) -35.1 -44 (1) -38.6 47 (1) -41.6
2d14 41 (1) -31.3 -39 (4) -33.0 -39 (4) -35.4 -43(2) -37.6
2d15 -40 (1) -31.9 -40 (3) -33.4 42 (1) -35.8 -40 (19) -38.3
O-RMSE 31.28% 28.60% 25.12% 19.12%

5. Search performance

The aim of this section is to investigate the influence that
multi-objectivization can exert on the search behavior of meta-
heuristic algorithms. To this end, the three studied multi-
objectivization schemes, based on the parity (PD), locality (LD)
and H-subsets (HD) decompositions, are evaluated and com-
pared with respect to each other and with respect to the con-
ventional single-objective (SO) formulation of the HP model.
A basic single-solution-based evolutionary algorithm (EA), the
so-called (1+1) EA, has been adopted for this sake.

All the implementation details of the (1+1) EA, as well as
all the considered settings for the experiments reported in this
section, are presented in Appendix B.l. In the (1+1) EA, the
discrimination among candidate individuals can be either based
on the conventional energy evaluation of the HP model, when
using the SO formulation, or it can be based on the Pareto-
dominance relation if using the alternative PD, LD and HD
multi-objective formulations. Hence, the change in the prob-
lem formulation will be determinant for the performance of this
algorithm. Details on the used test instances, performance mea-
sures, the statistical significance testing methodology and the
utilized experimental platform are provided in Appendix A.

Tables 3 and 4 detail the results that the four studied HP
model formulations obtained for all two- and three-dimensional
test instances. For each instance, these tables show the best ob-
tained energy value (E}), the number of performed executions
where this solution was found (v) and the arithmetic mean (E).
Also, the overall relative root mean square error (O-RMSE)
is presented at the bottom of the tables in order to evaluate
the general performance of the different formulations analyzed.
Additionally, the lowest average energy for each of the in-
stances and the lowest O-RMSE values have been shaded in
these tables. As shown in Table 3, HD reached the best average
performance for all the 15 two-dimensional instances. This is
reflected as an O-RMSE decrease of (31.28 — 19.12) = 12.16%
with respect to the conventional SO formulation of the HP



Table 4: Results scored by the (1+1) EA when using the studied SO, PD, LD
and HD formulations. Three-dimensional test cases.

SO PD LD HD

Seq. E,(vv E E,(vv E E,(vv E E,(vv E
3d1 -11 (65) -10.6 -11(87) -10.8 -11(99) -11.0 -11 (100) -11.0
3d2 -13(28) -11.6 -13 (50) -12.1 -13(89) -12.9 -13 (100) -13.0
3d3 9(71) -8.7 9(77) -88 -9(96) -9.0 -9 (100) -9.0
3d4 -18 (12) -15.4 -18 (23) -16.2 -18 (68) -17.4 -18 (88) -17.8
3d5 230 (2) -24.4 230 (2) -25.9 -33(1) -28.6 31(2) 285
3d6 229 (2) 232 229 (3) -24.8 231(1) -27.6 230 (1) -27.3
3d7 -25(6) -21.1 227 (1) -22.9 229 (1) -25.3 29 (1) -24.8
3d8 235 (1) 277 236 (1) -30.1 238 (1) -33.6 35 (6) -32.6
3d9 -48 (1) -38.1 48 (1) -41.1 -47 (8) -44.7 49 (1) -45.0
3d10 -45 (1) -36.2 46 (2) -38.8 50 (2) -45.5 48 (3) -43.3
3di11 -40 (1) -31.0 42 (1) -33.7 -41 (3) -37.9 -40 (2) -36.9
3d12 -48 (2) -37.3 -54(1) -41.4 -53 (3) -48.5 =50 (1) -45.3
3d13 -41 (1) -30.7 42 (1) -32.5 -43(1) -371 -40 (2) -36.3
3d14 48 (1) -35.5 48 (4) -38.3 -52(1) -46.4 48 (2) -43.4
3d15 -51(2) -38.6 -53 (1) -44.0 -59 (1) -50.3 -56 (1) -48.7
O-RMSE  3321% 28.66% 20.85% 21.66%

Table 5: Statistical analysis for comparing the performance of the (1+1) EA
when using the four studied HP model’s formulations.

Two-dimensional instances Three-di ional instances

Sm=aen T S=alen W

Rl Kar B T BN el ol e e B e e B B e B B s L £ BN~ e ol W e B B B e

CTTTTTTTTTT T T TTT SEETTT RS T R R TS T
ANAAQAAAAQAQAQAAAAA mmmnmmmanmmmnnmama Overall
PD/SO + + ++ +++++ ++ A+ A+ 2340
LD/SO +++ ++++++++++ A+ 2840
HD/SO ++++++++++++++ A+ 2940
LD/PD ++++++++++ +++FH A+ + 25+ 0-
HD/PD ++++++++++++ A+ A+ 2940
HD/LD ++++ ++++ A+ +++ —=-= = 16+ 9—
model. It can also be noted that LD and PD presented a

lower average energy than SO in all the cases, improving the
O-RMSE measure by 6.16% and by 2.68%, respectively. The
LD formulation achieved the lowest average energy for 12 out
of the 15 three-dimensional instances, see Table 4. The best
results for the remaining test instances were obtained by using
HD. In general, the results of the PD, LD and HD formulations
are found to be quite competitive. These approaches improved
the O-RMSE measure by 4.55%, 12.36% and 11.55% with re-
spect to the SO formulation, respectively.

Table 5 outlines how the four studied formulations compare
statistically with respect to each other in all the test cases.
Each row in this table compares two formulations, say A and
B, which is denoted as “A/B”. If a significant performance
difference exists between A and B for a particular instance,
the corresponding cell is marked either + or — depending on
whether such a difference was in favor of, or against A. Empty
cells indicate that there was not a statistically important differ-
ence between the compared approaches. The rightmost column
presents the overall results of this analysis. Out of a total of 30
instances, it can be seen from Table 5 that the multi-objective
PD, LD and HD approaches significantly outperformed the con-
ventional SO formulation of the HP model in 23, 28 and 29
of the cases, respectively. By comparing among the multi-
objective formulations, the results of LD for 25 of the instances
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Figure 20: Online performance scored in a single execution of the (1+1) EA
when using the SO and LD formulations. Two-dimensional 2d4 test instance.
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Figure 21: Online performance scored in a single execution of the (1+1) EA
when using the SO and LD formulations. Three-dimensional 3d1 test instance.

were statistically superior to those obtained by PD. Compared
with respect to PD, HD significantly increased the performance
of the algorithm for all but one of the test sequences (2d1). Fi-
nally, HD was found to perform significantly better than LD in
16 of the instances, while there was a significant difference in
favor of LD for 9 of the three-dimensional test cases.

Finally, the LD formulation is used as an example in order to
illustrate how multi-objectivization affects the search behavior
of the (1+1) EA. Plots in Figures 20 and 21 contrast the online
(throughout the search) performance scored by the SO and LD
formulations during a single execution of the (1+1) EA when
solving, respectively, instances 2d4 and 3d1. Adhering to the
notation used previously in Section 4, performance is measured
as the fitness class of the current individual at each iteration of
the algorithm.'* Notice that these figures cover only the first
stages of the search process, where the algorithm reached the
optimum solution of the considered test instances by using LD
(fitness class 9 for instance 2d4 and fitness class 11 for instance
3d1). By focusing first on the convergence behavior achieved
through the use of the conventional SO formulation, it is pos-
sible to observe from the plots that the algorithm exhibits the
punctuated equilibrium that characterizes evolutionary dynam-
ics on neutral fitness landscapes [82]. Such a behavior presents
long periods of stasis in which the algorithm drifts along neu-
tral networks, thus remaining in the same fitness class, punc-
tuated by occasional transitions between networks [83]. As
shown in the plots, the algorithm scored a similar behavior ei-
ther using the SO or LD formulations at the beginning of the

14 A5 it was defined in Section 4, Fitness(x) = HHtc(x) = —E(X).



search process (both the SO- and LD-based executions started
from the same initial randomly generated individual). It can be
noted, however, that the neutrality (incomparability) introduced
through the use of the LD formulation, as analyzed in Section
4, allowed the algorithm to accept degrading moves towards in-
ferior fitness classes (in the figures, such degrading moves are
shown as decreases in the corresponding LD curves). It is im-
portant to emphasize that such degrading moves were perceived
as neutral moves from the perspective of the search algorithm.
That is, each accepted degrading move represents the move-
ment towards an individual that, despite having a lower fitness
value, became part of the neutral network of the parent individ-
ual from which it was generated due to the problem transfor-
mation. The new defined neutral paths enhance exploration and
eventually lead the algorithm to escape from local optima.

6. Discussion and final remarks

Multi-objectivization concerns the reformulation of a single-
objective problem as a multi-objective one [1]. When applied
to the particular case of study of this research project, the HP
model for protein structure prediction, it has been reported that
this transformation provides significant improvements in terms
of the performance of search algorithms [37-39]. Motivated
from these previous findings, the multi-objectivization of the
HP model has been further investigated in this study.

This study has been divided into two main parts. The first
part was devoted to address the primary aim of this study: to
inquire into the potential effects of multi-objectivization as a
means of understanding how this transformation can influence
the behavior of search algorithms. When multi-objectivization
is achieved through the decomposition of the original objective
function of the problem, as considered in this study, incompa-
rability among solution candidates can be introduced [4]. That
is, originally comparable solutions may become incomparable
when evaluated under the new multi-objective formulation of
the problem. As a first step in understanding and quantifying
such an effect, it was explored the extent to which incompara-
bility may arise between the different fitness classes. To this
end, a large set of sampled solution pairs were evaluated, out of
which a considerable number became incomparable as a con-
sequence of the multi-objectivization. It was also found that
the more distant the fitness classes for a given pair of solutions,
the lower the likelihood that the comparability relation between
these solutions can be affected by multi-objectivization.

Introducing incomparability among solutions can be alter-
natively understood as the increase in the neutrality of the fit-
ness landscape. Therefore, a detailed fitness landscape analysis
was conducted in order to investigate how multi-objectivization
has impacted on such an important problem characteristic. A
large number of neutral networks (NNs) were sampled, and
the main findings of their analysis can be summarized as fol-
lows. By rising the neutrality degree of solutions, multi-
objectivization led to the formation of neutral connections be-
tween NNs from different fitness classes. That is, when origi-
nally comparable neighboring solutions become incomparable
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by multi-objectivization, their corresponding NNs are merged
together into larger connected neutral areas of the landscape.

The aforementioned effects of multi-objectivization may lead
to different implications from the perspective of a search algo-
rithm. On the one hand, introducing neutrality in the fitness
landscape can be reflected as an enhancement in the exploration
behavior of the algorithm. That is, by reducing the so-called
selective pressure [81], an algorithm can be allowed to move
through inferior fitness classes as a means of escaping from lo-
cal optima. On the other hand, the increase in neutrality can
also be understood as a loss in gradient information, so that
multi-objectivization may also prevent algorithms from identi-
fying promising search directions in some cases.

Understanding the potential effects and consequences of
multi-objectivization could lead to the design of more effective
search algorithms. To the best of the authors’ knowledge, in
most of the reported applications of multi-objectivization the
original evaluation scheme of the problem is completely re-
placed by the alternative multi-objectivized one. This corre-
sponds also to the approach assumed in the second part of this
study, as it will be discussed later in this section. While the
complete replacement of the evaluation scheme has reported
very promising results in the literature, the above presented
analysis suggests that a better strategy may involve applying
multi-objectivization only under certain conditions during the
search process; e.g., when stagnation at a local optimum has
been detected. Such a strategy could benefit from the poten-
tial effects of multi-objectivization as a means of escaping from
local optima, at the same time that the gradient information is
preserved in order to drive the search process in an effective
manner. In the context of the HP model for protein structure
prediction, a high degree of neutrality is inherently induced by
the conventional evaluation scheme, as it was observed along
the conducted analysis. Thus, another interesting approach may
consist of alternating the use of multi-objectivization with the
use of some other alternative formulation specifically designed
to cope with the neutrality of the problem; such as those eval-
uated in [84]. Exploring these kind of strategies related to the
partial (rather than total) use of multi-objectivization is consid-
ered as a possible direction for future research.

The second part of this study revisited the evaluation
of multi-objectivization from the perspective of search per-
formance, as reported in [37-39]. Three different multi-
objectivization schemes for the HP model were compared and
evaluated with respect to the conventional single-objective for-
mulation of the problem. A basic (1+1) evolutionary algorithm
was considered in this analysis. As a result, it has been found
that the use of the alternative multi-objective formulations of
the problem significantly increased the average performance of
the implemented algorithm in most of the conducted experi-
ments. The obtained results give further support to the suit-
ability of multi-objectivization as a strategy to overcome search
difficulties such as that of becoming trapped in local optima.

To the best of the authors’ knowledge, the multi-
objectivization approaches evaluated in this study represent the
first efforts on the use of multi-objective optimization tech-
niques to address the HP model of the protein structure predic-



tion problem. In addition, no previous work has been reported,
as far as the authors are aware, where the potential effects of
multi-objectivization are investigated through the explicit sam-
pling and evaluation of the characteristics of the fitness land-
scape. The conducted analysis focused on neutrality. Extending
this analysis to evaluate the problem transformation from the
perspective of other different landscape properties, e.g., rugged-
ness [85], can certainly be seen as a relevant research direc-
tion that will contribute to build a more comprehensive pic-
ture. Although the performed analysis was applied to a par-
ticular case of study, most of the findings regarding the fitness
landscape transformation can be generalized to other problem
domains. In this way, using the HP model as an example, this
study is expected to contribute to the general understanding of
multi-objectivization, a concept which represents a current and
promising research direction.

Appendix A. Performance assessment

Appendix A.l. Test instances

A total of 30 well-known benchmark sequences for the HP
model have been considered for the experimentation of this re-
search project. Out of them, 15 are for the two-dimensional
square lattice and the other 15 are for three-dimensional cubic
lattice. Tables A.6 and A.7 present the full HP sequences, their
length (£) and the optimal or best known energy value (E*) re-
ported in the literature [59, 60, 66, 86—88].

Appendix A.2. Performance measures

Although alternative (multi-objectivized) formulations of the
HP model are analyzed in this study, it is important to remark
that the goal remains always to solve the original problem.
Thus, the experimental results presented in Section 5 are eval-
uated in terms of the conventional energy function of the HP
model defined in Section 2.4. Additionally, the overall relative
root mean square error, O-RMSE measure has been adopted
in order to assess the overall performance of the studied ap-
proaches. Before introducing the O-RMSE measure, the rela-
tive root mean square error for a given test instance #, RMSE(?),
can be formally defined as follows:

1 & (E () - E*(1)\
7?2( E(1) )

r=1

RMSE(#) = 100% (A1)

where E,(f) denotes the energy of the best solution found dur-
ing a particular execution r, R is the total number of performed
executions, and E*(¢) is the optimal (or best known) energy
value for instance 7. Thus, RMSE expresses the performance
of the evaluated approaches in a 0% to 100% scale, being
RMSE(#) = 0% the preferred value for this measure.

Finally, O-RMSE is defined as the arithmetic mean of the
RMSE computed over all the considered instances. Formally,

1
O-RMSE = — RMSE(), A2
77 2, RMSE(® (A2)

teT”
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Table A.6: Test instances for the two-dimensional square lattice.

Sequence I3 E*
2d1 H,PsH,P;HP;HP 18 -4
2d2 HPHPH;P;H,P,H, 18 -8
2d3 PHP,HPH;PH,PH; 18 -9
2d4 HPHP,H,PHP,HPH, P, HPH 20 -9
2d5 H;P,HPHPHP,HPHPHP,H 20 -10
2d6 H,P,HP,HP,HP,HP,HP,HP,H, 24 -9
2d7 P,HP,H,PsH,P,H,PsH; 25 -8
2d8 Ps;H,P,H,PsH;P,H,P,H,P,HP, 36 -14
2d9 P,HP,H,P,H,PsH P H, P, H, P, HP, Hs 48 23
2d10 H,(PH), H3P(HP; )3 (P3 H); PH, (PH), H 50 21
2d11 P,H;PHyP;H,oPHP; H,,P,HsPH, PHP 60 36
2d12 H,,PHPH(P,H,P,H,P,H); PHPH 64 42
2d13 H,P4H,,Pg(H),P3 )3 HP, H, P, H, P, HPH 85 -53
2d14 PsHPH, PsH;PHsPH,P,H,P,H,PHsPH o 100 48

PH,PH,P,,H;P,HPH3;PcHPH,
2d15 Ps;H,P,H4P,H;PH, PH, PHsPsHs P, He Pg 100 -50

HPH,PH,,P,H;PH, PHP,HPH3;PcH3

Table A.7: Test instances for the three-dimensional cubic lattice.

Sequence 14 E*
3d1 HPHP,H,PHP,HPH,P, HPH 20 -11
3d2 H,P,HP,HP,HP,HP, HP,HP, H, 24 -13
3d3 P,HP,H,PsH,P,H,PsH; 25 -9
3d4 Ps;H,P,H,PsH;P,H,P,H, P, HP, 36 -18
3ds P,H;PH;P;HPH,PH,P,HPH,PHP,HsPHPH, P, H, P 46 -35
3d6 P,HP,H,P,H,PsH PsH, P> H, P, HP, Hs 48 31
3d7 H,(PH)4H3P(HP3);(P3H);PH4(PH),H 50 -34
3d8 PH(PH;),P(PH, PH), H(HP); (H,P,H), 58 44

PHP4(H(P,H)2)>
3d9 P,H;PHgP;H,,PHP;H,,P,HsPH, PHP 60 -55
3d10 H,,PHPH(P,H,P,H,P,H); PHPH,, 64 -59
3d11 P(HPH,PH,PHP,H3P3);(HPH);P,H3 P 67 -56
3d12 P(HPH);P,H,(P,H)¢H(P>H3)4P>(HPH)3 88 =72

P,HP(PHP,H,P,HP),
3d13 P,H,PsH,P,H,PHP,HP;HP3;H, PH, PsHP, HP 103 -58

HP,HPsH3P,H,PH,PsH,P,HsPHPgHsP, HP,
3d14 Ps;H3;PHP,HPsH,PsH,P,H,(PsH), 124 -75

P,HP,H,P;H, PHPH; P, H;P¢H, P>

HP,HPHP,HP, HP,H;P,HP;HsP4H, (PH),
3d15 HPsHP4HPH,PH,PsHPH3;P,HPHPH,P; 136 -83

HP,HP;HPH,P;H,P, HP, HPHPHP; HP;
HePsH,P,H;P;H,PHsPoHP, HPHP,

where 7 is the set of all test instances. Thus, O-RMSE = 0%
suggests the ideal situation where the optimal solution for each
instance was reached during all the performed executions.

Appendix A.3. Statistical significance analysis

The statistical significance analysis was conducted as fol-
lows. First, D’Agostino-Pearson’s omnibus K? test was used
to evaluate the normality of data distributions. For normally
distributed data, either ANOVA or the Welch’s t parametric tests
were used depending on whether the variances across the sam-
ples were homogeneous (homoskedasticity) or not. This was
investigated using the Bartlett’s test. For non-normal data, the
nonparametric Kruskal-Wallis test was adopted. Finally, a sig-
nificance level of @ = 0.05 has been considered.

Appendix A.4. Experimental platform

The algorithms implemented in this study were coded in
ANSI C and compiled with gcc using the optimization flag



-03. All experiments performed were run sequentially on
the Neptuno cluster at the Information Technology Laboratory,
CINVESTAV-Tamaulipas. This cluster is equipped with 10 In-
finiBand interconnected nodes, each of which features 8 cores
running at 2.66 GHz, has a total of 16 GB of RAM, and uses
the CentOS distribution of the Linux operating system.

Appendix B. Algorithms

Appendix B.1. (1+1) evolutionary algorithm

The so-called (1+1) evolutionary algorithm is described in
Algorithm 3. First, an initial parent individual x is generated
at random. At each generation, an offspring X’ is created by
randomly and independently mutating x at each encoding po-
sition with probability p,. The new individual X’ is rejected
only if it is strictly worse than the parent individual x, other-
wise X’ is accepted as the starting point for the next generation.
Such an acceptance criterion can be either based on a single-
objective discrimination between x and x’, or it can be based
on the Pareto-dominance relation when implementing a multi-
objective formulation of the problem.

Algorithm 3 Basic (1+1) evolutionary algorithm.

choose x € X uniformly at random

1:

2: repeat

3 X'« mutate(X)

4:  if X’ not worse than x then
5 X « X

6 end if

7:

until < stop condition >

In this algorithm, individuals encode protein conformations
using an internal coordinates representation based on absolute
moves, see Section 2.4. In mutation, each encoding position is
randomly and independently perturbed with probability p,,. In
all the cases, this probability is fixed to p,, = ﬁ, where £ — 1
denotes the length of the individuals encoding. A maximum
number of 5 10° solution evaluations was adopted as the stop-
ping condition and a total of 100 independent executions were
performed for all two- and three-dimensional instances. Finally,
it is important to remark that only individuals encoding feasible
conformations are considered during the search process; once
mutation is to be applied to a particular encoding position, all
possible perturbations to this position are explored in random
order until a feasible conformation is obtained. If no change in
this position leads to a feasible conformation, the original value
is restored (infeasible offspring are rejected without consuming
objective function evaluations). The initial feasible individuals
are generated using a backtracking procedure reported in [89].

The LD and HD formulations are sensitive to the adjustment
of some parameters. As pointed out in Section 3.2, the dis-
tance parameter ¢ of the LD formulation has been found in the
authors’ previous work to provide the best performance at low
values around 7 [38]. Thus, the value of this parameter was set
to & = 7 for the analysis here presented. Similarly, an important
issue for the HD formulation is how the H-subsets formation
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process is carried out. The DYNj strategy, with k = 30, was
considered in this study given the results reported in [39].

Appendix B.2. Iterated local search algorithm

Algorithm 4 outlines the general structure of a basic iterated
local search (ILS) algorithm. The algorithm starts with a ran-
domly generated conformation, denoted as x. Then, a local
search strategy (embedded heuristic) is applied to x until a local
optimum x* is found. At each iteration, a perturbation x’ of the
current local optimum x* is obtained and used as the starting
point of another round of local search. After each local search,
the new local optimum solution found x"* may be accepted as
the new incumbent solution x*, based on a given acceptance
criterion. This is repeated until a given stop condition is met.

Algorithm 4 Iterated local search (ILS).

1: choose x € X uniformly at random
X" « LocalS earch(x)
repeat

X'« Perturbation(x*)

X" « LocalS earch(x’)

X* « AcceptanceCriterion(x*,x’")
until < stop condition >

A

Three main components, which determine the behavior of
an ILS algorithm, have to be defined: (i) the embedded local
search heuristic; (ii) the perturbation strength; and (iii) the ac-
ceptance criterion. A best improvement local search algorithm
was used as the embedded heuristic, and basic settings for the
perturbation strength and acceptance criterion were adopted ac-
cording to the authors’ previous work reported in [84].
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