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Abstract. This work is dedicated to a study of the NP-hard Cyclic
Bandwidth Problem with the paradigm of memetic algorithms. To find
out how to choose or design a suitable recombination operator for the
problem, we study five classical permutation crossovers within a basic
memetic algorithm integrating a simple descent local search procedure.
We investigate the correlation between algorithmic performances and
population diversity measured by the average population distance and
entropy. This work invites more research to improve the two key com-
ponents of the memetic algorithm: reinforcement of the local search and
design of a meaningful recombination operator suitable for the problem.
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1 Introduction1

The Cyclic Bandwidth Problem (CBP) is a typical graph labeling problem, which2

was introduced in [14] in the context of designing a ring interconnection network.3

CBP involves finding a disposition of computers on a cycle to make sure that the4

intercommunication information reaches its destination within at most k steps.5

The decision version of the problem is known to be a NP-complete problem [15].6

In addition to network design, CBP has other relevant applications in very-large-7

scale integration design [3] and data structure representation [25].8

CBP can be stated formally as follows: let G(V,E) be a finite undirected9

graph and Cn a cycle graph, where V (|V | = n) is the set of vertices (or nodes)10

and E ⊂ V ×V is the set of edges. Given a bijection (or arrangement) φ : V → V11

which represents an embedding of G in Cn, the cyclic bandwidth (the cost) of φ12

for G is defined as,13

BC(G,φ) = max
(u,v)∈E

{|φ(u)− φ(v)|n}, (1)

⋆ Corresponding author: jin-kao.hao@univ-angers.fr
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where |x|n = min{|x|, n − |x|} (1 ≤ |x| ≤ n − 1) is called the cyclic distance,14

and φ(u) denotes the label associated to vertex u. The goal of CBP is to find an15

arrangement φ∗ with minimal BC(G,φ∗).16

As a well-known meta-heuristic framework [12,17], memetic algorithms (MAs)17

have been widely used to solve a large number of NP-hard problems [5, 11, 13,18

28, 29]. For permutation problems, MAs have also reported good performances19

for the Traveling Salesman Problem (TSP) [8, 16], the Quadratic Assignment20

Problem [2], and other bandwidth problems [1, 20].21

Despite the theoretical and practical relevance of CBP, few studies can be22

found in the literature for solving the problem. A branch and bound algorithm23

was presented [24] to handle small graphs (n < 40). A tabu search algorithm was24

proposed [23] to deal with standard and random graphs with 8 to 8192 vertices.25

Very recently, an iterated three-phase search approach [19] was introduced and26

improved a number of previous best results reported in [23]. To our knowledge,27

the memetic approach has never been experimented to solve CBP in the liter-28

ature, though MAs have been applied to other labeling problems such as the29

cyclic bandwidth sum problem [22] and the antibandwidth problem [20]. This30

work fills the gap by investigating the memetic approach for CBP. In particular,31

we focus on the role of the recombination or crossover (used interchangeably in32

this paper) component and study the contributions of five permutation recom-33

bination operators which are conveniently applicable to CBP. To highlight the34

impacts of the studied recombination operators, we base our study on a canon-35

ical memetic algorithm which combines a recombination operator for solution36

generation and a simple descent local search for solution improvement.37

2 Memetic Algorithm for CBP38

2.1 Search Space, Representation, Fitness Function39

Given a graphG = (V,E) of order |V | = n and a cycle graph Cn, the search space40

Ω for the CBP is composed of all possible embeddings (labellings, solutions or41

arrangements) of G in Cn, φ : V → V . Considering the symmetry characteristic42

of solutions, there exist (n− 1)!/2 possible embeddings for G [23].43

Figure 1 shows a graph with 6 vertices named from ‘a’ to ‘f’ (Fig. 1(a)).44

According to Equation (1), the objective value of Fig. 1(b) is 3 (decided by45

the longest edge ‘dc’ in the example). An embedding arranged in a cycle graph46

(Fig. 1(b)) where the numbers in red are the labels assigned to the vertices,47

and two embeddings where the vertices are rearranged in the cycle graph in48

clockwise direction (Fig. 1(c)) and in anticlockwise direction (Fig. 1(d)). Notice49

that the relative position of each pair of nodes in Fig. 1(b)-1(d) is not changed.50

So according to Equation (1), these three embeddings have the same objective51

value, and in fact they correspond to the same solution.52

In practice, we represent an embedding φ by permutations l = {1, 2, . . . , n}53

such that the i-th element l[i] denotes the label assigned to vertex i of V . Another54

representation of an embedding is proposed in [21], which maps a permutation55
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(a) Original graph G (b) An embedding on
cycle graph

(c) Clockwise rotation (d) Anticlockwise rota-
tion

Fig. 1. Illustration of a graph (a) with an embedding (b) and two equivalent symmetric
embeddings (c) and (d)

φ to an array γ indexed by the labels. The i-th value of γ[i] indicates the vertex56

whose label is i. We illustrate these representations with an example. For the57

embedding of Fig. 1(b), we have φ=(1 2 3 6 4 5) for the vertices from ‘a’ to58

‘f’, and the corresponding γ representation is γ=(a b c e f d). In our algorithm,59

the φ representation is used in the local search procedure, because it eases the60

implementation of the swap operation, while the γ representation is adopted61

for the recombination operators, as well as the distance calculation presented in62

Section 5. The fitness of a candidate embedding φ in the search space is evaluated63

by Equation (1).64

2.2 General procedure65

The studied MA follows the general MA framework in discrete optimization [10].66

Staring with an initial population (Section 2.3), it alternates between a local67

search procedure (Section 2.4) and a recombination procedure (Section 2.5). The68

pseudo-code of the proposed MA is presented in Algorithm 1. The algorithm first69

fills the population P with |P | local optimal solutions provided by the local search70

procedure and then performs a series of generations. At each generation, two71

parent solutions φF and φM are selected at random from the population and are72

recombined to generate an offspring solution φC . Then, the local search is used to73

improve the offspring solution to attain a new local optimal solution. Finally, the74
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improved solution is used to update the population (Section 2.6). This process75

is repeated until a fixed number of generations (MaxGene) is reached.76

Algorithm 1 Pseudo-code of general procedure

1: Input: Finite undirected graph G(V,E), fitness function BC , fixed size of population
|P | and maximum generations MaxGene

2: Output: The best solution found φ∗

3: P = {φ1, φ2, ...φ|P |} ← Init Population()
4: φ∗ ← Best(P )
5: for i = 1 to |P | do
6: φi ← Local Search(φi)
7: if BC(G,φi) < BC(G,φ∗) then
8: φ∗ ← φi

9: end if
10: end for
11: for j = 1 to MaxGene do
12: φF , φM ← Parent Selection(P )
13: φC ← Recombination Sol(φF , φM )
14: φC ← Local Search(φC)
15: if BC(G,φC) < BC(G,φ∗) then
16: φ∗ ← φC

17: end if
18: P ← Update Pop(φC , P )
19: j ← j + 1
20: end for
21: return φ∗

2.3 Initialization77

In the initialization procedure (Ini Population), |P | embeddings are generated78

randomly and independently at first. And then each embedding is improved by79

the local search procedure of Section 2.4 to attain a local optimum (lines 5-10,80

Alg. 1). The best solution φ∗ in P is also recorded, which is updated during the81

subsequent search, each time an improved best solution is encountered.82

2.4 Local search83

Local search (LS) is an important component of the memetic algorithm, which84

aims to improve the input solution by searching a given neighborhood. In this85

work, we apply a simple Descent Local Search (DLS) in order to highlight the86

contributions of the recombination component.87

DLS adopts the swap-based neighborhood of [23], where a neighboring so-88

lution of a given solution φ is obtained by simply swapping the labels of two89

vertices of φ. To specify the neighborhood, we first define, for a vertex u, its90

cyclic bandwidth BC(u, φ) with respect to the embedding φ as follows:91
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BC(u, φ) = max
v∈A(u)

{|l(u)− l(v)|n}, (2)

where A(u) denotes the set of vertices adjacent to u of cardinality deg(u). Then92

the set of critical vertices is given by:93

C(φ) = {u ∈ V : BC(u, φ) = BC(G,φ)}. (3)

The neighborhood is defined as follows:94

N(φ) = {φ′ = φ⊕ swap(u, v) : u ∈ C(φ), v ∈ V }. (4)

DLS starts with an input embedding, then it iteratively visits a series of95

neighboring solutions of increasing quality according to the given neighborhood.96

At each iteration, only solutions with a better objective value are considered and97

the best one is used to replace the incumbent solution. If there exist multiple98

best solutions, the first one encountered is adopted. We repeat this process until99

no better solution exists in the neighborhood. In this case, DLS attains a local100

optimum and the procedure of recombination is triggered to escape from the101

local optimum.102

2.5 Recombination103

Recombination is another important part of the MA, which aims to generate new104

diversified and potentially improving solutions. In our case, only one offspring105

solution is generated at each generation by each recombination application. In106

Section 3, we present five permutation recombination operators applied to CBP.107

2.6 Updating population108

Each new offspring solution improved by the local search procedure is used to109

update the population. In the proposed MA, we apply a simple strategy: we110

insert the new offspring into P , and remove the “worst” solution in terms of the111

objective value.112

3 Recombination operators113

There are several recombination operators that are already applied to permu-114

tation problems [6, 8, 9, 18, 26]. We consider five crossover operators introduced115

below. It is worth noting that all the recombination operations work with the γ116

representation mentioned in Section 2.1.117
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3.1 Order Crossover118

The Order Crossover operator (OX) [6] generates an offspring solution with a119

substring of one parent solution and conserves the relative order of the numbers120

of the other parent solution. Let’s consider an example with two parent solutions121

φF=(1 2 3 4 5 6 7 8) and φM=(2 4 6 8 7 5 3 1) (each number here denotes the122

index of a node). Given two random cut points (in this case, the first cut point123

is between second and third positions and the second cut point is between fifth124

and sixth positions, i.e., φF=(1 2 | 3 4 5 | 6 7 8) and φM=(2 4 | 6 8 7 | 5 3125

1), two offspring solutions first inherit the substring between the two cut points:126

φC1=(+ + | 3 4 5 | + + +) and φC2=(+ + | 6 8 7 | + + +). Then, we copy127

the permutation starting from the second cut point of φM to the end, as well as128

from the beginning to the second cut point: (5 3 1 2 4 6 8 7). At last, the new129

obtained permutation is used to insert into φC1 from the second cut point. The130

repeated numbers are skipped and we get φC1=(8 7 | 3 4 5 | 1 2 6). The same131

operations are performed on φC2 with φF to get φC2=(4 5 | 6 8 7 | 1 2 3).132

3.2 Order-based Crossover133

The Order-based Crossover operator (OX2) [26] is a modified version of OX.134

Instead of choosing two cut points, OX2 chooses several random positions of one135

parent solution, and then the order of the selected positions is imposed on the136

other parent solution. For instance, we have two parent solutions φF=(1 2 3 4137

5 6 7 8) and φM=(2 4 6 8 7 5 3 1), and the second, third and sixth positions138

are picked for φM . So the order of “4 6 5” is kept. For solution φF , we remove139

the corresponding numbers of these positions to get (1 2 3 + + + 7 8). Then we140

insert the numbers in the order “4 6 5” into φF and we get the offspring solution141

φC1=(1 2 3 4 6 5 7 8). The same operation can be performed for φM to obtain142

the other offspring solution φC2=(2 4 3 8 7 5 6 1).143

3.3 Cycle Crossover144

The Cycle Crossover operator (CX) [18] seeks a way to preserve the common145

information in both parent solutions. Two new offspring solutions φC1 and φC2146

are created from two parents φF and φM where the number of each position147

in φC1 and φC2 is decided by the number of the corresponding position of one148

parent. For example, we consider two parent solutions φF=(1 2 3 4 5 6 7 8) and149

φM=(2 4 6 8 7 5 3 1). Firstly, the number of the first position of φC1 could be150

1 or 2, Supposing that we pick 1 here (1 + + + + + + +). Then, the number151

of the eighth position could not be 1 because it is already assigned to the first152

position, hence we allocate it with a number from φF to get (1 + + + + + + 8).153

After that, we find the position of φM whose number is 8 and assign the number154

of φF to the corresponding position of φC1. We repeat the same operation and155

find that the forth and the second number of φC1 come from φF , which leads to156

(1 2 + 4 + + + 8). For the rest of the positions, we fill them with the numbers157

from φM to obtain a complete offspring solution φC1=(1 2 6 4 7 5 3 8). Similarly,158

we could get the other offspring solution φC2=(2 4 3 8 5 6 7 1).159



Recombination Operators for Cyclic Bandwidth 7

3.4 Partially Mapped Crossover160

The Partially Mapped Crossover operator (PMX) [9] passes the absolute position161

information from the parent solutions to the offspring solutions. An offspring162

solution gets a substring from one parent and its remaining positions take the163

values of the other parent. For example, we consider again φF=(1 2 3 4 5 6 7 8)164

and φM=(2 4 6 8 7 5 3 1). At the beginning, two random cut points are chosen165

for both parent solutions: φF=(1 2 3 | 4 5 6 | 7 8) and φM=(2 4 6 | 8 7 5 | 3166

1). Then we pass the information between the two cut points to the offspring167

solutions: φC1=(+ + + | 4 5 6 | + +) and φC2=(+ + + | 8 7 5 | + +). Also,168

we get the mapping for the substrings between the two cut points: 4↔8, 5↔7,169

6↔5. After that, the other positions of the offspring solutions are filled with the170

other parent solution, hence we get φC1=(2 4 6 | 4 5 6 | 3 1) and φC2 =(1 2 3171

| 8 7 5 | 7 8). For the duplicate labels in the solution, we use the mapping of172

substrings to replace the repeated numbers. In this case, 5↔7 and 6↔5 result in173

6↔7. Therefore, the offspring solutions are φC1=(2 8 7 | 4 5 6 | 3 1) and φC2=(1174

2 3 | 8 7 5 | 6 4).175

3.5 Distance Preserved Crossover176

The Distance Preserved Crossover operator (DPX) [8], designed for solving the177

Traveling Salesman Problem (TSP), aims to produce an offspring solution which178

has the same distance to each of its parents. It is noteworthy that the distance179

here is the distance based on the common connections between two solutions,180

instead of the Hamming distance. We come back to this issue in Section 5. For181

DPX, we firstly delete the uncommon connections of two neighboring numbers182

for both parent solutions. Then, the parent solutions are separated into different183

substrings. Finally, we reconnect all the substrings without using any of the184

connections which are contained in only one of the parent solutions. For more185

detailed explanations and examples, please refer to [8].186

4 Experimental results187

4.1 Instances and settings188

In this section, we report experimental results of the MA using the 5 different re-189

combination operators introduced in Section 3. The study was based on 20 repre-190

sentative graphs with 59 to 2048 vertices, selected from a test-suite of 113 bench-191

mark instances (https://www.tamps.cinvestav.mx/~ertello/cbmp.php). 14192

of the chosen graphs are standard graphs covering 7 dissimilar categories (path,193

cycle, complete tree, 2-dimension mesh, 3-dimension mesh, caterpillar and hy-194

percube) and the other 6 graphs (called Harwell-Boeing graphs) come from real-195

world scientific and engineering applications and are part of the Harwell-Boeing196

Sparse Matrix Collection. Considering the stochastic nature of the algorithm,197

each instance was independently solved 50 times under the environment of Linux198

using an Intel Xeon E5-2695 2.1 GHz CPU and 2GB RAM. Each execution was199
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limited to 20000 generations (MaxGene = 20000) and the population size |P |200

was set to 20.201

4.2 Computional results202

Table 1 outlines the computational results of our MA variants with the 5 differ-203

ent recombination operators. The columns“Best” and “Avg” list the best and204

average objective values found. According to the definition introduced in Section205

1, a smaller objective value indicates a better result. Table 1 shows that the al-206

gorithm with OX2 obtains the best results not only in terms of “Best” but also207

in terms of “Avg” over the 20 test instances. From the average values listed in208

the last row, we find that OX2 is a much more suitable operator than the other209

operators for CBP. Also, the non-parametric Friedman test on the 5 groups of210

best results leads to a p-value=6.71e-14 < 0.05, confirming that there exists a211

statistically significant difference among the compared results.

CX DPX OX OX2 PMX

Graph Best Avg Best Avg Best Avg Best Avg Best Avg

nos6 327 331.28 327 329.74 266 287.98 216 227.84 327 331.98
path1000 461 475.42 462 474.02 254 301.04 226 247.54 468 482.68
nos4 44 46.12 43 45.24 32 39.32 28 34.48 42 45.78
tree10x2 39 42.72 35 40.72 28 32.50 28 29.26 36 41.56
cycle1000 457 476.66 466 473.38 252 296.98 226 246.94 459 480.86
mesh2D8x25 88 93.04 89 91.82 59 75.18 57 62.94 87 93.28
caterpillar29 203 211.48 203 208.70 138 162.98 100 127.32 198 210.14
mesh3D6 102 103.88 101 102.96 86 93.08 73 78.26 102 104.28
hypercube11 1022 1022.76 1022 1022.14 1019 1021.26 952 1010.48 1022 1022.54
cycle475 200 215.16 206 213.36 105 128.36 99 110.76 192 217.30
mesh2D28x30 409 413.40 410 412.06 336 371.76 270 287.46 406 414.06
mesh3D11 660 662.04 660 661.28 625 650.30 507 522.82 660 662.40
can 715 354 355.80 355 355.14 347 353.92 293 316.70 354 355.74
impcol b 28 28.46 27 27.96 25 27.22 20 26.72 28 28.00
path475 202 214.50 206 212.86 112 132.24 102 112.94 189 217.56
494 bus 220 230.76 222 228.72 135 165.74 128 138.62 216 233.38
tree21x2 199 212.08 203 208.96 139 171.34 124 140.84 200 210.68
caterpillar44 481 493.28 479 491.24 340 400.78 281 321.70 480 495.60
impcol d 207 209.60 207 208.80 190 202.98 159 169.74 208 209.80
tree2x9 475 489.08 478 485.86 296 330.14 257 276.60 472 491.84

Average 308.90 316.38 310.50 315.75 239.20 262.26 207.30 224.50 307.30 317.47
p-value 6.71e-14

Table 1. Experimental results of MA using 5 different recombination operators.

212

Table 2 reports the comparative results between the best MA with OX2213

(called MAOX2) and TSCB , which is the state-of-art algorithm for CBP pre-214

sented in [23]. Table 2 shows the same information as in Table 1, except for215

the column “CC” which represents the difference between the best values found216

by TSCB and MAOX2. A negative “CC” indicates a worse result of MAOX2217

compared to TSCB . It is clear that for the 20 test graphs, MAOX2 does not218

compete well with TSCB . Indeed, TSCB is a powerful iterated tabu search algo-219

rithm which uses three dedicated neighborhoods to effectively explore the search220
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space. Also, the Wilcoxon signed-rank test with the two groups of best values221

leads to a p-value=1.31e-4 < 0.05, confirming the statistical significance between222

the compared results. This comparison tends to indicate that in practice, it is not223

enough for the MA to apply a recombination operator and a simple local search.224

In addition to a suitable recombination operator, the MA needs a powerful local225

optimization procedure to ensure an effective exploitation.226

MAOX2 TSCB

Graph Best Avg Best Avg CC

nos6 216 227.84 22 23.50 -194
path1000 226 247.54 8 8.90 -218
nos4 28 34.48 10 10.00 -18
tree10x2 28 29.26 28 28.00 0
cycle1000 226 246.94 8 8.50 -218
mesh2D8x25 57 62.94 8 8.20 -49
caterpillar29 100 127.32 24 25.80 -76
mesh3D6 73 78.26 31 31.00 -42
hypercube11 952 1010.48 570 582.20 -382
cycle475 99 110.76 5 5.80 -94
mesh2D28x30 270 287.46 30 174.00 -240
mesh3D11 507 522.82 336 336.80 -171
can 715 293 316.70 60 65.80 -233
impcol b 20 26.72 17 17.00 -3
path475 102 112.94 5 5.60 -97
494 bus 128 138.62 46 56.10 -82
tree21x2 124 140.84 116 116.00 -8
caterpillar44 281 321.70 39 54.00 -242
impcol d 159 169.74 38 43.10 -121
tree2x9 257 276.60 63 64.20 -194
Average 207.30 224.50 73.20 83.23
p-value 1.31e-4

Table 2. Comparison between MAOX2 and TSCB [23].

5 Understanding the performance differences of the227

compared crossovers228

In Section 4, we observe that OX2 excels compared to the other crossover oper-229

ators. In this section, we investigate the reasons why OX2 has a better perfor-230

mance than the other crossovers. For this, we follow [27] and study the evolution231

of the population diversity. To this end, we consider two diversity indicators:232

average solution distance Davg(P ) and population entropy Ep(P ).233

5.1 Distance and Population Entropy234

We first introduce the average solution distance Davg(P ) of the population.235

Davg(P ) =
2

|P |(|P | − 1)

|P |∑
i=1

|P |∑
j=i+1

dij (5)
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where dij is the distance between two solutions γi and γj of P , which is defined236

as the number of the adjacent connections that are contained in γi but not in γj .237

For example, given two solutions γ1={h a b d e f c g} and γ2={b a c h g d f e}.238

The set of adjacent connections is {ha, ab, bd, de, ef, fc, cg, gh} for γ1 and {ba,239

ac, ch, hg, gd, df, fe, eb} for γ2. The common adjacent connections are {ab, ef,240

gh} (ba and ab are the same connections). The distance d12 equals thus 8-3=5.241

This distance is used in [8] to deal with TSP whose solutions have the symmetry242

feature. As shown in Fig. 1, CBP solutions have the feature of symmetry, so the243

use of this distance measure is very important for CBP.244

Another indicator to describe the population diversity is the population en-245

tropy Ep(P ) [7].246

Ep(P ) =
−
∑n

i=1

∑n
j=1

(
nij

|P |

)
log

(
nij

|P |

)
n log n

(6)

where nij represents the number of times that variable i is set to value j in all247

solutions in P . One notices that Ep(P ) varies in the interval [0,1]. When Ep(P )248

equals 0, all the solutions of P are identical. A large Ep(P ) value indicates a249

more diverse population.250

The instance ‘nos6’ is a representative large graph with 675 nodes from prac-251

tical application and rather difficult, so we use it as a working example. Figure252

2 shows the average distance, average entropy and average best objective value253

found in 50 independent executions over the graph ‘nos6’. Under 5000 gener-254

ations, the population of the MA with OX2 has a high average distance and255

entropy, leading to much better solutions. From generations 5000 to 20000, the256

entropy is identical to that of OX, and the best average objective found stops257

decreasing. These observations remain valid for all test graphs except the graph258

‘impcol b’ (even if the MA with OX2 does not have a large population dis-259

tance and entropy, it gets good results comparing to others). Therefore, for the260

operators CX, OX, OX2 and PMX, a higher entropy and average distance of261

population leads to a good quality solution. However, what is surprising is that262

the average distance and entropy with DPX always stay at a high level for all263

test graphs, yet the quality of solutions found is not as good as that of the other264

operators. To shed light on this behavior, we show a deeper analysis of the in-265

teraction between the crossover mechanism and the characteristics of problem266

in the next section.267

5.2 Interaction between crossover and problem characteristics268

In Section 5.1, we find that the recombination operator with a higher entropy269

and average distance of the population generally helps to find solutions of good270

quality. However, the DPX operator fails to reach good solutions even if the271

entropy and average distance of population under the MA with DPX always stay272

at a high level. From Figure 3, which presents the average objective value of the273

offspring solutions of instance nos6 using the average data of 50 independent274
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executions, we find that DPX does not generate high quality offspring solutions275

during the search.276

To understand why DPX does not help the MA to find good quality solutions,277

we first recall that DPX is designed for TSP, which is a quite different problem278

compared to CBP considered in this work. In [4], it is observed that for TSP,279

the average distance between local optima is similar to the average distance280

between a local optimum and the global optimum and common substrings in the281

local optima also appear in the global optimum. DPX explores this particular282

feature of TSP and is thus suitable to TSP. However, CBP has a totally different283

objective function and does not share the above characteristic.284

Indeed, to calculate the objective value of a solution of TSP, we only need to285

consider, for each vertex, its two linked edges and sum up the edge distances of286

the tour. In this case, solution sub-tours (substrings) are clearly a key component287

which characterizes the solutions. Yet in a solution of CBP, we need to consider288

for each vertex all the edges linked to the vertex in the graph, such that the289

objective value (see Equation (1)) relies on the largest cyclic bandwidth. In the290

case of CBP, the key point is the relative position for the pairs of nodes which291

are linked by an edge. Therefore given that TSP and CBP have very different292

characteristics, a good crossover operator designed for TSP (in our case, DPX)293

may fail when it is applied to CBP.294

This inspires us that the choice and design of recombination operators are295

not only relied on the entropy and average distance of population, but also on296

the characteristics of the considered problem.297

6 Conclusion298

In this paper, we have investigated the memetic framework for solving the NP-299

hard Cyclic Bandwidth problem. We have compared five permutation recombina-300

tion operators (CX, OX, OX2, PMX and DPX) within a basic memetic algorthm301

which uses a simple descent procedure for local optimization. The experimental302

results indicate that OX2 achieves the best performance for the test instances.303

We have studied the population diversity measured by the average distance and304

entropy of the MA variants using different recombination operators. We have305

also explored the correlation between the population diversity and the perfor-306

mance of the studies MA variants. This study indicates that the basic memetic307

algorithm combining an existing recombination operator and a simple descent308

local search procedure is not competitive compared to the state-of-the-art CBP309

algorithms. Additional (preliminary) experiments with MAs using an enforced310

local optimization procedure (such as the powerful local search algorithms pre-311

sented in [19,23]) have not led to more convincing results. Meanwhile, given the312

excellent performances achieved by MAs on many difficult optimization prob-313

lems, this work invites more research effort on seeking meaningful recombination314

operators suitable for CBP. It is then expected that a MA integrating such a re-315

combination operator and a powerful local optimization procedure would achieve316

state-of-the-art performances.317
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