An Improved Memetic Algorithm for the
Antibandwidth Problem*

Eduardo Rodriguez-Tello and Luis Carlos Betancourt

CINVESTAV-Tamaulipas, Information Technology Laboratory.
Km. 5.5 Carretera Victoria-Soto La Marina, 87130 Victoria Tamps., MEXICO
{ertello, lbetancourt}@tamps.cinvestav.mx

Abstract. This paper presents an Improved Memetic Algorithm (IMA)
designed to compute near-optimal solutions for the antibandwidth prob-
lem. It incorporates two distinguishing features: an efficient heuristic
to generate a good quality initial population and a local search opera-
tor based on a Stochastic Hill Climbing algorithm. The most suitable
combination of parameter values for IMA is determined by employing a
tunning methodology based on Combinatorial Interaction Testing. The
performance of the fine-tunned IMA algorithm is investigated through
extensive experimentation over well known benchmarks and compared
with an existing state-of-the-art Memetic Algorithm, showing that IMA
consistently improves the previous best-known results.

Key words: Memetic Algorithms, Antibandwidth Problem, Combina-
torial Interaction Testing, Parameter Tunning

1 Introduction

The antibandwidth problem was originally introduced as the separation num-
ber problem by Leung et al. in connection with the multiprocessor scheduling
problem [1]. Later, it has also received the name of dual bandwidth [2]. This com-
binatorial optimization problem consists in finding a labeling for the vertices of a
graph G(V, E), using distinct integers 1,2, ..., |V, so that the minimum absolute
difference between labels of adjacent vertices is maximized.

There exist practical applications of the antibandwidth problem which arise
in various fields. Some examples are: radio frequency assignment problem [3],
channels assignment and T-coloring problems [4], obnoxious facility location
problem [5] and obnoxious center problem [6, 2].

The antibandwidth problem can be formally stated as follows. Let G(V, E)
be a finite undirected graph, where V' (|V| = n) defines the set of vertices and
ECVXxV={{ij}:i,j €V} is the set of edges. Given a bijective labeling

* This research work was partially funded by the following projects: CONACyT 99276,
Algoritmos para la Canonizacién de Covering Arrays; 51623 Fondo Mixto CONACyT
y Gobierno del Estado de Tamaulipas.

2 E. Rodriguez-Tello, L. C. Betancourt

function for the vertices of G, ¢ : V- — {1,2,...,n}, the antibandwidth for G
with respect to the labeling ¢ is defined as:

AB,(G) = minf|¢(i) - o(j)| : (i.]) € E} (1)

Then the antibandwidth problem consists in finding a labeling (solution) ¢*
for which AB,+(G) is maximized, i.e.,

AB,+(G) = max{AB,(G) : ¢ € £} (2)

where .Z is the set of all possible labeling functions.

Leung et al. have shown that finding the maximum antibandwidth of a graph
is NP-hard for general graphs [1]. Therefore, there is a need for heuristics to
address this problem in reasonable time since it is unlikely that exact algorithms
running in polynomial time exist for solving it in the general case.

This paper aims at developing an Improved Memetic Algorithm (IMA) for
finding near-optimal solutions for the antibandwidth problem. To achieve this,
the proposed IMA algorithm incorporates two distinguishing features: a fast
heuristic to create a good quality initial population and a local search operator
based on a Stochastic Hill Climbing algorithm. Through the use of a tunning
methodology, based on Combinatorial Interaction Testing [7], the combination
of both components and parameter values for IMA was determined to achieve
the best trade-off between solution quality and computational effort. The perfor-
mance of IMA is assessed with a test-suite, composed by 30 benchmark instances
taken from the literature. The computational results are reported and compared
with previously published ones, showing that our algorithm is able to consis-
tently improve the previous best-known solutions for the selected benchmark
instances.

The rest of this paper is organized as follows. In Sect. 2, a brief review is given
to present some representative solution procedures for the antibandwidth prob-
lem. Then, the components of our Improved Memetic Algorithm are discussed in
detail in Sect. 3. Two computational experiments are presented in Sect. 4. The
first one is dedicated to determine the best parameter settings for IMA, while
the second carries out a performance comparison of IMA with respect to an ex-
isting state-of-the-art Memetic Algorithm. Finally, the last section summarizes
the main contributions of this work and presents some possible directions for
future research.

2 Relevant Existing Procedures

Because of the theoretical and practical importance of the antibandwidth prob-
lem, much research has been carried out in developing effective heuristics for it.
Most of the previous published work on the antibandwidth problem was devoted
to the theoretical study of its properties for finding optimal solutions for specific
cases. Polynomial time exact algorithms are known for solving some special in-
stances of the antibandwidth problem: paths, cycles, special trees, complete and
complete bipartite graphs, meshes, tori and hypercubes [8,2,9-13].

An Improved Memetic Algorithm for the Antibandwidth Problem 3

The work of Bansal and Srivastava [14] in an exception. They proposed a
Memetic Algorithm, called MAAMP, which starts by constructing an initial pop-
ulation through the use of a label assignment heuristic, called LAH. It builds a
level structure of a graph using a random breadth first search. Then, it randomly
choses to start the labeling process either by the even or the odd levels of the
structure. The vertices of the graph belonging to the same level are labeled one
at a time in a greedy manner. MAAMP continues performing a series of cycles
called generations. At each generation, selection for mating is done by applying
a binary tournament operator in such a way that each individual in the parents
population participates in exactly two tournaments. Children are generated us-
ing a unary reproduction operator that constructs a level structure of a graph by
employing an intermediate breadth first search to produce a new labeling. Then,
mutation based on swapping two randomly selected labels is performed over the
solutions in the children population. Finally, the population is updated when
each child competes with its respective parent and the best of them becomes
the parent for the next generation. This process repeats until the Memetic Algo-
rithm ceases to make progress, i.e., when a better solution is not produced in a
predefined number of successive generations. The authors argued that MAAMP
was able to obtain optimal solutions for standard graphs like paths, cycles, d-
dimensional meshes, tori, hypercubes and complement of power graphs. However,
they recognize that their algorithm did not reach the optimal antibandwidth in
the case of unbalanced trees and complete binary trees. Furthermore, Bansal
and Srivastava only present detailed results of their experiments for a set of 30
random connected graphs.

3 An Improved Memetic Algorithm

In this section we present the implementation details of the key components of
an Improved Memetic Algorithm (IMA) for solving the antibandwidth problem.
For some of these components different possibilities were analyzed (see Sect.
4.2) in order to find the combination which offers the best quality solutions at a
reasonable computational effort.

3.1 Search Space, Representation and Fitness Function

Given a graph G = (V, E) with vertex set V (|[V| = n) and edge set E. The search
space £ for the antibandwidth problem is composed of all possible labelings
(solutions) from V to {1,2,...,n}, i.e. there exist n!/2 possible labelings for a
graph with n vertices!.

In our IMA a labeling ¢ is represented as an array [of integers with length
n, which is indexed by the vertices and whose i-th value [[i] denotes the label
assigned to the vertex i. The fitness AB,(G) of the labeling ¢ is evaluated by
using (1).

! Because each one of the n! labelings can be reversed to obtain the same antiband-
width.

4 E. Rodriguez-Tello, L. C. Betancourt

3.2 General Procedure

Our IMA implementation starts building an initial population P, which is a set of
configurations having a fixed constant size | P|. Then, it performs a series of cycles
called generations. At each generation, assuming that |P| is a multiple of four,
the population is randomly partitioned into (|P| mod 4) groups of individuals.
Within each group, the two most fit individuals are chosen to become the parents
in a recombination operator. The resulting offspring are mutated, then they are
improved by using a local search operator for a fixed number of iterations L.
Finally, the population is updated by applying a survival selection strategy.

The iterative process described above stops when a predefined maximum
number of generations (maxGenerations) is reached. Algorithm 1 presents the
pseudo code of IMA.

Algorithm 1: Improved Memetic Algorithm (IMA).

IMA(A graph G(V, E))

begin

P + initPopulation(|P|)

while not stopCondition() do

for i < 1 to offspring do
// select two parents a,b€ P
(a,b) « selectParents(P)
¢ + recombineIndividuals(a,b)
¢ + mutation(c)
¢’ + localSearch(c’, L)
insertIndividual(c”’, P)

end

P < updatePopulation(P)
end

return The best solution found

end

3.3 Initializing the Population

After comparing different heuristics for constructing labelings for the antiband-
width problem we have decided to use a variant of the heuristic LAH reported
in [14].

Our labeling heuristic constructs a level structure of a graph using a breadth
first search procedure exactly like LAH does. Then, the vertices are labeled one
at a time following the order of this level structure and starting randomly either
by the even or the odd levels. The main difference of our labeling heuristic with
respect to LAH is that we do not select the next vertex to label in a greedy
manner.

An Improved Memetic Algorithm for the Antibandwidth Problem 5

In our preliminary experiments we have found that a good balance between
diversity and quality for the initial population is reached using a labeling built
with our heuristic combined with |P| — 1 distinct randomly generated labelings.

3.4 Selection Mechanisms

In this implementation mating selection (select Parents(P)) prior to recombina-
tion is performed by tournament selection, while one of the following standard
schemes is used for the survival selection (update Population(P)): (u+ A), (1, A)
and (p, A) with elitism [15].

3.5 Recombination Operators

The recombination (crossover) operator plays a very important role in any
Memetic Algorithm. Indeed, it is this operator that is responsible for creating
potentially promising individuals. There are several crossover operators reported
in the literature that can be applied to permutation problems [16-19].

In our computational experiments, described in Section 4.2, we compare the
following three crossover operators in order to identify the most suitable one for
the antibandwidth problem.

The Cycle Crossover (CX) operator [18], which preserves the information
contained in both parents in the sense that all elements of the offspring are
taken from one of the parents, i.e., CX does not perform any implicit mutation.
The Partially Matched Crossover (PMX) operator [17], designed to preserve
absolute positions from both parents. The Order Crossover (OX) operator [16],
which is implemented to inherit the elements between two randomly selected
crossover points, inclusive, from the first parent in the same order and position
as they appeared in it. The remaining elements are inherited from the second
parent in the order in which they appear in that parent, beginning with the
first position following the second crossover point and skipping over all elements
already present in the offspring.

3.6 Mutation Operator

In our IMA implementation the mutation operator was designed to introduce
diversity into the population. It starts receiving a configuration (labeling) ¢
produced by the recombination operator. Then, every label in ¢ is exchanged with
another randomly selected one with certain probability (mutation probability).
Finally, these exchange operations allow to produce a new labeling ¢’.

3.7 Local Search Operator

The purpose of the local search (LS) operator localSearch(c’, L) is to improve a
configuration ¢’ produced by the mutation operator for a maximum of L itera-
tions before inserting it into the population. In general, any local search method

6 E. Rodriguez-Tello, L. C. Betancourt

can be used. In our implementation, we have decided to use a Stochastic Hill
Climbing (SHC) algorithm because it only needs as parameter the maximum
number of iterations.

In our SHC-based LS operator the neighborhood N (¢) of a configuration ¢
is such that for each p € &, ¢’ € N(p) if and only if ¢’ can be obtained by
exchanging the labels of any pair of vertices from . The main advantage of this
neighborhood function is that it allows an incremental fitness evaluation of the
neighboring solutions.

The LS operator starts from the current solution ¢’ € % and at each iteration
randomly generates a neighboring solution ¢’ € N(c’). The current solution is
replaced by this neighboring solution if the fitness of ¢’/ improves or equals that
of /. The algorithm stops when it reaches a predefined maximum number of
iterations L, and returns the best labeling found.

4 Computational Experiments

In this section two main experiments accomplished to evaluate the performance
of the proposed IMA algorithm and some of its components are presented. The
objective of the first experiment is to determine both a component combination,
and a set of parameter values which permit IMA to attain the best trade-off
between solution quality and computational effort. The purpose of the second of
our experiments is to carry out a performance comparison of IMA with respect
to an existing state-of-the-art Memetic Algorithm called MAAMP [14].

For these experiments IMA was coded in C and compiled with gcc using the
optimization flag -O3. It was run sequentially into a CPU Xeon at 2.67 GHz, 1
GB of RAM with Linux operating system. Due to the non-deterministic nature
of the algorithm, 30 independent runs were executed for each of the selected
benchmark instances in each experiment.

4.1 Benchmark Instances and Comparison Criteria

The test-suite that we have used in our experiments is the same proposed by
Bansal and Srivastava [14]. It consists of 30 undirected planar graphs taken from
the Rome set which are employed in graph drawing competitions. All of them
have a number of vertices between 50 and 100. These instances are publicly
available at: http://www.graphdrawing.org/data.

The criteria used for evaluating the performance of the algorithms are the
same as those used in the literature: the best antibandwidth found for each
instance (bigger values are better) and the expended CPU time in seconds.

4.2 Components and Parameters Tunning

Optimizing parameter settings is an important task in the context of algorithm
design. Different procedures have been proposed in the literature to find the most

An Improved Memetic Algorithm for the Antibandwidth Problem 7

Table 1. Input parameters of the IMA algorithm and their selected values.

[P] Cx ProbCxz ProbMuta Survival ProbLS L

40 CX 0.70 0.00 (u+X) 0.05 1000
80 PMX 0.80 0.05 (pey N) 0.10 5000
120 OX 0.90 0.10 (p,) with elitism 0.15 10000

suitable combination of parameter values [20-22]. In this paper we employ a tun-
ning methodology, previously reported in [23], which is based on Combinatorial
Interaction Testing (CIT) [7]. We have decided to use CIT, because it allows to
significantly reduce the number of tests (experiments) needed to determine the
best parameter settings of an algorithm. Instead of exhaustive testing all the
parameter value combinations of the algorithm, it only analyzes the interactions
of ¢ (or fewer) input parameters by creating interaction test-suites that include
at least once all the ¢-way combinations between these parameters and their
values.

Covering arrays (CAs) are combinatorial designs which are extensively used
to represent those interaction test-suites. A covering array, CA(N;t, k,v), of size
N, strength ¢, degree k, and order v is an N X k array on v symbols such that
every N x t sub-array includes, at least once, all the ordered subsets from v
symbols of size t (t-tuples) [24]. The minimum N for which a CA(N;t,k,v)
exists is the covering array number and it is defined according to the following
expression: CAN(¢, k,v) = min{N : 3CA(N;t, k,v)}.

CAs are used to represent an interaction test-suite as follows. In an algorithm
we have k input parameters. Each of these has v values or levels. An interaction
test-suite is an N X k array where each row is a test case (i.e., a covering array).
Each column represents an input parameter and a value in the column is the
particular configuration. This test-suite allows to cover all the ¢-way combina-
tions of input parameter values at least once. Thus, the costs of tunning the
algorithm can be substantially reduced by minimizing the number of test cases
N in the covering array. Next, we present the details of the tunning process,
based on CIT, for the particular case of our IMA algorithm.

First, we have identified k = 7 input parameters used for IMA: population
size | P|, crossover operator Cz, crossover probability ProbCx, mutation proba-
bility ProbMuta, survival selection strategy Survival, local search probability
ProbLS and maximum number of local search iterations L. Based on some pre-
liminary experiments, v = 3 reasonable values (shown in Table 1) were selected
for each one of those input parameters.

We have constructed the smallest possible covering array CA(40;3,7,3),
shown (transposed) in Table 2, by using the Memetic Algorithm reported in
[25]. This covering array can be easily mapped into an interaction test-suite by
replacing each symbol from each column to its corresponding parameter value.
For instance, we can map 0 in the first column (the first line in Table 2) to
|P| =40, 1 to |P| = 80 and 2 to |P| = 120. The resulting interaction test-suite
contains, thus, 40 test cases (parameter settings) which include at least once all
the 3-way combinations between IMA’s input parameters and their values?.

2 In contrast, with an exhaustive testing which contains 37 = 2187 test cases.

8 E. Rodriguez-Tello, L. C. Betancourt

Table 2. Covering array CA(40;3,7,3) representing an interaction test-suite for tun-
ning IMA (transposed).

0221011220012000111020222020011120121120
10212111120202010201100210201010122022220
1002020202122012110012120120201211002110
0201200210220101002201211100212212110120
0200121011011011020020122212211202200101
0102201000111112210220010220112210221022
2002101102102201022010112201222100011122

Each one of those 40 test cases was used to executed 30 times the IMA
algorithm over a subset of 6 representative graphs,? selected from the benchmark
instances described in Sect. 4.1. The data generated by these 7200 executions is
summarized in Fig. 1, which depicts the average antibandwidth reached by each
test case over the 6 selected graphs, as well as the average CPU time expended.

45 Ll
Avg. Antibandwidth A
Avg. CPU Time O
40 35
35
[n]
A
30 A A 2
< A AALA
2 A)
S A E
2 25 X Il =
A
g A A A 2
= A o
€ A A
< 20 & >
5 B3
:(3’ <
15 {12l A
A A
0f o i}
10
o]
o
5 £ pRNnin)
B i BT g
A A Al A A AATA
A 4 B noédp 4 EREN |
0 o il £
NOONrOr—ONrONNO—rONNO O o= ro0O0- =
S-38aNS oSS rer=r NN-ONNSOrSNNO-rANN-ONN=OQ
NSO NrOrrOorrorrONSONSrNNAN- NN~ NONNOIEO
SAS-NOONrONNO-OrSONNO A~ rO0N - NN A =2O - NS
PO SN o SN o N NNO NS OO PN - NO - NSNS - Nr = OO8 -~ S
O NrT N P AN ONCN O - ONS - O0OA-ON3 -3 r o NNSAANS
CNAFOr-rANCS+rNO80Frr-~ONSONANSASOrr~NOrN+-+aS

Test cases

Fig. 1. Average results obtained in the tuning experiments using 40 parameter value
combinations over a subset of 6 representative graphs.

From this graphic we have selected the 5 test cases which yield the best re-
sults. Their average antibandwidth and the average CPU time in seconds are
presented in Table 3. This table allowed us to observe that the parameter set-
ting giving the best trade-off between solution quality and computational effort
corresponds to the test case number 40 (shown in bold). The best average an-
tibandwidth with an acceptable speed is reached with the following input param-
eter values: population size |P| = 40, Cycle Crossover (CX) operator, crossover
probability ProbCz = 0.90, mutation probability ProbMuta = 0.00, (i, A) sur-
vival selection strategy, local search probability ProbLS = 0.15 and maximum
number of local search iterations L = 10000. These values are thus used in the
experimentation reported in the next section.

3 One graph for each size 50 < |V'| < 100 in the original set.

An Improved Memetic Algorithm for the Antibandwidth Problem 9

Table 3. Results from the 5 best parameter test cases in the tuning experiments.

Num. Test case Avg. antibandwidth Avg. CPU time
13 2020112 31.527 11.802
40 0000122 31.011 5.209
10 0220102 30.616 2.112

7 1100111 30.511 4.611
27 2220120 29.183 2.223

4.3 Comparison Between IMA and MAAMP

In this experiment a performance comparison of the best bounds achieved by
IMA with respect to those produced by the MAAMP algorithm [14] was carried
out over the test-suite described in Sect. 4.1.

Table 4 displays the detailed computational results produced by this experi-
ment. The first three columns in the table indicate the name of the graph as well
as its number of vertices and edges. The theoretical upper bound (C*) reported
in [14] for those graphs is presented in Column 4. The best (C') and average
(Avg.) antibandwidth attained by MAAMP in 10 executions and its average
CPU time in seconds are listed in columns 5 to 7. These results were taken di-
rectly from [14], where a Pentium 4 at 3.2 GHz and 1 GB of RAM system was
used to execute the algorithm. Next four columns provide the best (C'), average
(Avg.) and standard deviation (Dewv.) of the antibandwidth found by IMA over
30 independent executions and the average CPU time (7') in seconds expended.
The running times from MAAMP and IMA cannot be directly compared because
they were executed on different computational platforms. Nevertheless, we have
scaled, by a factor of 2.71, our execution times according to the Standard Perfor-
mance Evaluation Corporation® in order to present them in a normalized form
in Column 12 (T'). Finally, the difference (A¢) between the best result produced
by our IMA algorithm and that achieved by MAAMP is depicted in the last
column.

Analyzing the data presented in Table 4 lead us to the following main observa-
tions. First, the solution quality attained by the proposed IMA algorithm is very
competitive with respect to that produced by the existing Memetic Algorithm
called MAAMP [14], since IMA provides solutions whose costs (antibandwidth)
are closer to the theoretical upper bounds (compare Columns 4, 5 and 8). In-
deed, IMA consistently improves the best antibandwidth found by MAAMP,
obtaining an average amelioration of Ag = —4.93.

Second, one observes that for the selected instances the antibandwidth found
by IMA presents a relatively small standard deviation (see Column Dev.). It is
an indicator of the algorithm’s precision and robustness since it shows that in
average the performance of IMA does not present important fluctuations.

Third, we can notice that MAAMP is the most time-consuming algorithm.
It uses an average of 257.79 seconds for solving the 30 selected instances, while
IMA employs only 25.82 seconds (see column T').

4 http://www.spec.org

10 E. Rodriguez-Tello, L. C. Betancourt

Table 4. Performance comparison between MAAMP and IMA over 30 undirected
planar graphs from the Rome set.

MAAMP IMA
Graph |V| |E| C~ C Avg. T C Avg. Dev. T T Ac

ugl-50 64 18 17.40 65.28 21 20.97 0.03 8.51 23.07 -3
ug2-50 66 18 16.80 33.51 21 20.00 0.21 2.38 6.46 -3
ug3-50 50 63 24 17 16.80 52.04 21 21.00 0.00 3.61 9.77 -4
ug4-50 70 19 18.40 59.55 21 20.37 052 274 7.42 -2
ug5-50 62 20 19.80 83.44 22 2140 0.25 12.33 33.41 -2
ugl-60 79 T T T 21 "20.20 155.98 25 2413 0.12 359 9.72° = -4
ug2-60 81 23 21.80 21.80 24 2353 0.26 241 6.54 -1
ug3-60 60 84 29 22 20.20 116.12 24 23.33 0.30 7.27 19.71 -2
ug4-60 79 22 21.20 235.20 25 24.27 0.20 6.32 17.12 -3
ug5-60 80 21 20.80 70.20 25 23.87 0.19 3.26 8.84 -4
ugl-70 T 98 26 23.80 35452 28 26.83 035 6.13 16.60 -2
ug2-70 82 28 15.80 54.20 32 31.30 0.22 9.68 26.22 -4
ug3-70 70 82 34 27 26.20 116.31 31 30.20 0.17 5.72 15.49 -4
ug4-70 97 23 22.60 74.50 29 28.07 0.06 15.42 41.77 -6
ug5-70 88 26 25.50 323.45 29 28.47 0.26 13.03 35.31 -3
ugl-80 92 T 34 '33.60 61.07 37 36.13 026 9.31 2524 = -3
ug2-80 93 31 30.20 226.90 35 34.07 0.34 14.26 38.64 -4
ug3-80 80 95 39 28 27.20 138.68 35 34.23 0.46 9.72 26.35 -7
ug4-80 101 27 25.20 582.50 34 32.80 0.23 11.05 29.95 -7
ug5-80 94 27 25.80 190.52 34 33.10 0.51 10.74 29.11 -7
ugl-90 ~ 102~ T T @ 32 '29.80 150.40 39 38.27 0.41 878 23.78 = -7
ug2-90 114 35 34.60 469.62 38 36.73 0.34 7.90 21.41 -3
ug3-90 90 108 44 31 29.80 316.29 40 38.83 0.49 16.84 45.64 -9
ug4-90 99 34 33.30 381.20 40 39.23 0.25 11.77 31.90 -6
ug5-90 104 34 31.80 815.47 39 38.50 0.47 10.50 28.46 -5
ugl-100 ~ 114 =~ T T @ 34 732.20 49920 44 43.07 034 17.61 47.71 -10
ug2-100 114 40 38.40 715.90 44 42,80 0.23 11.22 30.40 -4
ug3-100 100 116 49 33 31.60 256.40 43 42.33 0.57 15.10 40.92 -10
ug4-100 122 35 33.80 419.80 43 42.13 0.33 15.23 41.27 -8
ug5-100 125 31 30.60 693.65 42 40.60 1.14 13.41 36.33 -11

Avg. 27.23 257.79 32.17 0.32 9.53 25.82 -4.93

The outstanding results achieved by IMA are better illustrated in Fig. 2.
The plot represents the studied instances (ordinate) against the best solution
(antibandwidth) attained by the compared algorithms (abscissa). The theoretical
upper bounds for these graphs are shown with squares, the previous best-known
solutions provided by MAAMP [14] are depicted as circles, while the bounds
computed with our IMA algorithm are shown as triangles. From this figure it
can be seen that IMA consistently outperforms MAAMP, achieving for certain
instances, like the graph ug5-100, an important increase in solution cost (A¢ up
to —11).

Thus, as this experiment confirms, our IMA algorithm is more effective than
the existing Memetic Algorithm, called MAAMP.

5 Conclusions and Further Work

In this paper, an Improved Memetic Algorithm (IMA) designed to compute near-
optimal solutions for the antibandwidth problem was presented. IMA’s compo-
nents and parameter values were carefully determined, through the use of a

An Improved Memetic Algorithm for the Antibandwidth Problem 11

50 L1 1111
Upper Bound —5— A——fa—tE1
MAAMP —&— /
IMA —&— /
45 ; =S
= bt
/ Na
/
40 L
PEEED A
£ /
2 35
H 3 -, b6
T /
5 /
] /
a /
€ 30
< /][][][][ﬁ
/ o
/
25
[-
-
20
i
15
)
cocoocoocoocogocoooooocgoocoo000o83888
£0) 70, 10, 10, 10, €0, 0, ©, 0 O T I~ 5 T ™ By B 0, 0 Q9 D DX O T T
P e, ol o o P o v 0

Instances

Fig. 2. Performance comparison between MAAMP and IMA with respect to the the-
oretical upper bounds.

tunning methodology based on Combinatorial Interaction Testing [7], to yield
the best solution quality in a reasonable computational time.

The practical usefulness of this fine-tunned IMA algorithm was assessed with
respect to an existing state-of-the-art Memetic Algorithm, called MAAMP [14]
over a set of 30 well-known benchmark graphs taken from the literature. The
results show that our IMA algorithm was able to consistently produce labelings
with higher antibandwidth values than those furnished by MAAMP. Further-
more, IMA achieves those results by employing only a small fraction (10.01%)
of the total time used by MAAMP.

This work opens up a range of possibilities for future research. Currently we
are interested on developing a Multimeme Algorithm [26] based on the Memetic
Algorithm presented here in order to efficiently solve the antibandwidth problem
for bigger graphs with different topologies.

References

1. Leung, J., Vornberger, O., Witthoff, J.: On some variants of the bandwidth mini-
mization problem. STAM Journal on Computing 13(3) (1984) 650-667

2. Yixun, L., Jinjiang, Y.: The dual bandwidth problem for graphs. Journal of
Zhengzhou University 35(1) (March 2003) 1-5

3. Hale, W.K.: Frequency assignment: Theory and applications. Proceedings of the
IEEE 68(12) (December 1980) 1497-1514

4. Roberts, F.S.: New directions in graph theory. Annals of Discrete Mathematics
55 (1993) 13-44

5. Cappanera, P.: A survey on obnoxious facility location problems. Technical report,
Uni. di Pisa (1999)

6. Burkard, R.E., Donnani, H., Lin, Y., Rote, G.: The obnoxious center problem on
a tree. STAM Journal on Computing 14(4) (2001) 498-509

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

E. Rodriguez-Tello, L. C. Betancourt

Cohen, D.M., Dalal, S.R., Parelius, J., Patton, G.C.: The combinatorial design
approach to automatic test generation. IEEE Software 13(5) (1996) 83-88
Miller, Z., Pritikin, D.: On the separation number of a graph. Networks 19 (1989)
651-666

Yao, W., Ju, Z., Xiaoxu, L.: Dual bandwidth of some special trees. Journal of
Zhengzhou University Natural Science Edition 35 (2003) 16-19

Calamoneri, T., Missini, A., Torok, L., Vrt’o, I.: Antibandwidth of complete k-ary
trees. Electronic Notes in Discrete Mathematics 24 (2006) 259-266

Torok, L.: Antibandwidth of three-dimensional meshes. Electronic Notes in Dis-
crete Mathematics 28 (March 2007) 161-167

Raspaud, A., Schréder, H., Sykora, O., T6rok, L., Vrt’o, I.: Antibandwidth and
cyclic antibandwidth of meshes and hypercubes. Discrete Mathematics 309(11)
(2009) 3541-3552

Wang, X., Wu, X., Dimitrescu, S.: On explicit formulas for bandwidth and an-
tibandwidth of hypercubes. Discrete Applied Mathematics 157(8) (2009) 1947—
1952

Bansal, R., Srivastava, K.: Memetic algorithm for the antibandwidth maximization
problem. Journal of Heuristics 17(1) (2011) 39-60

Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. 1st edn.
Springer (2007)

Davis, L.: Applying adaptive algorithms to epistatic domains. In: Proceedings
of the International Joint Conference on Artificial Intelligence, Morgan Kaufmann
(1985) 162-164

Goldberg, D.E., Lingle, R.: Alleles, loci, and the travelling salesman problem. In:
Proceedings of the 1st. International Conference on Genetic Algorithms and their
Applications, Lawrence Erlbaum Associates (1985) 154-159

Oliver, .M., Smith, D.J., Holland, J.R.C.: A study of permutation crossover oper-
ators on the travelling salesman problem. In: Proceedings of the 2nd. International
Conference on Genetic Algorithms and their Applications, Lawrence Erlbaum As-
sociates (1987) 224-230

Freisleben, B., Merz, P.: A genetic local search algorithm for solving symmetric and
asymmetric traveling salesman problems. In: Proceedings of IEEE International
Conference on Evolutionary Computation, IEEE Press (1996) 616-621
Adenso-Diaz, B., Laguna, M.: Fine-tuning of algorithms using fractional experi-
mental design and local search. Operations Research 54(1) (2006) 99-114

de Landgraaf, W.A., Eiben, A.E., Nannen, V.: Parameter calibration using meta-
algorithms. In: In proceedings of the IEEE Congress on Evolutionary Computation,
IEEE Press (2007) 71-78

Gunawan, A., Lau, H.C., Lindawati: Fine-tuning algorithm parameters using the
design of experiments. Lecture Notes in Computer Science 6683 (2011) In press
Gonzalez-Hernandez, L., Torres-Jimenez, J.: MiTS: A new approach of tabu search
for constructing mixed covering arrays. Lecture Notes in Artificial Intelligence
6438 (2010) 382-392

Colbourn, C.J.: Combinatorial aspects of covering arrays. Le Matematiche 58
(2004) 121-167

Rodriguez-Tello, E., Torres-Jimenez, J.: Memetic algorithms for constructing bi-
nary covering arrays of strength three. Lecture Notes in Computer Science 5975
(2010) 86-97

Krasnogor, N.: Towards robust memetic algorithms. In: Recent Advances in
Memetic Algorithms. Volume 166 of Studies in Fuzziness and Soft Computing.
Springer (2004) 185-207

