
Memetic Algorithms for Constructing Binary
Covering Arrays of Strength Three?

Eduardo Rodriguez-Tello and Jose Torres-Jimenez

CINVESTAV-Tamaulipas, Information Technology Laboratory.
Km. 6 Carretera Victoria-Monterrey, 87276 Victoria Tamps., MEXICO

ertello@tamps.cinvestav.mx

jtj@cinvestav.mx

Abstract. This paper presents a new Memetic Algorithm (MA) de-
signed to compute near-optimal solutions for the covering array construc-
tion problem. It incorporates several distinguished features including an
efficient heuristic to generate a good quality initial population, and a
local search operator based on a fine tuned Simulated Annealing (SA)
algorithm employing a carefully designed compound neighborhood. Its
performance is investigated through extensive experimentation over well
known benchmarks and compared with other state-of-the-art algorithms,
showing improvements on some previous best-known results.

Key words: Memetic Algorithms, Covering Arrays, Software Testing.

1 Introduction

Software systems play a very important role in modern society, where numerous
human activities rely on them to fulfill their needs for information processing,
storage, search, and retrieval. Ensuring that software systems meet people’s ex-
pectations for quality and reliability is an expensive and highly complex task.
Especially, considering that usually those systems have many possible configu-
rations produced by the combination of multiple input parameters, making im-
mediately impractical an exhaustive testing approach. An alternative technique
to accomplish this goal is called software interaction testing. It is based on con-
structing economical sized test-suites that provide coverage of the most prevalent
configurations. Covering arrays (CAs) are combinatorial structures which can be
used to represent these test-suites.

A covering array, CA(N ; t, k, v), of size N , strength t, degree k, and order
v is an N × k array on v symbols such that every N × t sub-array contains
all ordered subsets from v symbols of size t (t-tuples) at least once. In such an
array, each test configuration of the analyzed software system is represented by

? This research work was partially funded by the following projects: CONACyT 58554,
Cálculo de Covering Arrays; CONACyT 99276, Algoritmos Para la Canonización de
Covering Arrays; 51623 Fondo Mixto CONACyT y Gobierno del Estado de Tamauli-
pas.

2 E. Rodriguez-Tello, J. Torres-Jimenez

a row. A test configuration is composed by the combination of k parameters
taken on v values. This test-suite allows to cover all the t-way combinations of
parameter values, (i.e. for each set of t parameters every t-tuple of parameter
values is represented). Then, software testing cost can be substantially reduced
by minimizing the number of test configurations N in a covering array. The
minimum N for which a CA(N ; t, k, v) exists is the covering array number and
it is defined according to (1).

CAN(t, k, v) = min{N : ∃ CA(N ; t, k, v)} (1)

The problem of determining the covering array number is also known in the
literature as the Covering Array Construction (CAC) problem. This is equivalent
to the problem of maximizing the degree k of a covering array given the values
N , t, and v.

There exist only some special cases where it is possible to find the covering
array number using polynomial order algorithms. For instance, the case N = vt,
t = 2, k = v+1 was completely solved for v = pα a prime or a power of prime and
v > t (see [1] for references). This case was subsequently generalized by Bush for
t > 2 [2]. However, in the general case determining the covering array number is
known to be NP-complete [3, 4], thus it is unlikely that exact algorithms running
in polynomial time exist for this hard combinatorial optimization problem.

Other applications related to the CAC problem arise in fields like: drug
screening, data compression, regulation of gene expression, authentication, in-
tersecting codes and universal hashing (see [5] for a detailed survey).

Addressing the problem of obtaining the covering array number in reasonable
time has been the focus of much research. Among the approximate methods that
have been developed for constructing covering arrays are: a) recursive methods
[1, 6], b) algebraic methods [7, 5], c) greedy methods [8] and d) metaheuristics
such as Tabu Search [9], Simulated Annealing [10], and Genetic Algorithms [11].

This paper aims at developing a new powerful Memetic Algorithm (MA)
for finding near-optimal solutions for the CAC problem. In particular, we are
interested in constructing binary covering arrays of strength three and in estab-
lishing new bounds on the covering array number CAN(3, k, 2). To achieve this,
the proposed MA algorithm incorporates a fast heuristic to create a good quality
initial population and a local search operator based on a fine tuned Simulated
Annealing algorithm employing two carefully designed neighborhood functions.
The performance of the proposed MA algorithm is assessed with a test-suite,
conformed by 20 binary covering arrays of strength three, taken from the lit-
erature. The computational results are reported and compared with previously
published ones, showing that our algorithm is able to improve on 9 previous best-
known solutions and to equal these results on the rest of the selected benchmark
instances. It is important to note that for some of those instances the best-known
results were not improved since their publication in 1993 [1].

The rest of this paper is organized as follows. In Sect. 2, a brief review is
given to present some representative solution procedures for constructing binary
covering arrays of strength three. Then, the components of our new Memetic

Memetic Algorithms for Constructing Binary CAs of Strength Three 3

Algorithm are discussed in detail in Sect. 3. Section 4 is dedicated to computa-
tional experiments and comparisons with respect to previous best-known results.
Finally, the last section summarizes the main contributions of this work.

2 Relevant Related Work

Because of the importance of the CAC problem, much research has been carried
out in developing effective methods for solving it. In this section, we give a brief
review of some representative procedures which were used in our comparisons.
These procedures were devised for constructing binary CAs of strength three.

Sloane published in [1] a procedure which improves some elements of the work
reported in Roux’s PhD dissertation [12]. This procedure allows to construct a
CAN(3, 2k, 2) by combining two CAs CA(N2; 2, k, 2) and CA(N3; 3, k, 2). It first
appends CA(N2; 2, k, 2) to a CA(N3; 3, k, 2), which results in a k × (N2 + N3)
array. Then this array is copied below itself, producing a 2k × (N2 +N3) array.
Finally, the copied strength 2 array is replaced by its bit-complement array (i.e.
switch 0 to 1 and 1 to 0).

Following these ideas, Chateauneuf and Kreher presented latter in [5] an al-
gebraic procedure for constructing CAN(3, 2k, v). This procedure has permitted
to attain some of the best-known solutions for binary CAs of strength three.
Furthermore, it is a polynomial time algorithm.

In 2001, a study was carried out by Stardom [11] to compare three differ-
ent metaheuristics: Tabu Search (TS), Simulated Annealing (SA) and Genetic
Algorithms (GA). Stardom’s GA implementation represents a CA(N ; t, k, v) by
using an N×k array on v symbols and operates as follows: An initial population
100 ≤ |P | ≤ 500 is randomly generated. At each generation the original popu-
lation is randomly partitioned into two groups (male and female) of size |P |/2.
The members of each group are ordered randomly and then the i-th arrays from
each group are mated with each other, for 1 ≤ i ≤ |P |/2. The |P | offspring are
mutated and then the most fit |P | members of the male, female and offspring
subpopulations combined are selected as the new population. The crossover op-
erator randomly selects a point (i, j) for each pair of arrays to be mated. If the
pair of mates contain entries Amn and Bmn and the pair of offspring contain
entries Cmn and Dmn, then Cmn = Amn(Dmn = Bmn) for m ≤ i and n ≤ j; and
Cmn = Bmn(Dmn = Amn) for m > i and n > j. The mutation operator consists
in applying a random entry swap. This process is repeated until a predefined
maximum of 5000 generations is reached or when a covering array is found. For
his comparisons the author employed a set of benchmark instances conformed
by binary covering arrays of strength two. The results show that his GA imple-
mentation was by far the weakest of the three compared metaheuristics.

A more effective Tabu Search (TS) algorithm than that presented in [11] was
devised by Nurmela [9]. This algorithm starts with a N × k randomly generated
matrix that represents a covering array. The number of uncovered t-tuples is
used to evaluate the cost of a candidate solution (matrix). Next an uncovered
t-tuple is selected at random and the rows of the matrix are verified to find

4 E. Rodriguez-Tello, J. Torres-Jimenez

those that require only the change of a single element in order to cover the
selected t-tuple. These changes, called moves, correspond to the neighboring
solutions of the current candidate solution. The variation of cost corresponding
to each such move is calculated and the move leading to the smallest cost is
selected, provided that the move is not tabu. If there are several equally good
nontabu moves, one of them is randomly chosen. Then another uncovered t-tuple
is selected and the process is repeated until a matrix with zero cost (covering
array) is found or a predefined maximum number of moves is reached. The
results produced by Nurmela’s TS implementation have demonstrated that it
is able to slightly improved some previous best-known solutions, specially the
instance CA(15; 3, 12, 2). However, an important drawback of this algorithm is
that it consumes considerably much more computational time than any of the
three previously presented algorithms.

More recently Forbes et al. [13] introduced an algorithm for the efficient pro-
duction of covering arrays of strength t up to 6, called IPOG-F (In-Parameter
Order-Generalized). Contrary to many other algorithms that build covering ar-
rays one row at a time, the IPOG-F strategy constructs them one column at
a time. The main idea is that covering arrays of k − 1 columns can be used to
efficiently build a covering array with degree k. In order to construct a covering
array, IPOG-F initializes a vt × t matrix which contains each of the possible
vt distinct rows having entries from {0, 1, . . . , v − 1}. Then, for each additional
column, the algorithm performs two steps, called horizontal growth and verti-
cal growth. Horizontal growth adds an additional column to the matrix and fills
in its values, then any remaining uncovered t-tuples are covered in the vertical
growth stage. The choice of which rows will be extended with which values is
made in a greedy manner: it picks an extension of the matrix that covers as many
previously uncovered t-tuples as possible. IPOG-F is currently implemented in a
software package called FireEye [14], which was written in Java. Even if IPOG-F
is a very fast algorithm for producing covering arrays it generally provides poorer
quality results than other state-of-the-art algorithm like the algebraic procedures
proposed by Chateauneuf and Kreher [5].

3 A New Memetic Algorithm for Constructing CAs

In this section we present a new Memetic algorithm for solving the CAC problem.
Next all the details of its implementation are presented.

3.1 Search Space and Internal Representation

Let A be a potential solution in the search space A , that is a covering array
CA(N ; t, k, v) of size N , strength t, degree k, and order v. Then A is represented
as an N × k array on v symbols, in which the element ai,j denotes the symbol
assigned in the test configuration i to the parameter j. The size of the search
space A is then given by the following expression:

|A | = vNk (2)

Memetic Algorithms for Constructing Binary CAs of Strength Three 5

3.2 Fitness Function

The fitness function is one of the key elements for the successful implementation
of metaheuristic algorithms because it is in charge of guiding the search process
toward good solutions in a combinatorial search space.

Previously reported metaheuristic algorithms for solving the CAC problem
have commonly evaluated the quality of a potential solution (covering array) as
the change in the number of uncovered t-tuples [15, 10, 11, 9]. We can formally
define this fitness function as follows. Let A ∈ A be a potential solution, Sr a
N × t subarray of A representing the r-th subset of t columns taken from k, and
ϑj a set containing the union1 of the N t-tuples in Sj denoted by the following
expression:

ϑj =
N−1⋃
i=0

Sji , (3)

then the function F (A) for computing the fitness of a potential solution A can
be defined using (4).

F (A) =
(
k

t

)
vt −

(k
t)−1∑
j=0

|ϑj | (4)

In our MA implementation this fitness function definition was used. Its
computational complexity is equivalent to O(N

(
k
t

)
), but with appropriate data

structures it allows an incremental fitness evaluation of neighboring solutions in
O(2

(
k−1
t−1

)
) operations.

3.3 General Procedure

Our MA implementation starts building an initial population P , which is a set of
configurations having a fixed constant size |P |. Then, it performs a series of cycles
called generations. At each generation, assuming that |P | is a multiple of four,
the population is randomly partitioned into |P | mod 4 groups of four individuals.
Within each group, the two most fit individuals are chosen to become the parents
in a recombination operator. The resulting offspring are then improved by using
a local search operator for a fixed number of iterations L. Finally, the two worst
fit individuals in the group are replaced with the improved offspring.

This mating selection strategy ensures that the fittest individuals remain in
the population, but restricts the amount of times they can reproduce to once per
generation. At the end of each generation, thanks to the selection for survival,
half of the population is turned over, ensuring a wide coverage of the search
space through successive mating. The repeated introduction of less fit offspring
increases the chance of a less fit individual being involved in the recombination
phase, thus maintaining diversity in the population.

1 Please remember that the union operator ∪ in set theory eliminates duplicates.

6 E. Rodriguez-Tello, J. Torres-Jimenez

The iterative process described above stops either when a predefined maxi-
mum number of generations (maxGenerations) is reached or when a covering
array with the predefined parameters N , t, k, and v is found.

3.4 Initializing the Population

In the GA reported in [11] the initial population is randomly generated. In con-
trast, in our MA implementation the population is initialized using a procedure
that guarantees a balanced number of symbols in each column of the gener-
ated individuals (CAs). This procedure assigns randomly bN/2c ones and the
same number of zeros to each column of the individuals when its size N is even,
otherwise it allocates bN/2c + 1 ones and bN/2c zeros to each column. Due to
the randomness of this procedure, the individuals in the initial population are
quite different. This point is important for population based algorithms because
a homogeneous population cannot efficiently evolve.

We have decided to use this particular method for constructing the initial
population because we have observed, from preliminary experiments, that good
quality individuals contain a balanced number of symbols in each column.

3.5 The Recombination Operator

The main idea of the recombination operator is to generate diversified and po-
tentially promising individuals. To do that, a good recombination operator for
the CAC problem should take into consideration, as much as possible, the indi-
viduals’ semantic. After some preliminary experiments for comparing different
crossover operators, we have decided to use a row crossover. It randomly selects
a row i for each pair of individuals to be mated. If the pair of mates contain
entries Amn and Bmn and the pair of offspring contain entries Cmn and Dmn,
then Cmn = Amn(Dmn = Bmn) for m ≤ i; and Cmn = Bmn(Dmn = Amn)
for m > i. This recombination operator has the advantage to preserve certain
information contained in both parents.

3.6 The Local Search Operator

The purpose of the local search (LS) operator is to improve the offspring (solu-
tions) produced by the recombination operator for a maximum of L iterations
before inserting them into the population. In general, any local search method
can be used. In our implementation, we have decided to use a Simulated An-
nealing (SA) algorithm.

In our SA-based LS operator the neighborhood function is a key component
which has a great impact on its performance. Formally, a neighborhood relation
is a function N : A → 2A that assigns to every potential solution (covering
array) A ∈ A a set of neighboring solutions N (A) ⊆ A , which is called the
neighborhood of A. A wrong selected neighborhood function can lead to a poor
exploration of the search space. A well documented alternative to increase the

Memetic Algorithms for Constructing Binary CAs of Strength Three 7

search power of LS methods consists in using compound neighborhood functions
[16–18]. Following this idea, and based on the results of our preliminary experi-
mentations, a neighborhood structure composed by two different neighborhood
functions is proposed for this SA algorithm.

Let switch(A, i, j) be a function allowing to change the value of the element
ai,j by a different legal member of the alphabet in the current solution A, and
W ⊆ A a set containing ω different neighboring solutions of A created by
applying the function switch(A, i, j) with different random values of i and j
(0 ≤ i < N , 0 ≤ j < k). Then the first neighborhood N1(A,ω) of a potential
solution A, used in our SA implementation can be defined using the following
expression:

N1(A,ω) =
{
A′ ∈ A : A′ = min

∀A′′∈W, |W |=ω
[F (A′′)]

}
(5)

Defining the second neighborhood N2(A) (Equation (6)) used in our SA
implementation requires the use of a function swap(A, i, j, l) which exchanges
the values of two elements ai,j and al,j (ai,j 6= al,j) within the same column
of A, and a set R ⊆ A containing neighboring solutions of A produced by
γ successive applications of the function swap(A, i, j, l) using randomly chosen
values for the parameters i, j and l (0 ≤ i < N , 0 ≤ l < N , 0 ≤ j < k).

N2(A, γ) =
{
A′ ∈ A : A′ = min

∀A′′∈R, |R|=γ
[F (A′′)]

}
(6)

During the search process a combination of both N1(A,ω) and N2(A, γ)
neighborhood functions is employed by our SA algorithm. The former is applied
with probability p, while the latter is employed at a (1− p) rate. This combined
neighborhood function N3(A, x, ω, γ) is defined in (7), where x is a random
number in the interval [0, 1].

N3(A, x, ω, γ) =
{
N1(A,ω) if x ≤ p
N2(A, γ) if x > p

(7)

The SA operator proposed starts at an initial temperature T0 = 3, at each
Metropolis round r = 500 moves are generated. If the cost of the attempted
move decreases then it is accepted. Otherwise, it is accepted with probability
P (∆) = e−∆/T where T is the current temperature and ∆ is the increase in
cost that would result from that particular move. At the end of each Metropolis
round then the current temperature is decremented by a factor of α = 0.95. The
algorithm stops either if the current temperature reaches Tf = 0.001, or when
it reaches the predefined maximum of L iterations.

The algorithm memorizes and returns the most recent covering array A∗

among the best configurations found: after each accepted move, the current
configuration A replaces A∗ if F (A) ≤ F (A∗). The rational to return the last
best configuration is that we want to produce a solution which is as far away as
possible from the initial solution in order to better preserve the diversity of the
population.

8 E. Rodriguez-Tello, J. Torres-Jimenez

4 Computational Experiments

In this section, we present a set of experiments accomplished to evaluate the per-
formance of the MA algorithm presented in Sect. 3. The algorithms was coded
in C and compiled with gcc using the optimization flag -O3. It was run sequen-
tially into a CPU Xeon at 2 GHz, 1 GB of RAM with Linux operating system.
Due to the non-deterministic nature of the algorithms, 20 independent runs were
executed for each of the selected benchmark instances. In all the experiments
the following parameters were used for the MA: a) population size |P | = 40,
b) recombinations per generation offspring = |P | mod 4, c) maximal number of
local search iterations L = 50000, d) the neighborhood function N3(A, x, ω, γ)
is applied using a probability p = 0.6 and parameters ω = 10 and γ = N/2, and
e) maximal number of generations maxGenerations = 200000.

These parameter values were chosen experimentally and taking into consider-
ation our experience in solving other combinatorial optimization problems with
the use of MA [19].

4.1 Benchmark Instances and Comparison Criteria

To assess the performance of the MA introduced in Sect. 3, a test-suite composed
of 20 well known benchmark instances taken from the literature was used [1, 5,
9, 13]. It includes instances of size 8 ≤ N ≤ 32. The main criterion used for
the comparison is the same as the one commonly used in the literature: the best
degree k found (bigger values are better) given fixed values for N , t and v.

4.2 Comparison Among MA and the State-of-the-art Procedures

The purpose of this experiment is to carry out a performance comparison of
the best bounds achieved by our MA with respect to those produced by the
following state-of-the-art procedures: orthogonal array constructions [2], Roux
type constructions [1], doubling constructions [7, 5], Tabu Search [9], and IPOG-
F [13].

Table 1 displays the detailed computational results produced by this experi-
ment. The first column in the table indicates the size N of the instance. Column
2 shows the best results found by IPOG-F [13] in terms of the degree k, while
column 3 (Best) presents the previous best-known degree along with the refer-
ence where this result was originally published as indicated in [20]. Next five
columns provide the best solutions (k∗), the success rate of finding those best
solutions (Succ.), the average solution cost (Avg.) with respect to (4), its stan-
dard deviation (Dev.), and the average CPU time (T) in seconds obtained in 20
executions of our MA. Finally, the difference (∆Best−k∗) between the best result
produced by our MA and the previous best-known solution is depicted in the
last column. According to [1] the results presented in column 4 for the instances
of size N ≤ 12 are optimal solutions.

From the data presented in Table 1 we can make the following main observa-
tions. First, the solution quality attained by the proposed MA is very competitive

Memetic Algorithms for Constructing Binary CAs of Strength Three 9

Table 1. Improved bounds for CAN(3, k, 2)

MA
N IPOG-F Best k∗ Succ. Avg. Dev. T ∆Best−k∗

8 4 4 [7] 4 1.0 0.0 0.0 0.02 0
10 4 5 [7] 5 1.0 0.0 0.0 0.03 0
12 5 11 [1] 11 1.0 0.0 0.0 0.13 0
15 6 12 [9] 12 1.0 0.0 0.0 0.18 0
16 7 14 [1] 14 1.0 0.0 0.0 96.64 0
17 9 16 [1] 16 1.0 0.0 0.0 374.34 0
18 11 20 [5] 20 0.8 0.2 0.4 13430.99 0
19 12 22 [5] 22 0.8 0.4 0.8 10493.26 0
20 13 22 [5] 23 0.4 1.2 1.2 13451.34 1
21 15 22 [5] 24 0.3 1.0 0.9 14793.41 2
22 16 24 [5] 24 0.9 0.2 0.4 5235.06 0
23 16 28 [5] 28 0.7 0.7 1.2 21480.33 0
24 19 30 [5] 36 0.3 2.2 2.0 36609.51 6
25 21 32 [5] 41 0.2 1.8 1.4 49110.23 9
26 24 40 [5] 42 0.4 1.9 2.0 52958.12 2
27 26 44 [5] 45 0.3 1.6 2.1 64939.07 1
28 30 44 [5] 47 0.5 2.2 2.8 71830.49 3
30 31 48 [5] 50 0.6 2.8 3.9 89837.65 2
31 33 56 [5] 56 0.7 2.4 4.0 134914.74 0
32 37 64 [1] 67 0.5 7.5 10.8 262151.32 3

Avg. 16.95 27.90 29.35 0.65 1.29 1.70 42085.34 1.45

with respect to that produced by the state-of-the-art procedures summarized in
column 3. In fact, it is able to improve the previous best-known solutions on 9
benchmark instances. It is important to note that for some of these instances the
best-known results were not improved since their publication in 1993 [1]. For the
rest of the instances in the test-suite our MA equals the previous best-known
solutions. Second, one observes that in this experiment the IPOG-F procedure
[13] returns poorer quality solutions than our MA in 19 out 20 benchmark in-
stances. Indeed, IPOG-F produces covering arrays which are in average 73.16%
worst than those constructed with a MA.

Regarding the computational effort we would like to point that, in general,
authors of the algorithms used in our comparisons did not provide information
about their expended CPU times. Thus, the running times from these algorithms
cannot be directly compared with ours.

Even if the results attained by our MA are very competitive, we have observed
that the average computing time consumed by our approach, to produce these
excellent results, is greater than that used by some recursive [6, 21] and algebraic
methods [7, 5, 22]. However, since MA outperforms some of the state-of-the-art
procedures, finding 9 new bounds, we believe that the extra consumed computing
time is fully justified. Especially, if we consider that for this kind of experiments
the objective is to compare the best bounds achieved by the studied algorithms.

The outstanding results achieved by MA are better illustrated in Fig. 1. The
plot represents the size N of the instance (ordinate) against the degree k attained
by the compared procedures (abscissa). The bounds provided by IPOG-F [13] are

10 E. Rodriguez-Tello, J. Torres-Jimenez

shown with squares, the previous best-known solutions are depicted as circles,
while the bounds computed with our MA are shown as triangles. From this
figure it can be seen that MA consistently outperforms IPOG-F, obtaining also
important improvements with respect to the previous best-known solutions on
CAN(3, k, 2) for 4 ≤ k ≤ 67. This is the case of covering array CA(25; 3, k, 2) for
which an increase of 28.13% of the degree k was accomplished by our algorithm.

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70

N

k

IPOG−F
Best
MA

Fig. 1. Previous best-known and improved bounds on CAN(3, k, 2)

4.3 Influence of the Variation Operators

In order to further examine the behavior of our approach we have performed some
additional experiments for analyzing the influence of the variation operators used
in its implementation. The results obtained with all the benchmark instances
described in Sect. 4.1 were similar, so for the reason of space limitation, we have
decided to show the product of these experiments using only a representative
graph. Figure 2 shows the evolution profile of the fittest individual (ordinate)
along the search process (abscissa) when the instance CA(17; 3, 16, 2) is solved
using two variants of the MA described in Sect. 3: a) an algorithm using only
the crossover operator, and b) an algorithm using the crossover operator and a
simple mutation operator based on the switch(A, i, j) defined in Sect. 3.6.

From Fig. 2 it can be observed that the worst solution quality is provided
by the algorithm using only the crossover operator. It gets stuck longer time
on some local minima than the algorithm employing also a simple mutation
operator. However, neither of these two variants of our MA were able to find
a covering array CA(17; 3, 16, 2). In contrast, the MA using the combination
of crossover and LS operators gives better results both in solution quality and
computational time expended. These experiments allow us to conclude that the
contribution of the crossover operator is less significant than that of the LS
operator based on a SA algorithm.

Memetic Algorithms for Constructing Binary CAs of Strength Three 11

 0

 50

 100

 150

 200

 250

 300

 0 500 1000 1500 2000

B
es

t f
itn

es
s

Generations

MA
Only crossover

Crossover and mutation

Fig. 2. Influence of the variation operators when solving the instance CA(17; 3, 16, 2).

5 Conclusions

In this paper, a highly effective MA designed to compute near-optimal solutions
for the CAC problem was presented. This algorithm is based on an efficient
heuristic to generate good quality initial populations, and a SA-based LS oper-
ator employing a carefully designed compound neighborhood.

The performance of this MA was assessed through extensive experimenta-
tion over a set of well-known benchmark instances and compared with five other
state-of-the-art procedures: orthogonal array constructions [2], Roux type con-
structions [1], doubling constructions [5], Tabu Search [9], and IPOG-F [13]. The
results show that our MA was able to improve on 9 previous best-known solu-
tions and to equal these results on the other 11 selected benchmark instances.
Furthermore, it is important to note that these new bounds on CAN(3, k, 2) offer
the possibility to improve other best-known results for binary CAs of strength
three of size N > 32 by employing doubling constructions [5].

Finding near-optimal solutions for the CAC problem in order to construct
economical sized test-suites for software interaction testing is a very challenging
problem. However, the introduction of this new MA opens up an exciting range of
possibilities for future research. One fruitful possibility is to develop a multimeme
algorithm [23] based on the MA presented here in order to efficiently construct
covering arrays of strength t > 3 and order v > 2.

References

1. Sloane, N.J.A.: Covering arrays and intersecting codes. Journal of Combinatorial
Designs 1(1) (1993) 51–63

2. Bush, K.A.: Orthogonal arrays of index unity. Annals of Mathematical Statistics
23(3) (1952) 426–434

3. Seroussi, G., Bshouty, N.: Vector sets for exhaustive testing of logic circuits. IEEE
Transactions on Information Theory 34 (1988) 513–522.

12 E. Rodriguez-Tello, J. Torres-Jimenez

4. Lei, Y., Tai, K.: In-parameter-order: A test generation strategy for pairwise test-
ing. In: Proceedings of the 3rd IEEE International Symposium on High-Assurance
Systems Engineering, Washington, DC, USA, IEEE Computer Society (1998) 254–
261

5. Chateauneuf, M.A., Kreher, D.L.: On the state of strength-three covering arrays.
Journal of Combinatorial Design 10(4) (2002) 217–238

6. Hartman, A., Raskin, L.: Problems and algorithms for covering arrays. Discrete
Mathematics 284(1-3) (2004) 149–156

7. Hedayat, A.S., Sloane, N.J.A., Stufken, J.: Orthogonal Arrays, Theory and Appli-
cations. Springer, Berlin (1999)

8. Cohen, D.M., Dalal, S.R., Fredman, M.L., Patton, G.C.: The AETG system: An
approach to testing based on combinatorial design. IEEE Transactions on Software
Engineering 23 (1997) 437–444

9. Nurmela, K.J.: Upper bounds for covering arrays by tabu search. Discrete Applied
Mathematics 138(1-2) (2004) 143–152

10. Cohen, D.M., Colbourn, C.J., Ling, A.C.H.: Constructing strength three covering
arrays with augmented annealing. Discrete Mathematics 308(13) (2008) 2709–2722

11. Stardom, J.: Metaheuristics and the search for covering and packing arrays. Mas-
ter’s thesis, Simon Fraser University, Burnaby, Canada (2001)

12. Roux, G.: k-propriétés dans des tableaux de n colonnes; cas particulier de la
k-surjectivité et de la k-permutivité. PhD thesis, Université de Paris 6, France
(1987)

13. Forbes, M., Lawrence, J., Lei, Y., Kacker, R.N., Kuhn, D.R.: Refining the in-
parameter-order strategy for constructing covering arrays. Journal of Research of
the National Institute of Standards and Technology 113(5) (2008) 287–297

14. Lei, Y., Kacker, R., Kuhn, D.R., Okun, V., Lawrence, J.: IPOG: A general strategy
for t-way software. In: Proceedings of the 14th Annual IEEE International Confer-
ence and Workshops on the Engineering of Computer-Based Systems, Washington,
DC, USA, IEEE Computer Society (2007) 549–556

15. Nurmela, K.J., Österg̊ard, P.R.J.: Constructing covering designs by simulated
annealing. Technical Report 10, Department of Computer Science, Helsinki Uni-
versity of Technology, Otaniemi, Finland (January 1993)

16. Mladenović, N., Hansen, P.: Variable neighborhood search. Computers & Opera-
tions Research 24(11) (1997) 1097–1100

17. Urosević, D., Brimberg, J., Mladenović, N.: Variable neighborhood decomposition
search for the edge weighted k-cardinality tree problem. Computers & Operations
Research 31(8) (2004) 1205–1213

18. Rodriguez-Tello, E., Hao, J.K., Torres-Jimenez, J.: An effective two-stage simu-
lated annealing algorithm for the minimum linear arrangement problem. Comput-
ers & Operations Research 35(10) (2008) 3331–3346

19. Rodriguez-Tello, E., Hao, J.K., Torres-Jimenez, J.: Memetic algorithms for the
MinLA problem. Lecture Notes in Computer Science 3871 (2006) 73–84

20. Colbourn, C.J.: Covering Array Tables. http://www.public.asu.edu/~ccolbou/

src/tabby/catable.html (Accessed on March 17, 2009)
21. Martirosyan, S.S., Van Trung, T.: On t-covering arrays. Designs, Codes and

Cryptography 32(1-3) (2004) 323–339
22. Hartman, A.: 10. In: Software and Hardware Testing Using Combinatorial Covering

Suites. Springer-Verlag (2005) 237–266
23. Krasnogor, N.: Towards robust memetic algorithms. In: Recent Advances in

Memetic Algorithms. Volume 166 of Studies in Fuzziness and Soft Computing.
Springer (2004) 185–207

