
Memetic Algorithms for the MinLA Problem?

Eduardo Rodriguez-Tello1, Jin-Kao Hao1, and Jose Torres-Jimenez2

1 LERIA, Université d’Angers.
2 Boulevard Lavoisier, 49045 Angers, France
{ertello, hao}@info.univ-angers.fr

2 Mathematics Department, University of Guerrero.
54 Carlos E. Adame, 39650 Acapulco Guerrero, Mexico

jose.torres.jimenez@acm.org

Abstract. This paper presents a new Memetic Algorithm designed to
compute near optimal solutions for the MinLA problem. It incorporates
a highly specialized crossover operator, a fast MinLA heuristic used to
create the initial population and a local search operator based on a
fine tuned Simulated Annealing algorithm. Its performance is investi-
gated through extensive experimentation over well known benchmarks
and compared with other state-of-the-art algorithms.

Key words: Memetic Algorithms, Linear Arrangement, Heuristics.

1 Introduction

Evolutionary algorithms (EAs), as general purpose optimization procedures,
have been successfully applied in a broad spectrum of areas in physics, chemistry,
engineering, management science, biology and computer science [22].
It is well recognized that it is essential to incorporate some form of domain

knowledge into EAs to arrive at highly effective search [1, 4, 10]. There are many
ways to achieve this, for example by the combination of EAs with other efficient
problem-dependent heuristics, or by using encodings and genetic operators that
are tailored to the problem to be solved. Memetic algorithms (MAs) follow such
an approach and have demonstrated recently to be very efficient [3, 7, 8, 12, 16,
23]. Under different contexts and situations, MAs are also known as hybrid EAs
or genetic local searchers.
In this paper, we are interested in tackling with the use of MAs a well-known

combinatorial optimization problem: the Minimum Linear Arrangement prob-
lem (MinLA). Garey and Johnson have shown that finding the minimum linear
arrangement of a graph is NP-hard and the corresponding decision problem is
NP-complete [9]. MinLA was first stated by Harper [11]. His aim was to design
error-correcting codes with minimal average absolute errors on certain classes

B This work is supported by the CONACyT Mexico, the “Contrat Plan Etat Région”
project COM (2000-2006) as well as the Franco-Mexican Joint Lab in Computer
Science LAFMI (2005-2006).

of graphs. The MinLA problem arises also in other application areas like graph
drawing, VLSI layout, software diagram layout and job scheduling [5].
The MinLA problem can be stated formally as follows. Let G(V,E) be a

finite undirected graph, where V (|V | = n) defines the set of vertices and E ⊆
V × V = {{i, j}|i, j ∈ V } is the set of edges. Given a one-to-one function
ϕ : V → {1..n}, called a linear arrangement, the total edge length for G with
respect to arrangement ϕ is defined according to the equation 1.

LA(G,ϕ) =
X

(u,v)∈E
|ϕ(u)− ϕ(v)| (1)

Then the MinLA problem consists in finding an arrangement ϕ for a given
G so that LA(G,ϕ) is minimized.
There exist polynomial time exact algorithms for some special cases of MinLA

such as trees, rooted trees, hypercubes, meshes, outerplanar graphs, and others
(see [5] for a detailed survey). However, MinLA is NP-hard for general graphs [9]
and for bipartite graphs [6]. Therefore, there is a need for heuristics to address
this problem in reasonable time. Among the reported algorithms are a) heuristics
especially developed for MinLA, such as the binary balanced decomposition tree
heuristic (DT) [2], the multi-scale algorithm (MS) [14] and the algebraic multi-
grid scheme (AMG) [21]; and b) metaheuristics such as Simulated Annealing
[17—19] and Genetic Algorithms [20].
This paper aims at developing a powerful Memetic Algorithm (MA) for find-

ing near optimum solutions for the MinLA problem. To achieve this, the new
algorithm, called MAMP (standing for Memetic Algorithm for the MinLA Prob-
lem), incorporates a highly specialized crossover operator, a fast MinLA heuristic
used to create the initial population and a local search operator based on a fine
tuned Simulated Annealing algorithm. The performance of MAMP is assessed
with a set of 21 benchmark instances taken from the literature. The computa-
tional results are reported and compared with previously published ones, showing
that our algorithm is able to improve on some previous best results.
The paper is organized as follows. Section 2 reviews some existing solution

procedures for the MinLA problem. Then, the different components of our MA
are presented in Section 3. Section 4 is dedicated to computational experiments
and comparisons with previous results. The last section summarizes the main
contributions of this research work.

2 Relevant Existing Procedures

Because of the importance of the MinLA problem, much research has been car-
ried out in developing effective heuristics for it. In this section, we give a brief
review of three representative algorithms which were used in our comparisons.

2.1 The SS+SA Heuristic

In 2001 Jordi Petit developed a heuristic for the MinLA problem, called SS+SA
[18, 19]. It works as follows: First a global solution is obtained by using Spectral

Sequencing (SS), a method originally proposed by Juvan and Mohar, which is
based on the computation of the Fiedler vector of G [13]. Then the resulting
arrangement is iteratively improved using a SA algorithm previously reported
in [17]. It performs local changes based on a special neighborhood distribution,
called FlipN, that tends to favor moves with high probability to be accepted.

The SS+SA algorithm proposed by Petit starts at an initial temperature
T0 = 10, at each Metropolis round r = 20n3/2 moves are generated. Then
the current temperature is decremented with the relation Tk = αTk−1, with
α = 0.95 until to reach a final temperature Tf = 0.2. The author claims that
these parameters were fixed based on some preliminary experiments.

The author makes a computational comparison of the SS procedure, a SA
algorithm and the combination of both methods (SS+SA). For this comparison
Petit collected a set of 21 benchmark graphs. The test-suite consists of 5 random
graphs, 3 “regular”graphs (a hypercube, a mesh, and a binary tree), 3 graphs
from finite element discretizations, 5 graphs from VLSI designs, and 5 graphs
from graph drawing competitions.

The experiments have shown that for the finite element discretization graphs
SS+SA improves the SS and SA solutions by more than 20%, while reducing the
running time to a 25% of SA. For the rest of the graphs, SS+SA allways improves
the SS solutions and only for two graphs (c5y and gd96a) it is unable to improve
the SA solution. The running times are usually lower for SS+SA than for SA.
The author concludes that the SS+SA heuristic is a valuable improvement over
the SS and SA methods.

2.2 The DT+SA Heuristic

Besides Petit’s work, Bar-Yehuda et al. present in [2] a divide-and-conquer ap-
proach to the MinLA problem. Their idea is to divide the vertices into two sets,
to recursively arrange each set internally at consecutive locations, and finally to
join the two ordered sets, deciding which will be put to the left of the other.

The computed arrangement is specified by a decomposition tree (DT) that
describes the recursive partitioning of the subproblems. Each vertex of the tree
gives a degree of freedom as to the order in which the two vertex sets are glued
together. Thus, the goal of the algorithm is to decide for each vertex of the
decomposition tree the order of its two children. The authors propose a dynamic
programming algorithm for computing the best possible ordering for a given
decomposition tree.

The set of benchmark instances used in [2] is the same proposed by Petit
in [17—19]. They applied their algorithm iteratively, starting each iteration with
the result of the previous one. After a few tens of iterations, the algorithm usually
yields results within 5-10% of those obtained by Petit’s SA, but at a fraction
of its running time. They have used these computed arrangements as an initial
solution for the SA reported in [17] and slightly better results were obtained.

2.3 The MS Heuristic

In 2002, Koren and Harel present a linear-time algorithm for the MinLA problem,
based on the multi-scale (MS) paradigm [14]. MS techniques transform a high-
dimensional problem in an iterative fashion into subproblems of increasingly
lower dimensions, via a process called coarsening. On the coarsest scale the
problem is solved exactly, following which a refinement process starts, whereby
the solution is progressively projected back into higher and higher dimensions,
updated appropriately at each scale, until the original problem is reproduced
and solved.
The algorithm proposed in [14], starts with a preprocessing stage that ob-

tains, rapidly, a reasonable linear arrangement by using spectral sequencing and
then improves the result by applying a procedure, that they call median itera-
tion, for about 50 sweeps. The median iteration is a randomized algorithm based
on a continuous relaxation of the MinLA problem, where vertices are allowed to
share the same place, or to be placed on non-integral points.
Then, the MS algorithm starts by refining the arrangement locally. The in-

tention of the refinement is not only to minimize the arrangement cost, but also
to improve the quality of the coarsening step that follows. The next step is to
coarsen the graph based on restricting consecutive vertex pairs of the current
arrangement. The problem is then solved in the restricted solution space, by
running all this set of steps (called a V-cycle) recursively on the coarse graph.
Once a good solution is found in the restricted solution space, the algorithm
refines it locally (in the full solution space).
Koren and Harel have also used the set of test instances proposed by Petit.

For each graph in this set, they ran their MS algorithm first with a single V-cycle
and then with ten. They present these results as well as those obtained during
the preprocessing stage (spectral sequencing and median iteration algorithms).
The quality of their results after 10 V-cycle iterations is comparable to that of
Petit’s SA, but the running time is significantly better.
Later in 2004, an improvement to the algorithm proposed by Koren and

Harel was presented in [21]. The main difference between these approaches is
the coarsening scheme. Koren and Harel use strict aggregation, while Safro et
al. use weighted aggregation. In a strict aggregation procedure the nodes of the
graph are blocked into small disjoint subsets, called aggregates. By contrast, in
the weighted aggregation each node can be divided into fractions, and different
fractions belong to different aggregates. Safro et al. have shown experimentally
that their approach can obtain high quality results in linear time for the MinLA
problem and can be considered as one of the best MinLA algorithms known
today.

2.4 The Genetic Hillclimbing Algorithm

In [20] a Genetic Hillclimbing (GH) algorithm is proposed. It represents linear
arrangements as permutations of vertices and operates as follows: An initial pop-
ulation |P | = 100 is created by combining one individual generated with spectral

sequencing, 10% of randomly generated individuals and the rest is generated us-
ing depth-first and breadth-first search algorithms initialized with a randomly
chosen vertex. At each generation 0.5|P | pairs of individuals are randomly se-
lected, then a two point crosssover with unfeasibility repair is applied with 98%
of probability in order to produce two offspring each time. Both resulting off-
spring are compared with their parents. If offspring has better fitness than one of
its parents, then it is inserted in the population else the parent is taken back to
the population and the offspring is eliminated. After that, nlog(n) hillclimbing
steps are applied to each individual of the population. It allows to obtain locally
optimal solutions that will be mutated with probability 15%. The mutation op-
erator consists in applying one random swap. The process is repeated until the
number of 20000 generations is reached or when 100 successive generations do
not produce a better solution.
For his comparisons the author employs the set of benchmark instances pro-

posed by Petit [17—19]. Their results show that GH has found slightly better
results for 7 instances (over 21 graphs).

3 A New Memetic Algorithm for MinLA

In this section we present a new Memetic algorithm, called MAMP, for solving
the MinLA problem. Next all the details of its implementation are presented.

3.1 Search Space, Representation and Fitness Function

The search space A for the MinLA problem is composed of all possible arrange-
ments from V to {1, 2, ..., n}. It is easy to see then, that there are n! possible
linear arrangements for a graph with n vertices.
In our MA a linear arrangement ϕ is represented as an array l of n integers,

which is indexed by the vertices and whose i-th value l[i] denotes the label
assigned to the vertex i. The fitness of ϕ is evaluated by using Equation 1.

3.2 The General Procedure

MAMP starts building an initial population P , which is a set of configurations
having a fixed constant size |P | (initPopulation). Then it performs a series of
cycles called generations. At each generation, a predefined number of recombina-
tions (offspring) are executed. In each recombination two configurations a and
b are chosen randomly from the population (selectParents). A recombination
operator is then used to produce an offspring c from a and b (recombineIndivid-
uals). The local search operator (localSearch) is applied to improve c for a fixed
number of iterations L and the improved configuration c is inserted in the popu-
lation. Finally, the population is updated by choosing the best individuals from
the pool of parents and children (UpdatePopulation). This process repeats un-
til a stop condition is verified, usually when a predefined number of generations
(maxGenerations) is reached. Note however, that the algorithm may stop before

reaching maxGenerations, if a better solution is not produced in a predefined
number of successive generations (maxFails).

3.3 The Initialization Operator

The operator initPopulation(|P |) initiates the population P with |P | configu-
rations. To create a configuration, we use the greedy frontal increase minimiza-
tion (FIM) algorithm of McAllister [15], slightly adapted in order to work in
a randomized form. The algorithm is based on the following two basic steps:
1) Select a starting vertex and place it in position 1. 2) For each remain-
ing position 2 through n, select one of the unplaced vertices for placement
in the current position by using the FIM strategy. It consist in selecting for
placement i a vertex that is adjacent to the fewest vertices in Ui − Fi, where
Fi = {u ∈ Ui|v ∈ Pi and (u, v) ∈ E} denotes the front at placement i, Pi repre-
sents the set of i− 1 vertices placed so far and Ui the set of currently unplaced
vertices.
In order to accomplish this, two measures are defined that enable to know how

highly a vertex v ∈ Ui is connected to Pi and to Ui+1. The measures are defined
respectively as follows: tli(v) = |{(u, v) ∈ E|u ∈ Pi}| and tri(v) = d(v)− tli(v),
where d(v) denotes the degree of the vertex v. Both measures are used to define a
new selection factor sfi(v) = tri(v)−tli(v), which is used at the two-step general
strategy described above as follows: For each placement i in step 2, select v ∈ Fi
with minimum sfi(v). This algorithm has a linear time complexity with respect
to the number of edges in the graph. This is possible thanks to the use of efficient
data structures that enable to select a vertex with minimum sfi(v) in constant
time.
Due to the randomness of the greedy algorithm, the configurations in the

initial population are quite different. This point is important for population
based algorithms because a homogeneous population cannot efficiently evolve.

3.4 Selection

Mating selection (selectParents(P)) prior to recombination is performed on a
purely random basis without bias to fitter individuals, while selection for survival
(UpdatePopulation(P)) is done by choosing the best individuals from the pool
of parents and children. It is done by taking care that each phenotype exists
only once in the new population. Thus, replacement in our algorithm is similar
to the (µ, λ) selection scheme used in [16].

3.5 The Recombination Operator

The main idea of the recombination operator (recombineIndividuals(a, b)) is to
generate diversified and potentially promising individuals. To do that, a good
MinLA recombination operator should take into consideration, as much as pos-
sible, the individuals’ semantic.

In this subsection we present a new recombination operator LGX (local greedy
crossover) that is able to preserve certain information contained in both parents,
while some subgraphs are locally improved using a greedy mechanism. The new
LGX operator works in four basic steps:
First, all the labels found at the same vertex in the two parents are assigned

to the corresponding vertex in the offspring. Next, for each labeled vertex in
the offspring a greedy mechanism is applied to find the labels for its adjacent
vertices; this procedure tends to minimize the local MinLA contribution of each
of these subgraphs. Then, for each unlabeled vertex in the offspring we take, if
possible, the label from the same vertex of one of the parents. Finally, the labels
for the remaining vertices are randomly assigned. The functioning of the LGX
operator is presented in Algorithm 1.

recombineIndividuals(a, b)
begin

// The number of assigned labels in the offspring

assigned = copyIdenticLabels(a, b, c);
for each vertex i labeled in c do

assigned += localGreedy(i, c);
end
assigned += completeFromParents(a, b, c);
if assigned < |V | then

completeRandom(c, assigned);
end
return The offspring c;

end

Algorithm 1: The LGX recombination operator

3.6 The Local Search Operator

The purpose of the local search (LS) operator localSearch(c, L) is to improve
a configuration c produced by the recombination operator for a maximum of L
iterations before inserting it into the population. In general, any local search
method can be used. In our implementation, we have decided to use Simulated
Annealing (SA).
In our SA-based LS operator the neighborhood N(ϕ) of an arrangement ϕ is

such that for each ϕ ∈ A, ϕ0 ∈ N(ϕ) if and only if ϕ0 can be obtained by flipping
the labels of any pair of different vertices from ϕ. We call this flipping operation a
move. Besides the apparent simplicity of this neighborhood function, the reasons
to choose it are: the easiness to perform movements and the low effort necessary
to compute incrementally the cost of the new arrangement.
The SA operator starts at an initial temperature T0 = 10, at each Metropolis

round r = 1000 moves are generated. If the cost of the attempted move decreases
then it is accepted. Otherwise, it is accepted with probability P (∆) = e−∆/T

where T is the current temperature and ∆ is the increase in cost that would
result from that particular move. At the end of each Metropolis round then the
current temperature is decremented by a factor of α = 0.955. The algorithm
stops either if the current temperature reaches Tf = 0.001, or when it reaches
the predefined maximum of L iterations.
The algorithm memorizes and returns the most recent arrangement ϕ∗ among

the best configurations found: after each accepted move, the current configu-
ration ϕ replaces ϕ∗ if LA(G,ϕ) ≤ LA(G,ϕ∗) (and not only if LA(G,ϕ) <
LA(G,ϕ∗)). The rational to return the last best configuration is that we want
to produce a solution which is as far away as possible from the initial solution
in order to better preserve the diversity in the population.

4 Computational Experiments

In this section, we present a set of experiments accomplished to evaluate the
performance of the MA algorithm presented in Section 3. The algorithms were
coded in C and compiled with gcc using the optimization flag -O3. They were
run sequentially into a cluster of 10 nodes, each having a Xeon bi-CPU at 2 GHz,
1 GB of RAM and Linux. Due to the non-deterministic nature of the algorithms,
20 independent runs were executed for each of the selected benchmark instances.
When averaged results are reported, they are based on these 20 corresponding
runs.
In all the experiments the following parameters were used for MAMP: a)

population size |P | = 40, b) recombinations per generation offspring = 4, c)
maximal number of local search iterations L = 150000, d) maximal number
of generations maxGenerations = 10000 and e) maximal number of successive
failed generations maxFails = 100.

4.1 Benchmark Instances and Comparison Criteria

The test-suite that we have used in the experiments is the same proposed by
Petit [17] and used later in [2, 14, 20, 21]. It consists of six different families
of graphs: Uniform random (randomA* class), geometric random (randomG*
class), graphs with known optima (trees, hypercubes and meshes), finite ele-
ment discretizations (3elt, airfoil1 and whitaker3), VLSI design (c*y class) and
graph drawing competitions (gd* class). All of them have 1000 vertices or more,
except for some instances in the gd* class. These instances are available at:
http://www.lsi.upc.es/˜jpetit/MinLA/Experiments
The criteria used for evaluating the performance of the algorithms are the

same as those used in the literature: the best total edge length found for each
instance and the CPU time in seconds.

4.2 Comparison Between MAMP and GH

The purpose of the first experiment is to compare our memetic algorithm MAMP
with the previous one of [20] (GH). To enable a fair comparison we have obtained

the GH source code1. Then GH and MAMP were compiled and executed in our
hardware and operating system platform 20 times on each benchmark instance.
The parameters for the GH algorithm are those reported in Poranen’s work:

a) population with 100 individuals, b) 50 crossovers per generation, c) 98%
crossover rate, d) 15%mutation rate, e) nlog(n) hillclimbing steps, f) a maximum
of 20000 generations and g) at maximum 100 successive failed generations. We
would like to point out that GH employs a population of 100 individuals, while
MAMP has a population size of 40. We have decided to conserve this difference,
apparently unfavorable for MAMP, because in a preliminary experiment we have
tried to reduce the GH population size to 40, but the results produced by GH
were inferior in solution quality.

Table 1. Performance comparison between MAMP and GH.

GH MAMP
Graph Bc Avg t Bc Avg t ∆C

randomA1 878705 883138.2 4079.2 867535 868480.4 918.7 -11170
randomA2 6557701 6564256.4 24010.2 6533999 6536249 3477.4 -23702
randomA3 14253230 14253230 25629.1 14240067 14240757 5221.2 -13163
randomA4 1735414 1735414 10066.2 1719906 1721070.4 1904.1 -15508
randomG4 153470 153470 1924.6 141538 143855 2097.2 -11932
bintree10 3873 3920.6 413.0 3790 3812.8 984.7 -83
hc10 523776 523776 325.8 523776 523776 1152.4 0
mesh33x33 31968 32127.2 1129.9 31917 31979.8 1177.9 -51
3elt 397305 403654.2 41952.7 362209 364403 5758.9 -35096
airfoil1 300656 300656 74023.7 285429 286986.6 5542.4 -15227
whitaker3 1189831 1189831 9006538.7 1167089 1168140.25 15322.4 -22742
c1y 63063 63440.6 783.9 62333 62383.6 651.5 -730
c2y 80453 81914.2 935.4 79017 80998 672.8 -1436
c3y 129775 130789.4 2092.0 123521 123689.4 731.1 -6254
c4y 118270 119277 2796.8 115144 115406 739.4 -3126
c5y 100877 102054.8 1983.7 96952 97219.4 741.5 -3925
gd95c 506 508.4 2.2 506 506.2 1.5 0
gd96a 105947 108714.6 886.7 96253 96384.8 667.9 -9694
gd96b 1416 1417.2 4.5 1416 1416.2 3.3 0
gd96c 519 519.2 2.0 519 520 1.4 0
gd96d 2406 2413.6 10.9 2391 2392 8.1 -15

Average -8278.8

The results obtained from comparing both algorithms are presented in Table
1. Column 1 shows the name of the graph. Columns 2 to 7 display the best cost
(Bc), the average cost (Avg) and the average CPU time (t) in seconds for finding
the best solution in each one of the 20 runs of the GH and MAMP algorithms
respectively. Last column presents the difference (∆C) between the best cost
found by MAMP and the best cost produced by GH.

1 available at http://www.cs.uta.fi/˜tp/optgen/index.html

Table 1 shows clearly that MAMP allows us to obtain better results for many
classes of graphs with less computing time. We can observe an important im-
provement in cost in 17 out of 21 instances. For the rest of the instances the
results of MAMP equal those produced by GH, but always with less computa-
tional effort, thanks to its reduced population size.

4.3 Comparison Between MAMP and the Best Known Results

In the second experiment a performance comparison of our MAMP procedure
with the following heuristics was carried out: SS+SA [18, 19], DT+SA [2], AMG
[21] and GH [20]. Table 2 presents the detailed computational results produced
by this experiment. The first three columns in the table indicate the name of the
graph, its number of vertices and its number of edges. The rest of the columns
indicate the best total edge length found by each of the compared heuristics.
These results were taken from their corresponding paper. Finally, last column
presents the difference (∆C) between the best total edge length found by MAMP
and the previous best known solution reported in the literature.
From Table 2, one observes that MAMP is competitive in terms of solution

quality. MAMP is able to improve on 4 previous best known solutions and to
equal these results in 5 instances. For the other instances, MAMP did not reach
the best reported solution, but its results are very close to the best reported (in
average 1.009%). Notice that for some instances the improvement is important;
leading to a significant decrease of the total edge length (∆C up to −6579).
Even if the results obtained by our memetic algorithm are very competitive

we observe that MAMP, given that it is a memetic algorithm, consumes con-
siderably more computer time than some heuristics for MinLA such as DT [2],
MS [14] and AMG [21].

5 Conclusions

In this paper, a MA designed to compute near optimal solutions for the MinLA
problem was presented. This algorithm, called MAMP, is based on the use of
a greedy vertex-by-vertex algorithm for generating the initial population of the
MA, a fine tuned Simulated Annealing algorithm for finding local optima in the
search space, and a highly specialized crossover operator for efficiently explore
the space of local optima in order to find the global optimum.
The performance of our MAMP algorithm was assessed through extensive

experimentation over a set of well known benchmark instances and compared
with four other state-of-the-art algorithms: SS+SA [18, 19], DT+SA [2], AMG
[21] and GH [20]. The results obtained by MAMP are superior to those presented
by the previous proposed evolutionary approach [20], and permit to improve on
some previous best known solutions.
There are some issues for future research. For example, to investigate the

behavior of MAMP when it is applied to larger instances, like those proposed
by Koren and Harel in [14], in order to study its scalability. Additionally, the

Table 2. Performance comparison between MAMP and several state-of-the-art algo-
rithms.

Graph |V | |E| SS+SA DT+SA AMG GH MAMP ∆C

randomA1 1000 4974 869648 884261 888381 878637 867535 -2113
randomA2 1000 24738 6536540 6576912 6596081 6550292 6533999 -2541
randomA3 1000 49820 14310861 14289214 14303980 14246646 14240067 -6579
randomA4 1000 8177 1721490 1747143 1747822 1735691 1719906 -1584
randomG4 1000 8173 150940 146996 140211 142587 141538 1327
bintree10 1023 1022 4069 3762 3696 3807 3790 94
hc10 1024 5120 523776 523776 523776 523776 523776 0
mesh33x33 1089 2112 31929 33531 31729 32040 31917 188
3elt 4720 13722 363686 363204 357329 383286 362209 4880
airfoil1 4253 12289 285597 289217 272931 306005 285429 12498
whitaker3 9800 28989 1169642 1200374 1144476 1203349 1167089 22613
c1y 828 1749 63145 62333 62262 62562 62333 71
c2y 980 2102 79429 79571 78822 79823 79017 195
c3y 1327 2844 123548 127065 123514 125654 123521 7
c4y 1366 2915 116140 115222 115131 117539 115144 13
c5y 1202 2557 97791 96956 96899 98483 96952 53
gd95c 62 144 509 506 506 506 506 0
gd96a 1096 1676 96366 99944 96249 98388 96253 4
gd96b 111 193 1416 1422 1416 1416 1416 0
gd96c 65 125 519 519 519 519 519 0
gd96d 180 228 2393 2409 2391 2391 2391 0

performance of MAMP should be more deeply investigated with other parameter
settings for population size, operator rates and stopping conditions.

Acknowledgments. The authors would like to thank Andrew J. McAllister who

has kindly provided us with his source code. The reviewers of the paper are greatly

acknowledged for their constructive comments.

References

1. T. Bäck, U. Hammel, and H. P. Schwefel. Evolutionary computation: Comments on
the history and current state. IEEE Transactions on Evolutionary Computation,
1(1):3—17, 1997.

2. R. Bar-Yehuda, G. Even, J. Feldman, and S. Naor. Computing an optimal orien-
tation of a balanced decomposition tree for linear arrangement problems. Journal
of Graph Algorithms and Applications, 5(4):1—27, 1996.

3. D. Corne, M. Dorigo, F. Glover, D. Dasgupta, P. Moscato, R. Poli, and K. V. Price,
editors. New Ideas in Optimization (Part 4: Memetic Algorithms). McGraw-Hill,
1999.

4. L. Davis. Handbook of Genetic Algorithms. Van Nostrad, New York, 1991.

5. J. Diaz, J. Petit, and M. Serna. A survey of graph layout problems. ACM Comput.
Surv., 34(3):313—356, 2002.

6. S. Even and Y. Shiloah. NP-completeness of several arrangement problems. Tech-
nical Report CS0043, Computer Science Department, Technion, Israel Institute of
Technology, Haifa, Israel, January 1975.

7. B. Freisleben and P. Merz. A genetic local search algorithm for solving symmetric
and asymmetric traveling salesman problems. In Proceedings of the 1996 IEEE In-
ternational Conference on Evolutionary Computation, pages 616—621. IEEE Press,
1996.

8. P. Galinier and J. Hao. Hybrid evolutionary algorithms for graph coloring. Journal
of Combinatorial Optimization, 3(4):379—397, 1999.

9. M. Garey and D. Johnson. Computers and Intractability: A guide to the Theory
of NP-Completeness. W.H. Freeman and Company, New York, 1979.

10. J. J. Grefenstette. Incorporating problem specific knowledge into genetic algo-
rithms. In L. Davis, editor, Genetic Algorithms and Simulated Annealing, pages
42—60, London, 1987. Morgan Kaufmann Publishers.

11. L. Harper. Optimal assignment of numbers to vertices. Journal of SIAM,
12(1):131—135, 1964.

12. W. E. Hart, N. Krasnogor, and J. E. Smith, editors. Recent Advances in Memetic
Algorithms and Related Search Technologies. Springer-Verlag, 2004.

13. M. Juvan and B. Mohar. Optimal linear labelings and eigenvalues of graphs.
Discrete Applied Mathematics, 36(2):153—168, 1992.

14. Y. Koren and D. Harel. A multi-scale algorithm for the linear arrangement prob-
lem. In L. Kucera, editor, Proceedings of 28th Inter. Workshop on Graph-Theoretic
Concepts in Computer Science (WG’02), volume 2573 of LNCS, pages 293—306.
Springer Verlag, 2002.

15. A. J. McAllister. A new heuristic algorithm for the linear arrangement problem.
Technical Report TR-99-126a, Faculty of Computer Science, University of New
Brunswick, 1999.

16. P. Merz and B. Freisleben. Fitness landscapes, memetic algorithms and greedy
operators for graph bi-partitioning. Evolutionary Computation, 8(1):61—91, 2000.

17. J. Petit. Approximation heuristics and benchmarkings for the MinLA problem.
In Alex ’98 — Building Bridges Between Theory and Applications, pages 112—128,
1998.

18. J. Petit. Layout Problems. PhD thesis, Universitat Politécnica de Catalunya, 2001.
19. J. Petit. Combining spectral sequencing and parallel simulated annealing for the

MinLA problem. Parallel Processing Letters, 13(1):71—91, 2003.
20. T. Poranen. A genetic hillclimbing algorithm for the optimal linear arrangement

problem. Technical report, University of Tampere, Finland, June 2002.
21. I. Safro, D. Ron, and A. Brandt. Graph minimum linear arrangement by multilevel

weighted edge contractions. Journal of Algorithms, 2004. in press.
22. M. Tomassini. A survey of genetic algorithms. Annual Reviews of Computational

Physics, III:87—118, 1995.
23. X. Yao, F. Wang, K. Padmanabhan, and S. Salcedo-Sanz. Hybrid evolutionary

approaches to terminal assignment in communications networks. In W. E. Hart,
N. Krasnogor, and J. E. Smith, editors, Recent Advances in Memetic Algorithms
and Related Search Technologies, pages 129—160. Springer-Verlag, 2004.

