
Tabu Search for the Cyclic Bandwidth ProblemI

Eduardo Rodriguez-Tello∗,a, Hillel Romero-Monsivaisa, Gabriel Ramirez-Torresa, Frédéric Lardeuxb

aCINVESTAV-Tamaulipas, Information Technology Laboratory
Km. 5.5 Carretera Victoria-Soto La Marina, 87130 Victoria Tamps., Mexico

bLERIA, Université d’Angers.
2 Boulevard Lavoisier, 49045 Angers, France

Abstract

The Cyclic Bandwidth problem (CB) for graphs consists in labeling the vertices of a guest graph G by distinct vertices
of a host cycle Cn (both of order n) in such a way that the maximum distance in the cycle between adjacent vertices
in G is minimized. To the best of our knowledge, this is the first research work investigating the use of metaheuristic
algorithms for solving this challenging combinatorial optimization problem in the case of general graphs.

In this paper a new carefully devised Tabu Search algorithm, called TScb, for finding near-optimal solutions for
the CB problem is proposed. Different possibilities for its key components and input parameter values were carefully
analyzed and tuned, in order to find the combination of them offering the best quality solutions to the problem at a
reasonable computational effort.

Extensive experimentation was carried out, using 113 standard benchmark instances, for assessing its performance
with respect to a Simulated Annealing (SAcb) implementation. The experimental results show that there exists a statis-
tically significant performance amelioration achieved by TScbwith respect to SAcb in 90 out of 113 graphs (79.646%).
It was also found that our TScb algorithm attains 56 optimal solutions and establishes new better upper bounds for the
other 57 instances. Furthermore, these competitive results were obtained expending reasonable computational times.

Key words:
cyclic bandwidth problem, tabu search, best-known bounds

1. Introduction

The Cyclic Bandwidth problem (CB) is a graph embedding problem. It was first stated by Leung et al. in 1984 in
relation with the design of a ring interconnection network [1]. Their aim was to find an arrangement on a cycle for a set
V of computers with a known communication pattern, given by the graph G(V, E), in such a way that every message
sent can arrive at its destination in at most k steps. The decision problem corresponding to the CB is known to be NP-
complete [2], and arises also in other important application areas like VLSI designs [3], data structure representations
[4], code design [5] and interconnection networks for parallel computer systems [6].

The CB problem can be formally defined as follows. Let G(V, E) be a finite undirected graph (guest) of order n
and Cn a cycle graph (host) with vertex set |V ′| = n and edge set E′. Given an injection ϕ : V → V ′, which represents
an embedding of G in Cn, the cyclic bandwidth (the cost) for G with respect to ϕ is defined as:

BC(G, ϕ) = max
uv∈E
{|ϕ(u) − ϕ(v)|n} , (1)

where |x|n = min{|x|, n − |x|} (1 < |x| < n − 1) is called the cyclic distance, and ϕ(u) denotes the label associated to
vertex u.

IThis research work was partially funded by the following projects: 51623 Fondo Mixto CONACyT y Gobierno del Estado de Tamaulipas;
CONACyT 99276, Algoritmos para la Canonización de Covering Arrays.
∗Corresponding author.
Email addresses: ertello@tamps.cinvestav.mx (Eduardo Rodriguez-Tello), hromero@tamps.cinvestav.mx (Hillel

Romero-Monsivais), grtorres@tamps.cinvestav.mx (Gabriel Ramirez-Torres), lardeux@info.univ-angers.fr (Frédéric Lardeux)
Preprint submitted to Computers & Operations Research November 26, 2014

2

1

2

3

8

5
6

9

2

10

3
2

1
7

31

4

2

3

1 1

3

3

3 3

(a) A labeling ϕ for graph G.

1

3

4

7

8

6

2

9

10

5

(b) G embedded in the cycle Cn

Figure 1: Example of a cyclic bandwidth problem instance.

Then the CB problem consists in finding an embedding ϕ∗, such BC(G, ϕ∗) is minimum, i.e.,

BC(G, ϕ∗) = min
ϕ∈E
{BC(G, ϕ)} , (2)

where E is the set of all possible embeddings. The embedding ϕ∗ satisfying this condition is called an optimal
embedding.

Note that an embedding can also be seen as a labeling of the guest graph G using distinct vertices of the host graph
Cn

1. The cost of such an embedding is the maximum distance in Cn between two adjacent vertices in the guest graph
G.

For instance, consider the graph G(V, E) of order n = 10 depicted in Figure 1(a) with the labeling ϕ given by
the numbers shown inside each vertex. The cyclic distance of each edge uv ∈ E is calculated using the expression
min{|ϕ(u) − ϕ(v)|, n − |ϕ(u) − ϕ(v)|} and represented by the number associated to that edge. For this particular labeling
ϕ, the cyclic bandwidth of G is BC(G, ϕ) = 3. The resulting embedding of the graph G in a cycle graph Cn is presented
in Figure 1(b) for illustrative purposes.

The CB problem is a natural extension of the well-known bandwidth minimization (BM) problem for graphs [7],
which consists in embedding the vertices of a guest graph G in a host path P (both of order n) in such a way that the
maximum distance in the path between adjacent vertices in G is minimized. Formally, the bandwidth (the cost) for G
with respect to ϕ is defined as:

BP(G, ϕ) = max
uv∈E
{|ϕ(u) − ϕ(v)|} . (3)

There exist some special graphs (2- and 3-dimensional meshes, hypercubes, complete trees) for which it has been
demonstrated that their optimal cyclic bandwidth and bandwidth are equal [6, 8]. It has permitted to establish the
following bound relation between bandwidth BP(G) and cyclic bandwidth BC(G) of a general graph [6]:

1
2

BP(G) ≤ BC(G) ≤ BP(G) . (4)

Even if both combinatorial optimization problems are related, an algorithm specially devised for one of them is
not expected to perform well on the other. This is illustrated by considering as example the graph ibm32 from the
Harwell-Boeing Sparse Matrix Collection2 (other tested graphs give similar results), which is composed of n = 32

1Hereafter the terms embedding and labeling are used indistinctly.
2http://math.nist.gov/MatrixMarket/data/Harwell-Boeing

2

1

7

1 4

1 6

2 1 2 41 8

2 22 3 2 7 2 6

1 7

2

9

3 13 0

1 0

2 9 3 2

3

6

2 8

1 1

1 5

4

8 5

2 01 2

2 5

1 9

1 3

Figure 2: Graph ibm32 from the Harwell-Boeing Sparse Matrix Collection.

vertices (see Figure 2). For this particular graph 1000 local optimal embeddings were generated by executing a
first improvement descent algorithm for the CB problem, starting from different randomly generated initial solutions
(embeddings). Then, for each of the resulting embeddings the cyclic bandwidth and the bandwidth objective functions
were computed according to (1) and (3), respectively. The Pearson’s correlation coefficient between these two sets of
values is small (r = −0.18), showing the weak correlation (if any) among the solutions of both problems. Furthermore,
the embedding with the optimal cyclic bandwidth (BC(G) = 9) for this particular graph results in bandwidth value of
31, which is very far from the optimal value (BP(G) = 11) [9]. In this context there exist a real need for devising new
algorithms specially devoted for solving the CB problem.

This paper aims at developing, to the extent of our knowledge, the first tabu search (TS) algorithm implementation
(hereafter called TScb) for finding near-optimal solutions for the CB problem. To achieve this, different possibilities
for its key components were carefully designed after an in-depth analysis of the given problem. The TScb input pa-
rameter values yielding the best quality solutions to the problem at a reasonable computational effort were determined
by employing a tuning methodology based on combinatorial interaction testing [10, 11]. The performance of the
new solution approach is investigated and compared with respect to a Simulated Annealing (SAcb) algorithm through
extensive experimentation over a full test-suite composed of 113 benchmark graphs with a number of vertices ranging
from 9 to 8192. These graphs are divided into two different sets. The first one is composed of 85 standard graphs
with known optimal solutions from seven different families including paths, cycles, meshes, trees, hypercubes and
caterpillars. Certain of them were previously used to evaluate a branch & bound (B&B) algorithm for the CB prob-
lem [12]. The second set contains 28 graphs produced from real-world scientific and engineering applications, some
of which were recently used as benchmark instances for other graph labeling problem [13, 14]. The computational
results for the first set show that TScb attained the optimal solution for 49 graphs (57.647%) and found good quality
near-optimal solutions for the rest of the instances. For the second set, TScb was able to reach the optimal solution
for 7 instances and to ameliorate the existing theoretical upper bounds [15] for the rest of the instances. The statistical
analyses performed on both experiments confirm that there exists a statistically significant increase in performance
achieved by TScb with respect to SAcb in 90 out of 113 graphs (79.646%), highlighting the suitability of the proposed
TScb algorithm. Furthermore, these competitive results were obtained expending reasonable computational times.

The remainder of this manuscript is organized as follows. In Section 2 a brief review of some representative related
work is given. The main components of the proposed TScb algorithm are detailed in Section 3. Then, computational
experiments are presented in Section 4 which are devoted to determine the best parameter settings for TScb and to
compare its performance with respect to a Simulated Annealing (SAcb) algorithm in terms of the best-known lower
bounds of the state-of-the-art. Section 5 experimentally investigates the influence of some key features in the global
performance of the proposed TScb algorithm. Finally, the main conclusions of this work and some possible directions
for future research are provided in Section 6.

3

2. Relevant Related Work

The CB problem has a strong connexion with other graph embedding problems like the bandwidth minimization
[7, 16], antibandwidth [1, 17], and cyclic antibandwidth [1].

The bandwidth minimization problem has already been described in Section 1. On the other hand, the antiband-
width and the cyclic antibandwidth problems consist in labeling the vertices of a guest graph G of order n by distinct
vertices of either a host path P or a host cycle C, respectively, in such a way that the minimum distance between
adjacent vertices in G, measured in the host, is maximized.

The bandwidth problem has been the object of extensive research in the past. Different exact and heuristic algo-
rithms for solving it have been reported in the literature. Some relevant heuristic algorithms for solving the bandwidth
problem are: Tabu Search [18], GRASP with Path Relinking [19], Particle Swarm Optimization [20], Simulated
Annealing [21] and Variable Neighborhood Search [22].

The work published about the antibandwidth problem was mainly devoted to find polynomial time exact algo-
rithms for solving some special instances of the antibandwidth problem on specific classes of graphs: paths, cycles,
special trees, complete and complete bipartite graphs, meshes, and tori [17, 23–27]. Some exceptions are metaheuris-
tic algorithms including: Memetic Algorithms [28], GRASP with Path Relink [13] and Variable Neighborhood Search
[14].

The cyclic antibandwidth problem has been exactly solved for some specific families of graphs like paths, cycles,
two dimensional meshes and tori [29]. Asymptotic results were also obtained for hypercube and Hamming graphs
[27, 30]. However, only two metaheuristic algorithms have been reported for this important problem, a Memetic
Algorithm [31] and a hybrid algorithm combining the Artificial Bee Colony methodology with Tabu Search [32].

In spite of its practical and theoretical importance, less attention has been paid to the CB problem with regard to
other graph embedding problems. Up to now, most of the research on this important problem has been concentrated
upon the theoretical study of its properties, with the aim of finding exact solutions for certain specific families of
graphs. Next, a brief review of these studies is presented.

In 2002, Zhou proposed a systematic method for obtaining lower bounds for the bandwidth and cyclic bandwidth
problems in terms of some distance- and degree-related parameters of the graph [33]. The main idea of this method
is to relax the condition of embedding the graph G on the host graph with the aid of a graphical parameter possessing
some kind of monotonic property. This method has been demonstrated to be efficient when the parameters are chosen
appropriately. The author concludes that this method yields to a number of lower bounds for the ordinary and cyclic
bandwidths. In both cases, it gives rise to new estimations, as well as improvements of some known results.

Later, de Klerk et al. [34] proposed two new semidefinite programming (SDP) relaxations of the bandwidth and
cyclic bandwidth based on the quadratic assignment problem (QAP) reformulation. The bounds produced by this
method were tested for some special graphs showing that they are tight for paths, cliques and complete bipartite
graphs. However, these bounds are not tight for hypercubes, rectangular grids and complete k-level t-ary trees.

In 1995 Yuan and Zhou [35] demonstrated that for unit interval graphs, there exists a labeling which is simulta-
neously optimal for the following seven labeling problems: bandwidth, cyclic bandwidth, profile, cutwidth, modified
cutwidth and bandwidth sum. Following this idea, in [8] Lam et al. made a characterization of graphs with equal
bandwidth and cyclic bandwidth which includes planar graphs, triangulation meshes and grids with some specific
characteristics.

The CB problem has been exactly solved for twenty small instances (n < 40) using a branch & bound algorithm
(B&B) recently proposed by Romero-Monsivais et al. [12]. However, this algorithm becomes impractical when the
number of vertices n in the studied graph increases, since the size of the search space suffers a combinatorial explosion.
Therefore, there is a need for heuristic methods to address the CB problem in reasonable time.

3. A new tabu search algorithm

The Tabu Search (TS) algorithm was first proposed by Glover [36] and it has been widely used for solving a large
number of combinatorial optimization problems [37–43]. A particularity of TS is that it explicitly employs the history
of the search, both to escape from local minima and to implement an explorative strategy.

The pseudo-code of our TS implementation, called TScb, is presented in Algorithm 1. It starts with a randomly
generated solution ϕ (see Subsection 3.2), then it proceeds iteratively to visit a series of locally best configurations

4

Algorithm 1: Tabu Search algorithm
input: A finite undirected graph G(V, E), neighborhood function N , evaluation function BC , maximum non-improving neighboring

solutions maxNI
output: The best solution found ϕ∗

1 ϕ← GenerateInitialSolution()

2 ϕ∗ ← ϕ
3 InitializeTabuList()

4 NI ← 0
5 while stop condition not met do
6 ϕ′ ← ChooseBestAdmissible(ϕ) /* {ϕ′ ∈ N(ϕ) | ϕ′ non-tabu or aspiration condition holds} */

7 UpdateTabuListAndAspirationCondition()

8 ϕ← ϕ′

9 if BC(G, ϕ) < BC(G, ϕ∗) then
10 ϕ∗ ← ϕ
11 NI ← 0
12 else
13 NI ← NI + 1
14 end
15 if NI > maxNI then Diversification(ϕ)

16 end
17 return ϕ∗

following a neighborhood function N(ϕ). At each iteration, a best neighbor ϕ′ is chosen to replace the current
configuration ϕ, even if the former does not improve the current one (refer to Subsection 3.3). This operation is called
a move. In order to explore consecutive local optimal solutions and to avoid the occurrence of cycles, during the
search, it is necessary to prohibit visiting twice the same configuration. Storing all the already visited configurations
is very expensive and generally impossible in practice. An alternative approach is to only store the last moves in a
recency-based memory structure, called tabu list L (see Subsection 3.4). The basic idea behind this memory is to
record the attributes of each visited solution and to forbid the algorithm to visit again this configuration during the
next T iterations (T is called the tabu tenure). In the case that more than one move have the same best cost value, one
among them is randomly selected. In some cases, the tabu list may be too restrictive since certain forbidden moves
could produce a solution better than the best solution found so far. To cope with this issue, an aspiration criterion is
applied to accept those exceptional quality solutions (refer to Subsection 3.5).

Next, the main components of our TScb implementation are discussed in detail. For some of these components
different possibilities were analyzed (see Subsection 4.4) in order to find the combination of them which offers the
best quality solutions at a reasonable computational effort.

3.1. Search space, representation and evaluation function

Given a guest graph G = (V, E) of order |V | = n and Cn a cycle graph (host) with vertex set |V ′| = n and edge set
E′, the search space E for the CB problem is composed of all possible embeddings (solutions) of G in Cn, ϕ : V → V ′.
Therefore, there exist (n − 1)!/2 possible embeddings for a graph with n vertices3.

In our TScb algorithm an embedding (labeling) ϕ is represented as an array l of integers with length n, which is
indexed by the vertices and whose i-th value l[i] denotes the label assigned to the vertex i. The quality BC(G, ϕ) of the
embedding ϕ is evaluated by using (1).

3.2. Initial solution

The initial solution is the starting embedding used for the algorithm to begin the search of better configurations in
the search space E . In this implementation the starting solution is generated randomly.

3Because each one of the (n − 1)! embeddings can be reversed to obtain the same cyclic bandwidth.

5

3.3. Neighborhood functions
Given that TScb is a Local Search (LS) algorithm, then a neighborhood function must be defined. The main

objective of the neighborhood function is to identify the set of potential solutions which can be reached from the
current solution in an LS algorithm. Formally, a neighborhood relation is a functionN : E → 2E that assigns to every
potential solution (an embedding) ϕ ∈ E a set of neighboring solutions N(ϕ) ⊆ E , which is called the neighborhood
of ϕ.

The results of our preliminary experimentations lead us to identify three suitable neighborhood structures for the
CB problem. The logic behind these neighborhood relations, used in our TScb algorithm, is to identify those critical
vertices in the graph which determine its cyclic bandwidth in order to “repair” them. These neighborhood functions
are partially inspired by the work of Martı́ et al. on the bandwidth problem [18], which also employed a Tabu Search
algorithm with a neighborhood function based on the reparation of critical vertices of the graph.

Before introducing these neighborhood structures, some preliminary concepts used in their definition are pre-
sented. Let us define the cyclic bandwidth BC(u, ϕ) for a vertex u with respect to the embedding ϕ as follows:

BC(u, ϕ) = max
v∈A(u)

{|ϕ(u) − ϕ(v)|n} , (5)

where A(u) denotes the set of adjacent vertices of u, with cardinality deg(u). We define a vertex u as critical if its
cyclic bandwidth BC(u, ϕ) is close to BC(G, ϕ). Thus, the set C(ϕ) ⊆ V of critical non-tabu vertices can be defined
with the following expression for 0 < α < 1:

C(ϕ) = {u ∈ V : BC(u, ϕ) ≥ αBC(G, ϕ), u < L} . (6)

Let S(u) ⊆ A(u) be a set of suitable swapping vertices for u. S(u) contains those non-tabu vertices adjacent to u
whose label values are closer to mid(u) than ϕ(u):

S(u) = {v ∈ A(u) : |mid(u) − ϕ(v)|n < |mid(u) − ϕ(u)|n} , (7)

where mid(u) corresponds to the middle point of the shortest path in the host graph Cn containing all the vertices
adjacent to u and is delimited by the rightmost r(u) and the leftmost l(u) vertices:

mid(u) =

⌊ l(u) + r(u) + a
2

⌋
mod n , (8)

with a = n, if l(u) > r(u) and a = 0 otherwise. In order to identify the values r(u) and l(u), the ordered sequence
B =

{
b1, b2, . . . , bdeg(u)

}
∪ {b1 + n} which contains the labels currently assigned to the vertices inA(u) is constructed.

Then, the expression:
i∗ = arg max

i≤deg(u)

(
(bi+1 − bi)

)
, (9)

is evaluated over the elements of B to obtain the values l(u) = bi∗+1 and r(u) = bi∗ .
Let swap(ϕ, u, v) be a function allowing to exchange the labels of a pair of vertices u and v to produce a new

embedding ϕ′ where the new label for vertex u is ϕ′(u), i.e., ϕ′(u) = ϕ(v) and ϕ′(v) = ϕ(u).
After introducing these preliminary concepts our first neighborhood function N1(ϕ) can now be formally defined

as follows:
N1(ϕ) = {ϕ′ = swap(ϕ, u, v) : u ∈ C(ϕ), v ∈ S(u)} . (10)

It generates for every potential embedding ϕ ∈ E a set of neighboring solutions produced by exchanging the labels of
a critical vertex u ∈ C(ϕ) and the most suitable swapping vertex v ∈ S(u) for it. Every vertex v ∈ S is individually
evaluated to identify the best one, i.e., the one that not only produces the smaller cyclic bandwidth BC(u, ϕ′) after the
application of the function swap(ϕ, u, v), but also the one that reduces the number of vertices adjacent to u or v whose
cyclic bandwidth increases due to this label exchange operation. We consider that the cyclic bandwidth of a vertex
w ∈ A(u) or w ∈ A(v) increased when:

|ϕ′(u) − ϕ(w)|n > BC(w, ϕ) and
|ϕ′(u) − ϕ(w)|n > βBC(G, ϕ) ,

(11)

6

for 0 ≤ β ≤ 1 (acceptable cyclic bandwidth increase). If multiple vertices result into the same cyclic bandwidth
BC(u, ϕ′) and the same number of adjacent vertices whose cyclic bandwidth increases, then tie is broken at random.

The second neighborhood function N2(ϕ, γ) is formally defined as follows:

N2(ϕ, γ) = {ϕ′ = swap(ϕ, u, v) : u ∈ C(ϕ), v ∈ Rγ(u)} , (12)

where the set Rγ(u) ⊆ V contains γ non-tabu vertices randomly selected. It assigns to every potential embedding
ϕ ∈ E a set of neighboring solutions which can be produced by exchanging the labels of a critical vertex u ∈ C(ϕ) and
a suitable swapping vertex v ∈ Rγ(u) for it. All the elements belonging to Rγ(u) are individually evaluated in order to
identify the best of them. That is, the vertex v that produces the smaller cyclic bandwidth BC(u, ϕ) when its label is
exchanged with that currently assigned to vertex u (ties are randomly broken).

The third neighborhood relationN3(ϕ, γ, p) is a compound function partially inspired by the ideas reported in [21,
44]. It is a combination of both N1(ϕ) and N2(ϕ, γ) neighborhood functions. The former is applied with probability
(1 − p), while the latter is employed at a p rate. This combined neighborhood function N3(ϕ, γ, p) is defined in (13),
where rnd is a random number in the interval [0, 1].

N3(ϕ, γ, p) =

{
N1(ϕ) if rnd ≥ p
N2(ϕ, γ) if rnd < p

(13)

3.4. Tabu list management

In our TScb algorithm the neighbor of a given solution ϕ is obtained by exchanging the label of a critical vertex
u and a suitable swapping vertex v. When such a move is performed the vertex u is classified tabu for the next T
iterations (tabu tenure). Therefore, the label of vertex u cannot be exchanged during this period.

The tabu tenure T for a move, in our TScb algorithm, can be either a constant prefixed value, or it can be dynam-
ically calculated during the search using the approach introduced by Galinier et al. [39] and used later in [45]. It is
based on the use of a periodic step function PS which takes as argument the number of iterations iter. Each period
of this function is composed of 1500 iterations divided into 15 intervals. The value returned by PS for a particular
iteration iter is given by (a j) j=1,2,...,15 = (1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1)τ, where τ is a parameter that fixes the
minimum tenure value and the index j is computed with (14).

j =

⌊ iter mod 1500
100

⌋
+ 1 . (14)

Therefore, the tabu tenure equals τ between iterations 1 and 99, 2τ between iterations 100 and 199, followed by
τ again for iterations [200,299] and 4τ for iterations [300,399], etc. This variation scheme is periodically repeated by
this function after every 1500 iterations.

3.5. Aspiration criteria

Since the attributes of a solution are recorded in the tabu list instead of the solutions themselves, it is possible that
a candidate solution in the tabu list could lead to a better embedding than the best solution found so far. Therefore, in
our TS algorithm, a simple aspiration criterion is applied: a tabu move leading to a configuration better than the best
embedding found so far ϕ∗ is always accepted.

3.6. Diversification strategy

A diversification mechanism was also implemented since our TScb algorithm could be trapped in deep local
optima. In our case, the search is judged as stagnated each time the best solution found so far ϕ∗ is not further
improved after maxNI consecutive iterations. To help the search to escape from such deep local optima, a perturbation
mechanism is applied to the current solution to bring diversification into the search.

The perturbation is composed by two complementary functions. The first one, called D1(ϕ, γ), is defined in (15)
and is applied ρ consecutive times, where ρ is a parameter that fixes the strength of this perturbation.

D1(ϕ, γ) = {ϕ′ = swap(ϕ, u, v) : u ∈ Rγ(ϕ), v ∈ A(u)} . (15)

7

It maps every potential embedding ϕ ∈ E to a set of solutions produced by exchanging the labels of a non-tabu
randomly selected vertex u ∈ Rγ(ϕ) and the most appropriate adjacent vertex to it, v ∈ A(u). The most suitable vertex
v ∈ A(u) for the swap(ϕ, u, v) is the one that results into the smaller cyclic bandwidth BC(u, ϕ′) for u, and at the same
time minimizes the number of vertices w ∈ A(u) or w ∈ A(v) whose cyclic bandwidth increases due to this label
exchange operation, see (11). If there exist ties they are randomly broken.

The perturbation function D1(ϕ, γ) is applied a predefined maximum number of non-consecutive times MaxS
when the search stagnates. After that if the best solution found so far ϕ∗ is not further improved the second perturbation
functionD2(ϕ, γ) is applied at most MaxH non-consecutive times. This perturbation constructs a partially ordered set
F (V,≤) whose elements are the vertices of the graph in ascending order with respect to their cyclic bandwidth. More
formally F (V,≤) can be defined with the expression:

F (V,≤) = {u : ∀u, v ∈ V, BC(u, ϕ) ≤ BC(v, ϕ)} , (16)

then the subsetHγ ⊆ F (V,≤), defined in (17), can be obtained.

Hγ = {ui : 1 ≤ i ≤ γ, ui ∈ F (V,≤)} (17)

The perturbation functionD2(ϕ, γ), which employs (γ−1) consecutive times the function swap(ϕ, u, v) to construct
a new embedding ϕ′, can be formally expressed as follows:

D2(ϕ, γ) = {ϕ′ = swap(ϕ, u, v) : u, v ∈ Hγ} . (18)

3.7. Stop condition

The TScb algorithm stops either if a predefined maximum number of iterations (maxIter) is reached, or when
the algorithm ceases to make progress. In our implementation a lack of progress exists if the perturbation function
D2(ϕ, γ) has been applied MaxH non-consecutive times.

3.8. Implementation considerations

In the following section we will see that the proposed TScb algorithm provides near-optimal solutions for the CB
problem expending for that very reasonable computational times. This is possible thanks to the use of thoroughly
designed data structures when implementing the algorithm.

For instance, in order to compute the cyclic bandwidth of an embedding ϕ, using the evaluation function BC(G, ϕ),
every edge in the graph G = (V, E) must be analyzed (see (1)). As a result O(|E|) instructions must be executed by
this complete evaluation scheme. Nevertheless, the proposed TScb algorithm employs an incremental evaluation of
neighboring solutions. To this end, the cyclic distance of each edge in the graph is stored using an appropriate data
structure. Indeed, suppose that the labels of two different vertices (u, v) are exchanged in an embedding ϕ to produce
a neighboring solution ϕ′, then we should only recompute the |A(u)| + |A(v)| cyclic distances that change4 in order to
obtain the cyclic bandwidth of ϕ′. As it can be verified this is faster than the O(|E|) operations originally required. As
a consequence the TScb algorithm is able to analyze thousands of neighboring solution employing only a very small
fraction of the time that would be required by the complete evaluation scheme.

Another example of a clever data structure implemented by the TScb algorithm is the one employed to manage
the tabu list L (recency-based memory), which enables it to verify the tabu status of a move in constant time.

Important reductions in the total computational time expended by the proposed TScb algorithm are also possible
because of the use of sorted sets in the implementation of neighborhood and diversification functions.

4. Computational experiments

In this section the three main experiments accomplished to evaluate the performance of the proposed TScb algo-
rithm, as well as that of some of its components are presented. The objective of the first experiment is to determine

4 |A(u)| and |A(v)| represent the number of adjacent vertices to u and v, respectively.

8

both a component combination, and a set of parameter values which permit TScb to attain the best trade-off between
solution quality and computational effort.

The purpose of the second and third experiments is twofold: a) to carry out a performance evaluation of TScb over
both a set of standard graphs with known optimal solutions and a set of graphs from real-world scientific and engi-
neering applications; and b) to compare TScb with respect to a Simulated Annealing (SAcb) metaheuristic specially
developed for the CB problem.

For all these experiments TScb and SAcb were coded in C and compiled with gcc using the optimization flag -O3.
They were run sequentially into a CPU Xeon X5650 at 2.66 GHz, 2 GB of RAM with Linux operating system. Due
to the non-deterministic nature of the studied algorithms, 31 independent runs were executed for each of the selected
benchmark instances in each experiment presented in this section.

4.1. Simulated annealing algorithm

As it was mentioned in Section 2, to the best of our knowledge, there are not reported metaheuristic algorithms
for the CB problem in the literature. Thus, for sake of comparison we have adapted the code of the Simulated
Annealing algorithm for the bandwidth minimization problem reported in [21] to meet the special requirements of
the CB problem. In particular, the new implementation, called SAcb, presents the following characteristics: a) it
evaluates the fitness BC(G, ϕ) of the embedding ϕ by employing (1), b) the neighborhood N4(ϕ) of a labeling ϕ
is such that for each ϕ ∈ E , ϕ′ ∈ N4(ϕ) if and only if ϕ′ can be obtained by rotating the labels of any group
of five consecutive vertices in the host graph Cn, c) a parameter configuration that (according to our preliminary
experiments) gives a good trade-off between solution quality and computational effort: initial temperature Ti = 5.0,
final temperature T f = 1.0E-07, cooling rate cr = 0.97, maximum number of visited neighboring labelings at each
temperature NVmax = dmaxIter/decTempe, where maxIter = 2.0E+07 is a predefined global maximum number of
visited neighboring labelings (iterations) and decTemp = 435 is the total number of temperature decrements from Ti

to T f using a geometrical cooling scheme Tk = crTk−1.

4.2. Performance assessment and statistical significance analysis

To evaluate the efficiency of the new proposed TScb implementation two criteria were selected: the best cyclic
bandwidth found for each instance (smaller values are better) and the expended CPU time in seconds.

A statistical significance analysis was performed for the second and third experiments presented below. Each
analysis was conducted using the following methodology. First, D’Agostino-Pearson’s omnibus K2 test was used to
evaluate the normality of data distributions. For normally distributed data, either ANOVA or the Welch’s t parametric
tests were used depending on whether the variances across the samples were homogeneous (homoskedasticity) or
not. This was investigated using the Bartlett’s test. For non-normal data, the nonparametric Kruskal-Wallis test was
adopted. A significance level of 0.05 has been considered.

4.3. Benchmark instances

The performance evaluation of the new proposed TScb implementation was carried out with extensive experiments
over 113 benchmark instances5 grouped into two different sets, whose detailed descriptions are presented in the
following subsections.

4.3.1. Standard graphs
For the first set we have generated a total of 85 standard graphs with known optimal solutions that belong to seven

different families (3 r-dimensional hypercubes, 10 three dimensional meshes, 12 complete r level k-ary trees, and
15 graphs from each of the following classes: paths, cycles, two dimensional meshes and caterpillars). This set of
benchmark instances is composed of 23 small graphs (n < 100), 24 medium graphs (100 < n ≤ 200) and 38 large
graphs (200 < n ≤ 8192). A brief description of each selected class of graph and its corresponding optimal cyclic
bandwidth value are summarized below.

5Available at http://www..cinvestav.mx/~ertello/cbmp.php

9

1. Paths. A path graph Pn is constructed as a linear sequence of n vertices. Two of them are terminal vertices of
degree one, while the others (if any) have degree two. For a path Pn of order n the optimal cyclic bandwidth
value is:

BC(Pn) = 1 ,

as it was shown in [2].
2. Cycles. A cycle graph Cn is build as a circular arrangement of n vertices such that all of them have degree two.

Yixun Lin [2] demonstrated that the CB problem has an optimal solution value for a cycle Cn given by:

BC(Cn) = 1 .

3. Two dimensional meshes. These graphs are constructed as the Cartesian product of two paths Pn1 and Pn2 .
Hromkovič et al. [6], based on the work of Chvátalová [46], demonstrated that the optimal cyclic bandwidth
for a two dimensional mesh Pn1 × Pn2 of order n = n1 · n2 (for max{n1, n2} > 3) is:

BC(Pn1 × Pn2) = min{n1, n2} .

4. Three dimensional meshes. A three dimensional mesh is defined as the Cartesian product of three paths.
Hromkovič et al. [6] proved that the optimal cyclic bandwidth for a three dimensional mesh Pn × Pn × Pn

with n3 vertices (for n > 3) can be calculated with the following expression:

BC(Pn × Pn × Pn) =

⌊3n2

4
+

n
2

⌋
.

5. Complete r level k-ary trees. These graphs are rooted complete trees in which the i-th level consists of ki−1

vertices and each vertex that belongs to level i has exactly k descendants at level i + 1 (for 1 ≤ i < r). Such a
tree, denoted Tk,r, has n = (kr − 1)/(k − 1) vertices and its optimal cyclic bandwidth value is:

BC(Tk,r) =

⌈ k(kr−1 − 1)
2(r − 1)(k − 1)

⌉
,

see [5, 6, 47].
6. Caterpillars. A caterpillar is a special tree in which every vertex is on a central stalk, called spine, or within

distance one of the stalk, i.e., removal of its endpoints leaves a path graph. For a caterpillar T with spine
P(u1, u2, . . . , um), Lin [2] proved that the optimal cyclic bandwidth is:

BC(T) = max
1≤i≤ j≤m

⌈ ni j − 1
j − i + 2

⌉
.

where ni j denotes the order of the subtree Ti j induced by ui, ui+1, . . . , u j and all the vertices adjacent to them
(i ≤ j).

7. r-dimensional hypercubes. An r-dimensional hypercube Qr is a graph usually defined as the Cartesian prod-
uct of r path graphs with two vertices (P2). It can be constructed using n = 2r vertices labeled with r-bit
binary numbers and connecting two vertices by an edge whenever the Hamming distance of their labels is one.
Hromkovič et al. [6] proved that the optimal cyclic bandwidth for Qr (r ≥ 11) is:

BC(Qr) =

r−1∑
k=0

(
k
b k

2 c

)
.

Although there exist other standard classes of graphs whose optimal solutions for the CB problem are reported in
the literature (stars, complete and complete bipartite graphs), we have decided to not include them in this set since
according to our preliminary experiments they can be solved optimally using any random labeling. In this sense these
kind of instances can not be considered as good candidates for evaluating the performance of the proposed algorithm.

10

Table 1: Input parameters of the TScb algorithm and their selected values.

p T maxS maxH ρ maxNI β γ

0 0.0 τ = 1 90 80 1 10 0.4 0.2
1 0.2 τ = 2 100 90 3 25 0.5 0.3
2 0.5 3 110 100 5 40 — —
3 0.8 5 — — — — — —

4.3.2. Harwell-Boeing graphs
The second set contains 28 problem instances with a number of vertices between 9 and 715, coming directly

from the Harwell-Boeing Sparse Matrix Collection. This collection gathers standard test matrices arising from a wide
variety of scientific and engineering practical problems which can be considered as adjacency matrices in order to
construct graphs. Most of the graphs in our second set (24 of them) were previously used by Duarte et al. [13] and
Lozano et al. [14] as benchmarks instances for the antibandwidth problem [1]. The rest of the instances (4 graphs)
were collected by us to complement this set with small graphs that can be solved exactly using the B&B algorithm
proposed in [12].

4.4. Components and parameters tuning
Optimizing parameter settings is an important task in the context of algorithm design. Different procedures have

been proposed in the literature to find the most suitable combination of parameter values [48, 49]. In this paper we em-
ployed a tuning methodology based on combinatorial interaction testing (CIT) [10, 11], which was successfully used
in [50, 51]. We have decided to use CIT, because it allows to significantly reduce the number of tests (experiments)
needed to determine the best parameter settings of an algorithm. Instead of exhaustive testing all the parameter value
combinations of the algorithm, it only analyzes the interactions of t (or fewer) input parameters by creating interaction
test-suites that include, at least once, all the t-way combinations between these parameters and their values.

Covering arrays (CAs) are combinatorial objects which have been extensively used to represent those interaction
test-suites. A covering array, CA(N; t, k, v), of size N, strength t, degree k, and order v is an N × k array on v symbols
such that every N × t sub-array includes, at least once, all the ordered subsets from v symbols of size t (t-tuples)
[52]. The minimum N for which a CA(N; t, k, v) exists is the covering array number and it is defined according to the
following expression: CAN(t, k, v) = min{N : ∃ CA(N; t, k, v)}.

CAs are used to represent an interaction test-suite as follows. In an algorithm we have k input parameters. Each
of these has v values or levels. An interaction test-suite is an N × k array where each row is a test case. Each column
represents an input parameter and a value in the column is the particular configuration. This test-suite allows to cover
all the t-way combinations of input parameter values at least once. Thus, the costs of tuning the algorithm can be
substantially reduced by minimizing the number of test cases N in the covering array.

In practice, algorithm’s input parameters do not have exactly the same number of values (levels). To overcome
this limitation of CAs, mixed level covering arrays (MCAs) are used. An MCA(N; t, k, (v1, v2, · · · , vk)) is an N × k
array on v symbols (v =

∑k
i=1 vi), where each column i (1 ≤ i ≤ k) of this array contains only elements from a set S i,

with |S i| = vi. This array has the property that the rows of each N × t sub-array cover all t-tuples of values from the t
columns at least once. Next, we present the details of the tuning process, based on CIT, for the particular case of our
TScb algorithm.

First, we have identified k = 8 input parameters used for TScb: application probability for the neighborhood
function N3 (p), tabu tenure (T), maximum number of non-consecutive calls to diversification functionsD1 (MaxS)
and D2 (MaxH), strength of perturbation D1 (ρ), maximum number of iterations without improvement (maxNI),
percentage of acceptable cyclic bandwidth increase used in function N1 (β) and percentage γ of vertices employed
in functions N3,D1 and D2. Based on some preliminary experiments, certain reasonable values were selected for
each one of those input parameters (shown in Table 1). No important differences in performance were observed when
varying the parameter α, which determines the number of critical vertices considered in functionsN1 andN2, thus its
value was fixed to 0.9 for all the experiments presented in this section.

The mixed level covering array MCA(168; 4, 8, (4, 4, 3, 3, 3, 3, 2, 2)), shown (transposed) in Table 2, was obtained
by using the Memetic Algorithm reported in [53]. This covering array can be easily mapped into an interaction test-
suite by replacing each symbol from a column to its corresponding parameter value. For instance, we can map 0 in

11

Table 2: Mixed level covering array MCA(168; 4, 8, (4, 4, 3, 3, 3, 3, 2, 2)) representing an interaction test-suite for tuning TScb (transposed).

(a) Test cases 1 to 84

0 3 3 3 2 3 3 1 1 0 0 1 2 2 1 3 0 3 2 0 0 3 0 1 2 2 3 1 1 0 2 3 1 1 3 3 3 2 3 3 1 1 0 0 0 2 0 0 3 2 2 0 1 1 2 3 0 1 3 0 3 0 0 0 2 0 2 2 0 3 3 1 0 2 2 1 2 0 2 2 1 2 0 2
3 3 3 3 3 3 0 1 1 2 1 0 1 0 3 1 1 2 1 0 0 3 1 2 0 2 0 0 0 3 3 1 0 3 1 1 2 1 1 2 2 2 2 1 2 3 1 2 3 0 1 2 0 0 3 1 0 0 1 1 2 0 3 0 2 3 3 1 1 0 3 0 1 0 3 0 3 2 2 2 1 2 2 2
1 1 0 1 1 1 1 0 2 0 2 0 1 2 0 2 1 2 1 2 1 2 2 1 1 0 0 0 0 0 1 1 1 1 0 2 0 2 0 0 1 0 1 1 1 2 2 0 0 2 0 0 0 1 2 1 2 2 0 0 1 2 1 2 1 2 0 2 0 1 2 1 1 2 1 0 0 1 2 1 0 0 2 2
0 1 0 0 2 1 0 1 0 0 1 2 1 0 0 2 2 1 0 0 1 2 2 2 0 1 0 0 2 0 2 2 2 2 0 0 0 2 1 1 0 0 0 0 1 2 1 2 1 2 2 1 0 1 1 0 1 2 2 1 1 0 1 2 1 0 0 1 2 2 1 0 1 0 0 1 1 1 1 0 1 0 2 2
0 0 0 1 1 2 0 2 1 1 0 0 2 1 0 1 0 0 1 1 1 1 1 2 1 0 2 1 1 2 0 0 1 0 1 0 0 1 1 1 0 2 0 1 0 2 1 0 1 1 2 2 2 0 1 2 2 2 0 1 2 0 1 0 1 1 1 0 2 2 0 2 2 2 2 0 2 1 2 0 0 2 0 2
2 1 0 1 1 0 2 1 0 2 2 2 0 1 2 2 0 2 1 2 0 0 1 2 0 0 1 1 0 1 0 1 2 1 2 1 1 0 1 0 1 0 0 2 1 2 0 0 2 2 1 1 2 0 0 0 1 1 2 0 1 2 1 0 1 0 0 1 2 0 1 1 1 1 0 1 2 2 2 2 0 1 2 0
1 0 0 1 0 1 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 1 1 1 0 1 0 1 1 0 0 1 1 1 0 0 1 1 0 1 0 1 1 0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 1 0 0 1
0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 1 1 0 1 1 0 1 0 1 0 1 1 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 1 0

(b) Test cases 85 to 168

1 3 3 3 1 2 2 1 0 2 1 1 2 2 1 3 2 1 0 3 3 1 0 0 0 1 0 3 0 3 1 0 1 1 1 0 2 2 3 3 2 0 1 1 1 3 1 3 2 1 2 0 0 3 2 2 3 0 3 2 2 2 1 3 3 0 2 2 3 0 1 1 1 1 2 3 1 0 3 2 1 0 3 0
3 1 0 2 1 3 1 1 3 3 3 2 1 0 2 0 0 2 2 0 0 3 2 0 2 3 0 1 0 0 3 0 2 1 2 2 3 2 2 1 2 3 1 1 3 1 1 3 0 2 0 3 3 2 3 2 0 3 3 3 0 1 2 2 0 0 1 0 2 1 1 0 3 3 2 1 0 1 3 1 0 2 2 3
0 2 2 2 1 2 0 1 2 1 2 0 2 2 2 0 1 2 1 0 0 2 1 1 2 2 0 1 1 2 1 0 2 2 1 1 2 1 2 2 2 2 1 0 0 1 0 2 1 2 0 1 0 1 1 2 1 0 1 0 0 1 0 0 2 0 0 0 1 0 2 2 1 2 0 0 2 2 0 1 2 2 2 2
2 1 0 0 2 0 0 0 1 1 0 1 0 1 0 2 2 1 2 1 1 1 0 2 0 1 1 1 0 2 1 2 0 1 1 2 1 2 1 2 0 2 1 0 1 2 2 0 1 2 2 2 2 0 0 2 1 1 2 2 1 1 2 2 1 0 1 0 2 0 2 1 0 2 2 2 1 0 2 2 0 1 2 2
2 0 1 2 2 0 0 0 2 2 2 0 2 0 1 1 0 2 2 0 2 0 2 2 1 1 0 2 0 0 2 1 0 2 1 1 0 2 1 2 1 2 1 2 1 1 1 2 2 0 2 2 1 1 1 0 1 0 0 0 1 0 1 2 2 2 1 0 0 0 0 1 1 1 1 2 2 2 2 0 0 2 1 0
0 0 0 0 0 1 0 2 2 1 1 2 2 0 2 2 1 1 1 0 0 0 2 2 1 1 2 2 1 1 2 1 2 2 0 0 2 0 1 1 0 0 1 1 1 0 2 2 2 0 0 0 2 2 2 1 1 0 2 1 1 2 1 2 2 0 2 2 0 1 1 2 0 2 2 0 0 0 1 2 0 0 1 1
0 1 0 1 0 1 0 0 0 1 1 1 1 1 1 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 0 1 1 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 1 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 1 0 1 1 0 0
1 1 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 0 0 1 0 1 0 1 0 1 1 1 0 1 0 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 1 0 0 0

Table 3: Results from the 10 best test cases in the tuning experiments.

Num. Test case Avg. CB Avg. T R-RMSE

74 20202101 45.008 361.923 0.1646
79 22212201 44.944 557.292 0.1648

123 32211111 44.626 594.958 0.1657
122 22122001 45.237 284.369 0.1682
102 12212101 45.097 336.658 0.1740
124 31222100 45.059 585.365 0.1743

38 21221011 45.051 258.920 0.1763
115 13112200 45.274 368.028 0.1767

89 11122001 45.384 203.701 0.1788
112 31112200 45.293 722.984 0.1792

the first column (the first line in Table 2, corresponding to parameter p) to 0.0, 1 to 0.2, 2 to 0.5 and 3 to 0.8. The
resulting interaction test-suite contains, thus, 168 test cases (parameter settings) which include at least once all the
4-way combinations between TScb’s input parameters and their values6.

Each one of those 168 test cases was used to run 31 times the TScb algorithm over the 12 larger Harwell-Boeing
graphs described in Subsection 4.3, resulting in a total of 62,496 executions. For each test case the relative Root Mean
Square Error (R-RMSE) and the average CPU time where computed.

The R-RMSE is a quadratic scoring rule which is frequently used to measure the differences between values
predicted by a model or an estimator and the values actually observed [54]. It can be formally defined using (19):

R-RMSE =

√√√√√ R∑
i=1

(
Ŷi−Yi

Yi

)2

R
, (19)

where Ŷi refers to the estimator of the parameter Yi and R is the number of simulations. In optimization the R-RMSE
can be used to evaluate the performance of an algorithm by measuring the differences between the solution values
produced by it (Ŷi) with respect to the best-known solutions (Yi) [55–57]. For a perfect performance, Ŷi = Yi and
R-RMSE = 0. So, the R-RMSE ranges values from 0 to infinity, with 0 corresponding to the ideal.

Table 3 summarizes the 10 test cases which yield the best results. For each test cases it lists the average cyclic
bandwidth (Avg. CB), the average CPU time (Avg. T) in seconds and the R-RMSE value. This table allowed us to
observe that the parameter setting giving the best trade-off between solution quality and computational effort corre-
sponds to the test case number 74 (shown in bold). The best R-RMSE value with an acceptable speed is thus reached

6In contrast, with an exhaustive testing which contains (42)(34)(22) = 5184 test cases.
12

Table 4: Overall performance comparison of the SAcb and TScb algorithms over 85 standard graphs from 7 different types all of them with known
optimal solutions B∗C .

SAcb TScb

Graphs Num. Avg. Best Avg. T R-RMSE %Best Avg. Best Avg. T R-RMSE %Best SS+

path 15 67.533 1.139 111.575 20.000 2.933 7.943 3.235 46.667 14
cycle 15 67.600 1.086 112.084 26.667 2.667 7.219 3.066 66.667 13
mesh2D 15 91.533 1.618 6.590 20.000 27.667 6.423 1.977 60.000 12
mesh3D 10 351.600 3.644 3.836 0.000 199.900 17.711 1.853 10.000 10
tree 12 94.917 0.657 1.416 16.667 55.250 5.026 0.034 83.333 5
caterpillar 15 72.467 0.609 3.215 33.333 15.400 9.663 0.024 80.000 10
hypercube 3 2387.333 600.000 1.054 0.000 1375.000 600.000 0.185 0.000 3

with the following input parameter values: application probability for the neighborhood function N3, p = 0.5; dy-
namic tabu tenure with τ = 1; maximum number of non-consecutive calls to diversification functions MaxS = 110
and MaxH = 80, for D1 and D2, respectively; strength of perturbation D1, ρ = 5; maximum number of iterations
without improvement, maxNI = 25; percentage of acceptable cyclic bandwidth increase β = 0.4 used in function N1
and percentage γ = 0.3 of vertices employed in functions N3,D1 and D2. These values are therefore used in the
experimentation reported next.

4.5. Assessing the performance of TScb over standard graphs

For the first assessing performance experiment the set of 85 standard graphs with known optimal solutions, de-
scribed in Subsection 4.3.1, was selected. Then, both TScb and SAcbwere compiled and executed over these instances
setting a cutoff time of 600 seconds for each execution.

The computational results produced in this experiment were first analyzed and classified by family of the tested
graphs in order to separately observe the performance of the compared algorithms when solving each type of graph.
Table 4 summarizes this classification. For the two compared algorithms the average (Avg. Best) of the best cyclic
bandwidth cost attained by them over 31 independent executions and the average CPU time (Avg. T) in seconds
expended are depicted. For each class of graph tested, the relative Root Mean Square Error (R-RMSE) with respect to
the known optimal solution B∗C was computed using (19), as well as the percentage of instances (%Best) for which the
value of the best solution obtained by a given metaheuristic reaches B∗C . Additionally, a statistical significance analysis
was performed for this experiment by using the methodology described in Subsection 4.2. Last column (SS+) sums
up how many times a statistically significant performance amelioration was achieved by TScb with respect to SAcb.

Table 4 shows that, for each of the seven types of standard graphs analyzed, our TScb algorithm clearly outper-
forms SAcb in terms of the average of the best solution cost reached (Avg. Best). Indeed, the statistical analysis carried
out for this experiment established that there exists a statistically significant performance amelioration achieved by
TScb with respect to SAcb on 67 benchmark instances (78.824% of the graphs). For the other 18 tested graphs there
was not a significant difference between the performance of both compared algorithms.

In general, a high R-RMSE value, indicates that the solutions provided by the analyzed algorithm present a high
deviation relative to the known optimal values B∗C . This measure has the important property of considering a difference
of only one unit with respect to an optimal value B∗C = 1 worse than the same one unit difference with respect to a
higher B∗C value. In other words, it penalizes more the deviations with respect to small B∗C values. In this experiment,
the two higher R-RMSE values scored by TScb are for the paths, and cycles, since for these types of graphs B∗C = 1.

Regarding the percentage of instances (%Best) for which the best solution found by TScb equals B∗C , we observe
that for five types of the studied graphs (paths, cycles, two dimensional meshes, complete r level k-ary trees and
caterpillars) it is higher than 46.667% and goes up to 83.333%. In the case of the three dimensional meshes and
the r-dimensional hypercubes the %Best value for TScb is 10.000 and 0.000, respectively, which reveals that these
instances are challenging for TScb, probably due to their large size and specific topology.

The detailed results from this experiment can be found in Table A.1, from which it is possible to observe that
TScb reached the optimal solution (B∗C) for 57.647% (49 out of 85) of the selected graphs consuming in average 29.484
seconds, which is slightly higher than the average CPU time employed by the SAcb algorithm (22.484 seconds).

13

 0

 0.5

 1

 1.5

 2

 2.5

jgl009

rgg010

jgl011

can_24

pores_1

ibm
32

bcspw
r01

bcsstk01

bcspw
r02

curtis54

w
ill57

im
pcol_b

ash85

nos4
dw

t_234

bcspw
r03

bcsstk06

bcsstk07

im
pcol_d

can_445

494_bus

dw
t_503

sherm
an4

dw
t_592

662_bus

nos6
685_bus

can_715

C
y
c
lic

 b
a

n
d

w
id

th
 (

lo
g

1
0

)

Instances

Upper bounds
Lower bounds

TSCB
SACB

Figure 3: Performance evaluation of the best solutions achieved by SAcb and TScb, over 28 Harwell-Boeing graphs, with respect to the theoretical
lower and upper bounds proposed by Lin [15].

For the other 36 benchmark instances TScb found solutions which are close to the optimal cyclic bandwidth (R-
RMSE = 2.145). Another important outcome is that the solution cost found by TScb presents a relatively small
standard deviation (in average 4.738). It is an indicator of the algorithm’s precision and robustness since it shows that
in average the performance of TScb does not present important fluctuations.

From this experiment we can conclude that TScb is certainly an effective approach for finding good quality solu-
tions for the CB problem in the case of standard graphs with known tight lower bounds. Below, we will present more
computational results obtained from a performance evaluation carried out with TScb employing graphs produced from
real-world scientific and engineering applications.

4.6. Assessing the performance of TScb over Harwell-Boeing graphs

In this experiment a performance evaluation of the best solutions achieved by SAcb and TScb with respect to the
theoretical lower and upper bounds proposed by Lin [15] was carried out over the test-suite described in Subsection
4.3.2, using a cutoff time of 600 seconds for each execution. The results from this experiment are depicted in Table A.2
using the same column headings defined at the beginning of Appendix A.

Analyzing the data presented in Table A.2 lead us to the following main observations. First, our TScb algorithm
is able to outperform the solutions provided by SAcb in 18 out of 28 graphs (64.286%) and to equal its results for the
other 10 benchmark instances. The statistical analysis presented in the last two columns of Table A.2 confirms that
there exists a statistically significant increase in performance achieved by TScb with respect to SAcb on 23 graphs
(82.143% of the instances). This highlights the suitability of the studied TScb approach. One can also remark that
both SAcb and TScb are able to attain the optimal solutions, found by the B&B algorithm reported in [12], for the 6
smallest (n ≤ 32) instances in this test-suite and to supply a solution cost separated only by one unit from the optimal
cyclic bandwidth (5 vs. 4) for the instance bcspwr01. These results evidence that optimal solution costs could be
higher than the theoretical lower bounds (LB) proposed by Lin [15], i.e., these lower bounds are not tight.

Second, the solution quality provided by TScb for the other 21 graphs (with n ≥ 39) is very competitive, since
it consistently improve the upper bounds (UB) calculated according to [15] (see Figure 3). Indeed, the R-RMSE for
TScb, computed with respect to the corresponding best-known bound, is nearly one order of magnitude smaller than
that of SAcb (4.055 vs. 19.174), indicating that the cost of the labelings provided by TScb are closer to the best-known
solutions. Our TScb algorithm is even able to equal the lower bound value LB = 8 for the instance curtis54 of size
n = 54, which means that the optimal solution for this graph was found by it. Moreover, the cyclic bandwidth of the
solutions reached by TScb present in average a very reduced standard deviation (see Column Dev.).

14

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 500000 1e+06 1.5e+06 2e+06

C
y
c
lic

 b
a

n
d

w
id

th

Iterations

N1(ϕ)
N2(ϕ, γ)

N3(ϕ, γ, p)

(a)

 50

 100

 150

 200

 250

 300

 350

 400

 0 500000 1e+06 1.5e+06 2e+06

C
y
c
lic

 b
a

n
d

w
id

th

Iterations

N1(ϕ)
N2(ϕ, γ)

N3(ϕ, γ, p)

(b)

Figure 4: Average performance comparison of three neighborhood functions using TScb over the instances: (a) tree2x9 and (b) can 715.

Third, one can notice that TScb is the most time-consuming algorithm, since it uses an average of 138.369 seconds
for solving these 28 instances. On the contrary, SAcb employs only 9.515 seconds in average. However, we believe
that the CPU time consumed by TScb is acceptable (at most 600 seconds) and is fully justified by considering that it
is able to outperform the SAcb method in terms of cost. In addition, TScb’s consumed computing time is reasonable
compared with that expended by the B&B algorithm used in this experiment [12]. For instance, TScb employed
only 600.000 seconds for finding a near-optimal solution for the larger instance in this test-suite (can 715), while the
execution time for the B&B over the instance bcspwr01 (a smaller instance) is 4.73E05 seconds.

5. Discussion and analysis

The main objective of this section is to experimentally analyze the extent to which certain key components of the
proposed TScb implementation can influence its global performance. For all the experiments presented in this section
the algorithms were compiled and executed independently 31 times over the two sets of benchmark instances intro-
duced in Subsection 4.3. The parameter values employed for TScb were those previously identified in Subsection 4.4.

Given the space requirements for reporting the results of this experiment, our findings are presented using plots
for only two representative instances. One from the set of standard graphs with known optimal solutions (tree2x9) and
one from the set of Harwell-Boeing graphs (can 715). However, comparable results were obtained with all the other
tested instances.

5.1. Influence of the neighborhood functions
The neighborhood function is a critical element for the performance of any local search algorithm. In order

to further examine the influence of this element on the overall performance of our TScb implementation we have
performed some experimental comparisons using the following three neighborhood functions (see Subsection 3.3):
N1(ϕ), N2(ϕ, γ) and N3(ϕ, γ, p).

For this experiment each one of the studied neighborhood functions was implemented within TScb. Figure 4
summarizes the results from this experiment. It shows three average execution (convergence) profiles which represent
the evolution, during the search process (abscissa)7, of the best solution quality attained by TScb (ordinate), when
each one of the studied neighborhood relations is used to solve the instances tree2x9 and can 715. As it can be
seen from the plots, the worst performance is attained by TScb when the neighborhood function N1(ϕ) is used. The
functionN2(ϕ, γ) produces better results compared withN1(ϕ) since it improves the solution cost faster. Nevertheless,
it also causes that our TScb algorithm gets stuck on some local minima. Finally, the best performance is attained by
TScb when the function N3(ϕ, γ, p) is employed, which is a compound neighborhood combining the complementary
characteristics of both N1(ϕ) and N2(ϕ, γ).

7Each iteration in the plots represents a call to the evaluation function (1).
15

 50

 100

 150

 200

 250

 300

 0 500000 1e+06 1.5e+06 2e+06

C
y
c
lic

 b
a

n
d

w
id

th

Iterations

Static tabu tenure
Dynamic tabu tenure

(a)

 50

 100

 150

 200

 250

 300

 0 500000 1e+06 1.5e+06 2e+06

C
y
c
lic

 b
a

n
d

w
id

th

Iterations

Dynamic tabu tenure
Static tabu tenure

(b)

Figure 5: Average performance comparison of two different tabu tenure management strategies using TScb over the instances: (a) tree2x9 and (b)
can 715.

5.2. Influence of the tabu tenure management
In this experiment we compare the performance of two different tabu tenure management strategies. The first one

is commonly used in the literature [36, 42], and consists in prefixing a tabu tenure value that is maintained until the
end of the algorithm’s execution. The second one is the approach introduced in [39] (see Subsection 3.4), where the
tabu tenure is dynamically calculated during the search using a periodic step function.

The two tabu tenure management approaches (called here Static and Dynamic, respectively) were integrated into
the TScb source code and executed for solving the selected benchmark instances. According to the results of our
preliminary experiments, the tabu tenure value was fixed to T = 5 for the Static approach, while the minimum tenure
value is equal to τ = 1 for the dynamic strategy. The results reached by TScb over the instances tree2x9 and can 715
for this comparative experiment are illustrated in Figure 5. Each plot represents the iterations of TScb (abscissa)
against the average best solution quality attained with the used of the compared tabu tenure management mechanism
(ordinate). This figure discloses that TScb using a tabu tenure value which is dynamically calculated throughout the
search, with a periodic step function, performs slightly better than the TScb implementation that prefixes a tabu tenure
value. Very similar results were obtained with the rest of the analyzed benchmark instances, thus this figure correctly
summarizes the behavior of the compared tabu tenure management schemes.

5.3. Influence of the diversification strategy
The diversification strategy is an important component that must be carefully designed when implementing a

tabu search algorithm, since it is related with the process of discovering new unexplored regions of the search space
containing potentially good solutions [58, 59]. This experiment is thus devoted to investigate the extent to which this
key component of TScb can influence its global performance.

Two different versions of the TScb algorithm were specially prepared to this end. The first one equipped with
the diversification strategy described in Subsection 3.6. The second one without any diversification strategy imple-
mented. Both versions were executed independently over the selected benchmark instances. Figure 6 displays, for the
instances tree2x9 and can 715, two convergence profiles representing the evolution through the search (abscissa) of
the current and best solution quality provided by the TScb algorithm employing the proposed diversification strategy
(ordinate). The iteration when the perturbation function D2(ϕ, γ) is applied to diversify the search is also marked in
these plots with a symbol “x”. Recall, that D2(ϕ, γ) is only applied after a predefined maximum number (MaxS)
of non-consecutive calls to the perturbation function D1(ϕ, γ). For comparative purposes, the best solution quality
attained by the TScb version without any diversification strategy implemented is additionally presented in a third plot.
From this figure it can be easily observed that the TScb algorithm who does not implement a diversification strategy
has the worst overall performance in this experiment. This point can be better explained by observing that the lack
of a pertinent diversification strategy causes that the TScb algorithm easily stagnates in deep local optima. On the
contrary, the TScb algorithm employing the proposed diversification strategy is able to detect when the search process

16

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 500000 1e+06 1.5e+06 2e+06

C
y
c
lic

 b
a

n
d

w
id

th

Iterations

Current
Best

Diversification
Without diversification

(a)

 50

 100

 150

 200

 250

 300

 350

 400

 0 500000 1e+06 1.5e+06 2e+06

C
y
c
lic

 b
a

n
d

w
id

th

Iterations

Current
Best

Diversification
Without diversification

(b)

Figure 6: Performance comparison of TScb with and without a diversification strategy over the instances: (a) tree2x9 and (b) can 715.

is trapped into some local minima and to guide it to more promising potential solutions. This is confirmed by the fact
that TScbwith a diversification mechanism consistently attains better global performance in terms of cyclic bandwidth
cost.

6. Conclusions

In this paper the first implementation of a Tabu Search algorithm (TScb) for solving the Cyclic Bandwidth problem
(CB) was presented. This algorithm integrates two key features that importantly determine its performance. First,
a carefully designed composed neighborhood function which allows the search to quickly reduce the total cost of
candidate solutions, while avoiding to get stuck on some local minima. Second, an effective tabu list management
method where the tabu tenure for a move is dynamically calculated during the search using a specially designed
periodic step function.

TScb’s components and parameter values were carefully determined, through the use of a tuning methodology
based on combinatorial interaction testing [10, 11], to yield the best solution quality in a reasonable computational
time. Then, the practical effectiveness of TScb was assessed through extensive experimentation over a set of 113
standard benchmark instances [12–14], and compared against a Simulated Annealing implementation (SAcb).

The first of these experiments employed 85 standard graphs with known optimal solutions to carefully compare the
performance of both SAcb and TScb with respect to the known optimal solutions (B∗C). This experiment demonstrated
that there exists a statistically significant performance amelioration achieved by TScbwith respect to SAcb in 67 out of
85 tested graphs (78.824%). Our proposed method attained the optimal solutions value B∗C for 49 out of 85 (57.647%)
selected graphs expending in average 29.484 seconds, which is slightly higher than the average CPU time employed
by the SAcb algorithm (22.484 seconds). For the rest of the graphs TScb found good quality solutions, which are close
to the optimal cyclic bandwidth (R-RMSE = 2.145 in average).

The second experiment aimed at performing a comparative evaluation of the best solutions achieved by SAcb and
TScb with respect to the theoretical bounds proposed by Lin [15] for the CB problem. For this experiment 28 test
instances produced from real-world scientific and engineering applications (Harwell-Boeing graphs) were used. The
obtained results confirm that TScb’s performance was statistically superior than that reached by SAcb on 82.143% of
the tested instances (23 out of 28). In fact, TScb was able to find the optimal solution B∗C for 7 graphs in this test-suite
and to establish new better upper bounds for the other 21 instances.

The third experiment was devoted to experimentally analyze the extent to which some key components of the
proposed TScb implementation (neighborhood function, tabu tenure management and diversification strategy) can
influence its convergence process. Thanks to this analysis it was possible to identify that the use of the proposed
compound neighborhood function coupled with a diversification strategy are the two key components which determine
the global performance of our TScb algorithm. The compound neighborhood function permits a fast improving of the
solution cost while avoiding to get stuck on some local minima. The diversification strategy, on the other hand, allows

17

the TScb algorithm to detect when the search process is trapped into some local minima and to guide it to more
promising potential solutions, which results in a better global performance in terms of cyclic bandwidth cost.

All the experimental results presented confirm the practical advantages of using our TScb algorithm for solving
the CB problem. It is a robust algorithm yielding good quality solutions for the CB problem in the case of general
graphs at competitive computational time. In this sense this work represents an original contribution in this field.

Although promising results were obtained by the TScb algorithm, we believe that they could be still ameliorated.
Our future work will concentrate on designing and evaluating alternative neighborhood and evaluation functions in
order to boost the performance of the proposed TScb algorithm, since it is well-known that they are two important
components which define the so-called landscape of the search problem [60, 61] and impact thus greatly the efficiency
of the search algorithms [62].

Acknowledgements

The authors thankfully acknowledge the high performance computing resources (Neptuno cluster) and the techni-
cal assistance provided by the Information Technology Laboratory at CINVESTAV-Tamaulipas. The four reviewers
of the paper are greatly acknowledged for their constructive comments which have aided to improve the presentation
of this paper.

A. Detailed comparison of the SAcb and TScb algorithms

Tables A.1 and A.2 present detailed results from the experimental comparison carried out between the TScb and
SAcb algorithms over both a set of standard graphs with known optimal solutions and a set of graphs from real-world
scientific and engineering applications. The first three columns in these tables represent the graph name, its number of
vertices (|V |) and edges (|E|). In Table A.1 the known optimal solution (B∗C) was calculated using equations presented
in Subsection 4.3.1. The theoretical lower (LB) and upper (UB) bounds for the graphs listed in Table A.2 (see Columns
4 and 5) were computed, as indicated by Lin [15], with the expressions LB = d∆(G)/2e and UB = b|V |/2c, where ∆(G)
denotes the maximum degree of the graph G. For the first seven instances (with n ≤ 40) in Table A.2, the exact
optimal solutions B∗C were obtained using the B&B algorithm reported in [12]. In both tables, for each compared
algorithm five columns are used to depict the best (Best), average (Avg.) and standard deviation (Dev.) of the cyclic
bandwidth cost reached by that method over 31 independent executions, its average CPU time (T) in seconds, and the
difference (D) between its best result (Best) and the corresponding best-known bound (either B∗C or LB). A statistical
significance analysis was performed for these experiments by using the methodology described in Subsection 4.2 and
the resulting p-value is presented. If a statistically significant difference exists between the performance of TScb and
SAcb, the corresponding cells in the last column (S S) are marked either “+” or “−” depending on whether such
a difference favors TScb or not. Unmarked cells indicate that there was not a significant difference between the
compared algorithms.

Table A.1: Detailed performance assessment of the SAcb and TScb algorithms over 85 standard graphs from 7 different types all of them with
known optimal solutions B∗C .

SAcb TScb

Graph |V | |E| B∗C Best Avg. Dev. T D Best Avg. Dev. T D p-value S S

path20 20 19 1 1 1.000 0.000 1.665 0 1 1.000 0.000 0.133 0 1.0E+00
path25 25 24 1 1 1.500 0.527 1.876 0 1 1.000 0.000 0.603 0 1.2E-02 +

path30 30 29 1 1 1.600 0.843 3.107 0 1 1.000 0.000 1.422 0 3.0E-02 +

path35 35 34 1 2 2.600 0.516 3.292 1 1 1.000 0.000 3.420 0 3.8E-05 +

path40 40 39 1 2 2.800 0.422 3.711 1 1 1.000 0.000 3.330 0 2.7E-05 +

path100 100 99 1 15 18.500 2.173 0.030 14 1 1.500 0.527 1.920 0 1.4E-16 +

path125 125 124 1 21 25.100 3.348 0.037 20 1 1.700 0.483 5.865 0 4.6E-18 +

path150 150 149 1 28 31.000 2.108 0.055 27 2 2.000 0.000 3.295 1 6.6E-13 +

path175 175 174 1 31 35.300 2.111 0.083 30 2 2.000 0.000 6.836 1 5.0E-05 +

path200 200 199 1 40 42.300 2.791 0.103 39 2 2.000 0.000 9.612 1 4.1E-05 +

path300 300 299 1 63 67.400 3.134 0.191 62 3 3.200 0.422 10.470 2 6.8E-05 +

path475 475 474 1 115 120.600 4.300 0.375 114 5 5.600 0.516 14.566 4 1.2E-04 +

Continued on next page ...

18

Table A.1 – Continued from previous page

SAcb TScb

Graph |V | |E| B∗C Best Avg. Dev. T D Best Avg. Dev. T D p-value S S

path650 650 649 1 171 176.700 4.473 0.592 170 7 7.000 0.000 17.428 6 7.0E-05 +

path825 825 824 1 229 237.600 3.373 0.870 228 8 8.000 0.000 19.831 7 3.9E-14 +

path1000 1000 999 1 293 300.600 5.082 1.104 292 8 8.900 0.316 20.409 7 5.0E-15 +

cycle20 20 20 1 1 1.300 0.483 1.746 0 1 1.000 0.000 0.356 0 6.7E-02
cycle25 25 25 1 1 1.100 0.316 2.005 0 1 1.000 0.000 0.285 0 3.2E-01
cycle30 30 30 1 1 2.400 0.966 2.210 0 1 1.000 0.000 0.573 0 1.4E-03 +

cycle35 35 35 1 1 2.400 0.843 3.315 0 1 1.000 0.000 0.571 0 5.1E-04 +

cycle40 40 40 1 2 3.000 0.816 3.535 1 1 1.000 0.000 0.548 0 4.7E-05 +

cycle100 100 100 1 16 19.200 3.393 0.031 15 1 1.000 0.000 1.898 0 4.0E-05 +

cycle125 125 125 1 22 24.500 1.841 0.047 21 1 1.000 0.000 1.920 0 3.8E-05 +

cycle150 150 150 1 25 29.000 3.127 0.067 24 1 1.000 0.000 3.300 0 3.8E-05 +

cycle175 175 175 1 32 35.600 2.797 0.085 31 1 1.000 0.000 8.192 0 4.8E-05 +

cycle200 200 200 1 38 40.200 1.317 0.114 37 1 1.000 0.000 9.254 0 5.0E-05 +

cycle300 300 300 1 64 67.300 2.263 0.186 63 3 3.100 0.316 11.528 2 7.1E-05 +

cycle475 475 475 1 113 119.800 4.780 0.388 112 5 5.800 0.422 14.703 4 3.8E-15 +

cycle650 650 650 1 170 178.100 4.067 0.605 169 7 7.600 0.516 16.348 6 3.4E-16 +

cycle825 825 825 1 237 241.500 3.749 0.885 236 7 7.900 0.316 18.262 6 7.3E-05 +

cycle1000 1000 1000 1 291 298.700 5.438 1.071 290 8 8.500 0.850 20.542 7 1.3E-20 +

mesh2D5x4 20 31 4 4 4.800 0.422 1.829 0 4 4.000 0.000 2.291 0 3.7E-04 +

mesh2D5x5 25 40 5 5 5.000 0.000 3.352 0 5 5.000 0.000 2.932 0 1.0E+00
mesh2D5x6 30 49 5 5 6.200 1.317 4.702 0 5 5.000 0.000 1.633 0 5.0E-03 +

mesh2D5x7 35 58 5 6 7.100 1.449 2.790 1 5 5.000 0.000 1.393 0 4.0E-05 +

mesh2D5x8 40 67 5 6 6.500 0.972 4.401 1 5 5.000 0.000 1.770 0 3.5E-05 +

mesh2D10x10 100 180 10 26 28.000 2.309 0.047 16 10 10.500 0.527 3.832 0 5.6E-05 +

mesh2D5x25 125 220 5 28 33.500 2.415 0.090 23 5 5.000 0.000 2.790 0 2.0E-05 +

mesh2D10x15 150 275 10 39 42.400 3.596 0.121 29 11 11.000 0.000 3.031 1 2.0E-05 +

mesh2D7x25 175 318 7 45 47.200 1.751 0.179 38 7 8.700 3.335 6.183 0 6.3E-05 +

mesh2D8x25 200 367 8 52 53.700 1.059 0.231 44 8 8.200 0.422 3.588 0 7.2E-05 +

mesh2D15x20 300 565 15 81 88.800 3.553 0.434 66 16 33.900 28.368 6.330 1 4.1E-05 +

mesh2D19x25 475 906 19 154 160.200 4.614 0.824 135 119 119.900 0.316 9.267 100 1.8E-01
mesh2D25x26 650 1249 25 233 236.600 4.061 1.246 208 164 164.000 0.000 14.154 139 1.9E-04 +

mesh2D28x30 840 1622 28 313 317.300 3.860 1.824 285 30 174.000 75.895 15.557 2 1.2E-01
mesh2D20x50 1000 1930 20 376 386.600 6.484 2.206 356 21 113.100 117.825 21.600 1 1.0E-03 +

mesh3D4 64 300 14 19 20.700 0.949 0.032 5 16 16.000 0.000 0.060 2 1.3E-05 +

mesh3D5 125 540 21 34 38.500 2.718 0.168 13 21 21.700 0.483 0.260 0 4.7E-04 +

mesh3D6 216 882 30 62 76.700 6.897 0.370 32 31 31.000 0.000 6.578 1 7.7E-05 +

mesh3D7 343 1344 40 118 127.700 5.143 0.785 78 42 42.000 0.000 5.510 2 8.5E-05 +

mesh3D8 512 1344 52 200 207.400 3.239 1.341 148 129 129.600 0.516 17.460 77 2.1E-02 +

mesh3D9 729 1944 65 306 308.800 1.619 2.065 241 184 184.700 0.483 19.195 119 7.8E-14 +

mesh3D10 1000 2700 80 427 432.300 4.523 3.399 347 252 253.100 0.568 23.299 172 8.2E-09 +

mesh3D11 1331 3630 96 582 588.500 2.799 5.908 486 336 336.800 0.422 28.427 240 4.2E-11 +

mesh3D12 1728 4752 114 772 778.900 5.626 8.994 658 435 435.800 0.422 35.164 321 1.7E-16 +

mesh3D13 2197 6084 133 996 1002.600 3.658 13.382 863 553 553.600 0.699 41.161 420 6.3E-23 +

tree2x4 31 30 4 4 4.000 0.000 2.617 0 4 4.000 0.000 0.502 0 1.0E+00
tree3x3 40 39 7 7 7.000 0.000 1.927 0 7 7.000 0.000 0.314 0 1.0E+00
tree10x2 111 110 28 29 30.300 1.160 0.029 1 28 28.000 0.000 0.003 0 1.0E+00
tree3x4 121 120 15 23 24.200 0.919 0.039 8 15 15.700 0.483 0.538 0 7.3E-07 +

tree5x3 156 155 26 33 36.900 1.912 0.049 7 26 26.000 0.000 5.869 0 3.7E-04 +

tree13x2 183 182 46 47 48.400 1.955 0.071 1 46 46.000 0.000 0.067 0 1.0E+00
tree2x7 255 254 19 52 60.900 3.985 0.148 33 20 20.100 0.316 7.306 1 3.6E-09 +

tree17x2 307 306 77 83 88.900 3.213 0.196 6 77 77.000 0.000 0.525 0 1.0E+00
tree21x2 463 462 116 133 139.700 3.529 0.376 17 116 116.000 0.000 0.811 0 1.0E+00
tree25x2 651 650 163 203 207.400 3.658 0.620 40 163 163.000 0.000 1.098 0 3.2E-01
tree5x4 781 780 98 219 229.800 5.884 0.716 121 98 98.200 0.422 19.670 0 6.0E-12 +

tree2x9 1023 1022 57 306 316.000 6.254 1.099 249 63 64.200 0.919 23.608 6 2.4E-15 +

caterpillar3 9 8 3 3 3.000 0.000 0.000 0 3 3.000 0.000 20.046 0 1.0E+00
caterpillar4 14 13 3 3 3.000 0.000 0.368 0 3 3.000 0.000 0.329 0 1.0E+00
caterpillar5 20 19 4 4 4.000 0.000 1.480 0 4 4.000 0.000 0.719 0 1.0E+00
caterpillar6 27 26 5 5 5.000 0.000 1.644 0 5 5.000 0.000 0.540 0 1.0E+00
caterpillar7 35 34 6 6 6.000 0.000 1.809 0 6 6.000 0.000 0.765 0 1.0E+00
caterpillar13 104 103 10 16 20.400 3.307 0.032 6 10 10.000 0.000 4.058 0 2.0E-05 +

caterpillar14 119 118 11 20 25.000 4.190 0.036 9 11 11.000 0.000 5.391 0 3.4E-05 +

caterpillar16 152 151 13 30 33.800 4.467 0.065 17 13 13.000 0.000 6.835 0 3.4E-05 +

caterpillar17 170 169 14 32 36.000 2.749 0.085 18 14 14.000 0.000 4.902 0 3.8E-05 +

caterpillar19 209 208 15 41 45.200 1.751 0.121 26 15 15.900 0.316 9.500 0 1.1E-04 +

Continued on next page ...

19

Table A.1 – Continued from previous page

SAcb TScb

Graph |V | |E| B∗C Best Avg. Dev. T D Best Avg. Dev. T D p-value S S

caterpillar23 299 298 19 65 72.500 4.478 0.181 46 19 19.300 0.483 13.259 0 2.0E-09 +

caterpillar29 464 463 24 118 124.100 3.604 0.358 94 24 25.800 0.919 15.077 0 3.9E-14 +

caterpillar35 665 664 29 182 196.000 8.524 0.657 153 31 32.300 1.252 18.250 2 6.8E-23 +

caterpillar39 819 818 33 241 251.000 8.367 0.941 208 34 38.500 4.275 21.364 1 1.8E-20 +

caterpillar44 1034 1033 37 321 334.700 6.977 1.358 284 39 54.000 7.732 23.906 2 4.4E-16 +

hypercube11 2048 11264 526 1021 1022.500 0.707 600.000 495 570 582.200 9.461 600.000 44 1.7E-21 +

hypercube12 4096 24576 988 2046 2046.900 0.316 600.000 1058 1175 1203.300 24.208 600.000 187 2.4E-18 +

hypercube13 8192 53248 1912 4095 4095.000 0.000 600.000 2183 2380 2462.400 116.956 600.000 468 5.3E-05 +

Average 191.812 195.909 2.686 22.484 131.176 88.435 93.345 4.738 29.484 27.800

Table A.2: Detailed performance comparison of the SAcb and TScb algorithms over 28 Harwell-Boeing graphs.

Bounds SAcb TScb

Graph |V | |E| LB UB B∗C Best Avg. Dev. T D Best Avg. Dev. T D p-value S S

jgl009 9 50 4 4 4 4 4.000 0.000 0.001 0 4 4.000 0.000 0.001 0 1.0E+00
rgg010 10 76 5 5 5 5 5.000 0.000 0.001 0 5 5.000 0.000 0.001 0 1.0E+00
jgl011 11 76 5 5 5 5 5.000 0.000 0.001 0 5 5.000 0.000 0.001 0 1.0E+00
can 24 24 92 4 12 5 5 5.400 0.516 4.857 0 5 5.000 0.000 0.033 0 2.9E-02 +

pores 1 30 103 5 15 7 7 8.300 0.823 3.837 0 7 7.000 0.000 2.642 0 5.5E-04 +

ibm32 32 90 6 16 9 9 9.100 0.316 7.368 0 9 9.000 0.000 0.778 0 3.2E-01
bcspwr01 39 46 3 19 4 5 5.800 0.789 2.603 1 5 5.000 0.000 1.044 1 4.9E-03 +

bcsstk01 48 176 6 24 12 12.400 0.843 10.073 6 12 12.000 0.000 3.699 6 1.5E-01
bcspwr02 49 59 3 24 7 7.800 0.919 2.565 4 7 7.000 0.000 1.385 4 1.3E-02 +

curtis54 54 124 8 27 9 10.100 1.595 5.413 1 8 8.000 0.000 10.936 0 4.6E-05 +

will57 57 127 5 28 7 7.300 0.483 5.941 2 6 6.900 0.316 2.954 1 4.5E-02 +

impcol b 59 281 9 29 17 17.800 0.422 12.136 8 17 17.000 0.000 6.387 8 3.7E-04 +

ash85 85 219 5 42 12 12.400 0.516 7.926 7 9 9.000 0.000 45.716 4 3.8E-05 +

nos4 100 247 3 50 13 14.700 4.001 8.172 10 10 10.000 0.000 5.801 7 4.3E-05 +

dwt 234 117 162 5 58 20 20.700 0.823 7.248 15 12 16.600 2.221 62.508 7 1.7E-04 +

bcspwr03 118 179 5 59 14 18.000 3.621 6.546 9 11 11.400 0.516 41.347 6 2.5E-04 +

bcsstk06 420 3720 14 210 209 209.000 0.000 0.434 195 49 51.800 2.098 178.202 35 5.1E-05 +

bcsstk07 420 3720 14 210 209 209.000 0.000 0.458 195 50 51.600 1.578 244.357 36 5.0E-05 +

impcol d 425 1267 8 212 58 71.400 15.700 14.450 50 38 43.100 5.877 505.329 30 2.0E-04 +

can 445 445 1682 6 222 149 149.300 0.483 12.836 143 47 61.600 10.255 327.149 41 5.9E-10 +

494 bus 494 586 5 247 72 87.700 10.541 13.279 67 46 56.100 5.990 358.692 41 1.6E-07 +

dwt 503 503 2762 12 251 241 241.800 0.919 35.526 229 44 45.100 0.568 439.687 32 7.6E-40 +

sherman4 546 1341 3 273 77 126.600 26.154 14.124 74 29 29.800 0.632 103.231 26 9.4E-07 +

dwt 592 592 2256 7 296 88 166.200 51.923 17.978 81 30 31.100 0.876 338.423 23 1.8E-05 +

662 bus 662 906 5 331 121 137.000 11.489 14.672 116 52 56.100 4.433 284.321 47 1.5E-04 +

nos6 675 1290 2 337 171 172.700 1.337 12.893 169 22 23.500 0.972 93.658 20 1.2E-04 +

685 bus 685 1282 6 342 110 138.600 20.343 15.039 104 36 40.400 3.026 216.045 30 6.6E-08 +

can 715 715 2975 52 357 159 229.100 47.708 30.031 107 60 65.800 7.361 600.000 8 1.4E-06 +

Average 64.821 75.079 7.224 9.515 56.893 22.679 24.782 1.669 138.369 14.750

References

[1] J. Leung, O. Vornberger, J. Witthoff, On some variants of the bandwidth minimization problem, SIAM Journal on Computing 13 (3) (1984)
650–667.

[2] Y. Lin, The cyclic bandwith problem, Journal of Systems Science and Complexity 7 (3) (1994) 282.
[3] S. N. Bhatt, F. Thomson Leighton, A framework for solving VLSI graph layout problems, Journal of Computer and System Sciences 28 (2)

(1984) 300–343.
[4] A. L. Rosenberg, L. Snyder, Bounds on the costs of data encodings, Theory of Computing Systems 12 (1) (1978) 9–39.
[5] F. R. K. Chung, Labelings of graphs, in: L. W. Beineke, R. J. Wilson (Eds.), Selected topics in graph theory volume 3, Academic Press, 1988,

Ch. 7, pp. 151–168.
[6] J. Hromkovič, V. Müller, O. Sýkora, I. Vrťo, On embedding interconnection networks into rings of processors, Lecture Notes in Computer

Science 605 (1992) 51–62.
20

[7] L. H. Harper, Optimal assignment of numbers to vertices, Journal of SIAM 12 (1) (1964) 131–135.
[8] P. C. B. Lam, W. C. Shiu, W. H. Chan, Characterization of graphs with equal bandwidth and cyclic bandwidth, Discrete Mathematics 242 (3)

(2002) 283–289.
[9] R. Martı́, V. Campos, E. Piñana, A branch and bound algorithm for the matrix bandwidth minimization, European Journal of Operational

Research 186 (2) (2008) 513–528.
[10] D. M. Cohen, S. R. Dalal, J. Parelius, G. C. Patton, The combinatorial design approach to automatic test generation, IEEE Software 13 (5)

(1996) 83–88.
[11] D. M. Cohen, S. R. Dalal, M. L. Fredman, G. C. Patton, The AETG system: An approach to testing based on combinatorial design, IEEE

Transactions on Software Engineering 23 (1997) 437–444.
[12] H. Romero-Monsivais, E. Rodriguez-Tello, G. Ramı́rez, A new branch and bound algorithm for the cyclic bandwidth problem, Lecture Notes

in Artificial Intelligence 7630 (2012) 139–150.
[13] A. Duarte, R. Martı́, M. G. C. Resende, R. M. A. Silva, Grasp with path relinking heuristics for the antibandwidth problem, Networks 58 (3)

(2011) 171–189.
[14] M. Lozano, A. Duarte, F. Gortázar, R. Martı́, Variable neighborhood search with ejection chains for the antibandwidth problem, Journal of

Heuristics 18 (6) (2012) 919––938.
[15] Y. Lin, Minimum bandwidth problem for embedding graphs in cycles, Networks 29 (3) (1997) 135–140.
[16] R. Livesley, The analysis of large structural systems, Computer Journal 3 (1) (1960) 34–39.
[17] L. Yixun, Y. Jinjiang, The dual bandwidth problem for graphs, Journal of Zhengzhou University 35 (1) (2003) 1–5.
[18] R. Martı́, M. Laguna, F. Glover, V. Campos, Reducing the bandwidth of a sparse matrix with tabu search, European Journal of Operational

Research 135 (2) (2001) 211–220.
[19] E. Piñana, I. Plana, V. Campos, R. Martı́, GRASP and path relinking for the matrix bandwidth minimization, European Journal of Operational

Research 153 (2004) 200–210.
[20] A. Lim, J. Lin, F. Xiao, Particle swarm optimization and hill climbing for the bandwidth minimization problem, Applied Intelligence 26 (3)

(2007) 175–182.
[21] E. Rodriguez-Tello, J. K. Hao, J. Torres-Jimenez, An improved simulated annealing algorithm for bandwidth minimization, European Journal

of Operational Research 185 (3) (2008) 1319–1335.
[22] N. Mladenovic, D. Urosevic, D. Pérez-Brito, C. G. Garcı́a-González, Variable neighbourhood search for bandwidth reduction, European

Journal of Operational Research 200 (1) (2010) 14–27.
[23] Z. Miller, D. Pritikin, On the separation number of a graph, Networks 19 (6) (1989) 651–666.
[24] W. Yao, Z. Ju, L. Xiaoxu, Dual bandwidth of some special trees, Journal of Zhengzhou University Natural Science Edition 35 (2003) 16–19.
[25] T. Calamoneri, A. Missini, L. Török, I. Vrt’o, Antibandwidth of complete k-ary trees, Electronic Notes in Discrete Mathematics 24 (2006)

259–266.
[26] L. Török, Antibandwidth of three-dimensional meshes, Electronic Notes in Discrete Mathematics 28 (2007) 161–167.

doi:10.1016/j.endm.2007.01.023.
[27] A. Raspaud, H. Schröder, O. Sýkora, L. Török, I. Vrt’o, Antibandwidth and cyclic antibandwidth of meshes and hypercubes, Discrete

Mathematics 309 (11) (2009) 3541–3552.
[28] R. Bansal, K. Srivastava, Memetic algorithm for the antibandwidth maximization problem, Journal of Heuristics 17 (1) (2011) 39–60.
[29] O. Sýkora, L. Török, I. Vrt’o, The cyclic antibandwidth problem, Electronic Notes in Discrete Mathematics 22 (2005) 233–227.
[30] S. Dobrev, R. Královic, D. Pardubská, L. Török, I. Vrt’o, Antibandwidth and cyclic antibandwidth of hamming graphs, Electronic Notes in

Discrete Mathematics 34 (2009) 295–300.
[31] R. Bansal, K. Srivastava, A memetic algorithm for the cyclic antibandwidth maximization problem, Soft Computing 15 (2) (2011) 397–412.
[32] M. Lozano, A. Duarte, F. Gortázar, R. Martı́, A hybrid metaheuristic for the cyclic antibandwidth problem, Knowledge-Based Systems 54

(2013) 103–113.
[33] S. Zhou, Bounding the bandwidths for graphs, Theoretical computer science 249 (2) (2002) 357–368.
[34] E. de Klerk, M. Eisenberg-Nagy, R. Sotirov, On semidefinite programming bounds for graph bandwidth, Technical report, Centrum Wiskunde

& Informatica, (2011).
[35] J. Yuan, S. Zhou, Optimal labelling of unit interval graphs, Applied Mathematics, A Journal of Chinese Universities 10B (3) (1995) 337–344.
[36] F. Glover, M. Laguna, Tabu Search, Kluwer Academic Publishers, 1997.
[37] Z. P. Lü, J. K. Hao, A memetic algorithm for graph coloring, European Journal of Operational Research 203 (1) (2010) 241–250.
[38] Z. P. Lü, J. K. Hao, Adaptive tabu search for course timetabling, European Journal of Operational Research 200 (1) (2010) 235–244.
[39] P. Galinier, Z. Boujbel, M. Coutinho Fernandes, An efficient memetic algorithm for the graph partitioning problem, Annals of Operations

Research 191 (1) (2011) 1–22.
[40] J. Jin, T. G. Crainic, A. Løkketangen, A parallel multi-neighborhood cooperative tabu search for capacitated vehicle routing problems,

European Journal of Operational Research 222 (3) (2012) 441–451.
[41] B. Cesaret, C. Oǧuz, F. S. Salman, A tabu search algorithm for order acceptance and scheduling, Computers & Operations Research 39 (6)

(2012) 1197–1205.
[42] F. Glover, M. Laguna, Tabu search, in: P. M. Pardalos, D. Z. Du, R. L. Graham (Eds.), Handbook of Combinatorial Optimization, 2nd Edition,

Springer, 2013.
[43] R. Kothari, D. Ghosh, Tabu search for the single row facility layout problem using exhaustive 2-opt and insertion neighborhoods, European

Journal of Operational Research 224 (1) (2013) 93–100.
[44] Z. P. Lü, J. K. Hao, F. Glover, Neighborhood analysis: a case study on curriculum-based course, Journal of Heuristics 17 (2) (2011) 97–118.
[45] Q. Wu, J. K. Hao, Memetic search for the max-bisection problem, Computers & Operations Research 40 (1) (2013) 166–179.
[46] J. Chvátalová, Optimal labelling of a product of two paths, Discrete Mathematics 11 (3) (1975) 249–253.
[47] L. Smithline, Bandwidth of the complete k-ary tree, Discrete Mathematics 142 (1–3) (1995) 203–212.
[48] W. A. de Landgraaf, A. E. Eiben, V. Nannen, Parameter calibration using meta-algorithms, in: In proceedings of the IEEE Congress on

21

Evolutionary Computation, IEEE Press, 2007, pp. 71–78.
[49] A. Gunawan, H. C. Lau, Lindawati, Fine-tuning algorithm parameters using the design of experiments, Lecture Notes in Computer Science

6683 (2011) 131–145.
[50] L. Gonzalez-Hernandez, J. Torres-Jimenez, MiTS: A new approach of tabu search for constructing mixed covering arrays., Lecture Notes in

Artificial Intelligence 6438 (2010) 382–392.
[51] J. Richer, E. Rodriguez-Tello, K. E. Vazquez-Ortiz, Maximum parsimony phylogenetic inference using simulated annealing, in: O. Schütze,

C. Coello Coello, A. Tantar, E. Tantar, P. Bouvry, P. Del Moral, P. Legrand (Eds.), EVOLVE - A Bridge between Probability, Set Oriented
Numerics, and Evolutionary Computation II, Vol. 175 of Advances in Intelligent Systems and Computing, Springer, 2013, pp. 189–203.

[52] C. J. Colbourn, Combinatorial aspects of covering arrays, Le Matematiche 58 (2004) 121–167.
[53] E. Rodriguez-Tello, J. Torres-Jimenez, Memetic algorithms for constructing binary covering arrays of strength three, Lecture Notes in Com-

puter Science 5975 (2010) 86–97.
[54] H. Toutenburg, Shalabh, Statistical Analysis of Designed Experiments, 3rd Edition, Sp, 2009.
[55] T. Tsuchiya, Y. Takenaka, H. Taguchi, Multidisciplinary design optimization for hypersonic experimental vehicle, AIAA Journal 45 (7)

(2007) 1655–1662.
[56] A. Azadeh, Z. S. Faiz, A meta-heuristic framework for forecasting household electricity consumption, Applied Soft Computing 11 (1) (2011)

614–620.
[57] P. Samui, Slope stability analysis using multivariate adaptive regression spline, in: X. S. Yang, A. H. Gandomi, S. Talatahari, A. H. Alavi

(Eds.), Metaheuristics in Water, Geotechnical and Transport Engineering, Elsevier, 2013, Ch. 14, pp. 327–342.
[58] H. G. Santos, L. S. Ochi, M. J. F. Souza, A tabu search heuristic with efficient diversification strategies for the class/teacher timetabling

problem, ACM Journal of Experimental Algorithmics 10 (Article No. 2.9) (2005) 1–16.
[59] T. James, C. Rego, F. Glover, Multistart tabu search and diversification strategies for the quadratic assignment problem, IEEE Transactions

on Systems, Man, and Cybernetics, Part A 39 (3) (2009) 579–596.
[60] P. F. Stadler, Correlation in landscapes of combinatorial optimization problems, Europhysics Letters 20 (1992) 479–482.
[61] E. Pitzer, M. Affenzeller, A comprehensive survey on fitness landscape analysis, in: J. Fodor, R. Klempous, C. P. Suárez-Araujo (Eds.),

Recent Advances in Intelligent Engineering Systems, Vol. 378 of Studies in Computational Intelligence, Springer, 2012, Ch. 8, pp. 161–191.
[62] E. Talbi, Metaheuristics: From design to implementation, John Wiley & Sons, 2009.

22

