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Abstract

In the multi-objective approach to constraint-handling, a constrained problem is transformed into an unconstrained one by defining
additional optimization criteria to account for the problem constraints. In this paper, this approach is explored in the context of the
hydrophobic-polar model, a simplified yet challenging representation of the protein structure prediction problem. Although focused
on such a particular case of study, this research work is intended to contribute to the general understanding of the multi-objective
constraint-handling strategy. First, a detailed analysis was conducted to investigate the extent to which this strategy impacts on
the characteristics of the fitness landscape. As a result, it was found that an important fraction of the infeasibility translates into
neutrality. This neutrality defines potentially shorter paths to move through the landscape, which can also be exploited to escape
from local optima. By studying different mechanisms, the second part of this work highlights the relevance of introducing a proper
search bias when handling constraints by multi-objective optimization. Finally, the suitability of the multi-objective approach was
further evaluated in terms of its ability to effectively guide the search process. This strategy significantly improved the performance
of the considered search algorithms when compared with respect to commonly adopted techniques from the literature.

Keywords: Constraint-handling, evolutionary multi-objective optimization, fitness landscape analysis, search bias, protein
structure prediction, hydrophobic-polar model

1. Introduction

Evolutionary computation methods and other metaheuris-
tic algorithms have been successfully used to solve complex
optimization problems which arise in a diversity of scientific
and engineering applications. Often, however, optimization in-
volves not only to reach the best value for a given objective
function (or set of objective functions), but also to satisfy a cer-
tain set of predefined requirements called constraints. There-
fore, additional mechanisms need to be implemented within
metaheuristic algorithms in order to search effectively through
this kind of constrained solution spaces.

The hydrophobic-polar (HP) model [1, 2] is an abstract for-
mulation of the protein structure prediction (PSP) problem,
where hydrophobicity is assumed to be the main stabilizing
force in the protein folding process. Under this model, PSP
is defined as the problem of finding a self-avoiding embedding
of the protein chain on a given lattice, such that the interaction
among hydrophobic amino acids is maximized. From the com-
putational point of view, the HP model entails a challenging
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problem in combinatorial optimization [3, 4]. One of the main
sources of difficulty in this problem lies in the fact that, using
the existing problem representations, a significant portion of
the solution space encodes infeasible (non-self-avoiding) pro-
tein structures. Hence, it is important to devise effective mech-
anisms for handling the constraints that this problem presents.
Two main research directions have been adopted to cope with
this issue. On the one hand, the search can be confined to the
space of only feasible, self-avoiding protein conformations. On
the other hand, infeasible protein conformations can also be
taken into consideration, which has been achieved in the lit-
erature by implementing a penalty strategy. From the litera-
ture, however, it is not possible to identify a clear consensus
on which of the two directions, i.e., to avoid or to consider in-
feasible conformations, could lead to the development of more
efficient metaheuristics for solving this problem [5–9].

Premised upon the belief that infeasible conformations can
provide valuable information for guiding the search process,
this research work inquires into the use of multi-objective op-
timization as an alternative constraint-handling strategy for the
HP model. Particularly, constraints in the HP model are treated
as a supplementary optimization criterion, leading to an uncon-
strained multi-objective problem.1 Using such an alternative

1The process of restating a single-objective problem as a multi-objective
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formulation of the HP model, infeasible solutions can become
incomparable with respect to feasible ones, having thus better
opportunities for participating throughout the search process.
In contrast to the penalty strategy, which represents one of the
most widely used techniques in the constraint-handling litera-
ture, in essence the multi-objective (MO) method does not re-
quire the fine-tuning of the penalty parameters;2 in the penalty
strategy, finding the right balance between objective function
and penalty values has been regarded to be a difficult optimiza-
tion problem itself [10, 11]. The use of multi-objective opti-
mization for handling constraints is not a novel idea; recent
reviews on this topic can be found in [11, 12]. Nevertheless,
it was not until recently that the preliminary results of this re-
search reported for the first time, to the best of the authors’
knowledge, the application of the MO constraint-handling strat-
egy to the particular HP model of the PSP problem [13].

Building further on this research, the primary aim of this
study is to contribute to the general understanding of the func-
tioning of the MO constraint-handling technique. First, a de-
tailed analysis is conducted in order to investigate the potential
effects of the problem transformation from the perspective of
the fitness landscape. More specifically, it is evaluated how the
use of the MO problem formulation impacts on an important
property of the fitness landscape: neutrality. It has been argued
that the MO approach to constraint-handling could be rather
ineffective if a search bias towards the feasible region is not in-
troduced [14]. Therefore, the second part of this document con-
cerns the study of different mechanisms which can be employed
for providing the MO strategy with such a search bias. The last
part of this research work extends the comparative analysis re-
ported in [13], where the MO approach is evaluated with respect
to commonly adopted techniques from the specialized litera-
ture. While the preliminary results presented in [13] assumed a
fixed biasing scheme for the MO method and focused only on
the performance of a population-based algorithm, the different
biasing mechanisms analyzed in the second part of this study, as
well as both single-solution-based and population-based algo-
rithms, have been included in the present study. Likewise, only
15 test instances for the two-dimensional HP model (based on
the square lattice) were used in [13]. In contrast, the present
study covers also the three-dimensional case (based on the cu-
bic lattice) and a total of 30 test cases have been considered.

The remainder of this document is organized as follows. Sec-
tion 2 provides background concepts and sets the notation used
in this study. Section 3 reviews related work on constraint-
handling methods for the HP model as well as on the topic of
single-objective to multi-objective transformations. The stud-
ied MO constraint-handling approach is described in Section
4. Section 5 presents the analysis with regard to the fitness
landscape transformation. The search bias issue is addressed
in Section 6. The comparative study which focuses on search
performance is covered in Section 7. Finally, Section 8 dis-
cusses the main findings and presents the conclusions of this

one is usually referred to as multi-objectivization; refer to Section 3.2.
2However, the MO strategy may require additional parameters or the com-

bination with other mechanisms for biasing purposes.

study. Appendices at the end of this document contain supple-
mentary information with regard to implementation details of
the considered search algorithms, performance measures, test
instances, the methodology followed for the statistical signifi-
cance analyses, and the utilized experimental platform.

2. Background concepts and notation

2.1. Single-objective and multi-objective optimization
Without loss of generality, a single-objective optimization

problem can be formally stated as follows:

Minimize f (x), (1)
subject to x ∈ XF ,

where x is a solution vector; XF denotes the feasible set, i.e.,
the set of all feasible solution vectors in the search space X,
XF ( X; and f : X → R is the objective function to be opti-
mized. The aim is thus to find the feasible solution(s) yielding
the optimum value for the objective function; that is, to find
x∗ ∈ XF such that f (x∗) = min{ f (x) | x ∈ XF }.

Similarly, a multi-objective optimization problem can be for-
mally defined as follows:

Minimize f(x) = [ f1(x), f2(x), . . . , fk(x)]T , (2)
subject to x ∈ XF ,

where f(x) is the objective vector and fi : X → R is the i-th
objective function, i ∈ {1, 2, . . . , k}. Rather than searching for a
single optimal solution, the task in multi-objective optimization
is to identify a set of trade-offs among the conflicting objec-
tives. More formally, the goal is to find a set of Pareto-optimal
solutions P∗, such that P∗ = {x∗ ∈ XF | @x ∈ XF : x ≺ x∗}. The
symbol “≺” denotes the Pareto-dominance relation [15]:

x ≺ x′ ⇔ ∀i ∈ {1, . . . , k} : fi(x) ≤ fi(x′) ∧ (3)
∃ j ∈ {1, . . . , k} : f j(x) < f j(x′).

If x ≺ x′, then x is said to dominate x′. Otherwise, x′ is said to
be nondominated with respect to x, denoted by x ⊀ x′. The im-
age of P∗ in the objective space is the so-called Pareto-optimal
front, usually also referred to as the trade-off surface.

2.2. Fitness landscapes and neutrality
The notion of a fitness landscape, first introduced by Wright

[16], has been found to be useful in understanding the most
essential characteristics of certain optimization problems, or
problem classes. By analyzing the fitness landscape, it is pos-
sible to gain further insight into problem difficulty as a means
of explaining, or even predicting, the performance of search al-
gorithms. Fitness landscape analysis is expected to provide im-
portant clues for guiding the development of more competitive
search mechanisms, which are able to deal with (or to take ad-
vantage of) the particular characteristics of the given optimiza-
tion task. Some fundamental definitions on this topic, which
are relevant according to the scope of this study, are presented
below. For a more comprehensive literature review on fitness
landscapes analysis the reader can be referred to [17–21].
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A fitness landscape can be generally defined in terms of a
triplet (X,N , ξ). The first element, X, represents the set of all
potential solutions to the problem, i.e., the search space. The
notion of connectedness among solutions in X is introduced by
the so-called neighborhood structure, N : X → 2X, a function
which maps each possible solution x ∈ X to a set of solutions
N(x) ⊆ X. Hence,N(x) is referred to as the neighborhood of x
and each x′ ∈ N(x) is called a neighbor of x. Finally, ξ denotes
the evaluation scheme, consisting of (i) a measure (or set of
measures) to serve as an indicator of the quality of the different
solution candidates; and (ii) a mechanism to impose an ordering
relation given the adopted quality measure(s). As the evaluation
scheme, in single-objective optimization a fitness function (usu-
ally directly related to the objective function of the problem) is
considered and a simple ordering sets the preference relation
among solutions.3 In the multi-objective context, however, a
number of (conflicting) criteria determine the quality of solu-
tions, so that defining an ordering relation is not as straightfor-
ward as in the single-objective case. The partial order induced
by the Pareto-dominance relation is assumed in this study.

The fitness landscape of a problem can be studied in terms of
different properties, being the neutrality property of particular
importance given the purposes of the present study. The stan-
dard definition of neutrality, in the single-objective case, refers
to the degree to which a landscape contains connected areas of
equal fitness [20]. Considering a broader notion to cover also
the multi-objective case, neutrality can be understood as the re-
sult of the incomparability that the adopted evaluation scheme
ξ induces. The term incomparability is used in this study to
indicate the situation where no preferences can be imposed be-
tween a pair of solutions, so that these solutions are consid-
ered equivalent when evaluated under ξ. Two different solu-
tions x1, x2 ∈ X are said to be neutral (incomparable), denoted
by neutral(x1, x2), if either they share the same fitness value
(single-objective case), or they are nondominated, in the Pareto
sense, with respect to each other (multi-objective case).

Having defined neutrality, a series of related basic concepts
can be introduced as follows. The neutral neighborhood of a
solution x ∈ X is given by the subset of all its neutral neigh-
bors: Nn(x) = {x′ ∈ N(x) | neutral(x, x′)}. The total number of
neutral neighbors of x, i.e., the cardinality of Nn(x), is known
as the neutrality degree of x, and the ratio of the neutrality de-
gree to the size of the neighborhood is referred to as the neu-
trality ratio. A neutral fitness landscape is characterized by
a large number of solutions presenting a high degree of neu-
trality. This leads to (potentially large) connected areas of in-
comparable solutions called plateaus, more formally referred to
as neutral networks. Consider the neutrality graph G = (X,En)
where En = {(x1, x2) ∈ X2 | x2 ∈ Nn(x1)}. Each connected com-
ponent of the graph G corresponds to a different neutral net-
work. In other words, a neutral network is a connected sub-
graph G′ = (X′,E′n) of G, X′ ⊆ X and E′n ⊆ En, where (i) there
exists a path connecting any pair of solutions x1, x2 ∈ X

′, and
(ii) there exists no edge (x1, x2) ∈ En \ E

′
n such that x1 ∈ X

′ and

3In this study, a fitness function is assumed to be always maximized (the
goal is to search for the fittest solution candidate).

x2 ∈ X \ X
′. The neutral network of a solution x will be de-

noted as NN(x). Finally, another important concept is that of a
neutral walk. A neutral walk from x1 to xk refers to a sequence
of solutions 〈x1, x2, . . . , xk〉 such that xi+1 ∈ Nn(xi), 1 ≤ i < k.
That is, a neutral walk represents a path on a neutral network.

2.3. The HP model for protein structure prediction

Proteins are fundamental elements of living organisms.
These chain-like molecules are composed from a set of 20
different building blocks called amino acids. The specific se-
quence of amino acids of a protein determines how it folds into
a unique compact conformation responsible for its biological
functioning. Among all the possible conformations that a pro-
tein can adopt, it is believed that the optimal conformation, of-
ten referred to as the native state, corresponds to the one min-
imizing the overall free-energy [22]. Thus, the protein struc-
ture prediction (PSP) problem, can be stated as the problem of
finding the functional, energy-minimizing conformation for a
protein given only its amino acid sequence.

Amino acids can be classified on the basis of their affinity
for water. Hydrophilic or polar amino acids (P) are usually
found at the outer surface of proteins. By interacting with the
aqueous environment, P amino acids contribute to the solubil-
ity of the molecule. In contrast, hydrophobic or nonpolar amino
acids (H) tend to pack on the inside of proteins, where they in-
teract with one another to form a water-insoluble core. This
phenomenon, usually referred to as hydrophobic collapse, is a
major driving force in protein folding, representing the reason-
ing and motivation behind the hydrophobic-polar (HP) model
of the PSP problem studied in this paper [1, 2].

In the HP model, proteins are abstracted as chains of
H- and P-type beads. Protein sequences, which are origi-
nally defined over a 20-letters alphabet, are now of the form
S = 〈a1, a2, . . . , a`〉, where ai ∈ {H, P} denotes the i-th amino
acid and ` is the length of the sequence. A protein confor-
mation is represented in this model as an embedding of the
protein chain on a given lattice. Both the two-dimensional
square and three-dimensional cubic lattices are considered in
this study. For a protein conformation to be considered feasi-
ble (i.e., valid), its corresponding embedding on the lattice is
required to satisfy different properties, as detailed in Section
2.3.2. With the aim of emulating the so-called hydrophobic
collapse, the goal in the HP model is to maximize the interac-
tion among H amino acids in the lattice. Such interactions are
to be referred to as H-H topological contacts. Two H amino
acids ai and a j are said to form a topological contact if they are
nonconsecutive in S but adjacent in the lattice. The objective is
thus to find a feasible protein conformation where the number
of H-H topological contacts, HHtc, is maximized. Adhering to
the notation of the field, an energy function, to be minimized,
is defined as the negative of HHtc.

Let X be the set of all potential protein conformations, i.e.,
the search space, and letXF denote the subset of all the feasible
states (XF ( X). PSP under the HP model can be formally
defined as the problem of finding x∗ ∈ XF such that E(x∗) =

min{E(x) | x ∈ XF }. The energy function E : X → R maps
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Figure 1: Optimal conformation for sequence 2d4 of length ` = 20 on the two-
dimensional square lattice. Black and white beads denote H and P amino acids,
respectively. Amino acids have been numbered from 1 to ` according to their
positions in the protein sequence S . The energy of this conformation is E = −9,
since there are 9 H-H topological contacts, HHtc = 9.

each possible conformation x ∈ X to an energy value:

E(x) =
∑
ai,a j

e(ai, a j), (4)

where

e(ai, a j) =


−1, if ai and a j are both H and

they form a topological contact;

0, otherwise.

As an example, the optimal structure for a protein sequence
of length ` = 20 on the two-dimensional square lattice is pre-
sented in Figure 1. This example corresponds to sequence 2d4,
one of the adopted test cases for the HP model (Appendix A.2).
The prediction of protein structures based on the HP model rep-
resents a hard combinatorial optimization problem which has
been proved to be NP-complete [3, 4]. An extensive literature
exists on the use of metaheuristic approaches to address this
problem, including genetic algorithms [23, 24], memetic and
hybrid algorithms [25–27], tabu search [28], ant colony opti-
mization [29, 30], immune-based algorithms [8, 31], particle
swarm optimization [32, 33], differential evolution [9, 34], es-
timation of distribution algorithms [35, 36], artificial plant op-
timization [37], and firefly-inspired algorithms [38].

2.3.1. Representation of solutions
In this study, an internal coordinates representation based

on relative moves has been considered [39]. That is, a protein
conformation is encoded as a sequence of moves specifying the
lattice position for each amino acid with regard to the preced-
ing one. On the three-dimensional cubic lattice, conformations
are thus defined as sequences in {F, L,R,U,D}`−2, to denote the
forward, left, right, up and down moves from one amino acid
to the next. Only moves {F, L,R} are considered when using
the two-dimensional square lattice. The relative moves encod-
ing implements a local reference system which rotates at each
encoding decision (other than F). An example is provided in
Figure 2. Note that no backward moves are allowed, ensuring
that the encoded conformations will always be one-step self-
avoiding. Finally, note also that only ` − 2 encoding decisions
need to be taken by fixing the position of the first amino acid
and assuming the first move to be forward (F).
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Figure 2: Internal coordinates representation based on relative moves. Encod-
ing scheme (left). Structure encoded as FLFRRLRR (rigth).

2.3.2. Problem constraints
In the HP model, a feasible protein conformation defines an

embedding of the protein chain on the lattice such that two dif-
ferent properties are satisfied: connectivity and self-avoidance.
On the one hand, connectivity requires consecutive amino acids
in the protein sequence to be placed at adjacent positions of the
lattice. On the other hand, self-avoidance implies that the con-
formation has to be free of collisions; i.e., two different amino
acids can not be assigned to the same lattice position. While
connectivity is implicitly satisfied by using an internal coordi-
nates representation, as described in Section 2.3.1, such a rep-
resentation scheme can not ensure the self-avoidance of the en-
coded conformations; refer to the example provided in Figure
3. Therefore, an explicit mechanism is required to be imple-
mented in order to address the self-avoidance constraint.

3. Related work

3.1. Constraint-handling in the HP model

In the literature, two basic directions have been taken to ad-
dress the self-avoidance constraint which relates to the feasi-
bility of protein conformations in the HP model of the PSP
problem. On the one hand, the search can concentrate on the
feasible space; that is, considering only solutions encoding self-
avoiding protein conformations. This is usually accomplished
either (i) by adapting the variation operators to iterate until
new feasible conformations are generated, i.e., infeasible con-
formations are always rejected [6, 31, 40–43]; (ii) by using
specialized operators which are closed on the feasible space,
i.e., always transforming feasible conformations into other fea-
sible conformations [7, 44, 45]; or (iii) by implementing repair-
ing procedures in order to convert from infeasible to feasible
conformations [7, 9, 36, 46]. These three constraint-handling
strategies can be referred to as the rejecting, preserving and re-
pairing strategies, respectively [47]. On the other hand, infeasi-
ble conformations can also be allowed to participate during the
search process. This is commonly achieved by implementing a
penalty strategy, where the energy value of a candidate confor-
mation suffers a decrease according to the number of collisions
(overlaps) in encoded protein structure [5, 8, 39, 48, 49].

It has been argued that the path from one compact feasi-
ble conformation to another, can be significantly shorter if the
search is allowed to proceed through the space of infeasible
conformations [5]. This has been, perhaps, the main motiva-
tion for applying penalty strategies when dealing with the HP
model. An example of this scenario was given by Krasnogor et
al. [5]. Also, the authors provided some guidelines on how to
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Figure 3: An infeasible protein conformation encoded (using the relative moves
representation) as FLFRRRFF. A collision was produced when amino acids 3
and 7 were mapped to the same lattice position.

design an appropriate penalty function for this problem. Never-
theless, no experimental results were reported to support these
recommendations. In [6], Duarte-Flores and Smith compared
between the performance of two variants of a genetic algorithm
(GA). The first GA implemented a rejecting strategy, iterating
crossover and mutation until feasible offspring were generated.
The second GA used a penalty function adhering to the guide-
lines provided by Krasnogor et al. [5]. As a result, a better per-
formance was observed from the use of the first variant of the
GA, where infeasible conformations were always discarded.

Using a GA, Cotta compared the use of a penalty function
with respect to two alternative approaches [7]. In the first,
referred to as the feasible-space approach, the crossover and
mutation operators were adapted to produce only feasible off-
spring. In the second alternative, infeasible offspring were ac-
cepted as the output of variation operators, but they were sub-
sequently processed using a repairing procedure. Both the two
alternative approaches were based on a backtracking algorithm.
As reported in [7], better results were obtained in most of the
cases using the penalty method when compared to the feasible-
space approach, but the best overall performance of the imple-
mented GA was obtained by using the repairing procedure.

Almeida et al. [8] explored the influence of allowing infea-
sible conformations on the performance of an immune-based
algorithm (IA). In a first variant of the IA, only feasible confor-
mations were permitted. In a second variant of the IA, infeasi-
ble individuals were accepted during the initialization process
and when new random individuals were required as a conse-
quence of applying the aging operator (infeasible individuals
were penalized). However, in both variants of the IA the hyper-
mutation and hypermacromutation operators were adapted to
produce only feasible conformations; infeasible mutations were
always rejected. The inclusion of infeasible solutions slightly
increased the performance of the IA in most of the cases, while
significantly reducing the computational effort.

Santos and Diéguez [9] evaluated the advantages of incorpo-
rating a repairing strategy into their differential evolution (DE)
algorithm. In an initial DE implementation, all infeasible con-
formations were simply penalized and assigned a fitness value
of 0. In a second DE variant, two different repairing operators
were implemented; the first working on the amino acid coordi-
nates (phenotype space), and the second acting on the confor-
mation encoding (genotype space). These repairing operators,
however, were not based on a backtracking strategy as those
explored by Cotta [7]; whenever the position of the colliding
amino acids could not be repaired, the infeasible conformations

were allowed to remain in the population. The reported results
indicate that the use of the repairing operators improved the
search performance of the proposed DE algorithm.

Summarizing, there is not strong evidence in the literature
(from the authors’ point of view) regarding whether it can be
better to allow or to prevent infeasible protein conformations
from being considered during the search process. Rather, from
the above discussed works, it is possible to note that very dif-
ferent and, to some extent, contradictory results have been re-
ported in this respect. One of the aims of the present study is to
contribute in providing further insight into this matter.

3.2. Single-objective to multi-objective transformations

Restating a single-objective problem in terms of two or more
objective functions, a process known as multi-objectivization
[50], represents a current and promising research direction
which has served as the basis for the development of more com-
petitive search algorithms. Multi-objectivization can be done
either through the decomposition of the original objective func-
tion of the problem [50, 51], or by means of the addition of new
supplementary objectives [52, 53]. In either case, this transfor-
mation can largely facilitate the process of solving the original
problem. A recent review on this topic was reported in [12].

In the former approach, multi-objectivization by decomposi-
tion, the original objective is split into several components, each
treated as an objective function under the new alternative prob-
lem formulation. It has been shown that the only possible effect
of decomposition is the introduction of plateaus in the fitness
landscape [51]. Originally comparable solutions may become
incomparable (nondominated in terms of the Pareto-dominance
relation) with regard to the new multi-objectivized formulation.
Such an effect can be potentially exploited as a means of escap-
ing from local optima [50, 51]. Some of the works reported in
this direction include the following: [50, 51, 54]. Also, multi-
objective approaches which have been proposed for the PSP
problem fall into this category, either those focusing on detailed
(all-atom) energy models [55–62], or those based on the HP
model as explored in the authors’ previous work [63–65].

In the latter approach to multi-objectivization, additional in-
formation is incorporated in the form of one or more supple-
mentary objectives (also often referred to as artificial or helper
objectives). As analyzed in [53], two different effects can be
achieved through this transformation. On the one hand, incom-
parability among solutions can be introduced, such as it occurs
when multi-objectivizing by decomposition. This is due to the
conflict between the original and the new defined optimization
criteria. On the other hand, this transformation may also break
existing plateaus, allowing originally incomparable solutions to
become comparable as a consequence of the new considered
information. In the literature, the addition of objective func-
tions represents the most extensively studied approach to multi-
objectivization. In [12], a distinction is made between multi-
objectivization proposals where supplementary objectives are
problem-dependent and are computed based solely on infor-
mation from the solution under consideration [52, 66–69], and
those where they act as diversity measures [70–75].
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In [12], separate treatment is given to those proposals where
additional objective functions are implemented as a strategy
to deal with constrained problems. In such methods, the
constrained single-objective problem is reformulated as an
unconstrained multi-objective problem [76–79]. A number
of successful applications of the multi-objective approach to
constraint-handling have been reported [11, 12]. This is the
type of transformation this paper studies in the context of the
HP model of the PSP problem (preliminary results were re-
ported in [13]). As discussed more in detail in Section 4,
this constraint-handling strategy exploits the effects of multi-
objectivization in such a way that infeasible solutions can be-
come incomparable with respect to feasible ones, which allows
them to be potentially considered during the search process. An
important contribution of this paper is the analysis of how this
effect changes the fitness landscape and can influence the be-
havior of search algorithms. Though other different constraint-
handling approaches for the HP model have been adopted in
order to accept infeasible solutions during the search process,
e.g., penalty strategies, an advantage of the multi-objective ap-
proach is that it usually involves fewer parameters that need to
be set [11, 12, 14]. Nevertheless, it has been shown that the lack
of a search bias represents a critical issue that can compromise
the effectiveness of this technique [14]. Therefore, part of this
work is devoted to inquire further into this important subject.

4. Handling constraints in the HP model
by multi-objective optimization

It is the authors’ belief that considering infeasible protein
conformations during optimization can boost the performance
of metaheuristics for solving PSP under the HP model (argu-
ments on this respect have also been given in the literature [5]).
Therefore, it is important to devise new constraint-handling
mechanisms, which allow these algorithms to exploit the vast
amount of infeasibility that the HP model involves, as a means
of steering the search process in a more effective manner.

The use of multi-objective optimization is here explored as
an alternative constraint-handling strategy for the HP model
of the PSP problem. The HP model is restated in multi-
objective form by incorporating an additional objective func-
tion which accounts for the problem constraints. In this way,
this originally constrained single-objective optimization prob-
lem is transformed into an unconstrained multi-objective one.
More formally, a two-objective formulation of the problem,
f(x) = [ f1(x), f2(x)]T , is defined as follows (x ∈ X):

f1(x) = E(x), (5)

f2(x) = Collisions(x), (6)

where f1(x) and f2(x) are to be minimized; E(x) is the con-
ventional energy function of the HP model, as defined in Sec-
tion 2.3; and Collisions(x) denotes the total number of colliding
amino acid pairs (ai, a j) such that both ai and a j were mapped
to the same lattice coordinates in the encoded protein structure.

Using the above described multi-objective formulation of the
HP model, all feasible solutions x ∈ XF will feature a value

of f2(x) = 0. Thus, the original characteristics of the feasi-
ble areas of the fitness landscape are preserved. That is, the
Pareto-dominance relation induces the conventional rank or-
dering among feasible solutions based on the original opti-
mization objective ( f1). Moreover, since feasible solutions
present the best possible value in f2, an infeasible solution (with
f2 > 0) will never be preferred over a feasible solution under the
multi-objective formulation. In general, the alternative multi-
objective formulation will lead to the explicit consideration of
trade-offs between the two defined criteria, f1 and f2. An infea-
sible conformation x1 may become incomparable, i.e., nondom-
inated in the Pareto sense, with respect to a feasible conforma-
tion x2. This depends upon how x1 and x2 compare to each other
with regard to the primary objective function f1. Therefore, the
multi-objective approach for handling constraints allows infea-
sible conformations to compete against feasible ones, being po-
tentially accepted and exploited during the search process.

5. Fitness landscape transformation

Whereas infeasible solutions are usually regarded and treated
as inferior, or even as inadmissible solutions during the search
process, such a distinction between feasible and infeasible so-
lutions is not captured when handling constraints by multi-
objective optimization. As discussed in Section 4, the multi-
objective strategy allows infeasible solutions to become incom-
parable, under certain conditions, with respect to feasible ones.
Such an effect of the problem transformation leads to an in-
crease in the neutrality of the fitness landscape. That is, given
a feasible solution x ∈ XF , some of the surrounding infeasi-
ble solutions may become incomparable with regard to x, thus
becoming members of its neutral neighborhood, Nn(x).

In this section, an analysis is conducted with the aim of in-
vestigating the extent to which the multi-objective constraint-
handling strategy impacts on the neutrality of the HP model’s
fitness landscapes. A fitness landscape is defined by a triplet
(X,N , ξ), as described in detail in Section 2.2.4 Two variants
of the evaluation scheme ξ have been considered: the conven-
tional single-objective (SO) formulation of the problem, and
the alternative multi-objective (MO) formulation that handles
constraints. In this way, by analyzing and comparing the land-
scapes induced by the two different evaluation schemes, it will
be possible to assess and to gain further understanding of the
effects that the studied problem transformation involves.

As stated in Section 2.3, the quality of a candidate solution
in the HP model is evaluated in terms of an energy function,
E, defined as the negative of the total number of H-H topolog-
ical contacts that the encoded protein structure presents, HHtc.
Nevertheless, the use of positive rather than negative values, as
well as the adoption of the term fitness (to be maximized) rather
than that of energy (to be minimized), is considered more ap-
propriate for the analysis here reported. Therefore, in the re-

4Both X and N were fixed during the analysis here presented. X is de-
fined by the relative moves encoding described in Section 2.3. N(x) is given
by all possible single-variable perturbations of x. Thus, |N(x)| = 2(` − 2) and
|N(x)| = 4(` − 2) in the two- and three-dimensional lattices, respectively.
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mainder of this section the fitness of a solution x, Fitness(x),
will assume the value of HHtc(x), i.e.,

Fitness(x) = HHtc(x) = −E(x). (7)

It is worthy to mention at this point that the term fitness is used
in this study to refer to the quality of (feasible) solutions under
the conventional, SO evaluation scheme of the HP model.5 In
addition, it is important to briefly introduce the concept of a
fitness class; a solution x ∈ XF will be said to belong to the
fitness class c if it presents a fitness value of Fitness(x) = c.

The analysis presented in this section requires an initial sam-
ple of solutions for each of the considered test instances. These
samples were collected following the methodology described in
Section 5.1. The fitness landscapes are investigated in this study
by evaluating different properties of neutral networks (NNs);
since it is known that neutral fitness landscapes, as those in the
HP model, can be mainly described by their NNs [80]. Section
5.2 details the implemented procedure for sampling the NNs.
Finally, the results of the performed fitness landscape analysis
are discussed in Section 5.3.

5.1. Sampling of initial solutions

The implemented sampling strategy was conceived by taking
into account the following considerations: (i) a total of M dif-
ferent feasible solutions for the given problem instance are to be
generated; (ii) the M generated solutions are to be, if possible,
evenly distributed over the different available fitness classes (all
fitness classes should be well represented in the collected sam-
ple); and finally, (iii) the diversity among solutions belonging
to the same fitness class should be maximized.

Algorithm 1 outlines the adopted sampling strategy. The pro-
cedure starts by initializing the sample set S and by identify-
ing the set of all possible fitness classes for the given prob-
lem instance, FC (lines 1 and 2 in Algorithm 1). Iteratively,
a search algorithm is executed and all solutions that this algo-
rithm reaches during the search process are kept in U (line 4).
Then, the subset Uc of solutions in U belonging to each pos-
sible fitness class c ∈ FC is identified (line 6). Finally, the so-
lution x̂ ∈ Uc that best contributes to increasing the diversity in
S, if any, is included in the sample (lines 7 to 9). This process
continues until completing the required sample.

Any metaheuristic could be implemented as the embedded
search method. An Iterated Local Search (ILS) algorithm [81],
based on the SO problem formulation, was used in this study;
refer to Appendix B.4 for details. Due to its distinctive explo-
ration behavior, the ILS method can potentially reach a different
local optimum at each iteration. Each time the ILS was invoked
during the sampling procedure, this algorithm was allowed to
run for a total of 5 × 105 solution evaluations.

The diversity contribution estimates have been partially
based on the diversification mechanism proposed by Chira [42].
Instead of measuring diversity in genotype (encoding) space,

5Although an alternative multi-objective formulation of the HP model is
implemented as a constraint handling strategy, the goal remains always to solve
the original single-objective problem.

Algorithm 1 Sampling of the initial solution sets.
Require: M
Ensure: S
1: S ← ∅
2: FC ← {Fitness(x) | x ∈ XF }
3: while |S| < M do
4: U ← search algorithm()
5: for all c ∈ FC do
6: Uc ← {x ∈ U | Fitness(x) = c}
7: x̂← arg maxx∈Uc

diversity(x,S)
8: if diversity(x̂,S) > 0 then
9: S ← S ∪ {x̂}

10: end if
11: end for
12: end while

in [42] diversity was computed from the contact fingerprint
of candidate solutions. The contact fingerprint for a solu-
tion is given by the binary vector cf, where each component
c fi ∈ {0, 1} indicates whether a particular pair of amino acids
in the encoded structure defines a topological contact or not.
Vector cf considers as many components as the total number of
amino acid pairs which can potentially form a topological con-
tact.6 The use of the contact fingerprint rather than the encoding
of solutions certainly fosters the development of more effective
diversity promotion mechanisms. This can be explained by the
fact that very different encodings may represent the same pro-
tein structure (after rotation or reflection). Note, however, that
significantly different structures may also present the same cf
vector if they share the same set of topological contacts. This
has motivated the use of a more fine-grained version of this ap-
proach, referred to in this study as the distance fingerprint.

The distance fingerprint for a given solution is defined by the
vector df, each of whose components d fi measures the distance
between the lattice coordinates of a particular pair of amino
acids. The Manhattan distance was employed for this sake. A
total of

(
`
2

)
−2`+3 components describe the distance fingerprint

vector df; i.e., only amino acid pairs (ai, a j) such that | j− i| ≥ 3
require to be considered. Finally, the diversity contribution for a
new candidate x with respect to the already collected sample S,
diversity(x,S), has been computed as the minimum Hamming
distance (Hd) between the distance fingerprint vector of x and
that of any x′ ∈ S with the same fitness value as x. Formally,

diversity(x,S) = min{ Hd(df(x),df(x′))
| x′ ∈ S ∧
Fitness(x) = Fitness(x′) }.

(8)

5.2. Sampling of neutral networks
Neutral networks (NNs) in a neutral fitness landscape can be

considerably large, so that their exhaustive exploration becomes
computationally prohibitive even for relatively small problem
instances. In the literature, NNs are usually sampled through

6In order for an amino acid pair (ai, a j) to form a topological contact, i and
j need to be of opposite parity and | j − i| ≥ 3.
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Algorithm 2 pNN() - partial computation of neutral networks.
Require: x, depthLevel, maxDepth
Ensure: NN(x)
1: NN(x)← (V,E) : V = {x}, E = ∅

2: if depthLevel < maxDepth then
3: for all x′ ∈ Nn(x) do
4: NN(x′)← pNN(x′, depthLevel + 1,maxDepth)
5: NN(x)← NN(x)

⋃
NN(x′)

6: E ← E ∪ {(x, x′)}
7: end for
8: end if

neutral walks [18, 80, 82]. In this study, however, an alternative
approach has been taken, as described below.

Given a sample set S of M different solution candidates, the
neutral network NN(x) for each x ∈ S has been partially com-
puted based on the pNN() procedure presented in Algorithm 2.
As shown in this algorithm, NN(x) is constructed recursively
in a depth-first manner by allowing this procedure to reach a
maximum defined depth level (maxDepth). The initially given
solution x is assumed to be at depth level 0 (depthLevel = 0).
At each call to the pNN() method, NN(x) is first initialized to
the graph containing no edges and including the provided so-
lution x as the only node (line 1 in Algorithm 2). If the maxi-
mum allowed depth level has not been reached (line 2), the sub-
network NN(x′) for every neutral neighbor x′ of x is obtained
from a subsequent execution of pNN() (i.e., by giving x′ as the
new starting point and by increasing the value of depthLevel,
line 4). The resulting sub-network NN(x′) is then merged with
the parent network NN(x) by means of a graph union operation,
here denoted as

⋃
(line 5).7 Finally, edge (x, x′) is included in

NN(x) in order to establish the linkage between NN(x) and the
NN(x′) sub-network. Note that this strategy requires a mech-
anism to prevent cycling (revisiting solutions and computing
their NN repeatedly and indefinitely).8 Partially computing the
NN for a given solution x is equivalent to traversing all possible
neutral walks departing from x, by restricting the length of the
walks to the maximum defined depth level (maxDepth).

5.3. Fitness landscape analysis
This section presents the results of the conducted fitness

landscape analysis. Due to the high computational costs in-
volved, and given also the space requirements for reporting re-
sults, this analysis has focused on two (relatively) small prob-
lem instances: the 2d4 and 3d1 test sequences for the two- and
three-dimensional lattices, respectively (see Appendix A.2).9

It is expected, however, that similar results can be obtained by

7Given G1 = (V1,E1) and G2 = (V2,E2), the graph union operation
G1

⋃
G2 produces G3 = (V3,E3) such thatV3 = V1 ∪V2 and E3 = E1 ∪ E2.

8In the implemented mechanism, the encoding of a given solution is treated
either as a base-3 or as a base-5 number (two- and three-dimensional cases,
respectively), which is then converted to a base-10 number and inserted into a
self-balancing binary search tree. This enables efficient searches and reduces
memory consumption compared to storing the complete solution encoding.

9Even for these relatively small test cases the search space (using the relative
moves encoding) is vast: 318 for 2d4, and 518 for 3d1.

Table 1: Sample sets generated for instances 2d4 and 3d1 (instance 2d4 involves
10 different fitness classes, and 3d1 involves 12).

Fitness class

Seq. 0 1 2 3 4 5 6 7 8 9 10 11 Total

2d4 119 119 119 119 119 118 118 119 48 2 - - 1000
3d1 84 83 83 84 83 84 83 83 83 84 83 83 1000

replicating this analysis to other instances. As indicated before,
the performed analysis relies on initial solution samples. These
samples were generated through the methodology detailed in
Section 5.1. The size of the samples was fixed to M = 1000 for
both the 2d4 and 3d1 instances. Details of the obtained sample
sets are provided in Table 1. By following the adopted sam-
pling methodology, it is (ideally) expected to generate sample
sets such that about M/|F C| different solutions represent each
possible fitness class c ∈ FC. As shown in Table 1, this was the
case of the sample set constructed for instance 3d1, where a to-
tal of 83 or 84 different solutions were produced for each of the
|F C| = 12 available fitness classes. Note, however, that because
of the funnel-like energy landscape which characterizes the HP
model [83], not all fitness classes for some of the instances can
be equally sampled. Only a reduced number of solutions with a
high fitness value (fitness classes 8 and 9) were obtained when
sampling the search space of instance 2d4. Therefore, a greater
number of representatives for the remaining fitness classes were
accepted in order to complete the M required solutions.

The neutral network (NN) of all the generated solutions
has been explored by using both, the SO and MO evaluation
schemes, as the bases for neutrality verification. In this way,
changing the problem formulation from SO to MO was re-
flected as an alteration in the properties of the sampled NNs.
The NNs were partially computed as described in Section 5.2,
and the maximum allowed depth level in this procedure was set
to maxDepth = 5 (for both the 2d4 and 3d1 instances) in or-
der to alleviate the computational burden.10 In the remainder of
this section, the NN for a given solution x will be either referred
to as NNS O(x) or NNMO(x), depending on whether it has been
computed based on the SO or MO evaluation schemes. It is im-
portant to note that under the SO evaluation scheme all infea-
sible solutions are assumed to be inferior to any feasible one,
so that NNS O(x) comprises only feasible states. In contrast,
NNMO(x) may also involve infeasible nodes; this is because us-
ing the MO formulation an infeasible solution may become part
of the neutral neighborhood, and therefore of the NN, for a fea-
sible solution, as discussed in the preamble of Section 5.

5.3.1. Average neutrality and infeasibility ratios
In this section, the average neutrality ratio (ANR) is ex-

plored as a first step in analyzing the degree to which neutrality
is affected by the studied problem transformation. The ANR
is given by the arithmetic mean of the neutrality ratios, as de-
fined previously in Section 2.2, for all the solutions in a NN

10In spite of the use of a low value of maxDepth = 5, the resulting NNs were
considerably large, as it will be analyzed in Section 5.3.2.
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Figure 4: Average neutrality (ANR) and infeasibility (AIR) ratio, 2d4.
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Figure 5: Average neutrality (ANR) and infeasibility (AIR) ratio, 3d1.

[19, 84]. This measure assumes values in the range [0, 1], where
ANR = 1 indicates the highest neutrality. The ANR measure
was computed for all the sampled NNS O and NNMO networks,
so that it will be possible to contrast the neutrality that the two
different evaluation schemes (SO and MO) produce. In addi-
tion, the average infeasibility ratio (AIR) is investigated for the
SO problem formulation. AIR is defined analogously to ANR,
but calculated from the number of infeasible (rather than neu-
tral) neighbors of solutions in the NN.11 The results for the 2d4
and 3d1 instances are presented in Figures 4 and 5, where the
mean ANR and AIR values appear organized (in the x-axis)
according to the fitness class of the solution provided as the
starting point for the NN sampling.

From the ANR and AIR values obtained through the use of
the SO formulation (“ANR SO” and “AIR SO” curves in the
plots), it is possible to highlight some general tendencies with
regard to the neutrality and infeasibility of the HP model’s fit-
ness landscapes. On the one hand, the poorer the quality of a
solution, the greater tends to be the number of neutral mutations
that the solution can produce. This is suggested by the high
ANR values scored for the lowest fitness classes, which rapidly
decreased with the increase in fitness. On the other hand, in-
feasibility becomes more abundant as superior fitness classes
are considered. Solutions at the best fitness classes are usually
surrounded by infeasible neighbors; as the obtained AIR values
indicate, between 40% and 50% of the neighborhood for solu-
tions at the best fitness classes is composed of infeasible states.

11It is worthwhile to remember that the MO evaluation scheme does not dis-
tinguish between feasible and infeasible solutions. Hence, the AIR measure
applies only to the SO formulation of the problem.
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Figure 6: Size of the sampled neutral networks (NS). 2d4 test instance.
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Figure 7: Size of the sampled neutral networks (NS). 3d1 test instance.

The above observations can be explained by the fact that fitness,
given in terms of the number of H-H topological contacts, is
directly related to the compactness of the encoded protein con-
formations. The higher the fitness value, the more compact the
protein tends to be. Hence, it is reasonable to conjecture that
most perturbations to the encoding of a compact conformation
could lead either to an infeasible solution, or to a less folded
structure which worsens the fitness. Finally, the use of the MO
formulation of the problem reports an important increase in the
ANR measure, with respect to the SO formulation, for all fit-
ness classes of the two considered test instances. By introduc-
ing incomparability between feasible and infeasible solutions, a
substantial fraction of the infeasibility has been translated into
landscape neutrality due to the problem transformation.

5.3.2. Size of the neutral networks
This section investigates how the change in the problem for-

mulation has impacted on the size (number of solutions) of the
NNs. Figures 6 and 7 report the size of each computed NNS O

and NNMO network, as well as the arithmetic mean for the dif-
ferent fitness classes. Notice that results in these figures are
presented in a logarithmic (base-10) scale. These figures ex-
pose the high neutrality that characterizes the HP model’s fit-
ness landscapes. Even though the sampling of NNs was re-
stricted in this study by defining a maximum allowed depth
level (maxDepth = 5), using the SO formulation the NNs at fit-
ness class 0 are composed of about 105 and 106 solutions for
the 2d4 and 3d1 instances, respectively. The high neutrality
which can be found at low fitness classes leads to the forma-
tion of large NNs. On the contrary, solutions at the best fit-
ness classes tend to be more isolated and enclosed by infeasible
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Figure 8: Percentage of infeasible solutions in the NNs sampled using the MO
formulation. Instance 2d4 (left) and instance 3d1 (right).

states, as it was also discussed in Section 5.3.1. The increase
in the neutrality ratios originated from the use of the MO for-
mulation, has led to a significant rise in the size of the sampled
NNs. As it can be seen from the plots, NNs computed based on
the MO formulation can be several orders of magnitude larger
than those computed based on the SO formulation. This behav-
ior becomes more evident as higher fitness classes are consid-
ered. It is important to realize that, given a solution x, NNMO(x)
will always be a supergraph containing all nodes and edges of
NNS O(x), but including also those nodes and edges which result
from the neutrality introduced by the problem transformation.
Thus, NNMO(x) will have at least the same size as NNS O(x).
It is worth mentioning that only slight variations in the size of
NNMO networks can be perceived across the different fitness
classes. Finally, it becomes relevant for this study the question
of to what extent the sampled NNMO networks are composed of
infeasible solutions. Figure 8 addresses this question. Despite
that a feasible solution was given in all the cases as the starting
point for the NNs exploration, the bulk of NNMO networks con-
sists of infeasible states. According to Figure 8, between 70%
and 80% of the nodes, in average, were found to be infeasible
when focusing on the two-dimensional instance (respectively,
between 50% and 70% for the three-dimensional case).

5.3.3. Connectivity between neutral networks
The introduction of neutrality into the fitness landscape leads

to the formation of neutral connections between NNs. A neu-
tral connection between NN1 and NN2 implies that, as a re-
sult of the problem transformation, (at least) a solution x1 from
NN1 became part of the neutral neighborhood of another so-
lution x2 which belongs to NN2. Through such a neutral con-
nection, NN1 and NN2 are merged together into a larger NN
involving all nodes and edges of the original networks (plus the
new edge(s) giving rise to the neutral connection).

In the particular context of the landscape transformation in-
duced by the studied MO constraint-handling strategy, a neutral
connection between two NNs can occur, if and only if, one of
the two networks is feasible and the other infeasible (incompa-
rability can only be introduced between a feasible and an in-
feasible state, see Section 4). Note, however, that two feasible
NNs can be merged through a succession of neutral connec-
tions. More precisely, the linkage between two feasible net-
works NN1 and NNk can be given in the form of a sequence
〈NN1,NN2, . . . ,NNk−1,NNk〉, such that each NNi is neutrally

13

2

45

67

8910

11 12

1

14

16

171819

20

3

15

x
1
= < F R F R R L R L F R R L L R L R L F R >

f
1
 = -3,   f

2
 = 0

x
2
= < F R F R R L R L F R R L R R L R L F R >

f
1
 = -7,   f

2
 = 2

13

2

45

67

8910

11 12

1

14

16

17 18

19

203

15

x
3
= < F R F R R L R L F R R L R R L R R F R >

f
1
 = -10,   f

2
 = 4

13

2

45

67

8910

11 12

1

14

16

171819

20

3

15

x
4
= < F R F R R L R L F R R L R L L R R F R >

f
1
 = -5,   f

2
 = 0

13

2

45

67

8910

11 12

1

14

16

17 18 19

20

3

15

x
5
= < F R F R R L R R F R R L R L L R R F R >

f
1
 = -10,   f

2
 = 5

13

2

45

67

8

9 10

1112

1

14

16

171819

20 15

3

13 2

3

45

67

8910

11 12

114

1516

17 18 19

20

x
6
= < F R F R R L L R F R R L R L L R R F R >

f
1
 = -9,   f

2
 = 0

Figure 9: Neutral walk, based on the MO formulation, connecting six differ-
ent solutions for instance 2d4. The encoding (based on relative moves) and
objective function values are provided for each of the six solutions.

connected to NNi+1, 1 ≤ i < k, k ≥ 3, and at least NN2 and
NNk−1 are infeasible. In general, a minimum number of m − 1
infeasible NNs need to be traversed in order to connect m feasi-
ble NNs. To support these ideas, an example is provided in Fig-
ure 9. This figure illustrates a series of neutral moves between
neighboring solutions (i.e., a neutral walk), based on the MO
formulation, from a feasible solution x1 with Fitness(x1) = 3,
to another feasible solution x6 with Fitness(x6) = 9 (the global
optimum for instance 2d4).12 In this example, the feasible
NN(x1) and NN(x6) networks have been connected by estab-
lishing intermediate neutral connections to (and between) four
other different NNs; namely, the infeasible networks NN(x2),
NN(x3) and NN(x5), and the feasible network NN(x4). The six
solutions (x1 to x6), and all solutions in their respective NNs,
become members of the same NN under the MO evaluation
scheme. Therefore, the observed increase in the size of the
sampled NNs is not exclusively due to the addition of a signif-

12It is important to remember that both the f1 and f2 objective functions are
to be minimized, and that f1(x) = E(x) = −Fitness(x).
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Figure 10: Neutral connections formed between fitness classes, 2d4.
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Figure 11: Neutral connections formed between fitness classes, 3d1.

icant number of infeasible nodes, as analyzed in Section 5.3.2,
but is also a result of the combination with other feasible NNs.
It should thus be noted that, as in the example, NNs resulting
from the use of the MO formulation may involve solutions at
different fitness classes (in the original problem formulation)
and varying degrees of infeasibility.

To elaborate further on this matter, this section analyzes how
the use of the MO formulation during the performed sampling
produced neutral connections between NNs from distinct fit-
ness classes. Figures 10 and 11 present the obtained results for
instances 2d4 and 3d1, respectively. For each fitness class c,
these figures indicate whether and how many of the NNs com-
puted for solutions at this fitness class formed neutral connec-
tions to NNs at each other possible fitness class c′. Through
these figures it is then possible to gain an insight into the di-
versity of fitness classes that a NN, computed based on the MO
formulation, may involve. It is important to clarify that only
connections to feasible NNs have been accounted for in this
analysis. Diagonals in Figures 10 and 11 are used only as a
reference (i.e., all NNs connect to themselves at their corre-
sponding fitness classes) to illustrate the single-objective case,
so that all other connections not appearing along the diagonal
are due to the landscape transformation. It can be seen from the
figures that neutral connections were created between almost
each possible pair of fitness classes. As the only exceptions, no
connections to fitness class 9 were identified when sampling the
NNs for fitness classes 1 and 2 of instance 2d4, as shown in Fig-
ure 10. More connections appear indicated below (rather than
above) the diagonals in Figures 10 and 11. Indeed, the vast
majority of the sampled NNs for the different fitness classes
formed neutral connections to NNs at all other lower fitness
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Figure 12: Neutral connections generated in relation to the depth levels reached
during the NNs computation. Fitness class 3 of instance 2d4 (left) and fitness
class 11 of instance 3d1 (right). Connections to the respective fitness classes (3
and 11) occurred at depth level 0 (starting point of the NN exploration).

classes, as it can be appreciated from the plots. This highlights
the fact that inferior fitness classes are easier to reach than the
superior ones (because of the funnel-like search landscape of
the studied problem [83]). Despite the use of a considerably
low value for parameter maxDepth during the NN sampling
procedure, namely maxDepth = 5, such a reduced number of
allowed neutral steps was still enough to establish connections
between even the most distant fitness classes. That is, Figure 10
reveals that 1 out of the 119 explored NNs at fitness class 0, the
worst fitness class, reached the optimum solution for instance
2d4 at fitness class 9. Note also that the 2 computed NNs from
fitness class 9 connected to fitness class 0. A similar behavior
can be observed with regard to instance 3d1. Figure 11 shows
that 3 out of the 84 NNs from fitness class 0 merged with NNs at
the best fitness class, i.e., 11, and that a total of 74 connections
between these fitness classes occurred in the opposite direction.
All such connections were achieved after a maximum number
of maxDepth successive neutral moves from the solution given
as the starting point for the NNs computation.

Although neutral connections were established between NNs
at distant fitness classes, as discussed above, it is possible to
see from Figures 10 and 11 that the number of neutral connec-
tions tends to decrease as the distance between fitness classes
increases (higher numbers of neutral connections are shown
close to the diagonal). Therefore, the distance in fitness re-
lates to the likelihood that two NNs can connect. This is par-
ticularly true when the number of allowed intermediate neutral
connections is bounded (as done in this study with the use of
parameter maxDepth). This point can be better illustrated in
Figure 12. Taking as examples the fitness class 3 for instance
2d4 and fitness class 11 for instance 3d1, this figure indicates
how the neutral connections to the different fitness classes arose
as each allowed depth level was reached during the NNs com-
putation.13 As shown in Figure 12, connections to feasible NNs
in a range of fitness classes occurred promptly at depth level 2,
i.e., by traversing a single infeasible state (as mentioned before,
two feasible NNs cannot be directly connected). It is possible to
note, however, that a larger number of intermediate connections
were usually required to reach the most distant fitness classes.

13Similar results to those presented in Figure 12 were obtained for the re-
maining fitness classes of the considered test instances.
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The formation of neutral connections between two feasible
networks NN1 and NN2 can be understood as the definition of
(previously nonexistent) neutral paths bridging the correspond-
ing regions of the feasible space. By allowing movement across
infeasible areas, any solution x1 from NN1 could potentially be
reached through a neutral walk departing at an arbitrary solution
x2 belonging to NN2. On the one hand, this can be particularly
relevant when dealing with problems which present multiple
disconnected feasible regions. On the other hand, even in con-
nected feasible spaces, the length of the shortest path between
two feasible solutions can be significantly greater if this path
considers only feasible intermediate folding states [5]. In the
example provided in Figure 9, the feasible solutions x1 and x6
differ exactly in d = 5 encoding positions. By exhaustive enu-
meration, it was found that all the d! = 120 possible shortest
paths (of length d) connecting x1 and x6 involve infeasible so-
lutions.14 Therefore, the shortest feasible path between this pair
of solutions is necessarily longer (of length greater than d). It is
worth mentioning that 11 out of the 120 shortest paths between
x1 and x6 represent neutral paths under the studied MO problem
formulation (one of them illustrated in Figure 9). In a related
analysis reported in [6], Duarte-Flores and Smith computed all
possible shortest paths from a set of near-optimal solutions to
the global optimum of a particular HP model’s instance on the
triangular lattice. As a result, only about 12% (on average)
of the explored paths were found to be strictly feasible. The
fact that most of the shortest paths between feasible regions tra-
verse infeasible areas emphasizes the advantages of using the
MO constraint-handling strategy. Furthermore, a path within
the boundaries of the feasible space may require the explicit
movement towards inferior fitness classes, especially when con-
necting different basins of attraction.15 The alternative fitness
landscape induced by the MO strategy may potentially define
neutral paths between distinct basins of attraction, which can
be exploited as a means of escaping from local optima.

6. Introducing a search bias

By defining trade-offs between the quality and feasibility of
solution candidates, the multi-objective (MO) approach to han-
dle constraints allows for the exploitation of useful information
from infeasible areas of the fitness landscape. Despite the po-
tential advantages of the MO strategy in terms of the landscape
transformation, as analyzed in Section 5.3, its lack of a proper
search bias may also lead to detrimental effects on the ability of
search algorithms for locating promising regions of the feasible
space. That is, if a bias towards the feasible region is not intro-
duced, a significant fraction of the computational effort can be
invested in evaluating infeasible solutions. Depending on the
particular problem characteristics, an unbiased search based on
the MO method could even fail to reach a feasible solution [14].

14More specifically, 24 out of these 120 shortest paths involve 2 infeasible
solutions, other 48 paths include 3 infeasible solutions, and all the 4 intermedi-
ate points are infeasible for the remaining 48 paths.

15The basin of attraction of a local optimum x, involves the areas of the
landscape which lead (or tend to lead) directly to x.

In this section, the importance of coupling the studied MO
constraint-handling strategy to an effective biasing mechanism
is investigated. Three different biasing methods for the MO
strategy are to be evaluated in terms of how their implementa-
tion impacts on the performance of search algorithms. A basic
single-solution-based evolutionary algorithm (EA), called the
(1+1) EA, and a basic genetic algorithm (GA), a population-
based technique, have been considered.16 Details of these al-
gorithms and the adopted parameter settings are provided in
Appendix B.1 and Appendix B.3. The used HP model’s test
instances, the performance measures and the experimental plat-
form are described in Appendix A. The results obtained during
the analysis of the three different biasing approaches are sepa-
rately presented in Sections 6.1, 6.2 and 6.3.

6.1. Archiving

In evolutionary multi-objective optimization, maintaining a
repository with the current approximation of the Pareto-optimal
set, and thus of the Pareto front, is usually assumed to be a
crucial issue [85, 86]. Hereafter, this kind of nondominated
solutions repository is to be called archive, and the way in
which this archive is constructed, updated and utilized during
the search process will be referred to as the archiving strategy.
This section analyzes the extent to which an archiving strategy
can influence the behavior of the implemented (1+1) EA when
using the MO constraint-handling technique.

Rather than functioning as a source of genetic material, i.e.,
as a population, in the archiving (1+1) EA the archive is used
only with the aim of introducing a bias in the selection pro-
cess. In order to be accepted, a new candidate individual must
represent a competitive trade-off between the two defined opti-
mization objectives. This is determined by comparing it with
respect to the whole Pareto front approximation stored in the
archive. In this way, although (strictly speaking) an explicit
bias towards the feasible region is not being applied, archiving
restricts the movement of the algorithm, allowing it to concen-
trate on promising regions, either feasible or infeasible, of the
fitness landscape. The archiving variant of the (1+1) EA is de-
scribed in detail in Appendix B.2.

Figures 13 and 14 contrast the performance of the basic and
archiving variants of the (1+1) EA, using the MO strategy, for
all two- and three-dimensional test instances. Results are re-
ported in terms of the relative root mean square error, RMSE,
computed over a total of 31 independent executions of each ex-
periment (the RMSE measure is defined in Appendix A.1). In
all the cases, the two algorithms were run for a maximum num-
ber of 106 solution evaluations. As it can be seen from the plots,
the use of the archiving strategy within the (1+1) EA has led to
a significant improvement in the RMSE for all the 30 adopted
test cases (lower RMSE is preferred). It is also possible to ob-
serve that the benefits of archiving tend to become more evident
as the problem size (length of the protein sequence) increases.

16Note that some of the studied biasing methods are only suitable, and thus
are only analyzed here, either for the (1+1) EA or for the GA.
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Figure 13: RMSE obtained by the basic and archiving variants of the (1+1) EA
when using the MO strategy. Two-dimensional instances.
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Figure 14: RMSE obtained by the basic and archiving variants of the (1+1) EA
when using the MO strategy. Three-dimensional instances.

From the above results, archiving was found to be essen-
tial for guiding the search effectively when the MO constraint-
handling strategy is implemented. In the words of Handl et al.
[51]: “this way of using an archive yields a negative efficiency
preserving strategy, i.e., it prevents degradation of solutions.
We say there is degradation if the current solution is replaced
at some later iteration by one that it dominates. Such degrada-
tion prevents convergence and can lead to endless cycling be-
tween solutions that are not mutually incomparable”. Without
archiving, therefore, the (1+1) EA based on the MO strategy
may drift through the search landscape, moving away from or
moving towards the feasible region in a bias-free manner.

Finally, it should be noted that archiving strategies can also
be used in the context of population-based methods (where
archives are usually referred to as secondary populations). The
considered GA, however, relies on an elitist selection scheme
which inherently preserves in the population the current Pareto
front approximation (or at least part of it due to the fixed popu-
lation size). Thus, the biasing effects obtained through archiv-
ing are implicitly incorporated in this algorithm.

6.2. Feasibility rules

One of the simplest, yet effective and widely used constraint-
handling methods, consists in defining a set of rules on which
the discrimination among individuals is to be based. This ap-
proach is commonly referred to as the use of feasibility rules
in the specialized literature [11, 87–90]. The popularity of this
method stems not only from its parameter-free nature, but also
from its ability to be combined with other constraint-handling

mechanisms, as reviewed in [11]. One of the most representa-
tive works on this topic was reported by Deb [91], where it was
proposed a GA implementing a binary tournament selection op-
erator which relies on the following three criteria:

1. If comparing between two feasible solutions, the one with
the best objective function value is to be preferred.

2. If comparing between two infeasible solutions, the one
with the lowest infeasibility degree is to be preferred.

3. If comparing between a feasible and an infeasible solution,
the feasible one is to be preferred.

The first criterion can be generalized to the case where two so-
lutions presenting the same degree of constraint violation are
considered. This more general case involves the comparison
between feasible individuals, as in the original rule, but covers
also the case where two infeasible individuals with the same
infeasibility degree are being compared. Such a later scenario
has not been accounted for in the originally proposed set of
rules [92]. This extended version of the first criterion is implic-
itly satisfied when handling constraints by multi-objective opti-
mization. The multi-objective (MO) approach, however, lacks
the bias towards the feasible region that the second and third
discrimination criteria represent.

This section explores how the use of simple feasibility rules
based on the MO method can help in guiding the search process
effectively in the implemented GA.17 More specifically, in the
studied approach the preference relation between two solutions
x1, x2 ∈ X will depend on the following criteria:

1. If x1 ≺ x2, then solution x1 is to be preferred.
2. If x2 ≺ x1, then solution x2 is to be preferred.
3. Otherwise, i.e., x1 ⊀ x2 and x2 ⊀ x1, the solution with the

lowest degree of constraint violation (lowest f2 value) is to
be preferred.

That is, individuals will be first compared based on the Pareto-
dominance relation. Whenever no preferences can be imposed
by using the Pareto-dominance relation, the degree of infea-
sibility of the solutions will be adopted as a secondary dis-
crimination criterion. The implementation of these rules re-
quired the adaptation of both the selection- f or-variation and
selection- f or-survival processes of the GA. On the one hand,
in selection- f or-variation the binary tournament selection op-
erator was simply equipped with the new defined set of rules.
On the other hand, the selection- f or-survival process is per-
formed by means of nondominated sorting (NDS), as in the
nondominated sorting genetic algorithm, NSGA-II [93]. As
treated more extensively in Appendix B.3, NDS works by
defining layers of nondominated individuals, which are then it-
eratively included (from the best down to the worst layer) until
completing the new GA population. If this iterative selection

17Implementing this approach within the (1+1) EA results in an overpenal-
ization scenario; once a feasible solution is reached, infeasible solutions will
never be considered. Thus, the conducted analysis focuses only on the GA.
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Figure 15: Introducing a search bias in the GA by using feasibility rules. RMSE
obtained for all the two-dimensional test instances.
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Figure 16: Introducing a search bias in the GA by using feasibility rules. RMSE
obtained for all the three-dimensional test instances.

procedure faces a nondominated layer containing more individ-
uals than the number of free slots in the population, the sec-
ondary criterion based on infeasibility degrees is applied in or-
der to choose the remaining survivors.18 Since only the last con-
sidered nondominated layer is discriminated based on such an
infeasibility-based criterion, a significant portion of the infea-
sible individuals could potentially be selected.19 This reduces
the selection pressure and, thus, can contribute in overcoming
premature convergence, a problem usually related to the use of
the feasibility rules approach for handling constraints [11].

The performance of the GA using the MO constraint-
handling strategy was evaluated with and without incorporating
the above described infeasibility-based secondary criterion. In
addition, a third variant of the GA was considered where such a
secondary discrimination criterion is based on the original ob-
jective function, and not on the infeasibility degrees. In this
way, it will be possible to analyze not only the importance of
having a search bias, but also the effects that can be achieved
if this bias favors either one or the other of the two optimiza-
tion objectives defined by the MO strategy. Figures 15 and 16
present the obtained results, in terms of the RMSE measure,
for all two- and three-dimensional test cases.20 In all the ex-
periments, a maximum number of 106 evaluations was used

18NSGA-II uses the so-called crowding distance as the secondary criterion.
19The number of selected feasible individuals will always match the number

of considered nondominated layers. This is because there can be at most one
feasible solution per nondominated set computed based on the MO strategy.

20For each of the instances, the results presented in Figures 15 and 16 cor-
respond to the lowest RMSE values obtained by evaluating a set of different
parameter configurations of the GA, refer to Section 7.2.1 for details.

as the stopping condition and 31 repetitions were performed.
The introduction of a search bias towards the feasible region
allowed the GA to score the best RMSE values in most of the
cases. Although no important differences can be appreciated
for the smallest problem instances, the advantages of introduc-
ing this bias are more clear when focusing on the hardest ones
(rightmost part of the figures). It is interesting to observe from
the plots that, rather than benefiting optimization, biasing the
search according to the original objective has impacted nega-
tively on performance. Realize that in a set of nondominated
solutions, computed based on the MO strategy, there can be
at most one feasible solution; all other solutions within the set
are infeasible and, by definition, strictly better than the feasible
member with regard to the original objective. Therefore, the
discrimination of nondominated individuals based solely on the
original objective will favor those individuals which, despite
showing a prominent behavior for this criterion, represent the
poorest trade-offs in terms of infeasibility. Consequently, the
search process can be guided away from the feasible space.

Finally, it is important to evaluate the studied MO-based set
of feasibility rules with respect to the original set of feasibility
rules reported by Deb [91] (described at the beginning of this
section). Figures 17 and 18 compare the online (throughout the
search) performance scored by the GA when using the two dif-
ferent approaches. Results are given in terms of the overall rel-
ative root mean square error, O-RMSE (see Appendix A.1) and
are presented in steps of 50, 000 solution evaluations. Accord-
ing to Figures 17 and 18, the original Deb’s feasibility rules al-
lowed the GA to achieve lower O-RMSE values during the first
stages of the search process. This is due to the high selection
pressure associated with this method. Despite enabling a faster
convergence, a high selection pressure tends to lead search al-
gorithms to converge prematurely to suboptimal solutions. As
commented before, this has been one the main criticisms with
regard to the use of this constraint-handling strategy [11]. Im-
plementing the MO-based feasibility rules within the frame-
work of the NDS procedure (selection- f or-survival stage) al-
lows infeasible solutions to effectively compete against feasible
ones for a place in the new GA’s population. This prevents the
excessive selection bias and, as observed from the plots, enables
a better convergence at the end of the optimization process.

6.3. Proportional bias
In multi-objective optimization, introducing a bias can be un-

derstood as the articulation of preferences to capture the rel-
ative importance of the different optimization criteria. Con-
sider a two-objective problem, denoted by the objective vector
f(x) = [ f1(x), f2(x)]T . If f2 was determined to be a more impor-
tant objective function than f1, it can be hypothesized that the
addition of noise to f1, a noise which is proportional and di-
rectly dependent on f2, would produce a biasing effect in order
to favor f2 during the search process. That is, the incorporation
of noise into f1 relaxes the selection pressure with regard to
this objective (the real contribution of f1 to guiding the search
is reduced). Moreover, by relating the injected noise with func-
tion f2, the selection pressure with respect to f2 is strengthened,
yielding a bias. From this reasoning, the above multi-objective
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Figure 17: Comparing the feasibility rules based on the multi-objective (MO)
strategy with regard to those originally proposed by Deb [91]. Online perfor-
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Figure 18: Comparing the feasibility rules based on the multi-objective (MO)
strategy with regard to those originally proposed by Deb [91]. Online perfor-
mance (O-RMSE) of the GA when solving the three-dimensional instances.

problem, where f2 is assumed to be the highest priority objec-
tive, can alternatively be stated in terms of the objective vector
f′(x) = [ f ′1(x), f ′2(x)]T , such that

f ′1(x) = f1(x) + ω

(
f2(x)
f max
2

)
( f max

1 − f min
1 ), (9)

f ′2(x) = f2(x), (10)

where f max
1 and f min

1 are respectively the maximum and mini-
mum known values for function f1 (since the beginning of the
search process), and f max

2 is the maximum known value for
function f2.21 In (9), factor ( f max

1 − f min
1 ) represents the max-

imum known difference between f1 values, so that by using this
value it would be possible to alter the preference relation be-

tween any pair of solutions with regard to f1. Factor
(

f2(x)
f max
2

)
allows the incorporated noise to be proportional to the scored
f2 performance; i.e., this factor tends to 1 as worse f2 values
are considered (minimization assumed). Therefore, the better
the solution in objective f2, the lower the perturbation to its f1
objective value. Finally, the bias strength ω is a user defined
parameter introduced with the aim of evaluating the impact of

21Alternatively, f max
1 , f min

1 and f max
2 could be computed from the current

population or Pareto front approximation. These values could even be fixed if
this problem-dependent information is known a priori.

further controlling the magnitude of the applied noise. Using
this strategy, two different solutions which are incomparable
(mutually nondominated) with respect the their original f ob-
jective vectors, could be discriminated (in favor of the best f2
performance) if compared with respect to their alternative ob-
jective vectors f′. This strategy can thus be implemented within
a search algorithm in order to set a search bias.

This section tests the ability of the above described strat-
egy to provide the multi-objective (MO) constraint-handling
approach with an effective bias. The objective function f2 in
the MO problem formulation, which accounts for the degree
of constraint violation, is to be defined as the most important
criterion in order to bias the search towards the feasible re-
gion. It should be emphasized that, under the MO formulation,
the use of the proportional biasing mechanism affects only in-
feasible individuals; i.e., f2(x) = 0 for all feasible individuals
x ∈ XF , so that no noise is added to their f1 values. The analy-
sis here presented focuses on the two implemented algorithms:
the (1+1) EA and the GA. In these algorithms, the alternative
objective vectors f′ of all individuals are to be computed at each
iteration to serve as the basis for driving selection. A set of val-
ues in the range [0, 2] have been explored for the bias strength
parameterω, whereω = 0 indicates that no bias is to be applied.
In all the cases, the algorithms were run for a total of 106 so-
lution evaluations, 31 independent executions were performed,
and results are evaluated in terms of the O-RMSE measure.

The results for the (1+1) EA are shown in Figures 19 and 20.
In addition to the basic (1+1) EA, the evaluation of the propor-
tional biasing mechanism covers also the archiving variant of
the (1+1) EA, as described and analyzed in Section 6.1. Hence,
the archiving (1+1) EA studied in this section integrates two
different biasing methods (i.e., archiving and the proportional
bias). Figures 19 and 20 confirm the need for an effective bias-
ing strategy when the handling of constraints is approached by
multi-objective optimization. Without a bias (ω = 0), the basic
(1+1) EA scored considerably high O-RMSE values for both
the two- and the three-dimensional test instances. Note, how-
ever, that the performance of this algorithm was gradually im-
proved with the increasing value of ω. The best performance
for the basic (1+1) EA was reached at ω = 1.6 for the two-
dimensional instances, and ω = 1.7 for three-dimensional case,
where the O-RMSE measure was decreased by more than 23%
in both cases with respect to the corresponding results at ω = 0.
Due to the implicit bias that the archiving (1+1) EA involves,
the rewards of implementing the proportional biasing strategy
were not as remarkable as those for the basic version of this al-
gorithm. Nevertheless, most of the explored ω values allowed
the archiving (1+1) EA to achieve slight but still appreciable de-
creases in the O-RMSE measure. While the basic (1+1) EA per-
formed the best for high ω values (ω > 1.5), a less strength of
the proportional bias was required when using the self-biasing
archiving (1+1) EA (whose performance deteriorated for the
highest ω values). The archiving (1+1) EA showed its best
performance when using a value of ω = 1.3 (two-dimensional
case), and ω = 0.9 (three-dimensional case).
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Figure 19: Introducing a proportional bias in the MO strategy. O-RMSE ob-
tained by the basic and archiving (1+1) EA for the two-dimensional instances.
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Figure 20: Introducing a proportional bias in the MO strategy. O-RMSE ob-
tained by the basic and archiving (1+1) EA for the three-dimensional instances.

Finally, Figures 21 and 22 present the obtained results with
regard to the implemented GA.22 As it can be seen from the
plots, the incorporation of the proportional biasing mechanism
(by usingω > 0) has led to a noticeable enhancement in the per-
formance of the GA. The behavior of the GA exhibits a clear
tendency to improve with the increase in the bias strength pa-
rameter ω. It is interesting to note, however, that once the best
O-RMSE values were reached at ω = 1.6 and ω = 1.5 (for the
two- and three-dimensional cases, respectively), this tendency
changes and the GA’s performance begins to decline for higher
ω values. From this, and given that the above analyzed (1+1)
EA suffered a performance decrease when using the highest ω
values as well, it is possible to say that the excessive bias could
also be detrimental to the search efficiency. In this particular
context, the increase in ω tends to produce overpenalization.
Therefore, defining the proper amount of search bias could be a
non-trivial, problem-dependent and algorithm-dependent task.

7. Impact on search performance

This section investigates the suitability of the multi-objective
optimization (MO) strategy for handling constraints in the HP
model. To this end, the MO strategy is evaluated and compared
with respect to two different constraint-handling approaches

22For eachω value, the O-RMSE in Figures 21 and 22 corresponds to the best
performance obtained by evaluating a set of different parameter configurations
for the GA; details provided in Section 7.2.1.

9

10

11

12

13

14

O
−

R
M

S
E

 (
%

)

0
.0

 

0
.1

 

0
.2

 

0
.3

 

0
.4

 

0
.5

 

0
.6

 

0
.7

 

0
.8

 

0
.9

 

1
.0

 

1
.1

 

1
.2

 

1
.3

 

1
.4

 

1
.5

 

1
.6

 

1
.7

 

1
.8

 

1
.9

 

2
.0

 

 2D 

bias strength (ω)

Figure 21: Introducing a proportional bias in the MO constraint-handling strat-
egy. O-RMSE obtained by the GA for the two-dimensional test instances.
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Figure 22: Introducing a proportional bias in the MO constraint-handling strat-
egy. O-RMSE obtained by the GA for the three-dimensional test instances.

usually adopted in the specialized literature, namely, the rejec-
tion of infeasible protein conformations and the application of
penalties. These approaches are to be referred to as the reject
(RJ) and penalty function (PF) strategies and are described in
detail in Appendix C. As discussed in Section 6, introduc-
ing a proper search bias is crucial for the success of the MO
strategy. This issue is further addressed in this section by eval-
uating the different biasing mechanisms studied in Section 6
with respect to each other. The comparative analysis presented
in this section focuses on the impact that the various stud-
ied constraint-handling methods have on the performance of
search algorithms. Two different evolutionary algorithms (EAs)
have been considered, a basic single-solution-based EA and a
population-based EA. The corresponding analyses are covered
in Sections 7.1 and 7.2.

7.1. Analysis for a single-solution-based algorithm

A basic single-solution-based evolutionary algorithm (EA),
the so-called (1+1) EA, has been implemented in order to as-
sess the impact of using the studied constraint-handling meth-
ods. Five different approaches are considered, the reject (RJ)
and penalty function (PF) strategies taken as the baseline, and
three variants of the multi-objective (MO) technique originated
from the use of the biasing mechanisms analyzed in Section 6:
(i) MO+AR, where archiving is used to bias the search process;
(ii) MO+PB, where a proportional bias is introduced; and (iii)
MO+AR+PB, which combines both the archiving and the pro-
portional biasing mechanisms. In the (1+1) EA, the discrimi-
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Figure 23: O-RMSE scored by the (1+1) EA as the search process progressed.
Two-dimensional test instances.
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Figure 24: O-RMSE scored by the (1+1) EA as the search process progressed.
Three-dimensional test instances.

nation among candidate individuals is adapted according to the
constraint-handling method to be used. In this way, the search
behavior, and thus the performance of this algorithm, will be
determined by each of the different studied techniques.

The proportional biasing mechanism, which leads to the
MO+PB and MO+AR+PB strategies, requires the adjustment
of the bias strength parameter, ω. Similarly, the PF method
requires the fine-tuning of the penalty weight, ρ. The analy-
sis here conducted considers the best performing settings for
these parameters, as they were respectively derived in Section
6.3 and Appendix C.2. All implementation details and set-
tings for the (1+1) EA are provided in Appendix B.1. Also,
the archiving variant of the (1+1) EA, on which the MO+AR
and MO+AR+PB approaches rely, is described in Appendix
B.2. Details on the test instances, the performance measures,
the methodology for the statistical significance analysis, and the
utilized experimental platform, are included in Appendix A.

Figures 23 and 24 show the online performance achieved by
the (1+1) EA when using the studied constraint-handling ap-
proaches. Performance is expressed in terms of the overall rela-
tive root mean square error, O-RMSE, computed from 100 inde-
pendent executions of each experiment.23 Results are reported
in steps of 50, 000 solution evaluations until completing the

23Notice that, while previous analyses considering different parameter set-
tings for the compared approaches were based on 31 repetitions of the exper-
iments, detailed analyses using the best performing settings are based on 100
repetitions in order to compare more representative performance samples.

maximum number of 106 evaluations defined as the stopping
condition. From these figures, it is possible to see that the low-
est O-RMSE values, in both the two- and the three-dimensional
test cases, were reached by using MO+AR+PB. Therefore,
the use of archiving together with the introduction of a propor-
tional bias constitutes a more effective biasing strategy when
compared to the separate use of these mechanisms. MO+PB
presented a more accelerated convergence than MO+AR at the
first stages of the search. This can be explained by the fact that,
given that MO+AR does not explicitly bias the search towards
the feasible region (as discussed in Section 6.1), this method
invests more effort in exploring infeasible states. It is worth
noting, however, that such an investment has paid off; the slope
in the corresponding curve is more pronounced, indicating that
MO+AR exhibits a greater tendency to improve. This allowed
MO+AR to score the second best O-RMSE values at the end of
the search process. Finally, PF provided a more competitive be-
havior for the (1+1) EA when compared to the use of RJ, which
obtained the poorest overall performance.

To further compare the studied constraint-handling ap-
proaches, Tables 2 and 3 detail the results for all two- and
three-dimensional test instances at the end of the search pro-
cess (after 106 solution evaluations). The results for each of
the instances are given in terms of the best obtained energy
value (Eb), the number of performed executions where this so-
lution quality was reached (ν), and the arithmetic mean (Ē).
In addition, the O-RMSE measure is provided at the bottom
of the tables. The lowest average energy for each of the in-
stances, as well as the best O-RMSE values, appears shaded .
As it can be seen from the tables, the use of the three multi-
objective strategies improved the average performance of the
algorithm, in the vast majority of the cases, with respect to the
RJ and PF methods. An interesting behavior can be observed
with regard to the MO+AR and MO+PB approaches. While
MO+AR tends to perform better than MO+PB for the shortest
test sequences, MO+PB scored more competitive results for the
largest ones. This suggests that, by not explicitly introducing a
search bias, MO+AR yields a broader exploration. Neverthe-
less, an explicit and more effective bias seems to be required if
the hardness of the problem instances increases. Note, however,
that MO+AR was found when analyzing Figures 23 and 24 to
present a greater tendency to improve as the search process pro-
gresses. The MO+AR strategy could thus be expected to meet
or even exceed the results of MO+PB for the largest test cases
if the algorithm is allowed to run for a higher number of solu-
tion evaluations. The best overall performance was exposed by
the MO+AR+PB method. By combining the advantages of the
two different biasing mechanisms, MO+AR+PB decreased the
O-RMSE measure by 15.43% and 4.28% with respect to RJ and
PF in the two-dimensional instances, respectively, and by 7.4%
and 3.64% in the three-dimensional case.

Finally, Table 4 complements the information provided in
Tables 2 and 3 in order to highlight whether the performance
differences between the studied approaches were statistically
significant or not. Each row in this table compares two strate-
gies, say A and B, which is denoted as “A / B”. If a signifi-
cant performance difference exists between A and B for a par-
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Table 2: Results obtained by the (1+1) EA when using the studied constraint-handling strategies. Two-dimensional test cases.

RJ PF MO+AR MO+PB MO+AR+PB

Seq. ` E∗ Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē

2d1 18 -4 -4 (6) -2.62 -4 (54) -3.54 -4 (100) -4.00 -4 (86) -3.86 -4 (100) -4.00
2d2 18 -8 -7 (65) -6.62 -8 (54) -7.54 -8 (84) -7.84 -8 (83) -7.83 -8 (86) -7.86
2d3 18 -9 -8 (50) -7.46 -9 (43) -8.42 -9 (70) -8.70 -9 (18) -8.18 -9 (86) -8.86
2d4 20 -9 -8 (16) -6.67 -9 (64) -8.60 -9 (98) -8.97 -9 (33) -8.29 -9 (95) -8.95
2d5 20 -10 -8 (32) -7.24 -10 (39) -8.99 -10 (86) -9.86 -10 (44) -9.10 -10 (58) -9.55
2d6 24 -9 -9 (1) -7.03 -9 (46) -8.45 -9 (83) -8.83 -9 (33) -8.30 -9 (69) -8.69
2d7 25 -8 -8 (1) -5.68 -8 (15) -7.01 -8 (43) -7.41 -8 (24) -7.19 -8 (50) -7.49
2d8 36 -14 -12 (7) -9.82 -13 (10) -11.28 -14 (1) -11.36 -13 (8) -11.34 -14 (2) -11.58
2d9 48 -23 -19 (2) -14.88 -20 (2) -16.79 -23 (1) -17.69 -20 (2) -17.41 -21 (2) -17.83
2d10 50 -21 -19 (1) -14.78 -21 (1) -16.49 -20 (6) -17.04 -21 (1) -17.46 -21 (2) -17.77
2d11 60 -36 -32 (1) -26.12 -32 (3) -28.20 -34 (1) -27.81 -32 (2) -28.75 -33 (2) -28.81
2d12 64 -42 -31 (1) -24.00 -31 (7) -26.04 -33 (1) -26.25 -32 (3) -28.13 -33 (2) -26.68
2d13 85 -53 -41 (1) -34.50 -44 (1) -37.75 -45 (1) -35.54 -45 (1) -39.03 -46 (1) -38.78
2d14 100 -48 -38 (1) -29.69 -41 (2) -34.55 -41 (1) -32.90 -40 (1) -34.74 -42 (1) -34.78
2d15 100 -50 -40 (1) -31.30 -40 (1) -34.70 -40 (1) -32.60 -41 (2) -35.73 -42 (3) -36.23

O-RMSE 31.08% 19.93% 17.43% 17.95% 15.65%

Table 3: Results obtained by the (1+1) EA when using the studied constraint-handling strategies. Three-dimensional test cases.

RJ PF MO+AR MO+PB MO+AR+PB

Seq. ` E∗ Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē

3d1 20 -11 -11 (58) -10.43 -11 (93) -10.92 -11 (100) -11.00 -11 (95) -10.95 -11 (99) -10.99
3d2 24 -13 -13 (13) -11.07 -13 (54) -12.37 -13 (94) -12.94 -13 (43) -12.16 -13 (77) -12.74
3d3 25 -9 -9 (58) -8.42 -9 (97) -8.97 -9 (100) -9.00 -9 (98) -8.98 -9 (100) -9.00
3d4 36 -18 -18 (14) -15.24 -18 (25) -16.08 -18 (46) -16.97 -18 (23) -16.37 -18 (57) -17.27
3d5 46 -35 -28 (2) -24.06 -30 (3) -25.33 -32 (1) -27.30 -30 (1) -25.80 -31 (2) -26.89
3d6 48 -31 -28 (2) -22.70 -29 (1) -24.00 -30 (1) -26.04 -30 (1) -24.71 -29 (7) -25.49
3d7 50 -34 -27 (1) -21.15 -27 (3) -22.19 -30 (1) -24.68 -28 (2) -23.17 -28 (2) -23.87
3d8 58 -44 -33 (3) -26.74 -34 (3) -28.75 -37 (1) -29.76 -34 (7) -29.97 -37 (1) -30.50
3d9 60 -55 -46 (2) -38.30 -47 (3) -40.67 -48 (2) -40.00 -48 (1) -41.13 -49 (2) -42.01
3d10 64 -59 -45 (2) -34.88 -47 (1) -36.44 -48 (1) -38.86 -50 (1) -39.01 -50 (1) -38.78
3d11 67 -56 -38 (3) -30.62 -41 (1) -32.22 -40 (2) -33.30 -41 (1) -33.60 -42 (1) -33.97
3d12 88 -72 -46 (1) -36.44 -49 (1) -37.15 -47 (5) -38.96 -48 (1) -40.15 -51 (1) -40.14
3d13 103 -58 -39 (1) -29.25 -38 (2) -29.67 -39 (1) -29.70 -39 (1) -33.10 -40 (1) -31.01
3d14 124 -75 -45 (2) -33.32 -46 (2) -34.11 -46 (1) -34.29 -52 (1) -39.28 -50 (1) -36.26
3d15 136 -83 -51 (1) -37.66 -51 (1) -37.94 -50 (1) -38.11 -51 (1) -43.41 -51 (2) -40.42

O-RMSE 34.76% 31.00% 27.94% 28.05% 27.36%

Table 4: Statistical analysis for comparing the performance of the (1+1) EA when using the analyzed constraint-handling approaches.

Two-dimensional instances Three-dimensional instances

2d
1

2d
2

2d
3

2d
4

2d
5

2d
6

2d
7

2d
8

2d
9

2d
10

2d
11

2d
12

2d
13

2d
14

2d
15

3d
1

3d
2

3d
3

3d
4

3d
5

3d
6

3d
7

3d
8

3d
9

3d
10

3d
11

3d
12

3d
13

3d
14

3d
15

Overall

PF / RJ + + + + + + + + + + + + + + + + + + + + + + + + + + 26+ 0−
MO+AR / RJ + + + + + + + + + + + + + + + + + + + + + + + + + + + 27+ 0−
MO+PB / RJ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 30+ 0−
MO+AR+PB / RJ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 30+ 0−
MO+AR / PF + + + + + + + + + − − − + + + + + + + + + + 19+ 3−
MO+PB / PF + + − − − + + + + + + + + + + + + + + + 17+ 3−
MO+AR+PB / PF + + + + + + + + + + + + + + + + + + + + + + + + + + 26+ 0−
MO+PB /MO+AR − − − − − − + + + + + − − − − − − + + + + 9+ 12−
MO+AR+PB /MO+AR + − − + + + + + − + − − + + + + 11+ 5−
MO+AR+PB /MO+PB + + + + + + + − + + + + + − − − 12+ 4−
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ticular instance, the corresponding cell is either marked + or
marked − depending on whether such a difference was in favor
of, or against A. Unmarked cells indicate that there was not a
statistically important difference between A and B. The right-
most column of the table summarizes the results of this anal-
ysis. As shown in Table 4, PF and MO+AR significantly out-
performed RJ in 26 and 27 of the instances. Both MO+PB and
MO+AR+PB achieved a statistically significant performance
increase with regard to RJ for all the 30 adopted test sequences.
The MO+AR, MO+PB and MO+AR+PB strategies scored sig-
nificantly better results than PF in 19, 17 and 26 instances,
respectively. Nevertheless, MO+AR and MO+PB were each
significantly surpassed by PF in 3 of the two-dimensional test
cases. By comparing among the multi-objective strategies, it is
first possible to confirm that MO+PB was statistically superior
to MO+AR in 9 of the largest (hardest) test cases, while signifi-
cantly inferior to MO+AR for 12 of the smallest (easiest) ones.
Finally, the table indicates that MO+AR+PB significantly im-
proved the performance of the algorithm for 11 and 12 of the
instances with respect to MO+AR and MO+PB, but there were
still important differences favoring MO+AR and MO+PB re-
spectively in 5 and 4 of the cases.

7.2. Analysis for a population-based algorithm

As the population-based method, the genetic algorithm (GA)
described in detail in Appendix B.3 has been considered. The
implementation of the different constraint-handling strategies
influences the selection process, which is a major determinant
of the GA’s behavior. Hence, by evaluating the performance of
the GA, it will be possible to inquire into the advantages of us-
ing the studied constraint-handling approaches. Four different
strategies are to be analyzed: the reject (RJ) and penalty func-
tion (PF) methods adopted as reference, and the multi-objective
approaches introducing a search bias by means of feasibility
rules (MO+FR) and proportional biasing (MO+PB).

The four studied constraint-handling strategies are first eval-
uated in Section 7.2.1 under different parameter settings for the
GA. The purpose of such an initial evaluation is to identify the
most appropriate GA conditions for each of the approaches, to
be adopted during the more detailed comparative analysis pre-
sented later in Section 7.2.2. The reader is referred to Appendix
A for details on the considered test cases, performance mea-
sures, the methodology followed during the statistical signifi-
cance analysis, and the experimental platform.

7.2.1. Settings for the genetic algorithm
In this section, the RJ, PF, MO+FR and MO+PB strategies

are evaluated under different conditions of the implemented
GA. Three recombination and mutation probabilities were con-
sidered: pc ∈ {0.8, 0.9, 1.0}, pm ∈ {

1
`−2 ,

2
`−2 ,

3
`−2 }. Thus, a total

of 9 configurations of the GA are investigated. The popula-
tion size was fixed to N = 100 in all the cases. The GA was
allowed to run for a maximum number of 106 solution evalua-
tions and a total of 31 repetitions for each experiment were per-
formed. Figures 25 and 26 plot the O-RMSE measure scored
by the four studied constraint-handling approaches when using
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Figure 25: Evaluating different GA settings. Two-dimensional case.
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Figure 26: Evaluating different GA settings. Three-dimensional case.

the different GA settings. The PF and MO+PB strategies re-
quire the tuning of the penalty weight (ρ) and the bias strength
(ω) parameters, respectively. For each evaluated configuration
of the GA, the results of PF and MO+PB reported in Figures
25 and 26 correspond to the best O-RMSE obtained by consid-
ering a diverse set of values for the respective parameters (see
Section 6.3 and Appendix C.2 for details). It is evident from
Figures 25 and 26 that both MO+FR and MO+PB achieved
lower O-RMSE values in all cases when compared with respect
to RJ and PF. The MO+PB strategy tends to perform better than
MO+FR for most GA settings, particularly when focusing on
the two-dimensional instances. Finally, the plots indicate that
the use of PF yields better results in comparison to the use of RJ
in most cases. In general, no clear tendency in the GA’s perfor-
mance can be distinguished with respect to the variation in the
recombination probability. It is possible to observe, however,
that regardless of the constraint-handling strategy used the GA
responded positively to the increased mutation rate.

For further analyses presented in Section 7.2.2, the settings
for the GA which allowed each of the compared approaches
to reach the lowest O-RMSE value have been selected. The
selected recombination probabilities are as follows: (i) two-
dimensional instances, pc = 0.8 for RJ, MO+FR and MO+PB,
and pc = 1.0 for PF; (ii) three-dimensional instances, pc = 0.8
for RJ and PF, and pc = 1.0 for MO+FR and MO+PB. The
mutation probability was set to pm = 3

`−2 in all the cases.

7.2.2. Comparative analysis
A detailed comparative analysis among the RJ, PF, MO+FR

and MO+PB strategies is presented in this section. In the re-
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Figure 27: O-RMSE scored by the GA as the search process progressed. Two-
dimensional test instances.
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Figure 28: O-RMSE scored by the GA as the search process progressed. Three-
dimensional test instances.

ported experiments, the best performing parameter settings for
PF and MO+PB are considered (refer to Section 6.3 and Ap-
pendix C.2 for details). Likewise, the best performing GA
conditions for each of the approaches are used (Section 7.2.1).

Figures 27 and 28 show the online convergence (measured
in terms of the O-RMSE) presented by the GA when using the
different constraint-handling approaches. The progress in the
search is reported in slots of 50, 000 solution evaluations un-
til reaching a maximum allowed number of 106 evaluations.
These figures are quite revealing in several respects. First, it
is possible to note from the plots that the best results at the
end of the search process were obtained by using the multi-
objective strategies (MO+FR and MO+PB), in both the two-
and the three-dimensional test cases. The RJ method, which
exhibited the worst performance at the end, scored the best O-
RMSE values at the beginning of the search. Thus, the use of
RJ enabled a faster convergence towards moderate-quality in-
dividuals. Given that PF, MO+FR and MO+PB invest an ad-
ditional amount of effort in evaluating infeasible protein con-
formations, these strategies require more time to locate promis-
ing regions of the solutions space. By allowing the algorithm
to move through infeasible states, however, these methods are
more likely to reach better results at the end of the optimiza-
tion process; as it can be perceived from the slope in the cor-
responding convergence curves. Finally, although MO+FR and
MO+PB competed with the best O-RMSE values at the end,
it is important to observe that MO+FR showed a significantly
inferior performance at the first stages of the search (indeed

the poorest performance among the four compared techniques).
This is because the bias introduced in MO+FR is not as restric-
tive as that involved in MO+PB and PF, so that MO+FR dedi-
cates more resources to the exploration of infeasible regions.

Tables 5 and 6 detail the above presented results of the GA
after 106 solution evaluations. The information in these tables
is organized in the same manner as in Tables 2 and 3 described
in Section 7.1. As shown in Tables 5 and 6, both the MO+FR
and MO+PB strategies reached a better average energy for most
of the instances, thereby lowering the O-RMSE, in comparison
to RJ and PF. While MO+PB scored the best O-RSME value
for the two-dimensional instances, MO+FR obtained the low-
est value for this measure in the three-dimensional case. Even
though no important conclusions can be drawn regarding the
superiority of the multi-objective methods with respect to each
other, it is possible to see from the tables that MO+FR achieved
a better Ē value in most cases. Finally, despite the poor overall
performance of RJ, this strategy outperformed the other three
approaches at solving one two-dimensional instance (2d12) and
a two of the three-dimensional test cases (3d2 and 3d7).

Table 7 outlines the results of the statistical significance anal-
ysis. The interpretation of this table is the same as for Table
4 described at the end of Section 7.1. As it can be observed
from Table 7, no significant performance differences between
the four compared approaches were found when dealing with
the smallest test instances; the four studied constraint-handling
methods scored similarly competitive results. PF was signifi-
cantly superior to RJ in 5 of the instances, but significantly in-
ferior at solving the 2d12 instance. Both MO+FR and MO+PB
significantly increased the performance of the GA in 15 of the
test cases with respect to RJ. In addition, these multi-objective
strategies statistically outperformed the PF approach in 13 and
10 instances. Nonetheless, MO+FR presented a significantly
lower performance in 3 and 2 of the test cases in comparison to
RJ and PF, respectively. Finally, there was a statistically signif-
icant difference between the multi-objective strategies for 8 of
the instances; in 3 of these cases such a significant difference fa-
vors MO+PB, while it favors MO+FR in the 5 remaining cases.

8. Conclusions

The multi-objective (MO) approach to constraint-handling
has been investigated in the context of the HP model for pro-
tein structure prediction (PSP). The HP model was reformu-
lated as an unconstrained multi-objective problem by treating
constraints as an additional objective function. Rather than dis-
criminating feasible from infeasible solutions, the MO strategy
defines trade-offs between quality (original objective) and fea-
sibility. This gives infeasible solutions the opportunity to be
considered and exploited during optimization.

In the first part of this study, a thorough fitness landscape
analysis was conducted in order to evaluate the effects that the
(single-objective to multi-objective) problem transformation in-
volves. As a result, it was found that a significant portion of the
infeasibility translates into landscape neutrality. Under the MO
problem formulation, it is possible for an infeasible solution to
become part of the neutral neighborhood of a feasible solution.
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Table 5: Results obtained by the GA when using the studied constraint-handling strategies. Two-dimensional test cases.

RJ PF MO+FR MO+PB

Seq. ` E∗ Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē

2d1 18 -4 -4 (98) -3.98 -4 (100) -4.00 -4 (100) -4.00 -4 (100) -4.00
2d2 18 -8 -8 (100) -8.00 -8 (100) -8.00 -8 (100) -8.00 -8 (100) -8.00
2d3 18 -9 -9 (100) -9.00 -9 (100) -9.00 -9 (99) -8.99 -9 (100) -9.00
2d4 20 -9 -9 (99) -8.99 -9 (100) -9.00 -9 (100) -9.00 -9 (100) -9.00
2d5 20 -10 -10 (97) -9.94 -10 (100) -10.00 -10 (100) -10.00 -10 (100) -10.00
2d6 24 -9 -9 (93) -8.93 -9 (86) -8.86 -9 (94) -8.94 -9 (96) -8.96
2d7 25 -8 -8 (57) -7.57 -8 (82) -7.82 -8 (95) -7.95 -8 (90) -7.90
2d8 36 -14 -14 (2) -11.76 -14 (2) -12.11 -14 (4) -11.95 -14 (3) -12.27
2d9 48 -23 -22 (2) -18.90 -22 (2) -18.96 -22 (7) -19.67 -22 (6) -19.58
2d10 50 -21 -21 (15) -19.19 -21 (15) -19.17 -21 (33) -20.14 -21 (31) -19.77
2d11 60 -36 -33 (3) -30.10 -34 (2) -30.78 -35 (1) -31.37 -34 (2) -30.90
2d12 64 -42 -39 (1) -33.34 -38 (1) -32.47 -37 (1) -31.49 -38 (2) -32.82
2d13 85 -53 -48 (2) -42.96 -47 (3) -43.04 -49 (2) -43.20 -48 (1) -43.59
2d14 100 -48 -40 (2) -35.70 -41 (2) -36.46 -43 (1) -37.12 -43 (1) -37.02
2d15 100 -50 -43 (2) -37.61 -44 (1) -38.09 -44 (2) -39.47 -43 (1) -38.91

O-RMSE 11.61% 10.62% 9.75% 9.62%

Table 6: Results obtained by the GA when using the studied constraint-handling strategies. Three-dimensional test cases.

RJ PF MO+FR MO+PB

Seq. ` E∗ Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē Eb (ν) Ē

3d1 20 -11 -11 (100) -11.00 -11 (100) -11.00 -11 (100) -11.00 -11 (100) -11.00
3d2 24 -13 -13 (100) -13.00 -13 (98) -12.98 -13 (98) -12.96 -13 (97) -12.96
3d3 25 -9 -9 (98) -8.98 -9 (99) -8.99 -9 (100) -9.00 -9 (100) -9.00
3d4 36 -18 -18 (32) -16.54 -18 (31) -16.57 -18 (35) -16.84 -18 (40) -16.79
3d5 46 -35 -32 (1) -27.78 -34 (1) -28.45 -32 (4) -28.92 -32 (1) -28.34
3d6 48 -31 -30 (1) -26.94 -31 (1) -27.18 -31 (1) -27.39 -30 (4) -27.45
3d7 50 -34 -31 (2) -27.91 -31 (1) -27.75 -32 (1) -27.40 -31 (1) -27.78
3d8 58 -44 -38 (2) -33.30 -38 (1) -33.07 -41 (1) -34.52 -38 (2) -33.72
3d9 60 -55 -49 (2) -43.61 -49 (1) -44.02 -50 (1) -44.45 -49 (1) -44.60
3d10 64 -59 -53 (1) -47.02 -53 (1) -47.15 -51 (2) -45.63 -52 (3) -47.54
3d11 67 -56 -42 (2) -37.71 -44 (1) -37.78 -44 (3) -38.68 -44 (1) -38.28
3d12 88 -72 -52 (4) -44.75 -50 (5) -44.97 -54 (1) -47.30 -53 (1) -46.36
3d13 103 -58 -40 (1) -34.36 -43 (1) -33.76 -40 (5) -35.35 -41 (1) -35.16
3d14 124 -75 -53 (1) -41.34 -50 (2) -41.38 -51 (1) -43.56 -53 (1) -43.08
3d15 136 -83 -53 (1) -44.44 -54 (2) -44.69 -55 (1) -46.94 -55 (2) -46.28

O-RMSE 22.42% 22.24% 21.08% 21.27%

Table 7: Statistical analysis for comparing the performance of the GA when using the different constraint-handling approaches analyzed.

Two-dimensional instances Three-dimensional instances
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Overall

PF / RJ + + + − + + 5+ 1−
MO+FR / RJ + + + + − + + + + − + + − + + + + + 15+ 3−
MO+PB / RJ + + + + + + + + + + + + + + + 15+ 0−
MO+FR / PF + + + + − + + + + − + + + + + 13+ 2−
MO+PB / PF + + + + + + + + + + 10+ 0−
MO+PB /MO+FR + − − + − − + − 3+ 5−
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This has prompted an important increase in the neutrality de-
gree of solutions and, consequently, in the size of the neutral
networks (NNs). Such a landscape transformation has led to
the establishment of neutral connections between feasible and
infeasible NNs. Through a series of neutral connections, how-
ever, it is possible to bridge different regions of the feasible
space, potentially belonging to diverse fitness classes (this can
be especially useful when dealing with disjoint feasible spaces).
By being allowed to traverse (originally inaccessible) infeasible
areas, a search algorithm can thus exploit these neutral connec-
tions in the form of new neutral paths to navigate the landscape.
The new defined neutral paths can not only be shorter than the
existing feasible paths, but can also play a central role in help-
ing the algorithm to escape from local optima.

Despite the aforementioned advantages that the alternative
multi-objective landscape entails, an excessive increase in the
neutrality may also prevent a search algorithm from moving
in the correct direction. The conducted landscape analysis not
only reported a considerable growth in the size of the NNs due
to the use of the MO problem formulation. It was also found
that these NNs are mainly composed of infeasible solutions.
Without a proper search bias, therefore, the computational re-
sources can be exhausted by exploring uninteresting areas of
the solution space (as it was also pointed out by Runarsson and
Yao [14]). From the fitness landscape perspective, providing
the MO strategy with a search bias can be understood as the re-
moval of part of the neutrality that this strategy originally intro-
duces. The goal becomes, thus, to benefit from having access to
the infeasible areas of the landscape, at the same time that most
of the effort is invested in exploiting promising search direc-
tions. The second part of this work studied the effectiveness of
different mechanisms for biasing the search towards the feasi-
ble region, which can be coupled to the MO constraint-handling
strategy. Three different biasing mechanisms were evaluated;
namely, the use of an archiving strategy, the incorporation of a
secondary discrimination criterion (use of feasibility rules), and
the application of a proportional bias dependent on the degree
of constraint violation. On the one hand, the results of such
an evaluation confirmed the need for performing a well-biased
search when using the MO strategy. The behavior of the con-
sidered search algorithms was significantly improved with the
implementation of all the three studied biasing approaches. On
the other hand, it was also possible to observe that a very strong
bias could lead to override the positive effects of the landscape
transformation. Thus, the task of identifying the most appro-
priate amount of bias for a particular problem and search algo-
rithm, could be not as straightforward as might be thought.

In the last part of this study, the MO constraint-handling
strategy was further explored by carrying out a comparative
analysis where two different approaches from the literature
were considered: namely, a rejecting strategy (RJ) where the
search is confined to the space of only feasible conformations,
and a penalty function (PF) where infeasible solutions are pe-
nalized according to the number of conflicts they present. The
different strategies were evaluated in terms of the performance
of basic evolutionary algorithms. As a result, the use of the MO
strategy significantly improved the performance of the imple-

mented algorithms when compared with respect to both the RJ
and PF methods. This highlights the suitability of the studied
MO approach. It was also found that PF scored better results in
most cases with regard to the RJ strategy. The fact that both MO
and PF performed better than RJ, and that RJ requires a con-
siderable amount of additional computational resources, gives
further support to the belief that considering infeasible protein
conformations may contribute to the design of more competi-
tive algorithms for solving the HP model of the PSP problem;
this has been a subject of concern in the specialized literature.

To the best of the authors’ knowledge, the preliminary re-
sults of this research, as reported in [13], represent the first ef-
forts on the use of multi-objective optimization methods to face
the constraint-handling requirement which arises when dealing
with the HP model of the PSP problem. Basic evolutionary
algorithms have been used in this study for evaluating the suit-
ability of this approach. From the obtained results, it is ex-
pected that the MO strategy can be incorporated as a means of
improving the performance of established state-of-the-art algo-
rithms for solving this problem. This issue needs to be investi-
gated in order to derive more general conclusions. Furthermore,
the present study explored for the first time, as far as the authors
are aware, the potential effects of the MO constraint-handling
strategy through a fitness landscape analysis. Although such an
analysis focused on a particular case of study, the HP model of
the PSP problem, similar effects to those observed with regard
to the landscape transformation can be expected from the use
of the MO strategy in other problem domains. Therefore, the
performed analysis contributes to the general understanding of
the MO approach for handling constraints. It seems important,
however, to replicate this analysis to different problems in order
to further support the acquired understanding.

Appendix A. Test cases, performance assessment and ex-
perimental conditions

Appendix A.1. Performance measures

The experimental results reported in this paper are evaluated
in terms of the conventional energy function of the HP model,
as it was introduced in Section 2.3. This is the objective func-
tion of the studied problem. As such, the energy value of the
candidate protein conformations has been the primary quality
indicator adopted in the specialized literature.

Two additional performance measures were considered, both
computed over multiple independent executions of the imple-
mented search algorithms. First, the relative root mean square
error (RMSE) for a given test instance t is defined as follows:

RMSE(t) = 100%

√√√
1
R

R∑
r=1

(
Er(t) − E∗(t)

E∗(t)

)2

, (A.1)

where Er(t) denotes the energy of the best solution found dur-
ing a single execution r, R is the total number of executions car-
ried out, and E∗(t) is the optimal (or best known) energy value
for instance t. Thus, RMSE indicates the performance scored
for a particular instance t as the average deviation between the

22



quality of the achieved solutions and the quality of the target
solution.24 While the range of possible energy values varies
from instance to instance, RMSE is defined in a common 0% to
100% scale. This makes possible to evaluate (and plot) together
the results obtained for the different considered test instances.
RMSE(t) = 0% is the preferred value for this measure.

Finally, the overall relative root mean square error (O-
RMSE) measure extends RMSE in order to assess the overall
performance of the studied approaches, considering all the test
instances. Having defined RMSE, O-RMSE can be formally
stated as follows:

O-RMSE =
1
|T |

∑
t∈T

RMSE(t), (A.2)

where T is the set of all instances. In this way, O-RMSE = 0%
suggests the ideal situation where the optimal solution for each
instance was reached during all the performed executions. By
sacrificing details about the scored performance on each partic-
ular test instance, this global measure makes possible to inves-
tigate thoroughly the influence of varying important parameters
of the studied techniques and search algorithms, as well as to
analyze the search dynamics during optimization.

Appendix A.2. Test instances
A total of 30 well-known benchmark sequences for the HP

model have been considered for the experimentation of this re-
search project. Out of them, 15 are for the two-dimensional
square lattice and the other 15 are for three-dimensional cubic
lattice. Tables A.8 and A.9 present the full HP sequences, their
length (`) and the optimal or best known energy value (E∗) re-
ported in the literature [25, 26, 31, 45, 94, 95].

Appendix A.3. Statistical significance analysis
The statistical significance analysis was conducted as fol-

lows. First, D’Agostino-Pearson’s omnibus K2 test was used
to evaluate the normality of data distributions. For normally
distributed data, either ANOVA or the Welch’s t parametric tests
were used depending on whether the variances across the sam-
ples were homogeneous (homoskedasticity) or not. This was
investigated using the Bartlett’s test. For non-normal data, the
nonparametric Kruskal-Wallis test was adopted. Finally, a sig-
nificance level of α = 0.05 has been considered.

Appendix A.4. Experimental platform
The algorithms implemented in this study were coded in

ANSI C and compiled with gcc using the optimization flag
-O3. All experiments performed were run sequentially on
the Neptuno cluster at the Information Technology Laboratory,
CINVESTAV-Tamaulipas. This cluster is equipped with 10 In-
finiBand interconnected nodes, each of which features 8 cores
running at 2.66 GHz, has a total of 16 GB of RAM, and uses
the CentOS distribution of the Linux operating system.

24It is worth noting that, as a measure of central tendency, RMSE conceals
the performance exhibited on each individual execution. This implies a pos-
sible conflicting behavior between some individual execution results and the
concerned measure which is computed over the entire sample of executions.
Nevertheless, the use of this measure can lead to draw more general conclu-
sions with respect to the behavior of the studied techniques.

Table A.8: Test instances for the two-dimensional square lattice.

Sequence ` E∗

2d1 H2P5H2P3HP3HP 18 -4
2d2 HPHPH3P3H4P2H2 18 -8
2d3 PHP2HPH3PH2PH5 18 -9
2d4 HPHP2H2PHP2HPH2P2HPH 20 -9
2d5 H3P2HPHPHP2HPHPHP2H 20 -10
2d6 H2P2HP2HP2HP2HP2HP2HP2H2 24 -9
2d7 P2HP2H2P4H2P4H2P4H2 25 -8
2d8 P3H2P2H2P5H7P2H2P4H2P2HP2 36 -14
2d9 P2HP2H2P2H2P5H10P6H2P2H2P2HP2H5 48 -23
2d10 H2(PH)4H3P(HP3)3(P3H)3PH4(PH)4H 50 -21
2d11 P2H3PH8P3H10PHP3H12P4H6PH2PHP 60 -36
2d12 H12PHPH(P2H2P2H2P2H)3PHPH12 64 -42
2d13 H4P4H12P6(H12P3)3HP2H2P2H2P2HPH 85 -53
2d14 P6HPH2P5H3PH5PH2P4H2P2H2PH5PH10

PH2PH7P11H7P2HPH3P6HPH2

100 -48

2d15 P3H2P2H4P2H3PH2PH2PH4P8H6P2H6P9
HPH2PH11P2H3PH2PHP2HPH3P6H3

100 -50

Table A.9: Test instances for the three-dimensional cubic lattice.

Sequence ` E∗

3d1 HPHP2H2PHP2HPH2P2HPH 20 -11
3d2 H2P2HP2HP2HP2HP2HP2HP2H2 24 -13
3d3 P2HP2H2P4H2P4H2P4H2 25 -9
3d4 P3H2P2H2P5H7P2H2P4H2P2HP2 36 -18
3d5 P2H3PH3P3HPH2PH2P2HPH4PHP2H5PHPH2P2H2P 46 -35
3d6 P2HP2H2P2H2P5H10P6H2P2H2P2HP2H5 48 -31
3d7 H2(PH)4H3P(HP3)3(P3H)3PH4(PH)4H 50 -34
3d8 PH(PH3)2P(PH2PH)2H(HP)3(H2P2H)2

PHP4(H(P2H)2)2

58 -44

3d9 P2H3PH8P3H10PHP3H12P4H6PH2PHP 60 -55
3d10 H12PHPH(P2H2P2H2P2H)3PHPH12 64 -59
3d11 P(HPH2PH2PHP2H3P3)3(HPH)3P2H3P 67 -56
3d12 P(HPH)3P2H2(P2H)6H(P2H3)4P2(HPH)3

P2HP(PHP2H2P2HP)2

88 -72

3d13 P2H2P5H2P2H2PHP2HP7HP3H2PH2P6HP2HP
HP2HP5H3P4H2PH2P5H2P4H4PHP8H5P2HP2

103 -58

3d14 P3H3PHP4HP5H2P4H2P2H2(P4H)2
P2HP2H2P3H2PHPH3P4H3P6H2P2
HP2HPHP2HP7HP2H3P4HP3H5P4H2(PH)4

124 -75

3d15 HP5HP4HPH2PH2P4HPH3P4HPHPH4P11
HP2HP3HPH2P3H2P2HP2HPHPHP8HP3
H6P3H2P2H3P3H2PH5P9HP4HPHP4

136 -83

Appendix B. Algorithms

Appendix B.1. Basic (1+1) evolutionary algorithm

The so-called (1+1) evolutionary algorithm (EA) is described
in Algorithm 3. First, an initial parent individual x is generated
at random. At each generation, an offspring x′ is created by ran-
domly and independently mutating x at each encoding position
with a given probability pm. The new individual x′ is rejected
only if it is strictly worse than the parent individual x, otherwise
x′ is accepted as the starting point for the next generation.

The acceptance criterion in the above described (1+1) EA,
line 4 in Algorithm 3, depends upon the constrain-handling
strategy to be applied. On the one hand, it can be based
on the one-dimensional objective (energy) value of the candi-
date conformations, either including penalties or not (penalty
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Algorithm 3 Basic (1+1) evolutionary algorithm.
1: choose x ∈ X uni f ormly at random
2: repeat
3: x′ ← mutate(x)
4: if x′ is not worse than x then
5: x← x′
6: end if
7: until < stop condition >

function, PF and reject, RJ strategies, respectively). On the
other hand, acceptance will be based on the Pareto-dominance
relation when applying the multi-objective, MO constraint-
handling strategy, which is the focus of this research.

In the implemented (1+1) EA, individuals encode pro-
tein conformations using an internal coordinates representation
based on relative moves, as detailed in Section 2.3.1. In all the
cases, the mutation probability was fixed to pm = 1

`−2 , where
` − 2 denotes the length of the encoding. Finally, a number of
106 evaluations was adopted as the stopping condition.

Appendix B.2. Archiving (1+1) evolutionary algorithm

An archiving variant of the (1+1) evolutionary algorithm
(EA) described in Appendix B.1 is sketched in Algorithm 4. In
the archiving (1+1) EA, an external archive stores the nondom-
inated solutions (in the Pareto sense) found along the evolution-
ary process. The implemented archiving strategy influences the
search behavior of the algorithm in such a way that the offspring
x′ is only accepted if it is not dominated by any individual in
the archive. If accepted, x′ is included in the archive and all
individuals dominated by x′, and those mapping to the same
objective vector f(x′), are removed. In the context of this study,
the use of this archiving variant of the (1+1) EA makes only
sense when implementing the multi-objective, MO strategy for
constraint-handling.

Algorithm 4 Archiving (1+1) evolutionary algorithm.
1: choose x ∈ X uni f ormly at random
2: A ← {x}
3: repeat
4: x′ ← mutate(x)
5: if @x̂ ∈ A : x̂ ≺ x′ then
6: A ← {x̂ ∈ A : x′ ⊀ x̂ ∧ f(x̂) , f(x′)} ∪ {x′}
7: x← x′
8: end if
9: until < stop condition >

Appendix B.3. Genetic algorithm

The basic structure of the implemented genetic algorithm is
presented in Algorithm 5. First, an initial parent population
P of size N is randomly generated. At each generation, the
fittest individuals in P are selected for mating (selection- f or-
variation). Then, a children population P′ is created by apply-
ing the genetic operators to the selected parents P̂. Finally, the

parent and children populations are combined and the best in-
dividuals are selected to survive in order to form the new parent
population (selection- f or-survival).

Algorithm 5 Genetic algorithm.
1: choose P ⊂ X : |P| = N uni f ormly at random
2: while < stop condition > do
3: P̂ ← selection- f or-variation(P)
4: P′ ← variation(P̂)
5: P ← selection- f or-survival(P ∪ P′)
6: end while

A crucial issue in GAs is selection; that is, how the dis-
crimination among the individuals is carried out (at both the
selection- f or-variation and the selection- f or-survival steps).
In the implemented GA, this depends on the constraint-
handling technique to be used. When using the reject (RJ) and
penalty function (PF) approaches, a single-objective compar-
ison among the individuals is performed. In contrast, when
applying the multi-objective (MO) strategy for handling con-
straints the Pareto-dominance relation imposes a partial order
among candidate individuals. The nondominated sorting proce-
dure is used at the selection- f or-survival stage, as it is imple-
mented within the nondominated sorting genetic algorithm II,
NSGA-II [93]. Roughly, the functioning of the nondominated
sorting procedure is as follows. The nondominated individuals
are initially identified and isolated into the first nondominated
layer, L1. From the remainder of the population, the new non-
dominated solutions are identified and assigned to the second
nondominated layer,L2. The process repeats until each individ-
ual in the population is classified. At the selection- f or-survival
stage, individuals are selected layer by layer, starting from L1,
until completing the required number of individuals. Whenever
the number of individuals in the current layer exceeds the avail-
able capacity of the population, the conventional NSGA-II uses
the so-called crowding distance as a secondary discrimination
criterion. This allows to promote population diversity. In this
study, however, crowding distance has not been incorporated to
avoid attributing the performance that the GA achieves through
the use of the MO strategy to such a diversification mechanism.

An internal coordinates representation based on relative
moves has been adopted, see Section 2.3 for details. Bi-
nary tournament selection was employed as mating strategy.
The implemented genetic operators are as follows. One-point
crossover is applied according to a given probability pc. In mu-
tation, each encoding position is randomly and independently
perturbed with probability pm. It is worthy to mention that pre-
liminary testing has been conducted in order to explore the ef-
fects of preventing duplicate individuals (clones) from the pop-
ulation. As a result, the performance of the different analyzed
constraint-handling methods was significantly improved in all
the cases when duplicate individuals were removed from the
population; this mechanism was enabled for all the reported
experiments. Finally, a maximum number of 106 solution eval-
uations was used as the termination criterion.
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Appendix B.4. Iterated local search algorithm
Algorithm 6 outlines the general structure of a basic iterated

local search (ILS) algorithm. The algorithm starts with a ran-
domly generated conformation, denoted as x. Then, a local
search strategy is applied to x until a local optimum x∗ is found.
At each iteration, a perturbation x′ of the current local optimum
x∗ is obtained and used as the starting point of another round
of local search. After each local search, the new local optimum
solution found x′∗ may be accepted as the new incumbent so-
lution x∗, based on a given acceptance criterion. This iterative
procedure is repeated until a given stop condition is met.

Algorithm 6 Iterated local search (ILS).
1: choose x ∈ X uni f ormly at random
2: x∗ ← LocalS earch(x)
3: repeat
4: x′ ← Perturbation(x∗)
5: x′∗ ← LocalS earch(x′)
6: x∗ ← AcceptanceCriterion(x∗, x′∗)
7: until < stop condition >

Three main components, which determine the behavior of
an ILS algorithm, have to be defined: (i) the embedded local
search heuristic; (ii) the perturbation strength; and (iii) the ac-
ceptance criterion. A best improvement local search algorithm
was used as the embedded heuristic, and basic settings for the
perturbation strength and acceptance criterion were adopted ac-
cording to the results reported in [96].

Appendix C. Baseline constraint-handling methods

Appendix C.1. Reject strategy
A basic reject strategy (RJ) was considered where only fea-

sible protein conformations are accepted during the search pro-
cess. A basic single-solution-based evolutionary algorithm
(EA), the (1+1) EA, and a genetic algorithm (GA) are used in
this study (refer to Appendix B for details). In order to imple-
ment the RJ strategy, the variation operators were adapted as
follows. In the (1+1) EA, once mutation is to be applied to a
particular encoding position (determined based on a given prob-
ability), all possible perturbations to this position are evaluated
in random order until a feasible conformation is obtained. If
no change in this position leads to a feasible conformation, the
original value is restored. The GA uses a one-point crossover
operator; in this operator all possible crossover points are ex-
plored in random order until feasible children are produced;
otherwise, either one or both of the parents are copied un-
changed. The mutation operator of the GA was adapted in the
same manner as described above for the (1+1) EA. Note that
such a persistent application of the variation operators involves
an additional computational effort. Furthermore, the RJ strat-
egy requires the algorithms to be provided with initial feasible
individuals. The backtracking procedure proposed in [7] was
used for generating such initial feasible individuals.

The above described RJ strategy is equivalent to the one an-
alyzed by Duarte-Flores and Smith within a GA [6]. Similar

strategies have also been adopted in the context of different
search metaheuristics. For example, the hypermutation and hy-
permacromutation mechanisms, implemented in some immune
system-based algorithms for the HP model reported in the liter-
ature, operate in a similar feasibility-preserving fashion. These
operators iteratively apply a series of mutations to the input so-
lution and infeasible solutions encountered during this process
are always discarded [8, 31, 43].

Appendix C.2. Penalty function
A constraint-handling strategy based on the use of a penalty

function (PF) has been considered in this study. In the PF strat-
egy, the energy (objective) value of a candidate solution is pe-
nalized according to the number of collisions that the encoded
protein conformation presents. More formally, PSP under the
HP model is restated as the problem of minimizing an alterna-
tive objective function f (x) defined as follows (x ∈ X):

f (x) = E(x) + ρ × ζ ×Collisions(x), (C.1)

where E(x) denotes the conventional energy function of the HP
model introduced in Section 2.3. Collisions(x) refers to the to-
tal number of amino acid pairs (ai, a j) in x such that ai and a j

collide at the same lattice position. Finally, the value of ζ is
to be large enough that, assuming a penalty weight of ρ = 1, it
holds that f (xi) ≤ 0,∀xi ∈ XF while f (x j) > 0,∀x j ∈ X \ XF .
By defining the penalty weight ρ within the range [0, 1], it will
then be possible to move from an underpenalization scenario
(ρ = 0), where comparisons are only based on the original ob-
jective function of the problem, to an overpenalization scenario
(ρ = 1), where the penalty term dominates discrimination [97].
In this study, ζ was set to ζ = 2`H + 2 for the two-dimensional
square lattice and ζ = 4`H + 2 for the three-dimensional cubic
lattice. These values represent upper bounds on the number of
H-H topological contacts that can be formed in the correspond-
ing lattices and have also been considered in [5]. It should be
noted that the value of ζ depends on the total number of hy-
drophobic amino acids in the protein sequence, `H .

With the aim of investigating the importance of the penalty
weight ρ, and also to enable a more reliable comparative analy-
sis in Section 7, different settings for this parameter have been
explored in this study. Figures C.29 and C.30 show the per-
formance scored by the (1+1) evolutionary algorithm (EA) and
the genetic algorithm (GA) when using the PF method with a
series of different ρ values in the range [0, 1]. Performance is
expressed in terms of the O-RMSE (see Appendix A.1), com-
puted over a total of 31 independent repetitions for each exper-
iment. In general, the worst behavior of both the (1+1) EA and
the GA was exhibited when no penalties were applied (ρ = 0).25

Figure C.29 indicates that ρ = 0.15 allowed the (1+1) EA to
achieve its best performance at solving the two-dimensional in-
stances, and all considered ρ values in the range [0.15, 1] pro-
duced the best results for the three-dimensional case. Regard-
ing the GA, it is possible to observe from Figure C.30 that the

25In Figures C.29 and C.30, the results obtained when using the lowest con-
sidered ρ values (leftmost data) have not been displayed in order to highlight
details in the most relevant part of the plots.
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Figure C.29: Impact of varying the penalty weight (ρ) of the PF method on the
(1+1) EA’s performance. Two- (left) and three-dimensional (right) instances.
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Figure C.30: Impact of varying the penalty weight (ρ) of the PF method on the
performance of the GA. Two- (left) and three-dimensional (right) instances.

lowest O-RMSE values were reached by using ρ = 0.15 and
ρ = 0.05 for the two-dimensional and three-dimensional test in-
stances, respectively. The best performing settings for the PF
method, as described above, have been considered during the
comparative analysis conducted in Section 7.
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