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Abstract

In this paper, an improved Two-Stage Simulated Annealing algorithm is presented
for the Minimum Linear Arrangement Problem for Graphs. This algorithm inte-
grates several distinguished features including an efficient heuristic to generate good
quality initial solutions, a highly discriminating evaluation function, a special neigh-
borhood function and an effective cooling schedule. The algorithm is evaluated on a
set of 30 well-known benchmark instances of the literature and compared with sev-
eral state-of-the-art algorithms, showing improvements of 17 previous best results.
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1 Introduction

The Minimum Linear Arrangement problem (MinLA) was first stated by
Harper in [15]. His aim was to design error-correcting codes with minimal aver-
age absolute errors on certain classes of graphs. Later, in the 1970’s MinL A was
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used as an abstract model of the placement phase in VLSI layout, where ver-
tices of the graph represented modules and edges represented interconnections.
In this case, the cost of the arrangement measures the total wire length [3].
MinLLA arises also in other research fields like biological applications, graph
drawing, software diagram layout and job scheduling [7, 23].

The MinLA problem can be stated formally as follows. Let G(V, E) be a
finite undirected graph, where V' (|V| = n) defines the set of vertices and
E CVxV ={{ij}:ij5 € V} is the set of edges. Given a one-to-one
labeling function ¢ : V' — {1..n}, called a linear arrangement, the total edge
length (cost) for G with respect to the arrangement ¢ is defined according to

Eq. 1.
LAG, @) = > lp(u) = ¢(v)] (1)

(u,w)ER

Then the MinLLA problem consists in finding a best labeling function ¢ for a
given graph G so that LA(G, ¢) is minimized.

There exist polynomial time exact algorithms for some special cases of MinLA
such as trees, rooted trees, hypercubes, meshes, outerplanar graphs, and oth-
ers (see [7] for a detailed survey). However, as is the case with many graph
layout problems, finding the minimum linear arrangement is known to be
NP-hard for general graphs [9]. Therefore, there is a need for heuristics to
address this problem in reasonable time. Among the reported algorithms are
a) heuristics especially developed for MinLA, such as the Improved Frontal
Increase Minimization heuristic (IFIM) [25], the Binary Decomposition Tree
heuristic (BDT) [4], the Multi-Scale algorithm (MS) [22] and the Algebraic
Multi-Grid scheme (AMG) [33]; and b) metaheuristics such as Simulated An-
nealing (SA) [28] and Memetic Algorithms (MA) [30].

In this paper, we present a highly effective improved Two-Stage Simulated An-
nealing algorithm for the MinL A problem. This new algorithm integrates sev-
eral important features such as an efficient heuristic to generate good quality
initial solutions, a highly discriminating evaluation function, a special neigh-
borhood function and an effective cooling schedule. The performance of this
algorithm is assessed with a set of benchmark instances taken from the liter-
ature. The computational results are reported and compared with previously
published ones, showing that our algorithm is able to improve the previous
best-known results for 17 out of 30 instances. The influences of some key
elements of the proposed SA are empirically studied and analyzed.

The rest of the paper is organized as follows. In Section 2, a brief review is given
to present six most representative solution procedures for the MinL A problem.
Then the components of our Two-Stage Simulated Annealing algorithm are
discussed in detail in Section 3. Section 4 is dedicated to computational exper-
iments and comparisons with previous results. Influences of some important



components in the proposed algorithm are discussed and analyzed in Section
5. The last section summarizes the main contributions of the work.

2 Relevant existing procedures

Because of the practical and theoretical significance of the MinLA problem,
much research has been carried out in developing effective heuristics for it.
This is the case of the SS+SA heuristic proposed by Petit [27]. This algorithm
consists in obtaining an initial solution using the Spectral Sequencing (SS)
method [20]. Then, the resulting arrangement is locally improved through the
Simulated Annealing (SA) algorithm reported in [28]. This SA algorithm, that
implements a geometric cooling schedule, is based on a special neighborhood
distribution that tends to favor moves with high probability to be accepted.
The author makes computational comparisons of the SS procedure, the SA
algorithm and the combination of both methods over a set of 21 benchmark
graphs. He concludes that the SS4+SA heuristic always improves the SS solu-
tions and only for two graphs (cby and gd96a) it is unable to improve the SA
solution. The SS+SA running times are usually lower than those of SA.

Besides Petit’s work, Bar-Yehuda et al. present in [4] a divide-and-conquer
approach to the MinLA problem. They have developed a polynomial time
algorithm (with complexity O(]V|*?)) for computing a linear arrangement
induced by a Binary Decomposition Tree (BDT'). To assess their approach, the
authors used the same test-suite proposed in [28] by Petit. They applied their
algorithm iteratively, starting each iteration with the result of the previous
one. After a few tens of iterations, the algorithm usually yields results within
5-10% of those obtained by Petit’s SA [28], but at a fraction of its running
time. They have used these computed arrangements as an initial solution for
the SA reported in [28] and slightly better results were obtained.

In 1999, a linear time heuristic (with complexity O(|E|)) based on Frontal In-
crease Minimization (FIM) was developed by McAllister [25]. In this paper the
author compares his improved FIM heuristic (IFIM) with four existing band-
width and profile reduction algorithms (Reverse Cuthill-McKee, FIM, Gibbs-
Poole-Stockmeyer, Gibbs-King) and one MinLA algorithm (Eigenvalue-based
method) over 34 benchmark instances collected by himself. The benchmarks
are divided into two sets. One with 20 graphs derived from software diagrams
and the other composed of 14 structure problems from the Rutherford-Boeing
sparse matrix collection. He concludes that the IFIM algorithm provides the
best arrangement for 17 graphs of the first set. While for the structure prob-
lems it provides superior performance in 14 graphs, compared with the four
bandwidth and profile reduction algorithms. However, in comparison with the
eigenvalue-based approach his algorithm is less competitive since it returns a



better solution only in 5 cases.

Koren and Harel presented in 2002 another linear time algorithm for the
MinLA problem, based on the combination of spectral methods and the Multi-
Scale (MS) paradigm [22]. MS techniques transform a high-dimensional prob-
lem in an iterative fashion into subproblems of increasingly lower dimensions,
via a process called coarsening. On the coarsest scale the problem is solved
exactly, following which a refinement process starts, whereby the solution is
progressively projected back into higher and higher dimensions, updated ap-
propriately at each scale, until the original problem is reproduced and solved.
This set of steps is called a V-cycle. The authors have also used the test-suite
provided by Petit [28]. For each graph in this set, they ran their MS algorithm
first with a single V-cycle and then with ten. The quality of their results after
10 V-cycle iterations is comparable to that of Petit’s SA [28], but the running
time is significantly lower.

In 2004, an improvement to the MS algorithm, called the Algebraic Multi-Grid
scheme (AMG), was presented by Safro et al. [33]. The main difference between
these approaches is the coarsening scheme. MS uses strict aggregation, while
AMG employs weighted aggregation. In a strict aggregation procedure the
nodes of the graph are blocked into small disjoint subsets, called aggregates. By
contrast, in the weighted aggregation each node can be divided into fractions,
and different fractions belong to different aggregates. Safro et al. have shown
experimentally that their approach (AMG) can obtain high quality results in
linear time for the MinLA problem and can be considered as one of the best
MinLA algorithms known today.

In [30] we have presented a Memetic Algorithm (MA) for finding near opti-
mum solutions for the MinLLA problem. This algorithm incorporates a highly
specialized crossover operator, a fast MinL A heuristic used to create the initial
population and a local search operator based on a fine tuned SA algorithm.
Later, a refined evaluation function was incorporated to our MA in [31], which
provides an effective guidance in the search process. The performance of our
improved MA was assessed through extensive experimentation over the test-
suit presented in [28]. The results obtained were compared with previously
published ones, and showed that our MA is competitive in terms of solution
quality. It was able to improve on 8 previous best-known solutions and to
equal these results in 8 more instances. However, given that it is a memetic
algorithm, it consumes considerably more computer time than some heuristics
specially developed for MinLA such as BDT [4], MS [22] and AMG [33].



3 A two-stage simulated annealing algorithm

Simulated Annealing (SA) is a general-purpose stochastic optimization tech-
nique that has proved to be an effective tool for approximating globally optimal
solutions to many NP-hard optimization problems. It generally has only one
significant disadvantage, its typically very long computation times.

Accelerating the SA algorithm has been an active area of research since its
introduction in 1983. Most studies have concentrated on the development of
faster cooling schedules [2, 17, 24|, alternative move generation and acceptance
strategies [10], noisy cost evaluation [11], and optimal finite-time temperature
schedules [5, 14, 34]. Another approach, and the one we consider here, is Two-
Stage Simulated Annealing (TSSA) [12, 18, 32, 35].

In a TSSA algorithm a faster heuristic is used to replace the SA actions oc-
curring at the highest temperatures. The heuristic is then followed by an im-
proving process based on a conventional SA initiated at a temperature lower
than the normal. The principal consideration in the design of a TSSA system
is the determination of the starting temperature for the SA phase.

In this section we present a new TSSA implementation for solving the MinLLA
problem. This TSSA has the merit of improving four key features that have a
great impact on its performance: an efficient heuristic to generate good quality
initial solutions, a highly discriminating evaluation function called ®, a special
neighborhood function and an effective cooling schedule. Next all the details
of the implementation proposed, called TSSA-®, are presented.

3.1 Internal representation of linear arrangements

Given a graph G = (V, E) with vertex set V' (|V| = n) and edge set E. A
linear arrangement ¢ is represented as an array [ of integers with length n,
which is indexed by the vertices and whose i-th value [[i] denotes the label
assigned to the vertex i.

3.2 Neighborhood function

The search space & for the MinLA problem is composed of all possible ar-
rangements from V' to {1,2,...,n}. It is easy to see then, that there are n!/2
possible linear arrangements for a graph with n vertices!. Next, we present

I because each one of the n! arrangements can be reversed to obtain the same cost.
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Figure 1. Labeled subgraph taken from a graph with 30 vertices.

some preliminary concepts used in the definition of a suitable neighborhood
function for this search space.

Let us define the partial cost contribution L(u, ) of a vertex u with respect
to the linear arrangement ¢ as follows: L(u, @) = > c () [©(v) —(v)], where
A(u) is the set of adjacent vertices of u. Let swap(p,u,v) be a function al-
lowing to exchange the labels of two vertices u and v from the arrangement
. Given that our goal is to swap labels in the graph to reduce the current
value of L(u, ), we have observed that the best way for labeling a vertex can
be found by using the following definition. Given a vertex u with d adjacent
vertices vy, ..., Vg, sort them so that s; < sy < ... < s4, where s; is called the
i-th order statistic [16]. Then the statistical median of the labels currently
assigned to the vertices in A(u) is given by Formula 2:

S((d+1)/2) if d is odd

median(u) = { 1 (2)

5 (82 + S(Hd/g)) if d is even

So we can construct a set M (u) of vertices whose current labels are close to
median(u). Among the labels of those vertices in M (u), we can find the best
choice for labeling v with respect to its adjacent vertices. M (u) can be formally
defined as follows: M (u) = {v : median(u) — 2 < ¢(v) < median(u) + 2}

This concept is better understood if we illustrate it with an example. Consider
the subgraph in Fig. 1, taken from a graph with 30 vertices. This subgraph
represents the vertex u and its 5 adjacent vertices. The current labeling is
given by the numbers shown inside each vertex and its current partial cost
contribution is L(u, ¢) = 70. Using Eq. 2 we obtain median(u) = 26, so M (u)
contains those vertices v that currently have a label between 24 and 28 (some
of them are not shown in Fig. 1). By examining each of these five possible
labels for u, we can observe that the best choice is either the label 25 or 27.
Both of them reduce the partial cost contribution of u from 70 to 51. Remark
that the bigger the absolute difference between a label and median(u) is, the
bigger the partial cost contribution of u will be. For example, if label 1 is
assigned to vertex u the maximal value of L(u, ) is obtained (87), because
label 1 produces the bigger absolute difference with respect to median(u) in
the graph (25).

Now, once this point is clarified, we can define the neighborhood Ni(p) of a



labeling ¢ in our TSSA implementation such that:

Ni(p) ={¢' € & : swap(p,u,v) = ¢', (w,v) €V, v € M(u)}  (3)

We have observed, from the experiments presented in Subsection 5.1, that the
N1 () neighborhood function allows to quickly reduce the total edge length of
a graph, however it presents a potential disadvantage. Given its exploitation
power, it causes that our TSSA algorithm gets stuck longer on some local min-
ima. So we have decided to combine it with another neighborhood function,
with complementary characteristics, in order to get a better commitment be-
tween exploration and exploitation. The second neighborhood function Ny(¢p)
is defined as follows:

No(o) = {¢ € o : swaplp,u,0) = ¢, (wv) €Viuvy  (4)

During the search process a combination of both N;(¢) and Ny(y) neighbor-
hood functions is used. The former is applied with probability p, while the
latter is employed at a (1 — p) rate. This combined neighborhood function
N3 (¢, ) is defined in Eq. 5, where z is a random number in the interval [0, 1].

Ni(p) ifz<p

Nap, ) = {zw) if 2> p

(5)

3.3  FEwvaluation function

The evaluation function is one of the key elements for the success of heuristic
search algorithms. It is the evaluation function that guides the search process
toward good solutions in a combinatorial search space. The more informative
this function is, the more effective the search process will be.

In combinatorial optimization, the objective function associated to a particular
problem is often used as an evaluation function. However, this method can
not be used if the search space includes infeasible solutions. In such cases,
penalty terms are often added to evaluate the degree of infeasibility [8]. Tt is
also effective to dynamically change the evaluation function during the search,
like in the noising method [6] and the search space smoothing method [13].
Another technique consists in developing new more informative evaluation
functions which may not be directly related to the objective function such
in [19].

The algorithms previously developed to solve the MinLLA problem have a point
in common, all of them evaluate the quality of a solution (linear arrangement)
as the change in the objective function LA(G, ¢) (Eq. 1). A particular resulting



value of the LA evaluation function can also be expressed by the Formula 6,
where d;, refers to the number of absolute differences with value k& between
adjacent vertices of the graph.

LAG,¢) = 3 kdy Q

However, using LA as the evaluation function of a search algorithm repre-
sents some potential drawbacks. Indeed, LA is not sensitive enough to locate
promising search regions on the space of solutions, because it does not make
distinctions among the number of absolute differences (dy). In other words,
LA considers exactly equal a big absolute difference and a small one. Addi-
tionally, it is not really prospective because when two arrangements have the
same cost it is impossible to know which one has higher possibility for further
improvement. This point will be made clear below.

In this TSSA implementation we have decided to use the refined ® evaluation
function presented in [31], which allows to overcome these disadvantages. This
function evaluates the quality of an arrangement considering not only the total
edge length (LA) of the arrangement, but also additional information induced
by the number of absolute differences with value k between adjacent vertices
of the graph (di). Furthermore, it maintains the fact that | ®] results into the
same integer value produced by Eq. 1 and 6.

The main idea of ® is to penalize the absolute differences d, having small
values of k£ and to favor those with values of k£ near to the bandwidth 5 of
the graph?. The logic behind this is that it is easier to reduce the total edge
length of the arrangement if it has summands of greater value. To accomplish
it, each number of absolute differences d; should have a different contribution,
which is computed by employing Eq. 7.

1 |
ket =k (7)

11 (n+37)
7=1

Then, by combining Formulas 6 and 7 we obtain Eq. 8. This formula can be
used to compute the quality of an arrangement and represents the ® evaluation
function. Observe that the first term in this formula is equal to Eq. 6. The
second term (a fractional value) is the discriminator for arrangements having
the same LA value.

(G S P n_lkd - _nldi 8
( ’90)_;1< +(n+k>!> ’“_; ”k;(nw)! ®)

2 B(G,p) = Maz{lp(u) — ¢(v)] : (u,v) € E}



The choice of ® as evaluation function is fully justified by the fact that it
is more discriminating than LA and leads to smoother landscapes of the
search process, as it was demonstrated by the experimental results presented
in [31] and confirmed by those described in Subsection 5.2. But also because
® allows an incremental cost evaluation of neighboring solutions if each term
k+ (n!/(n + k)!) in the Eq. 8 is precalculated and stored in an array. Sup-
pose for example that the labels of two different vertices (u,v) are swapped,
as in the neighborhood functions presented in Subsection 3.2, then only the
|A(u)| + |A(v)| absolute differences that change should be recomputed to up-
date the value of ®. It is faster than the O(| E|) instructions originally required.

3.4 Initial solution

The initial solution is the starting labeling used for the algorithm to begin
the search for better configurations in the search space /. After a compari-
son, both in solution quality and computation time, of the different existing
heuristics for solving MinLA we have decided to use the method proposed
by McAllister in [25]. This decision is based on two points: the high solution
quality produced by the heuristic and its small computational time.

The heuristic proposed by McAllister is a vertex-by-vertex greedy algorithm
based on the following two basic steps: 1) Select a starting vertex and place
it in position 1. 2) For each remaining position 2 through n, select one of the
unplaced vertices for placement in the current position by using the frontal
increase minimization strategy. It consists in selecting for placement 7 a vertex
that is adjacent to the fewest vertices in U; — F;, where F; = {u € U; : v €
P; and (u,v) € E} denote the front at placement i, P; represents the set of
1 — 1 vertices placed so far and U; the set of currently unplaced vertices.

In order to accomplish this, McAllister has defined two measures, that enable
to know how highly a vertex v € U; is connected to P; and to U; ;. They are
defined respectively as follows: tl;(v) = [{(u,v) € E : u € P;}| and tr;(v) =
d(v) —tl;(v), where d(v) denotes the degree of the vertex v. Both measures are
used to define a new selection factor sf;(v) = tr;(v) — tl;(v), which is used at
the two-step general strategy described above as follows: For each placement
i in step 2, select v € F; with minimum sf;(v). The proposed algorithm has a
linear time complexity with respect to the number of edges in the graph. This
is possible thanks to the use of efficient data structures that enable to select
a vertex with minimum sf;(v) in constant time.



3.5 Initial temperature determination

We have decided to initialize the temperature for the TSSA-® using the
method proposed by Varanelli and Cohoon in [35]. Their work is based on
large-scale numerical studies, conducted by different authors [1, 14, 26, 36,
which examine solution densities at varying SA temperatures. These investi-
gations present evidence that supports a typical behavior of the expected cost
C) and standard deviation o, with respect to SA temperature T}, given homo-
geneous SA cooling schedule. Additionally, these studies independently show
that the probability distribution of the cost values can be closely approximated
by a normal distribution which presents the following behaviors:

Cr = Co — (02 /T}) 9)

Ok R Ooo (10)
where Cy, and o, respectively, represent the expected cost and the standard
deviation of the cost over the solution space.

Given this behavioral information Varanelli and Cohoon have proposed an
equation that permits to approximate the SA temperature Ty (i) at which a
solution ¢ with cost ¢(i) would be found as the best-so-far solution:

0.2

Ti(i) ~ o (50_ - (11)

In equation 11, the parameter v, represents the offset between the expected
cost C and the best-so-far solution cost ¢(i) at the temperature T}. It can be
calculated probabilistically by using the following expression, where r denotes
the number of moves generated at each temperature:

PlCs — YooTo0 < X < Coo + Yoo0o0) = 1 — || (12)

The reader is referred to [35] for a detailed explanation of the equations deriva-
tion and proofs.

In our implementation, we have proceeded as follows: First, 10® independent
random solutions are generated, with the mean and standard deviation of
the cost values recorded. These values then serve as approximations for the
expected cost over the solution space C, and the standard deviation of cost
over the solution space o,. Next, a heuristic solution with cost ¢(7) is obtained
using the method described in Subsection 3.4. Then, the offset v, between the
expected cost Cy and the best-so-far solution cost ¢(7) is computed by using
Eq. 12. Finally, the values C,, 0o, ¢(7) and 74 are used in Eq. 11 to obtain
the starting temperature approximation 7T} (i) that will be used in the second
stage of the TSSA-® algorithm.

10



3.6 Cooling schedule

The cooling schedule determines the degree of uphill movement permitted
during the search and is, thus, critical to the algorithm’s performance. The
literature offers several cooling schedules, see for instance those proposed in |2,
14, 17, 35]. In the TSSA-® implementation we preferred the statistical cooling
schedule proposed in [2] because it has demonstrated to be very effective [1, 29|
in several combinatorial optimization problems.

In our implementation the statistical cooling schedule starts at the initial tem-
perature approximation 7; computed with Formula 11. Then, at each round,
decrements the current temperature by using the following relation:
-1
T, =Ty 1 (1 + WW) (13)
30Tk—1
where op,_, is the standard deviation of the evaluation function values at the
current temperature and 0 is called the distance parameter. Small § values
lead to small temperature decrements. For each temperature, the maximum
number of generated neighboring labelings is r, it depends directly on the
number of edges (|F|) of the graph. This is because more moves are required
for denser graphs.

3.7  Termination condition

The algorithm stops when the evaluation function mean value shows only very
small changes. In practice it is achieved by computing the derivative of the
smoothed evaluation function mean value SC. Then the algorithm terminates
if at certain temperature T}, the condition SC}, < € is met. We call € the stop
factor and it is a small positive value.

4 Computational experiments

In this section, we present a set of experiments accomplished to evaluate the
performance of the TSSA-® algorithm presented in Section 3 and some of its
important components. For these experiments, the algorithms were coded in
C and compiled with gce using the optimization flag -O3. They were run se-
quentially into a CPU Xeon at 2 GHz, 1 GB of RAM and Linux. Due to the
incomplete and non-deterministic nature of the algorithms, 10 independent
runs were executed for each of the selected benchmark instances. When aver-

11



aged results are reported, they are based on these 10 corresponding executions.
In all the experiments the following parameters were used for TSSA-®:

a) Initial temperature T; computed with the procedure described in Subsec-
tion 3.5.

b) Cooling schedule distance parameter § = 0.10.

¢) Maximum neighboring solutions per temperature 7:

5.0E+05 if 1< |FE| <500
. _ ) 20E406 if 501 < |E| < 50000 (14)
~ ) 3.5E+06 if 50001 < |E| < 1.1E+06

7.0E+06 if |E| > 1.1E+06

d) Stop factor e =1.0E+10.
e) The neighborhood function N3(p, x) is applied using a probability p = 0.90.

4.1 Benchmark instances and comparison criteria

The test-suite that we have used in the experiments is divided into two sub-
sets. The first subset consists of the 21 benchmarks?® proposed in [28] and
used later in [4, 22, 30, 31, 33]. It includes graphs from six different fami-
lies: Uniform random, geometric random, graphs with known optima, finite
element discretizations, VLSI design and graph drawing competitions. Their
number of vertices is between 62 and 9800. The second subset is composed
of 9 very large graphs from finite element discretizations, obtained from the
publicly available collections of George Karypis? and Francois Pellegrini® .
These graphs were first used by Koren and Harel [22] and later by Safro et al.
in [33]. Their number of vertices is between 78136 and 1017253.

To assess the performance of our TSSA-®, we show comparative results on
these benchmark instances. The main criterion used for the comparison is the
same as the one commonly used in the literature: the best total edge length
found (smaller values are better). Computing time is also given for indicative
purpose.

The comparison is carried out in two parts. The first part gives an instance-by
instance performance comparison of our TSSA-® algorithm with respect to the
state-of-the-art heuristics, using the test-suite proposed in [28]. In the second
part TSSA-® is compared against two previously reported best algorithms
over 9 very large graphs [22].

3 www.lsi.upc.es/~ jpetit/MinLA/Experiments

4 ftp.cs.umn.edu/users/kumar/Graphs
® www.labri.u-bordeaux.fr/Equipe/PARADIS/Member/pelegrin/graph
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Table 1

Performance comparison between TSSA-® and the following state-of-the-art heuris-
tics: SS+SA [27, 28], BDT+SA [4], MS [22], AMG [33] and MA [31]; over 21 bench-
marks proposed in [28].

TSSA-®
Graph |V| |E| IFIM C Reference C Avg. Dev. T Ac
randomAl 1000 4974 972583 867214 [31] 866968 866975.4 8.2 86.5 -246
randomA2 1000 24738 6724470 6528780 [28] 6522206 6522221.6 43.0 181.0 -6574
randomA3 1000 49820 14493215 14238712 [31] 14194583 14194585.5 2.6 279.1 -44129
randomA4 1000 8177 1845977 1718746 [31] 1717176 1717179.6 3.1 90.0 -1570
randomG4 1000 8173 280961 140211 [31, 33] 140596  140597.0 1.1 76.5 385
bintreel0 1023 1022 71517 3696 [33] 3696 3697.1 1.6 38.8 0
hcl0 1024 5120 523776 523776 [4, 22, 31, 33] 523776  523776.0 0.0 1.2 0
mesh33x33 1089 2112 44430 31729 [22, 33] 31856 31904.2 62.5 89.9 127
3elt 4720 13722 481815 357329 [31, 33] 359151  359176.0 26.4 1030.8 1822
airfoill 4253 12289 384013 272931 [33] 276381 276866.5 511.8 982.1 3450
whitaker3 9800 28989 1231912 1144476 [33] 1143645 1145304.7 1145.3 3330.1  -831
cly 828 1749 70922 62262 [31, 33] 62230 62234.4 3.8 328 -32
c2y 980 2102 90347 78822 [33] 78757 78810.8 159.3 46.7 -65
c3y 1327 2844 151622 123376 [31] 123145 123151.1 4.8 933 -231
cdy 1366 2915 131106 115051 [31] 114936 114971.6 93.8 88.1 -115
cdy 1202 2557 118541 96878 [31] 96850 96877.2 62.4 69.2 -28
gd95¢c 62 144 525 506 [4, 31, 33] 506 506.1 0.3 2.1 0
gd96a 1096 1676 146407 95242 [31] 95263 952779 19.6 61.0 21
gd96b 111 193 1497 1416 [31, 33] 1416 1417.8 2.9 2.7 0
gd96¢c 65 125 537 519 [4, 22, 28, 31, 33] 519 519.1 0.3 2.8 0
gd96d 180 228 2937 2391 [31, 33] 2391 2394.2 6.7 5.7 0
Average 1.257E4-06 1.255E4-06 -2286.5

4.2 Comparing TSSA-® with the state-of-the-art algorithms

The purpose of this experiment is to carry out a performance comparison of
our TSSA-® algorithm, presented in Section 3, with respect to the following
well-known heuristics: SS+SA [27, 28], BDT+SA [4], MS [22], AMG [33] and
MA [31].

Table 1 displays the detailed computational results produced by this exper-
iment. The first three columns in the table indicate the name of the graph,
its number of vertices and its number of edges. The next column presents the
initial solutions used by our TSSA-® algorithm, which were generated with
the IFIM [25] heuristic detailed in Subsection 3.4. IFIM is very fast and it is
able to compute a good quality solution for the largest graph in this test-suit
(whitaker3) in 0.18 seconds. Column 5 shows the previous best-known solu-
tion reported in the literature for each of the studied instances, while column
6 indicates the reference where this result was obtained. Next four columns
present the best cost in terms of total edge length (C'), the average cost (Avg.),
its standard deviation (Dev.) and the average CPU time (7') in seconds ob-
tained in 10 executions of the TSSA-® algorithm. The quantities in column
T include the time expended by the initial solution computation. Finally, the
difference (A¢) between the best cost produced by TSSA-® and the previous
best-known solution is depicted in the last column.
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From Table 1, one observes that TSSA-® is very competitive in terms of solu-
tion quality, because it obtains a better average solution quality (1.255E+06)
than the best-known solutions (1.257E+406) provided by the five compared
methods. Indeed, TSSA-® is able to improve on 10 previous best-known so-
lutions and to equal these results in 6 instances. In several benchmarks the
improvement achieved leads to a significant decrease of the cost (A¢ up to
—44129). For the other 5 tested graphs, TSSA-® did not reach the best re-
ported solutions, but its results are very close to them (in average 0.494%).
On the other hand, the SS+SA, BDT+SA, MS, AMG and MA algorithms
only equal the previous best-known solutions in 2, 3, 3, 13 and 15 instances
respectively. These five algorithms have found arrangements with higher cost
than the previous best-known solutions for the rest of the 21 graphs.

With respect to the computational effort we would like to point that, the run-
ning times from these five algorithms cannot be compared directly with ours,
since the computational platforms that were used are different. Nevertheless,
to have an idea of these magnitude differences, we have obtained a CPU com-
parison made with 3300 benchmarks from the Internet site Tom’s hardware
guide© .

This information allows us to observe that the running time of SS+SA for the
largest graph in this test-suit (whitaker3), was over 11 hours using a computer
(K6 III at 600MHz) which is about 5 times slower than our platform. For the
same instance and compared with our computer, the CPU time consumed for
each of the other algorithms is: BDT+SA, 8 hours using a machine (Pentium
IIT at 600 MHz) 3 times slower; MS, 127.79 seconds in a CPU (Pentium III at
700 MHz), which is about 2.6 times slower; MA, 15299.72 seconds employing a
computer with the same characteristics than ours. For the AMG algorithm the
authors did not present the consumed CPU time, so we have obtained their
source code to compile it in a computer similar to that used in [33] (Pentium
IV at 1.7 GHz), which is approximatively 0.2% slower than ours. Then, it was
executed on the graph whitaker3 resulting in a CPU time of 280.28 seconds.

In conclusion, even if the results attained by our TSSA-® algorithm are very
competitive, we have observed that it consumes slightly more CPU time, than
some heuristics specially developed for MinL A such as MS [22] and AMG [33];
but our algorithm is much faster than the previous proposed evolutionary
approach MA [31]. Compared with the other two existing SA based algorithms
(SS+SA and BDT+SA) our approach consumes in average a computing time
slightly smaller than that expended by them.

6 www.tomshardware.fr/cat.php?c=21, histoire et hit parade des CPU.
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Table 2

Performance comparison of TSSA-® over a set of 9 very large benchmarks proposed
in [22].

(a) TSSA-® is stopped when it begins to improve the previous best-known
solution.

MS AMG TSSA-®

Graph  |V] |E| C T C T C T Ac  Ar
tooth 78136 452591 255465042 10.5 227639682 27.0 227634482 52.7 -5.20E103 0.95
ocean 143437 409593 141732687 13.5 118882522 72.0 118880582 147.8 -1.94E+03 1.05
mrngA 257000 505048 348448986 23.5 305560971 90.0 305503135 290.8 -5.78E404 2.23

rotor 99617 662431 247583742 16.5 221832991 42.0 221832985 573.1 -6.00E+400 12.65
598 110971 741934 340886008 19.0 281033967 57.0 281032048 392.3 -1.92E403 5.88
144 144649 1074393 772846779 28.5 745701842 84.0 745682093 407.1 -1.97E+04 3.85

ml4b 214765 1679018 1004606217 40.0 857743008 130.0 - - - -
mrngB 1017253 2015714 3558254373 98.0 3254023540 520.0 3253970040 1529.6 -5.35E4+04 1.94
auto 448695 3314611 4501150138 100.0 3871472605 340.0 - - - -
Average -2.00E+04 4.08

(b) TSSA-® is stopped when the evaluation function mean value shows only very
small changes (see Subsection 3.7).

IFIM TSSA-®
Graph C T C Avg. Dev. T Ao Ar
tooth 253104451 0.09 214678297  214884320.5 326043.8 361.6 -1.30E4-07 12.39

ocean 210694459 0.10 114722301  114908560.6 219666.8  553.5 -4.16E406  6.69
mrngA 697873953 0.19 294042454  294819720.3 798840.4 639.4 -1.15E+07  6.10

rotor 286752751 0.14 221696343  222045040.2 496501.4 952.4 -1.37E4-05 21.68
598 351481792 0.20 280075154  280567592.1 721882.8  743.6 -9.59E4-05 12.05
144 915001621 0.26 736442970  736844481.8 449505.6  770.3 -9.26E4+06  8.17

mldb 1013429382 0.39 859059510  859676014.1 854704.9 4183.3 1.32E+06 31.18
mrngB 8103013010 0.82 3178145258 3178689877.2 806108.0 3254.4 -7.59E407  5.26
auto 5750501188 0.95 4049967166 4050372915.5 775540.9 4842.1 1.78E+08 13.24
Average -1.64E4-07 12.97

4.8  Comparing TSSA-® on very large graphs

There are only two MinLA heuristics previously reported in the literature
that present experiments with the very large instances proposed by Koren
and Harel: MS [22] and AMG [33]. In this section we present a comparison of
the results attained by the TSSA-® algorithm, over this test-suite [22], with
respect to those obtained by the MS and AMG heuristics.

The results presented in Subsection 4.2 show that TSSA-® consumes slightly
more CPU time than the MS and AMG heuristics. Then, to make a fair
comparison among the three methods, we have decided to divide it in two
parts using two different termination conditions. One stopping the TSSA-®
algorithm immediately after it begins to improve the previous best-known
solution and the other one using the usual termination condition presented in
Subsection 3.7.

The data obtained in these comparisons is compiled in Table 2(a) and 2(b),

respectively. Both tables present: in the first column, the name of the studied
instance; in the penultimate column, the difference between the best cost
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attained by TSSA-®, using the corresponding stop condition, and the previous
best-known solution (Ac¢); and in the last column the ratio of the CPU time
consumed by our algorithm and the heuristic which has found the previous
best-known solution (Ar). Columns titled C' and T (in the two tables) display
the best cost attained by each one of the methods (MS, AMG, IFIM and
TSSA-®), and the CPU time in minutes consumed to obtained it. The data
in columns 8 to 11 from Table 2(a) was omitted, for the instances m14b and
auto, because TSSA-® did not improve the previous best-known solution for
these two benchmarks. The results presented for the MS and AMG heuristics
were taken from their corresponding paper. In both cases the heuristics were
executed in a CPU at 1.7 GHz, which is only 0.2% slower than our computer.
Additionally, the average cost (Avg.) obtained in 10 executions of the TSSA-®
algorithm and its standard deviation (Dev.) are presented in columns 5 and
6 of Table 2(b) for informative purpose.

Analyzing the data presented in Table 2(a) and 2(b) lead us to the follow-
ing main observations. First, the solution quality attained by the TSSA-®
algorithm, that is stopped when it improves the previous best-known so-
lution, is very competitive with respect to that produced by the state-of-
the-art heuristics (MS and AMG). In fact, it ameliorates the previous best-
known solution in 7 out of 9 instances, achieving an average improvement of
—2.00E+04 (see column A¢ in Table 2(a)). For certain benchmarks, like the
graph mrngA, an important reduction in cost is accomplished by our algo-
rithm (Agc = —5.78E+04). Nevertheless, TSSA-® finds higher cost solutions
than the AMG heuristic in two of the studied graphs. For instance, the ratio of
the solution found by our algorithm and that produced by AMG is 0.15% over
the benchmark m14b, but it is higher (4.61%) over the graph auto producing
a Ac =1.78E+08. We belive that it is due to the high graph density.

Second, the average computing time consumed by our approach, to produce
these excellent results, is slightly greater than that used by the MS and AMG
heuristics (in average 4.08 times greater). However, since TSSA-® outperforms
the other two compared methods in terms of cost, we believe that the extra
consumed computing time is fully justified. Furthermore, it can be observed
in the second part of the comparison (Table 2(b)) that TSSA-® is able to
continue improving the solution quality when the stop condition described in
Subsection 3.7 is used (i.e. it is executed for longer time). This leads to accom-
plish an important reductions in cost, as is the case of the graph mrngB, where
the reduction obtained is A¢ = —7.59E+07. In contrast the MS and AMG
heuristics do not take advantage of longer executions, as it was mentioned by
their respective authors [22, 33].

This favorable behavior of TSSA-® is illustrated in Fig. 2, where its conver-

gence process is presented over the tooth instance. The plot represents the
average solution quality obtained in 10 executions (ordinate) with respect to
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Figure 2. Convergence process of the average solution quality obtained by TSSA-®
with respect to the consumed CPU time (in minutes) over the tooth graph. The
stop condition described in Subsection 3.7 was used.

the consumed computing time in minutes (abscissa). Two lines denoting the
best solution found by MS and AMG are also included for comparison pur-
poses. From this figure it can be seen that the TSSA-® continues reducing
the cost almost continuously after outperforming the other compared heuris-
tics. For instance, it is able to reach a cost of 223988122.2 expending only
5.34 longer time than the AMG heuristic (i.e. 171.10 minutes), which repre-
sents an improvement of Ax = —3.65E406. The maximal amelioration in cost
(214884320.5 vs. 227639682 for AMG) is obtained using 361.56 minutes.

5 Discussion

The purpose of the experiments presented in this section is to better under-
stand the influences of some key features of any SA algorithm. In some of these
experiments we have used a slightly modified version of the TSSA-® algorithm
presented in Section 3, which starts from a random initial solution and at a
temperature which warranties 70% of accepted moves in the first Metropolis
round. This modified algorithm called OSSA (for one stage SA) allows us to
better appreciate the studied influences.

The 30 benchmark instances described in Subsection 4.1 were used consis-
tently over all the experiments presented in the following subsections. Similar
results were obtained with all of them, so, for the reason of space limitation,
we have decided to show the product of these experiments with only some
representative graphs. All the results presented in this section are based on
average data obtained in 10 independent runs.
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Figure 3. (a) Performance comparison of four neighborhood functions using the
OSSA algorithm. (b) Performance comparison with 9 values of p for the N3(p,x)
neighborhood function.

5.1 Influence of the neighborhood functions

The neighborhood function is one of the critical elements for the performance
of any local search algorithm. In this study we have considered not only the
functions N;(p) and Ny(p) presented in Subsection 3.2, but also two other
neighborhood relations defined in Eq. 15 and 16, where swap(p, u, v, w) is the
result from applying the operations swap(p,u,v) and swap(p, v, w) succes-
sively.

Ni(p) = (¢ € o - swaplp,u,0) = ¢, (wv) €V, ve AW} (15)
Ns(@) ={¢ € & : swap(p,u,v,w) =¢', (u,v,w) €V, u#v#w} (16)

Experiments have been carried out to compare the performance of these four
neighborhood functions using the OSSA algorithm (see Section 5). The plot
presented in Fig. 3(a) shows the differences in terms of average solution quality
attained by OSSA, when each one of the studied neighborhood relations is
used to solve the tooth benchmark instance. From this graph it can observed
that the best performance is attained by OSSA when the Ns(¢) neighborhood
function is used (LA = 235301805.89). On the other hand, N;(¢) allows to
reduce the total cost of the graph faster than Ny(p), however it causes that
our OSSA algorithm gets stuck on some local minima, given its exploitation
power.

Taking into account the complementary characteristics of both neighborhood
functions, we have decided to combine them to get a better commitment be-
tween exploration and exploitation of the search space. This combination,
called N3(p, ), was presented in Formula 5, where p represents the probabil-
ity to apply Ni(p) (the rest of the time Ny(¢p) is employed).
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In order to find the most suitable value for the probability p, used in N3(¢p, z),
we proceeded as follows: For each one of the 9 values of p, in the inter-
val [0.10,0.90] with step of 0.10, 10 executions of the OSSA algorithm over
the graph tooth were performed (similar results were obtained with other in-
stances). The average results of these executions are plotted in Fig. 3(b). It
is evident from this graph that the best average cost is obtained by OSSA
when a probability p = 0.90 is used by the N3(p,x) neighborhood function
(LA = 225943530.37). It is important to remark that this probability allows
our combined Nj(p,x) neighborhood function to obtain even better results
than Na(yp).

5.2 Influence of the evaluation functions

The evaluation function is in charge of guiding the search process toward good
solutions in a combinatorial search space. For this reason it is a key compo-
nent in any heuristic search algorithm. This subsection presents a series of
experiments designed to study the characteristics of the ® evaluation function
(see Subsection 3.3) and provide more insights into its real working.

First, a study of the ® evaluation function effectiveness with respect to the
conventional LA evaluation function was conducted. For this purpose, a Steep-
est Descent (SD) algorithm was employed. The choice of the SD algorithm for
this comparison is fully justified by the fact that SD is completely parameter
free, and thus it allows a direct comparison of the two evaluation functions
without bias. The implemented SD algorithm with evaluation function f(y)
starts from the initial solution ¢ € &/ and repeats replacing ¢ with the best
solution in its neighborhood N»(p) until no better arrangement is found. Lets
call SD-LA and SD-® the algorithm depending on which evaluation function
it uses.

The results of this comparative study were presented in detail in [31]. From
these results one observes that the SD algorithm that employs ®, consistently
has better results than the algorithm that uses LA in all the tested instances.
The advantage of using ® as evaluation function is well summarized in Fig. 4,
where the behavior of the studied evaluation functions is presented over the
randomAl instance.

In Fig. 4(a) the X axis represents the number of moves, while the Y axis in-
dicates the average solution quality. Remark that the SD-LA algorithm stops
the search process earlier than SD-®, basically because LA can not distinguish
arrangements with the same cost given as consequence a critical deficiency in
finding improving neighbors. This fact is easily seen in Fig. 4(b), where the
evolution of the average number of improving neighbors (Y axis) with respect
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Figure 4. Graphs representing the behavior of the compared evaluation functions
over the randomAl instance using a SD algorithm. (a) Average solution quality,
(b) Average improving neighbors.

to the number of moves is depicted. From this figure we can observe that SD-
® produces better results because it is capable of identifying more improving
neighbors and to distinguish those that orient better the search process. Ad-
ditionally, these excellent results can be obtained without incrementing the
computing time.

After having studied the characteristics of ® by using a simple SD algorithm,
we have decided to evaluate its practical usefulness within the OSSA algorithm
described in Section 5. Let us call it OSSA-LA or OSSA-® to distinguish which
evaluation function is employed. The algorithms were compiled and run in our
computational platform using the same parameters in both cases.

In all the studied instances we have observed that OSSA-® consistently pro-
duces better results than OSSA-LA. This dominance is illustrated in Fig. 5,
where the behavior of the studied evaluation functions is analyzed over the
randomAl instance. The ordinate represents the solution quality, while the
abscissa indicates the number of moves. From this graph it can be seen that
OSSA-® is more effective in searching better solutions than OSSA-LA at ev-
ery instant of the search process. Indeed, it is possible because ® is able to

overcome the disadvantages presented by the classic evaluation function (see
Subsection 3.3).

5.8 Influence of the cooling schedules

The third experiment has the objective to understand the influence of the
cooling schedule in our TSSA implementation. For this study we have selected
two representative cooling schedules reported in the literature: geometrical [21]
and statistical [2]. Then, we have implemented them within the OSSA algo-
rithm described at the begin of Section 5. We named them OSSA-Geometric
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Figure 6. Performance comparison among three different cooling schedules over the
randomAl instance.

or OSSA-Statistical to distinguish which cooling schedule is employed.

For both algorithms the method described in [2] to compute the initial tem-
perature was used. It permits to ensure a selected initial acceptance rate. The
two algorithms start from a random initial solution and generate r moves at
each Metropolis round. Then, in the OSSA-Geometric algorithm, the next
temperature is calculated by reducing its current value (T_;) with the use of
the following relation: Ty, = Ty_1 * 0.96. On the other hand, OSSA-Statistical
decrements the current temperature by applying Eq. 13. This process contin-
ues for both algorithms until the termination condition detailed in Subsection
3.7 is met.

The results produced by this comparison show the advantage of using the sta-
tistical cooling schedule. This tendency is exemplified in Fig. 6, which shows
the typical behavior of OSSA-Statistical curve plotted against the OSSA-
Geometric curve. The X axis represents the number of moves, while the Y
axis corresponds to the solution quality. This graph also includes a third curve
representing the evolution of the TSSA-® presented in 3 for comparative pur-
poses. Remember that TSSA-® uses also the statistical cooling schedule, but
it starts from a good quality solution and at a suitable temperature determi-
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nated by the method proposed in [35].

From Fig. 6 one observes that the OSSA algorithm using the statistical cooling
schedule produces better results than those obtained by the OSSA-Geometric
algorithm and using less moves. Indeed, it is possible because OSSA-Statistical
adjusts the current temperature by using certain collected information from
the visited regions of the search space, while OSSA-Geometric does not. It
allows OSSA-Statistical to explore the search space in a more efficient way. The
third curve in Fig. 6 enables us to observe the important speedup achieved by
the TSSA-® algorithm with respect to the other two compared algorithms. The
experiments carried out, over the whole test-suit, show that TSSA-® converges
in average 24.9% faster than the OSSA-Statistical algorithm, because it needs
fewer moves, and consequently less computing time to return a solution of
good quality.

6 Conclusion

In this paper, we have introduced a highly effective Two-Stage Simulated
Annealing algorithm (TSSA-®), which integrates the following high impact
features:

e An efficient heuristic to generate initial solutions of good quality. This first
stage of the search allows us to replace the SA actions occurring at the
highest temperatures and thus to save important computing time.

e A compound neighborhood function which combines a carefully designed
neighborhood with a random swap neighborhood. This compound neigh-
borhood allows the search to quickly reduce the total cost of a graph, while
avoiding to get stuck on some local minima.

e A refined and more discriminating function (®) to evaluate arrangements.
This evaluation function considers not only the total edge length (LA) of
an arrangement, but also additional semantic information contained in it to
distinguish solutions with the same LA value, allowing thus the search to
better explore the combinatorial space.

e An effective statistical cooling schedule. It allows TSSA-® to take advantage
of the good quality of the initial solution generated in the first stage of the
algorithm, which results in a significant speedup of approximately 24.9%
with respect to the traditional SA algorithm.

To assess the practical effectiveness of this TSSA-® algorithm, we have carried
out extensive experimentation using a set of 30 benchmark instances of the
literature: 21 small and medium sized instances from [28] and 9 very large
instances from [22]. In these experiments the TSSA-® algorithm was carefully
compared with five state-of-the-art algorithms. The results show that TSSA-®
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was able to improve 17 previous best-known solutions out of 30 benchmarks
in terms of solution quality: 10 in the set of 21 instances and 7 in the set of 9
very large graphs.

Also, we have shown extensive studies about three key elements of the TSSA-®
algorithm: neighborhood function, evaluation function and cooling schedule;
confirming that appropriated choices of these elements are indispensable for
reaching high performance of a SA algorithm.

Finally, we hope the design of the TSSA-® algorithm sheds some additional
lights on how SA should be adapted for effective solving of hard combinational
problems.
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