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ABSTRACT
The Maximum Parsimony (MP) problem aims at recon-
structing a phylogenetic tree from DNA sequences while
minimizing the total number of genetic transformations. In
this paper two different metaheuristic algorithm for finding
near-optimal solutions for the MP problem are proposed:
iterated local search (ILS) and simulated annealing (SA).
Different possibilities for the key components of these al-
gorithms were carefully analyzed in order to find the com-
bination of them offering the best quality solutions to the
problem at a reasonable computational effort. The perfor-
mance of both metaheuristics is investigated through exten-
sive experimentation over well known benchmark instances
showing that our SA algorithm is able to improve some pre-
vious best-known solutions.
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1 Introduction

One of the main problems in Comparative Biology consists
in establishing ancestral relationships between a group of
n species or homologous genes in populations of different
species, designated as taxa. These ancestral relationships
are usually represented by a binary rooted tree, which is
called a phylogenetic tree or a phylogeny [1].

In the past the phylogenetic trees were inferred by us-
ing morphologic characteristics like color, size, number of
legs, etc. Nowadays, they are reconstructed using the infor-
mation from biologic macromolecules like DNA (deoxyri-
bonucleic acid), RNA (ribonucleic acid) and proteins. The
problem of reconstructing molecular phylogenetic trees has
become an important field of study in Bioinformatics and
has many practical applications in biology and medicine
[2].

Given a set S = {S1, S2, . . . , Sn} composed by n
sequences of length k over a predefined alphabet A (op-
erational taxa previously aligned). A binary rooted phy-
logenetic tree T = (V,E) for representing their ancestral
relationships consists of a set of nodes V = {v1, . . . , vr}
and a set of edges E ⊆ V × V = {{u, v}|u, v ∈ V }. The
set of nodes |V | = (2n − 1) is partitioned into two sub-
sets: I , containing n − 1 internal nodes (hypothetical an-
cestors) each one having 2 descendants; and L, composed
of n leaves, i.e., nodes with no descendant.

The parsimony sequence Pw for each internal node
Iw ∈ I whose descendants are Su = {x1, · · · , xk} and
Sv = {y1, · · · , yk} is calculated with the following ex-
pression:

∀i, 1 ≤ i ≤ k, zi =

{
xi ∪ yi, if xi ∩ yi = ∅
xi ∩ yi, otherwise (1)

Then, the parsimony cost of the sequence Pw is de-
fined as follows:

φ(Pw) =

k∑
i=1

Ci where Ci =

{
1, if xi ∩ yi = ∅
0, otherwise

(2)
and the parsimony cost for the tree T is obtained as fol-

lows:

φ(T ) =
∑
∀w∈I

φ(Pw) (3)

Thus, the Maximum Parsimony (MP) problem con-
sists in finding a tree topology T ∗ for which φ(T ∗) is min-
imum, i.e.,

φ(T ∗) = min{φ(T ) : T ∈ T } (4)

where T is the search space of the problem, which is com-
posed by all the possible tree topologies.

There exist many different methods, reported in the
literature, to solve the problem of reconstructing phylo-
genetic trees. These can be classified in three different
approaches. Distance methods [3, 4], Probabilistic meth-
ods [5] and Cladistic methods [6, 7]. In this paper we focus
our attention in a cladistic method based on the Maximum
Parsimony (MP) criterion, which is considered in the liter-
ature as the most suitable evaluation criterion for phyloge-
nies [8, 9].

It has been demonstrated that the MP problem is NP-
complete [10], since it is equivalent to the combinatorial
optimization problem known as the Steiner tree problem
on hypercubes, which is proven to be NP-complete [11].
Furthermore, the MP problem is highly combinatorial since
the size of its search space |T |, i.e., the number of tree
topologies is given by the following expression [12]:

(2n− 3)!/2n−2(n− 2)! (5)

where n is the number of studied species.



The MP problem has been exactly solved for very
small instances (n ≤ 10) using a branch & bound algorithm
(B&B) originally proposed by Hendy y Penny [13]. How-
ever, this algorithm becomes impractical when the number
of studied species n increases, since the size of the search
space suffers a combinatorial explosion. Therefore, there
is a need for heuristic methods to address the MP problem
in reasonable time.

Andreatta and Ribeiro [14] compared three greedy al-
gorithms of different complexity: 1stRotuGbr, Gstep wR
and Grstep. They concluded from their experiments that,
Gstep wR was more efficient than 1stRotuGbr, but expend-
ing more computational time. Grstep achieved good results
only when it was combined with a local search method.
Even when these methods attained good quality solutions,
they were still far away from the optimal solutions.

Later, Ribeiro and Viana [15] applied a greedy ran-
domized adaptive search procedure (GRASP) for solving
the MP problem and showed that this algorithm had the
best performance with respect to the state-of-the-art algo-
rithms.

Different memetic algorithms were also reported for
the MP problem. Among them we found the work of Mat-
suda [16] and Lewis [17]. More recently Richer, Goëffon
and Hao [18] introduced a memetic algorithm called Hydra
which yields the best-known solutions.

This paper aims at developing a metaheuristic algo-
rithm for finding near-optimal solutions for the MP prob-
lem under the Fitch’s criterion. To achieve this, we have
designed and evaluated two different metaheuristics: iter-
ated local search (ILS) and simulated annealing (SA). Dif-
ferent possibilities for the main components of these algo-
rithms were carefully analyzed in order to find the combi-
nation which offers the best quality solutions to the prob-
lem at a reasonable computational effort. The performance
of both metaheuristics is assessed with a test-suite, com-
posed by 18 benchmark instances taken from the literature.
The computational results are reported and compared with
previously published ones, showing that our SA algorithm
is able to improve some previous best-known solutions.

The rest of this paper is organized as follows. In Sec-
tion 2, the components of our iterated local search (ILS)
algorithm are discussed in detail. Then, our simulated an-
nealing (SA) algorithm and its implementation details are
presented in Section 3. Section 4 is devoted to computa-
tional experiments carried out to identify the best compo-
nent combination for both metaheuristics. Finally, the last
section summarizes the main contributions of this work and
presents some possible directions for future research.

2 Iterated Local Search

Iterated local search (ILS) is a metaheuristic algorithm
which has been first proposed by Martin et al. [19] and gen-
eralized later in [20]. It starts by applying a local search
algorithm to an initial solution. Then, at each iteration, the
local optima obtained is perturbed. Local search is applied

to this perturbed solution to generate a new solution which
can be accepted as the new current solution under certain
conditions. This iterative procedure repeats until a given
stop condition is met. In the case of our ILS algorithm,
the search process stops when the maximum number of
non-improving neighboring solutions maxCS allowed is
reached (see Algorithm 1).

Algorithm 1: Iterated local search (ILS)
input: Neighborhood function N , evaluation function f ,

maximum non-improving neighboring solutions
maxCS

s← GenerateInitialSolution();
s′′ ← LocalSearch(s);
if f(s′′) < f(s) then s← s′′;
CS ← 0 ;
while CS < maxCS do

s′ ← Perturbation (s);
s′′ ← LocalSearch(s′);
if f(s′′) < f(s) then

s← s′′;
CS ← 0;

end
else CS ← CS + 1

end
return s

Our ILS algorithm has five essentials components:
initial solution, local search method (embedded heuris-
tic), perturbation, acceptation criterion and stop condition.
Next, we present the implementation details of these com-
ponents.

2.1 Initial Solution

The implementation of a metaheuristic to solve the MP
problem requires an initial solution. In this work we de-
scribe two different methods to generate initial solutions:
random and greedy.

2.1.1 Random Method

This method constructs a phylogenetic tree by assigning
each taxon (leaf) in a randomly selected position of the
tree. This method starts by generating a random permu-
tation of the taxa. This permutation indicates the order in
which each leaf will be added to the tree. Then, the ele-
ments of this permutation are put into the tree in randomly
selected positions. Next we show an example to clarify this
procedure.

Suppose that we have an instance with four taxa
(leaves) {H0, H1, H2, H3}, the first step consists in gener-
ating a random permutation of them, consider for instance
the following permutation: {H2, H3, H0, H1}. Then, the
method creates the root node of the tree and the first and
second taxa of the permutation are binded to it (see Fig. 1).

Each time a new leaf (taxon) is added to the tree, an
internal node is also generated in order to conserve the bi-
nary tree restriction. These new leaves are placed on the
tree in a randomly selected position. Beginning from the
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Figure 1. Creating the root of the tree.

root node, the algorithm randomly chooses either the right
or the left branch of the tree until a leaf is found. In this
position an internal node is created and the new taxon is
inserted (see Fig. 2).
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Figure 2. (a) Possible insertion sites for the taxon H1, (b)
Internal node N1 was generated for inserting taxon H1.

2.1.2 Greedy Method

The proposed greedy method for generating initial solu-
tions proceeds as follows. First, it generates a random
permutation of the studied taxa that indicates the order in
which the leaves (taxa) will be processed. The change in
the cost of the tree, produced by the insertion of the current
taxon in all its possible positions is analyzed. Then, the
current taxon is inserted in the position which minimizes
the increase in the tree’s parsimony.

For instance, consider the following permutation for
an instance having four taxa: {H2, H3, H0, H1}. Our
greedy algorithm creates the root node of the tree and the
first and second taxa of the permutation are binded to it,
just as in the random method (see Fig. 1).

Then, each time a new taxon (leaf) is added to the
tree, the algorithm analyzes all the possible positions where
it can be located. In Fig. 3(a) the leaves tagged with letter
H are considered the possibles insertion sites. Suppose the
cost of the tree in this figure is currently 20, and that it
increases according to the position in which the new leaf
H1 is inserted as follows: H2 27, H0 25 and H3 24. Given
that we are trying to minimize the parsimony cost, the best

position for the new taxon H1 is in H3 because it results in
a parsimony cost of 23 (see Fig. 3(b)).
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Figure 3. (a) Possible insertion sites for the taxon H1 and
its costs, (b) Internal node N1 was generated for inserting
taxon H1 resulting in a cost of 23.

2.2 Local Search

The local search phase of our ILS algorithm is carried out
using a Descent Algorithm (DA). We have selected this lo-
cal search algorithm mainly because of its implementation
simplicity and by the fact that it employs a single parame-
ter, the stop condition. The search process in our DA stops
when the maximum number of non-improving neighboring
solutions allowed maxCS is reached. For our experiments
presented in Section 4 maxCS was fixed to 100. Algo-
rithm 2 presents the pseudo-code of DA.

The neighborhood function is one of the critical ele-
ments for the performance of any local search algorithm.
In DA we have implemented four different neighborhood
functions, two previously reported and two new combina-
tions of them. Next, we briefly describe these neighbor-
hood relations.

N1 implements the Nearest Neighbor Interchange
(NNI) function proposed by Waterman and Smith [21].
It exchanges two subtrees separated by an internal node.
Each tree have 2n − 6 NNI neighboring solutions, n − 3
internal nodes and two possibles moves by edge [22].

N2 represents the Subtree Pruning and Regrafting
(SPR) function originally reported by Swofford and Olsen
[23]. It deletes an internal node with its descendants and
reinserts this subtree in another position generating a new
internal node. For each tree there exists 2(n − 3)(2n − 7)
possible SPR neighboring solutions [24].

N3 and N4 are two different combinations of the
neighboring functions described above. These combina-
tions dynamically interchange between functions N1 and
N2 on the basis of the current number of non-improving
neighboring solutions CS as described in Table 1.

2.3 Neighborhood Functions

In our implementation of the ILS metaheuristic, we used
seven different compound neighborhood functions, which



Neighborhood CS < 50 CS ≥ 50
N1 NNI NNI
N2 SPR SPR
N3 NNI SPR
N4 SPR NNI

Table 1. Neighborhood functions used by DA

Algorithm 2: Descent algorithm (DA)
input: Neighborhood function N , evaluation function f ,

initial solution s, maximum non-improving neighboring
solutions maxCS

CS ← 0;
while CS < maxCS do

Select s′ ∈ N (s);
if f(s′) < f(s) then

s← s′;
CS ← 0;

end
else CS ← CS + 1

end
return s

combines the two basic neighborhood relations N1 and N2

in the following way.
The first four combinations are probabilistic, they ap-

ply the neighborhood N1 with probability p and the neigh-
borhood N2 at a (1.0 − p) rate. Table 2 shows these four
compound neighborhood functions and its associated prob-
ability values.

Neighborhood Probability p
N5 0.50
N6 0.30
N7 0.40
N8 0.70

Table 2. Probabilistic neighborhood functions used by our
ILS implementation.

The other three combinations of the neighborhood
functions N1 and N2 start using one of these functions and
switch to the other depending on the value of the current
number of non-improving neighboring solutions CS as de-
scribed in Table 3.

2.4 Perturbation

The perturbation operator in a ILS method can be seen as
a large random move of the current solution. The pertur-
bation method should conserve some part of the solution
and perturb strongly another part of it to move hopefully to
another region of the search space.

The perturbation phase in our ILS algorithm starts by
randomly selecting two different leaves of the tree. Then,
the positions of these leaves are interchanged to produce a
different tree (see Fig. 4).

Neighborhood N1 N2

N9 CS ≥ 20 CS < 20
N10 CS < 20 CS ≥ 20
N11 40 < CS < 60 CS ≤ 40 or CS ≥ 60

Table 3. Combined neighborhood functions used by ILS,
which employ the number of non-improving neighboring
solutions CS.
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Figure 4. Example of a perturbation. (a) Selection of two
different leaves of the tree, (b) Interchange of the two se-
lected leaves of the tree.

2.5 Acceptance Criterion

The acceptance criterion defines the conditions that the new
solution produced by the local search method must satisfy
to replace the current solution.

In our ILS algorithm the new solutions s′′ produced
by the local search method are only accepted if they im-
prove the cost of the current solution s.

2.6 Stop Condition

Our ILS algorithm stops when it ceases to make progress.
In the proposed implementation a lack of progress exists
when the current number of non-improving neighboring so-
lutions CS reaches the limit maxCS = 100.

3 Simulated Annealing

Simulated Annealing (SA) is a general-purpose stochastic
optimization technique that has proved to be an effective
tool for approximating globally optimal solutions to many



NP-hard optimization problems [25, 26]. The main idea
behind this metaheuristic consists in occasionally replac-
ing the current solution with a non-improving neighboring
solution in a controlled way. The probability of accepting
this kind of non-improving moves is reduced as the search
process is executed. Algorithm 3 presents the pseudo-code
of this metaheuristic.

SA starts by generating an initial solution s ∈ T and
setting the current temperature parameter tk to an initial
value ti. Each iteration of this algorithm consists in ran-
domly choosing a neighboring solution s′ ∈ N (s) of the
current solution s. Then, it is evaluated in order to decide
if s′ should replace s using the Metropolis criterion. This
stochastic criterion depends on the current value of the tem-
perature parameter tk and the difference of cost ∆f be-
tween the neighboring solution s′ and the current solution
s. A move from s to the solution s′ is accepted if one of
the following conditions is met: a) it improves the cost of
the current solution, i.e., ∆f < 0, or b) it worsens the cost
of the current solution (∆f ≥ 0) but the probability of ac-
cepting this move is greater than a random value u between
0 and 1 (e−∆f/Tk > u).

Algorithm 3: Simulated annealing algorithm (SA)
input: N , f, ti, tf , l, α
s← GenerateInitialSolution();
s∗ ← s ;
tk ← ti ;
while tk > tf do

c← 0;
while c < l do

c← c+ 1;
Select s′ ∈ N (s);
∆f ← f(s′)− f(s);
Generate a random u ∈ [0, 1];
if (∆f < 0) or (e−∆f/tk > u) then

s← s′;
if f(s′) < f(s∗) then s∗ ← s′;

end
end
tk ← αtk−1;

end
return s∗ ;

3.1 Initial Solution

The initial solution for our SA algorithm is obtained using
the random and greedy methods presented in Section 2.1.

3.2 Neighborhood Functions

We have implemented eleven compound neighborhood
functions for our SA algorithm by combining the two ba-
sic neighborhood relations N1 and N2 described in Sec-
tion 2.2. The first three combined neighborhood func-
tions switch between the neighborhood functions N1 and
N2 depending on the value of the current temperature tk
as described in Table 4, where tm = (ti − tf )/2 and
ta = (ti − tf )/4.

Neighborhood N1 N2

N12 tk ≤ tm tk > tm
N13 tk > tm tk ≤ tm
N14 tm ≤ tk > ta tk > tm or ta > tk ≥ tf

Table 4. Combined neighborhood functions used by SA
employing the value of the current temperature tk as a com-
bination criterion.

Three other neighborhood functions were imple-
mented which combine N1 and N2 depending on the num-
ber of visited neighboring solutions c at a given temper-
ature tk. The criteria followed to combine these neigh-
borhood functions is detailed in Table 5, where l is the
maximum number of visited solution at temperature tk,
HM = l/2 and TM = 3l/4.

Neighborhood N1 N2

N15 c ≥ HM c < HM
N16 c < HM c ≥ HM
N17 TM > c ≥ HM c < HM or l ≥ c ≥ TM

Table 5. Combined neighborhood functions used by SA
employing the number of visited neighboring solutions c at
a given temperature tk as a combination criterion.

The last five neighborhood combinations are proba-
bilistic, they apply the neighborhood N1 with probability
p and the neighborhood N2 at a (1.0 − p) rate. Table 6
shows these five compound neighborhood functions and its
associated probability values.

Neighborhood Probability p
N18 0.50
N19 0.45
N20 0.40
N21 0.35
N22 0.30

Table 6. Probabilistic neighborhood functions used by our
SA implementation.

3.3 Cooling Schedule

The annealing schedule determines the degree of uphill
movement permitted during the search and is, thus, criti-
cal to the algorithm’s performance. The literature offers a
number of different cooling schedules [27]. In our SA im-
plementation we preferred a geometrical cooling scheme
mainly for its simplicity. It starts at an initial tempera-
ture ti = 2.5

√
n+ k. It allows the algorithm to start ac-

cepting approximatively 60% of the neighboring solutions.
Then, at each round, the algorithm decrements the current
temperature by a factor of α = 0.99 using the relation
tk = αtk−1. For each temperature, the maximum number
of visited neighboring solutions is l = 10000.



3.4 Stop Condition

Our SA algorithm stops if the current temperature reaches
the value tf = 0.1.

4 Experimentation and Results

In this section we present a series of experiments that we
have carried out to determine which of the analyzed meta-
heuristics (ILS and SA) for finding near-optimal solutions
for the MP problem has the better performance.

4.1 Benchmark Instances

In this research work we have used 18 benchmark instances
organized in two sets. The first group consists of 8 real in-
stances commonly used in the literature [14, 15, 28–31].
The characteristics for these instances are shown in the Ta-
ble 7.

Instance Taxa (n) Length (k) Best-known
ANGI 49 59 216
CARP 117 110 548
ETHE 58 86 372
GOLO 77 97 496
GRIS 47 93 172
ROPA 75 82 325
SCHU 113 146 759
TENU 56 179 682

Table 7. Eight real problem instances commonly used in
the literature.

The second group consists of 10 instances which were
randomly generated by Ribeiro and Vianna [15, 32] and
later used by Richer et al. [18]. Table 8 shows the charac-
teristics of this second group of benchmark instances.

Instance Taxa (n) Length (k) Best-known
tst01 45 61 545
tst02 47 151 1356
tst03 49 111 833
tst04 50 97 588
tst05 52 75 789
tst06 54 65 596
tst07 56 143 1270
tst08 57 119 853
tst09 59 93 1145
tst10 60 71 721

Table 8. Ten randomly generated problem instances re-
ported in [32].

In both tables the best-known solutions were taken
from [18], which reports a memetic algorithm, called Hy-
dra, considered as the state-of-the-art algorithm.

4.2 Experimental Conditions and Comparison Crite-
ria

All our experiments were performed under similar condi-
tions. We executed all the algorithms, 100 times with each
problem instance. All the algorithms were coded in C and
were compiled with gcc using the optimization flag -O3.
They were run sequentially into a cluster of 4 processors
Xeon six core X5650 at 2.66GHZ, 32 Gb of RAM and
Linux operating system.

The criteria used for evaluating the performance of
the algorithms are the same as those used in the literature:
the best parsimony cost found for each instance (smaller
values are better) and the expended CPU time in seconds.

4.3 Initialization Methods Comparison

The main objective of this first experiment is to determine
what is the best method for generating initial solutions for
their use in the analyzed metaheuristics. In order to ac-
complish it, we have tested the two different initialization
methods presented in Section 2.1. Table 9 shows the best
parsimony costs obtained for each method over each in-
stance as well as the percent deviation to the best-known
result reported in the literature (∆).

Instance Random ∆ Greedy ∆ Best-known
ANGI 394 0.82 229 0.06 216
CARP 1443 1.63 604 0.10 548
ETHE 815 1.19 393 0.06 372
GOLO 844 0.70 538 0.08 496
GRIS 414 1.41 184 0.07 172
ROPA 677 1.08 351 0.08 325
SCHU 2360 2.11 829 0.09 759
TENU 1442 1.11 726 0.06 682
tst01 684 0.25 582 0.07 545
tst02 1588 0.17 1419 0.05 1356
tst03 1036 0.24 891 0.07 833
tst04 762 0.29 639 0.09 588
tst05 988 0.25 833 0.06 789
tst06 787 0.32 646 0.08 596
tst07 1548 0.21 1356 0.07 1270
tst08 1080 0.27 921 0.08 853
tst09 1412 0.23 1209 0.06 1145
tst10 962 0.33 781 0.08 721

Average 0.700 0.073

Table 9. Performance comparison between two different
initialization methods.

From this table we can observe that the results pro-
vided by the greedy method were consistently better than
those produced by the random method. Indeed, the results
of the greedy method are in average 58.51% better than
those achieved by the random initialization method. Fur-
thermore, these results are produced expending a compu-
tational time equivalent to that consumed by the random
initialization method. The excellent behavior of the greedy
method is better observed in Fig. 5, which presents the re-
sults obtained by each compared method with respect to the
best-known solutions.
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Figure 5. Performance comparison between two different
initialization methods with respect to the best-known solu-
tions.

4.4 Metaheuristic Algorithms Comparison

Two different metaheuristic algorithms were proposed in
this work for solving the maximum parsimony problem:
ILS and SA. For each one of these algorithms we have
analyzed different possibilities for their key components.
In particular, the influence of 2 initialization procedures
and 22 neighborhood functions over the performance of
these algorithms was extensively tested. These experi-
ments leaded us to discover the components combination
for each algorithm which yields the best possible perfor-
mance. Given the space restrictions we did not present
these experiments in detail. Table 10 summarizes the best
components combination for each studied metaheuristic.

Algorithm Initialization Neighborhood
ILS greedy N11

SA greedy N20

Table 10. Components that provide the best performance
for the proposed metaheuristic algorithms.

The rest of this section aims at presenting the experi-
mental results obtained with the analyzed algorithms using
their best components combinations. Table 11 shows the
best results obtained by these metaheuristics and its per-
cent deviation to the best-known solutions (∆). A ∆ = 0.0
means that the best-known solution was reached, while
a ∆ < 0.0 indicates that the best-known result was im-
proved. We have also included the DA algorithm in these
experiments for comparison purposes.

From Table 11 we can observe that the best perfor-
mance is obtained by our SA algorithm. Indeed, it is able
to improve on 2 previous best-known solutions and to equal
these results in 13 instances. For the other 3 tested in-
stances, SA did not reach the best reported solutions but
its results are very close to them (∆ ≤ 0.002).

On the other hand, we can observe that the results pro-

Instance DA ∆ ILS ∆ SA ∆ Best-known
ANGI 216 0.000 216 0.000 216 0.000 216
CARP 564 0.029 549 0.002 548 0.000 548
ETHE 374 0.005 373 0.003 372 0.000 372
GOLO 503 0.014 496 0.000 496 0.000 496
GRIS 172 0.000 172 0.000 172 0.000 172
ROPA 329 0.012 325 0.000 325 0.000 325
SCHU 771 0.016 759 0.000 759 0.000 759
TENU 685 0.004 682 0.000 682 0.000 682
tst01 558 0.024 550 0.009 545 0.000 545
tst02 1370 0.010 1364 0.006 1355 -0.001 1356
tst03 851 0.022 844 0.013 833 0.000 833
tst04 602 0.024 592 0.007 588 0.000 588
tst05 805 0.020 796 0.009 789 0.000 789
tst06 612 0.027 606 0.017 596 0.000 596
tst07 1302 0.025 1290 0.016 1271 0.001 1270
tst08 876 0.027 871 0.021 855 0.002 853
tst09 1168 0.020 1157 0.010 1146 0.001 1145
tst10 736 0.021 731 0.014 720 -0.001 721

Average 0.0167 0.0071 0.0001

Table 11. Performance comparison between two proposed
metaheuristics: ILS and SA.

duced by ILS are better than those furnished by DA since
it is able to match 6 best-known solutions and DA only
2. For the rest of the instances these algorithms did not
reach the best reported results. Thus, we can conclude from
this experiment that SA is a better metaheuristic algorithm
than DA and ILS for solving the selected benchmark in-
stances of the MP problem. This can be better observed in
Fig. 6, which presents for each studied instance a perfor-
mance comparison between these metaheuristic algorithms
and DA with respect to the best-known solutions.
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Figure 6. Performance comparison between two meta-
heuristic algorithms and DA for the MP problem.

Regarding the computational time expended by the
analyzed methods we have carried out an additional ex-
perimental comparison. The results of this comparison are
summarized in Table 12. It presents for each algorithm the
best solution achieved (Cost) in one execution over the in-
stance tst08, the expended computational time in seconds,
and the total number of iterations needed, i.e., the total calls
to the objective function φ(T ).



Algorithm Cost Time Iterations
DA 891 0.15 1206
ILS 881 97.36 1365220
SA 867 27.00 357131

Table 12. Computational time comparison between two
metaheuristic algorithms and DA over the instance tst08.

From Table 12 one observes that DA has the best run-
ning time with 0.15 seconds, but its cost of 891 was the
worst. The ILS algorithm provided a better cost than DA
(881), however, it consumes considerably much more com-
putational time than any of the analyzed algorithms (97.36
seconds). The best cost was obtained by the SA algorithm
(867) by expending only 27.00 seconds.

The computational effort of the compared algorithms
can be better appreciated in Fig. 7. It plots three execu-
tion profiles which represent the evolution of the best solu-
tions attained by the compared algorithms over the instance
tst08. From this figure we can clearly observe that the SA
algorithm provides the best trade-off between the needs for
good quality solutions, and reasonable consumed computa-
tional time. This figure allows us to summarize the overall
behavior of the compared algorithms since similar results
were obtained with all the other tested instances.
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Figure 7. Execution profiles produced during one run of
the compared algorithms over the instance tst08.

5 Conclusion

In this paper we have presented two different metaheuris-
tic methods for finding near-optimal solutions for the MP
problem under the Fitch’s criterion, an iterated local search
(ILS) and a simulated annealing (SA). Different possibili-
ties for the key components of these algorithms were care-
fully designed and analyzed in order to discover the com-
bination of them which yields the best quality solutions to
the problem at a reasonable computational effort.

The performance of both metaheuristics was investi-
gated through extensive experimentation over a set of 18

well known benchmark instances. The results from this
experiments have shown that our SA algorithm is able to
improve 2 best-known solutions (tst02 and tst10) and to
match these results in 13 instances. For the other 3 tested
instances, SA did not reach the best reported solutions but
its results present a very small deviation with respect to
them (∆ ≤ 0.002).

Finding near-optimal solutions for the MP problem is
a very challenging problem. However, the introduction of
this SA algorithm opens up an exciting range of possibil-
ities for future research. One fruitful possibility is to ana-
lyze the use of different cooling schedules, stop conditions
and mechanism for adapting the maximum number of vis-
ited neighboring solutions at each temperature depending
on the behavior of the search process.

Regarding our ILS implementation, we consider that
is necessary to test different perturbation methods and ac-
ceptation criteria.
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2006.

[32] C. C. Ribeiro and D. S. Vianna, “A genetic algo-
rithm for the phylogeny problem using an optimized
crossover strategy based on path-relinking,” Proc. of
2nd Bresil Workshop on Bioinformatics, pp. 97–102,
2003.


