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Abstract—The hydrophobic-polar (HP) model is an abstract
representation of the protein structure prediction problem, where
hydrophobic interactions are assumed to be the major determi-
nant of the folded state of proteins. This paper inquires into the
constraint-handling design issue of metaheuristics, which is cru-
cial when dealing with such a challenging and highly constrained
combinatorial optimization problem. A new constraint-handling
strategy for the HP model, based on multiobjective optimization
concepts, is here proposed. The multiobjective approach for
handling constraints in this particular problem is explored for the
first time in this study, to the authors’ knowledge. Using a basic
genetic algorithm and a large set of test instances for the two-
dimensional HP model (based on the square lattice), the proposed
multiobjective strategy was evaluated and compared with respect
to commonly adopted techniques from the literature. On the
one hand, through such a comparative analysis it was possible
to demonstrate the suitability of the proposed multiobjective
strategy. On the other hand, the results of this study provide
further insight into whether infeasible protein conformations
should be allowed or prevented during the metaheuristic search
process, which has been a subject of concern in the specialized
literature.

I. INTRODUCTION

Proteins are composed from a set of 20 different building
blocks called amino acids, carrying out most of the key
processes associated with life. The specific configuration of
amino acids in a protein determines how it folds into a
unique and compact three-dimensional structure which defines
its biological function [1]. The protein structure prediction
problem, PSP, is the problem of finding the native (energy-
minimizing) conformation for a protein given only its amino
acid sequence.

The hydrophobic-polar (HP) model abstracts PSP by taking
hydrophobicity as the main driving force in the protein folding
process [12, 21]. Despite being an abstract formulation, the
HP model of the PSP still represents a challenging problem
in combinatorial optimization [2, 7]. Evolutionary algorithms
and other metaheuristics are often implemented for searching
the huge conformational space of this problem [23, 33].

An important decision when designing metaheuristics is
how to deal with the constraints that the problem at hand
involves. In the HP model of the PSP, a feasible protein con-
formation is defined as an embedding of the protein chain on
a given lattice, such that this embedding presents connectivity

and self-avoidance. While the connectivity property is implic-
itly satisfied by using an internal coordinates representation,
see Section II-A, an explicit mechanism is required to be
implemented in order to address the self-avoidance constraint.

In the literature, two main approaches have been adopted
to cope with this issue. On the one hand, the search can be
limited to the space of only feasible, self-avoiding protein
conformations. This is usually accomplished either (i) by
adapting the variation operators to iterate until new feasible
conformations are generated, i.e., infeasible conformations are
always rejected [4, 5, 8, 9, 13, 32]; (ii) by using special-
ized operators which are closed on the feasible space, i.e.,
always transforming feasible conformations into other feasible
conformations [6, 22, 31]; or (iii) by implementing repairing
procedures in order to map infeasible conformations into
feasible ones [3, 6, 18, 29]. These strategies can be referred
to as reject strategies, preserving strategies and repairing
strategies, respectively [30]. On the other hand, infeasible
protein conformations can also be taken into consideration,
which is commonly done by implementing a penalty strategy.
Using a penalty strategy, the energy value of a candidate
conformation is negatively affected according to the number
of collisions (overlaps) it presents [10, 19, 20, 24, 26].

It is not clear from the literature, however, whether it can be
better to allow or to prevent infeasible protein conformations
from being considered during the search process. Rather, very
different and, to some extent, conflicting results have been
reported in this respect [6, 10, 13, 20, 29]. It has been argued
that the path from one compact feasible conformation to
another, can be significantly shorter if the search is allowed to
proceed through the space of infeasible conformations [20].
This has been, perhaps, the main motivation for applying
penalty strategies when solving the HP model of the PSP.
In spite of its simplicity, an inherent drawback of such an
approach lies in the need for defining the severity of the penal-
ties to be applied. Finding the right balance between objective
function and penalty values has been regarded to be a difficult
optimization problem itself; it is highly problem/instance-
dependent and even different stages of the search process may
require a different adjustment [25, 27].

In this paper, the use of multiobjective optimization con-
cepts as a constraint-handling strategy for the HP model



of the PSP is proposed. The originally single-objective HP
model is restated in multiobjective form by incorporating
an additional objective function which measures the total
number of collisions in a candidate conformation. In this
way, infeasible protein conformations may compete against
feasible ones at the selection process, being potentially ex-
ploited during the metaheuristic search. The multiobjective
approach to constraint-handling has been previously applied
with success to different problems in the literature. For a
recent review on this topic the reader is referred to [25].
Similarly, multiobjective formulations of the HP model have
been recently reported as effective mechanisms to escape from
local optima [15]–[17]. Note, however, that the use of multi-
objective optimization methods for handling the constraints
of this particular problem is studied for the first time in the
present paper, to the best of the authors’ knowledge.

In order to investigate the suitability of the proposed multi-
objective constraint-handling strategy, a comparative study is
conducted in this paper. The proposed multibjective approach
is evaluated with respect to conventional mechanisms com-
monly found in the specialized literature, namely, the use of
reject and penalty strategies. A basic genetic algorithm and a
large set of test sequences for the two-dimensional HP model,
based on the square lattice, have been adopted for this sake.

The remainder of this paper is structured as follows. Back-
ground concepts and notation are covered in Section II. The
studied constraint-handling methods, including the multiobjec-
tive approach proposed in this paper, are described in Section
III. Section IV details the conducted experiments, the im-
plemented genetic algorithm and the performance assessment
methodology. The obtained results are discussed in Section V.
Finally, Section VI provides the conclusions of this study.

II. BACKGROUND AND NOTATION

A. The hydrophobic-polar model

Amino acids can be classified as hydrophobic (H) or polar
(P ) on the basis of their affinity for water. While the H amino
acids tend to clump together on the inside of proteins, the so-
called hydrophobic collapse, the P ones are usually found at
the outer surface interacting with the aqueous environment.
The hydrophobicity of the amino acids represents, therefore,
one of the major stabilizing forces responsible for the final
three-dimensional conformation of proteins.

In the HP model [12, 21], proteins are abstracted as chains
of H- and P -type beads. Protein sequences are thus of the
form S = (s1, s2, . . . , sL), where si ∈ {H,P} denotes the i-
th amino acid and L is the length of the sequence. A feasible
conformation is modeled as an embedding of the protein chain
on a given lattice such that two properties are satisfied: (i) self-
avoidance, two different amino acids can not be mapped to the
same lattice position; and (ii) connectivity, consecutive amino
acids in S are to be also adjacent in the lattice.

With the aim of emulating the hydrophobic collapse, the
goal in the HP model is to maximize the interaction among H
amino acids in the lattice. Such interactions are to be referred
to as topological contacts. Two H amino acids si and sj are
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Fig. 1. Optimal conformation for sequence HPHPPHHPHPPHPHHPPHPH
of length L = 20 on the two-dimensional square lattice. Black and white balls
denote H and P residues, respectively. H-H topological contacts have been
numbered. The energy of this conformation is E(c) = −9, since HHtc = 9.

said to form a topological contact if they are nonconsecutive
in S (i.e., |j − i| ≥ 2) but adjacent in the lattice. The objective
is thus to find a feasible protein conformation where the
number of H-H topological contacts (HHtc) is maximized.
Adhering to the notation of the field, an energy function, to be
minimized, is defined as the negative of HHtc; maximizing
HHtc is equivalent to minimizing such an energy function.

Let C be the set of all potential protein conformations, and
let CF ( C be the subset of all the feasible states. PSP under
the HP model can be formally defined as the problem of
finding c∗ ∈ CF such that E(c∗) = min{E(c) | c ∈ CF}.
E : C → R denotes the energy function which maps protein
conformations to energy values. E(c), the energy of a confor-
mation c ∈ C, is defined as follows:

E(c) =
∑
si,sj

e(si, sj) , (1)

where

e(si, sj) =


−1 , if si and sj are both H and

they form a topological contact ;

0 , otherwise .

As an example, the optimal conformation for an HP protein
sequence of length L = 20 on the two-dimensional square
lattice is presented in Fig. 1. This example corresponds to
sequence 2d4, one of the benchmark sequences considered
for this study, see Section IV-C.

In this study, an internal coordinates representation based
on relative moves has been adopted [26]. Protein conforma-
tions are represented as sequences in {F,L,R}L−2, specifying
the (Forward, Left and Right) lattice position for each amino
acid with respect to the preceding one, see Fig. 2. Note that
no backward moves are allowed, ensuring that the encoded
conformations will always be one-step self-avoiding.

B. Single- and multiobjective optimization

A single-objective optimization problem can be stated as
the problem of minimizing an objective function f : F → R,
where F denotes the set of all feasible solutions. The aim is
to find those x∗ ∈ F such that f(x∗) = min{f(x) | x ∈ F}.
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Fig. 2. Internal coordinates representation based on relative moves. Encoding
scheme (left). An example conformation encoded as FLFRRLRR (rigth).

Similarly, a multiobjective optimization problem can be
defined as the problem of minimizing an objective vec-
tor f(x) = [f1(x), f2(x), . . . , fk(x)]

T , where fi : F → R is
the i-th objective function, i ∈ {1, 2, . . . , k}. The goal is to
find a set of Pareto-optimal solutions P∗ ⊂ F , such that
P∗ = {x∗ ∈ F | @x ∈ F : x ≺ x∗}. The symbol “≺” denotes
the Pareto-dominance relation, which is defined as follows:

x ≺ y ⇔ ∀i ∈ {1, 2, . . . , k} : fi(x) ≤ fi(y) ∧ (2)

∃j ∈ {1, 2, . . . , k} : fj(x) < fj(y)

If x ≺ y, then x is said to dominate y. Otherwise (x ⊀ y), y
is said to be nondominated with respect to x. The image of
P∗ in the objective space is called the Pareto-optimal front.

III. STUDIED CONSTRAINT-HANDLING STRATEGIES

This section describes the constraint-handling techniques for
the HP model of the PSP which have been included in this
study. First, the new proposed strategy based on multiobjective
optimization concepts is introduced in Section III-A. Two ad-
ditional strategies, the first based on the rejection of infeasible
conformations and the other based on applying penalties, were
also considered as representatives of the approaches commonly
used in the specialized literature. These strategies are detailed
in Sections III-B and III-C.

A. Proposed multiobjective constraint-handling strategy

Based on the belief that allowing infeasible protein con-
formations may significantly contribute to the design of more
efficient search metaheuristics, the use of multiobjective opti-
mization is here proposed as an alternative constraint-handling
strategy for the HP model of the PSP.

More formally, a two-objective formulation of the problem,
f(c) = [f1(c), f2(c)]

T , is defined over the set of all potential
protein conformations c ∈ C:

f1(c) = E(c) , (3)

f2(c) = Collisions(c) , (4)

where f1(c) and f2(c) are both to be minimized. E(c)
represents the conventional energy function of the HP model,
as defined in Section II-A. Collisions(c) denotes the total
number of colliding amino acid pairs (si, sj) in c, where both
si and sj were assigned to the same lattice coordinates.

Using the proposed multiobjective formulation, all feasible
conformations c ∈ CF (CF ( C) will feature a value of
f2(c) = 0. Note, however, that an infeasible conformation
c1 (f2(c1) > 0) may become incomparable, mutually non-
dominated in terms of the Pareto-dominance relation, with
respect to a feasible conformation c2. This depends upon how
c1 and c2 compare to each other with regard to the objective
function f1. Therefore, the proposed multiobjective strategy
can be useful as a means of accepting infeasible protein
conformations along the evolutionary process.

B. Reject strategy

A basic reject strategy was considered, where the variation
operators iterate until new feasible conformations are obtained.
A genetic algorithm is used in this study (see Section IV-A),
whose genetic operators were adapted as follows. In the im-
plemented one-point crossover operator, all possible crossover
points are explored in random order until feasible children
are generated; otherwise, either one or both of the parents are
copied unchanged. Similarly, once mutation is to be applied
to a given encoding position, all possible perturbations to
the position are evaluated in random order until a feasible
conformation is produced; otherwise, the original value is
restored. Note that such a persistent application of the genetic
operators involves an additional computational effort. This
approach is similar to the one analyzed in [13].

C. Penalty function

A constraint-handling strategy based on the use of a penalty
function was implemented according to the guidelines pro-
vided in [20]. Formally, the following objective function
f(c), to be minimized, is defined for every potential protein
conformation c ∈ C:

f(c) = E(c) +W × Collisions(c) , (5)

where E(c) denotes the conventional energy function of the
HP model defined in Section II-A. Collisions(c) refers to
the total number of amino acid pairs (si, sj) in c such that
si and sj overlap at the same lattice position. Finally, W
is to be large enough so that f(ci) ≤ 0,∀ci ∈ CF , while
f(cj) > 0,∀cj ∈ C \ CF .1 In this study, W = L2

H was
adopted, where LH is the total number of H amino acids
in the protein sequence.

IV. EXPERIMENTAL SETUP

Using a genetic algorithm (GA), the new proposed mul-
tiobjective constraint-handling (MOCH) strategy for the HP
model is evaluated and compared with respect to the reject
(RJ) and penalty function (PF) approaches. The implemented
GA is described in Section IV-A. Section IV-B defines the
performance assessment methodology. Finally, the adopted test
sequences for the HP model are detailed in Section IV-C.

1This ensures that the optimal (feasible) conformation is strictly better than
the best penalized conformation [20].



A. The genetic algorithm

The general structure of the implemented genetic algorithm
(GA) is provided in Algorithm 1. First, an initial parent popu-
lation P of size N is randomly generated. At each generation,
the fittest individuals in P are selected for mating (selection-
for-variation). Then, a children population P ′ is created by
applying the genetic operators to the selected parents. Finally,
the parent and children populations are combined and the best
individuals are selected to survive and to become the new
parent population (selection-for-survival).

Algorithm 1 Genetic algorithm.
1: choose P ⊂ C : |P| = N uniformly at random
2: while < stop condition > do
3: P̂ ← selection-for-variation(P)
4: P ′ ← variation(P̂)
5: P ← selection-for-survival(P ∪ P ′)
6: end while

A decisive component of the GA is the selection process;
that is, how the discrimination among the individuals is per-
formed. Such a discrimination will depend upon the constraint-
handling technique to be applied. On the one hand, it will be
based on the single-objective energy value of the candidate
conformations when using the RJ and PF approaches. On the
other hand, if applying the proposed MOCH strategy, selection
will be driven by means of nondominated sorting as in the
Nondominated Sorting Genetic Algorithm II, NSGA-II [11].

Roughly, the functioning of the nondominated sorting proce-
dure is as follows. The nondominated individuals are initially
identified and isolated into the first nondominated layer, L1.
From the remainder of the population, the new nondominated
solutions are identified and assigned to the second nondomi-
nated layer, L2. The process repeats until each individual in the
population is classified. At the selection-for-survival stage,
individuals are selected layer by layer, starting from L1, until
completing the required number of individuals. Whenever the
number of individuals in the current layer exceeds the available
capacity, the conventional NSGA-II discriminates by using
the crowding distance operator as a secondary criterion [11].
Rather than using the crowding distance operator, however, the
implemented GA enables discrimination by using the degree of
infeasibility of the individuals as the secondary criterion. This
allows introducing a search bias, which is assumed essential
when handling constraints by multiobjective optimization [28].

In all the cases, an internal coordinates representation
based on relative moves was used, see Section II-A. Bi-
nary tournament selection was employed as mating strategy.
The implemented genetic operators are as follows. One-point
crossover is applied with a given probability pc. In muta-
tion, each encoding position is randomly and independently
perturbed with probability pm. Different recombination and
mutation probabilities are explored in Section V-A. The RJ
strategy requires initial feasible individuals to be generated.
The backtracking algorithm proposed in [6] was adopted for

this sake. In addition, in the RJ approach the genetic operators
iterate until feasible children are generated, otherwise parents
are copied unchanged, see Section III-B. Finally, preliminary
testing has been conducted in order to explore the effects of
preventing duplicate individuals (clones) from the population.
As a result, the performance of the three analyzed constraint-
handling methods was significantly improved in all the cases
when duplicate individuals were removed from the population;
this mechanism was enabled for the reported experiments.

B. Performance assessment

For all the experiments, 100 independent executions were
performed and the GA was run until a maximum number of
106 solution evaluations was reached. The results are evaluated
in terms of the best (lowest) obtained energy, the number of
times this solution quality was reached, and the arithmetic
mean. Moreover, given that the RJ approach involves an
additional computational effort, see Section III-B, the CPU
time (in seconds) required by the algorithm when using the
three analyzed constraint-handling strategies is also presented.

Additionally, the overall average performance (OAP) mea-
sure was adopted in order to assess the overall behavior of the
studied constraint-handling techniques [14]. The OAP measure
is defined as follows:

OAP =
100%

|T |
∑
t∈T

(
mean(t)

E∗(t)

)
, (6)

where T is the set of all test cases, mean(t) denotes the
arithmetic mean of the energy values obtained when solving
a particular test instance t, computed over multiple repetitions
of the experiment, and E∗(t) is the optimal energy value for
instance t. Thus, OAP expresses the performance of the eval-
uated approaches in a 0% to 100% scale, being OAP = 100%
the preferred value for this measure.

Finally, a statistical significance analysis was conducted
as follows. First, D’Agostino-Pearson’s omnibus K2 test was
used to evaluate the normality of data distributions. For nor-
mally distributed data, either ANOVA or the Welch’s t paramet-
ric tests were used depending on whether the variances across
the samples were homogeneous (homoskedasticity) or not.
This was investigated using the Bartlett’s test. For non-normal
data, the nonparametric Kruskal-Wallis test was adopted. A
significance level of α = 0.05 has been considered.

C. Test instances

A total of 15 test sequences for the two-dimensional HP
model based on the square lattice have been considered. Table
I presents the full sequences, their length (L) and the optimal
or best known energy value (E∗), to the authors’ knowledge.

V. RESULTS

In this section, the results for the implemented genetic algo-
rithm (GA) are analyzed. Three different constraint-handling
techniques for the HP model of the PSP are evaluated and
compared: the reject (RJ) and penalty function (PF) strate-
gies, and the new multiobjective constraint-handling (MOCH)
approach which is proposed as part of this study.



TABLE I
HP MODEL INSTANCES FOR THE TWO-DIMENSIONAL SQUARE LATTICE.
LENGTH OF THE PROTEIN SEQUENCE (L). BEST KNOWN ENERGY (E∗).

Sequence L E∗

2d1 H2P5H2P3HP3HP 18 -4
2d2 HPHPH3P3H4P2H2 18 -8
2d3 PHP2HPH3PH2PH5 18 -9
2d4 HPHP2H2PHP2HPH2P2HPH 20 -9
2d5 H3P2HPHPHP2HPHPHP2H 20 -10
2d6 H2P2HP2HP2HP2HP2HP2HP2H2 24 -9
2d7 P2HP2H2P4H2P4H2P4H2 25 -8
2d8 P3H2P2H2P5H7P2H2P4H2P2HP2 36 -14
2d9 P2HP2H2P2H2P5H10P6H2P2H2P2HP2H5 48 -23
2d10 H2(PH)4H3P(HP3)3(P3H)3PH4(PH)4H 50 -21
2d11 P2H3PH8P3H10PHP3H12P4H6PH2PHP 60 -36
2d12 H12PHPH(P2H2P2H2P2H)3PHPH12 64 -42
2d13 H4P4H12P6(H12P3)3HP2H2P2H2P2HPH 85 -53
2d14 P6HPH2P5H3PH5PH2P4H2P2H2PH5PH10

PH2PH7P11H7P2HPH3P6HPH2

100 -48

2d15 P3H2P2H4P2H3PH2PH2PH4P8H6P2H6P9

HPH2PH11P2H3PH2PHP2HPH3P6H3

100 -50

This section is organized as follows. In Section V-A, differ-
ent parameter settings for the GA are first evaluated with the
aim of identifying the most appropriate conditions for each
of the three studied constraint-handling approaches. Then, a
detailed comparative analysis is presented in Section V-B.

A. Settings for the genetic algorithm

The RJ, PF and MOCH strategies were evaluated under
different settings for the implemented GA. Three different
recombination and mutation probabilities were considered:
pc ∈ {0.8, 0.9, 1.0}, pm ∈ { 1

L−2 ,
2

L−2 ,
3

L−2}. Thus, a total
of 9 parameter configurations of the GA are investigated. The
population size was fixed to N = 100 in all the cases. Figure
3 plots the OAP measure obtained by the studied approaches
when using the different GA settings.

As it can be seen from this figure, the proposed MOCH
strategy reached the highest OAP values for all the evaluated
parameter configurations of the GA. From the results in Fig. 3,
no strong conclusions can be made regarding the superiority
of the RJ and PF approaches with respect to each other. In
most of the cases, however, higher OAP values were obtained
by PF. In general, the behavior of the GA seemed not to be
seriously affected when varying the recombination probability,
while it responded positively to the increased mutation rate.
For the detailed analysis presented in Section V-B, the settings
for the GA which allowed each of the compared approaches
to reach the highest OAP value have been selected (pc = 1.0
was selected for RJ and pc = 0.8 was selected for both PF and
MOCH, pm = 3

L−2 holds for all the three compared methods).

B. Comparative analysis

A detailed comparative analysis among the studied RJ, PF
and MOCH strategies is presented in this section. The reported
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Fig. 3. Evaluating the RJ, PF and MOCH constraint-handling strategies
under different parameter settings for the implemented GA.

results are based on the best performing GA settings for each
of the three compared approaches, as derived in Section V-A.

Figure 4 shows the OAP measure obtained using the RJ,
PF and MOCH strategies as the search process of the GA
progressed (at different numbers of solution evaluations).
This figure is quite revealing in several respects. First, it is
evident from the plot that the best results at the end of the
search process were obtained by using the proposed MOCH
strategy. Nevertheless, this approach exhibited the poorest
overall performance at the first stages of the search. A similar
behavior can be observed for the PF strategy, but PF required a
significantly higher number of solution evaluations to improve
the results with respect to the RJ approach. The fact that the RJ
method achieved higher OAP values at the first stages of the
search, suggests that both the PF and MOCH approaches invest
a considerable amount of effort in the exploration of infeasible
protein conformations. It is important to note, however, that
PF and particularly the proposed MOCH strategy presented a
greater tendency to improve (the slope of the corresponding
curves is more pronounced).

To further compare the three studied constraint-handling
strategies, Table II details the results obtained by the GA after
106 solution evaluations. For each of the adopted test cases,
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Fig. 4. Overall average performance (OAP) obtained by the studied
constraint-handling techniques as the search process of the GA progresses.



TABLE II
THIS TABLE DETAILS THE RESULTS OBTAINED BY THE GA WHEN USING THE ANALYZED RJ, PF AND MOCH STRATEGIES.

RJ PF MOCH

Seq. L E∗ Best (freq) Mean Time (s) Best (freq) Mean Time (s) Best (freq) Mean Time (s)

2d1 18 -4 -4 (99) -3.99 30.32 -4 (100) -4.00 13.88 -4 (100) -4.00 26.02

2d2 18 -8 -8 (100) -8.00 32.05 -8 (100) -8.00 14.51 -8 (100) -8.00 27.86

2d3 18 -9 -9 (100) -9.00 33.36 -9 (100) -9.00 15.03 -9 (99) -8.99 26.96

2d4 20 -9 -9 (100) -9.00 36.84 -9 (100) -9.00 15.63 -9 (100) -9.00 28.75

2d5 20 -10 -10 (99) -9.98 36.59 -10 (100) -10.00 16.29 -10 (100) -10.00 28.27

2d6 24 -9 -9 (93) -8.93 46.81 -9 (89) -8.89 18.65 -9 (94) -8.94 31.27

2d7 25 -8 -8 (52) -7.51 46.40 -8 (77) -7.77 18.06 -8 (95) -7.95 31.17

2d8 36 -14 -13 (24) -11.87 81.01 -14 (4) -11.93 29.87 -14 (4) -11.95 42.77

2d9 48 -23 -22 (1) -18.82 128.49 -22 (3) -19.10 46.62 -22 (7) -19.67 59.77

2d10 50 -21 -21 (20) -19.40 139.49 -21 (17) -19.24 52.21 -21 (33) -20.14 63.78

2d11 60 -36 -33 (6) -30.28 199.74 -34 (1) -30.41 81.23 -35 (1) -31.37 93.36

2d12 64 -42 -38 (1) -33.03 223.40 -38 (3) -32.86 87.86 -37 (1) -31.49 97.15

2d13 85 -53 -48 (1) -43.06 357.99 -48 (3) -43.02 146.69 -49 (2) -43.20 156.04

2d14 100 -48 -41 (1) -35.91 436.12 -41 (1) -36.21 155.69 -43 (1) -37.12 168.57

2d15 100 -50 -42 (2) -37.51 442.27 -43 (2) -38.10 160.54 -44 (2) -39.47 173.40

OAP 89.70% 90.09% 91.02%

this table includes the best obtained energy value, the number
of GA runs where this solution was found (freq), the arithmetic
mean, and the average CPU time (in seconds) consumed by the
algorithm. The OAP measure is also provided at the bottom
of the table for each of the analyzed approaches. In addition,
the lowest average energy for each of the instances, as well as
the highest OAP values, appear shaded and the best scored
CPU times were highlighted in bold in this table.

The results in Table II indicate that the proposed MOCH
strategy achieved the lowest average energy in 13 out of the 15
considered test cases. MOCH improved the OAP measure by
(91.02− 89.70) = 1.32% and by 0.93% over the OAP values
obtained using RJ and PF, respectively. In most of the cases,
better results were obtained by PF when compared to RJ.

As shown in Table II, the RJ strategy involves a significant
amount of additional computational effort, which becomes
more evident as the length of the protein sequence (L)
increases. As expected, the best results in terms of CPU time
were obtained in all the cases by using the PF approach.
PF required only about 40% (on average) of the CPU time
consumed by the RJ strategy on solving the adopted test in-
stances. Due to the use of the nondominated sorting procedure,
see Section IV-A, the proposed MOCH method induces an
increase of roughly 13 seconds in all the cases when compared
to the CPU time scored by the PF approach.2 This implies
that MOCH nearly doubled the time required by PF for the

2The time increase presented by MOCH with respect to PF (about 13
seconds) remains almost invariant for the different instances. This is due to
the fact that the computational effort required by the nondominated sorting
procedure relates only to the number of objective functions and the population
size, and not to the length of the protein sequence.

smallest test cases, while such additional 13 seconds represent
an increase of less than 10% of the PF time for the largest
instances. The proposed MOCH strategy takes only about 60%
(on average) of the CPU time required by the RJ technique.

Finally, Table III outlines how the three studied constrain-
handling strategies compare statistically with respect to each
other in all the test cases. Each row in this table compares
two approaches, say A and B, which is denoted by “A/B”. If
a statistically significant difference exists between the perfor-
mance of A and B, the corresponding cells are marked either
+ or − depending on whether such a difference favors A or
not. Unmarked cells indicate that there was not a significant
difference between the A and B approaches. The rightmost
column presents the overall results of this analysis.

TABLE III
STATISTICAL SIGNIFICANCE ANALYSIS FOR COMPARING THE

PERFORMANCE OF THE GA WHEN USING THE DIFFERENT STUDIED
CONSTRAINT-HANDLING APPROACHES.

Protein sequence

2d
1

2d
2

2d
3

2d
4

2d
5

2d
6

2d
7

2d
8

2d
9

2d
10

2d
11

2d
12

2d
13

2d
14

2d
15

Overall

PF/RJ + 1+ 0−

MOCH/RJ + + + + − + + 6+ 1−

MOCH/PF + + + + − + + 6+ 1−

As Table III indicates, only in one of the instances (2d7)
there was a statistically significant difference between RJ and



PF, a difference which favors PF. It can be observed from the
table that the proposed MOCH strategy significantly improved
the performance of the GA in 6 of the adopted test cases (2d7,
2d9, 2d10, 2d11, 2d14 and 2d15) when compared with respect
to both RJ and PF. Notice, however, that MOCH presented a
significantly inferior performance with respect to the RJ and
PF approaches at solving one of the instances (2d12).

VI. CONCLUSIONS AND FUTURE WORK

The HP model for protein structure prediction represents a
highly constrained optimization problem. Therefore, explicit
mechanisms are required to be implemented within meta-
heuristics in order to ensure the feasibility of the generated
protein conformations. The efforts of the research community
on this issue can be divided into two broad classes: approaches
where only feasible conformations are considered, and those
where the infeasible conformations are also allowed to par-
ticipate during the search process. Nevertheless, there is no
clear consensus in the literature on which of such directions
could lead to more efficient metaheuristic algorithms; even
contradictory results have been reported in this regard. The
aim of the present study was to provide further insight into
this matter, as well as to introduce a new constraint-handling
strategy for the HP model which is based on multiobjective
optimization.

A comparative study was performed where three different
constraint-handling strategies for the HP model were consid-
ered: (i) a reject strategy, RJ, where the search was restricted
to the space of only feasible protein conformations; (ii) a
penalty function, PF, where infeasible solutions were penalized
according to the number of collisions they present; and (iii)
the new multiobjective constraint-handling strategy proposed
in this paper, MOCH. Rather than penalizing, in MOCH
an additional objective function accounts for the degree of
infeasibility of the candidate conformations. Using such a
strategy, infeasible conformations may become incomparable
(nondominated) with respect to feasible ones, being thus
potentially considered and exploited during the search process.

RJ, PF and MOCH were evaluated and compared in terms of
how the use of these approaches impacted on the performance
of a basic genetic algorithm (GA). On the one hand, the
proposed MOCH strategy significantly increased the search
performance of the implemented GA in most of the adopted
test cases when compared with respect to the RJ and PF
methods. In this way, the suitability of this proposal has
been demonstrated. On the other hand, both MOCH and PF
performed better in most of the conducted experiments when
compared to the RJ strategy. It was also found that the RJ
method involves a considerable amount of additional compu-
tational effort. Hence, these findings give further support to
the belief that considering infeasible protein conformations
may have beneficial effects on the search performance of
metaheuristics for solving the HP model.

To the best of the authors’ knowledge, this is the first study
on the use of multiobjective optimization methods to face
the constraint-handling requirement which arises when dealing

with the HP model. Although quite promising results were
obtained by using the proposed MOCH strategy, it has been
argued that the multiobjective approach to constraint-handling
could be rather ineffective if a bias towards the feasible region
is not properly introduced [28]. As detailed in Section IV-A,
a search bias was incorporated by using the feasibility of the
individuals as a supplementary discrimination criterion. Future
work will concentrate on evaluating how the incorporation of
such a (naive) mechanism has contributed to the effectiveness
of the proposed MOCH strategy. Also, alternative and more
sophisticated mechanisms for biasing the search process are to
be investigated. Finally, it is important to extend this research
to other lattice configurations, such as the three-dimensional
cubic lattice, and to consider a wider set of constraint-handling
strategies for the HP model from the literature (other than RJ
and PF) in order generalize the conclusions of this study.
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