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Abstract—Protein structure prediction is the problem of find-
ing the functional conformation of a protein given only its amino
acid sequence. The HP lattice model is an abstract formulation of
this problem, which captures the fact that hydrophobicity is one
of the major driving forces in the protein folding process. This
model represents a hard combinatorial optimization problem
and has been widely addressed through metaheuristics such
as evolutionary algorithms. However, the conventional energy
(evaluation) function of the HP model does not provide an
adequate discrimination among potential solutions, which is an
essential requirement for metaheuristics in order to perform an
effective search. Therefore, alternative energy functions have been
proposed in the literature to cope with this issue. In this study,
we inquire into the effectiveness of several of such alternative
approaches. We analyzed the degree of discrimination provided
by each of the studied functions as well as their impact on the
behavior of a basic memetic algorithm. The obtained results
support the relevance of following this research direction. To
our knowledge, this is the first work reported in this regard.

I. INTRODUCTION

Proteins are at the heart of cellular function, making possi-
ble most of the key processes associated with life. It is widely
accepted that the specific functionality of a protein is dictated
by its three-dimensional conformation. To fully understand
the biological roles of a protein it is imperative, therefore,
to first determine its structure. However, given the limitations
of the experimental methods, computational approaches to
determine the structure of proteins have become increasingly
necessary for the understanding of such important biological
macromolecules.

The Protein Structure Prediction (PSP) problem is con-
cerned with finding the native conformation of proteins. Such a
structure is assumed to be encoded in the amino acid sequence
and to correspond to the thermodynamically most stable state
[1]. Nevertheless, exploring the huge conformational space
to find the native structure of a protein represents a very
computationally-intensive task, which makes studies at atomic
resolution prohibitive even for relatively small proteins. On
the other hand, simplified protein models have emerged as
valuable tools for studying the most general and essential
principles governing the protein folding process [2]–[5].

One of such simplified formulations of PSP is the HP model
[6, 7]. This model captures the fact that hydrophobicity is
one of the main driving forces determining the functional

conformation of proteins. In spite of its apparent conceptual
simplicity, the task of finding the optimal structure of a protein
in the HP model represents a hard combinatorial optimization
problem which has been proved to be NP-complete [8, 9].
Such a complexity has motivated the use of evolutionary
algorithms (EAs) and a variety of other metaheuristics to
address this problem [10].

EAs rely on an effective evaluation scheme in order to guide
the search towards promising regions of the solutions space.
However, the conventional energy (evaluation) function of the
HP model provides a very poor discrimination among potential
conformations. As a consequence, no preferences can be set
among individuals for selection purposes, leading the search
process to be driven practically at random. This problem is
expected to impact largely the performance of local search
algorithms. A weak discrimination will produce large plateaus
in the energy landscape, on which local search strategies could
fail to detect a promising search direction [11].

In the literature, alternative HP energy functions have been
proposed to improve the performance of search algorithms
[11]–[14]. Nevertheless, there are no reported results on the
advantages of using most of such approaches. In this pa-
per, a comparative study is presented where five different
formulations of the HP energy function are considered. The
discrimination potential of each of these functions is first
analyzed. This factor is assumed to be decisive for the behavior
of search algorithms. Finally, the effectiveness of the studied
approaches to guide the search process is investigated by using
a basic memetic algorithm. To the best of our knowledge, this
is the first work that has been reported in this direction.

The remainder of this paper is organized as follows. Back-
ground concepts are provided in Section II. In Section III,
the alternative HP energy functions adopted for this study are
described. Our experimental results are discussed in Section
IV. Finally, Section V provides our conclusions as well as
some possible directions for future research.

II. BACKGROUND

A. Proteins

Proteins are the working molecules of the cell. Amino acids,
the building blocks of proteins, are all of them consistent with
the general structure presented in Figure 1.
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Fig. 1. General structure of amino acids.

Each amino acid has a central carbon atom (Cα) which is
covalently bonded to a carboxyl group (COOH), to an amino
group (NH2), to a hydrogen atom (H) and to a radical (R)
group or side chain. There are 20 amino acids commonly
found in proteins, each of which has a distinctive R group
that is responsible for its particular chemical properties.

In proteins, amino acids are held together by peptide bonds.
Hence, protein chains are also referred to as polypeptides. The
peptide bond is formed when the carboxyl group of an amino
acid reacts with the amino group of another, releasing a water
molecule. The elements of a polypeptide chain are, therefore,
amino acid residues. This process is illustrated in Figure 2.
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Fig. 2. Peptide bond formation.

Protein structure is commonly described in terms of four
hierarchical levels of organization. The amino acid sequence
constitutes the primary structure of a protein. While the
secondary structure describes the arrangement of amino acids
within certain areas of a polypeptide chain, the tertiary struc-
ture defines its overall folding in three-dimensional space. It is
the three-dimensional conformation which is essential to the
function of the molecule. Finally, some proteins are composed
of more than one polypeptide chain. The spatial arrangement
of these subunits is known as the quaternary structure.

B. Protein Structure Prediction

Anfinsen’s theory of protein folding states that the native
structure of a protein is given by the chemistry of its amino
acid sequence. Such a structure minimizes the overall free
energy; i.e., the thermodynamically most stable conformation.
This is the so-called thermodynamic hypothesis [1].

The Protein Structure Prediction (PSP) problem aims to
determine the native conformation of proteins given only their
linear chain of amino acids. In PSP, one considers a fixed
energy model E : C → R, where C is the set of all possible
conformations for a given protein. The native structure is
assumed to be the one with the lowest energy value according
to the adopted model. That is, the conformation c∗ ∈ C such
that E(c∗) = min{E(c) | c ∈ C}.

Thus, we could simply enumerate and evaluate all possi-
ble conformations to identify the one with minimal energy.
Nevertheless, proteins are very flexible and, consequently, the
space of potential conformations is huge. This makes studies at
atomic resolution to some extent prohibitive even for relatively
small proteins. In this context, simplified models have emerged
as important tools for theoretical studies of protein structure,
dynamics and thermodynamics. These models provide a valu-
able insight to advance the understanding of the most general
and essential principles governing the protein folding process
[2]–[5]. This study focuses on one of such simplified protein
models: the so-called HP model [6, 7].

C. The HP model
Amino acids can be classified on the basis of their affinity

for water. Hydrophilic or polar amino acids (P ) are usually
found at the outer surface of proteins. By interacting with the
aqueous environment, these residues contribute to the solu-
bility of the molecule. In contrast, hydrophobic or nonpolar
residues (H) tend to pack on the inside of proteins, where they
interact with one another to form a water-insoluble core. These
properties of the amino acids represent, therefore, one of the
major driving forces responsible for the final three-dimensional
structure of proteins.

In the Hydrophobic-Polar (HP) model, proposed by Dill in
1985 [6, 7], proteins are represented as sequences of the form
S ∈ {H,P}L, where L denotes the number of amino acids.
The subsets of H and P residues in S are here referred to as
SH and SP , respectively. Valid conformations are modeled as
Self-Avoiding Walks of the HP sequence S on a lattice. That
is, 1) lattice nodes are labeled by the amino acids, 2) a lattice
node can be assigned to at most one residue and 3) adjacent
residues in S are also adjacent in the lattice. This study focuses
on the two-dimensional square lattice.

By emulating hydrophobic interactions, the goal in the HP
model is to find a valid conformation where the number of
H-H topological contacts (HHtc) is maximized. Two residues
si, sj ∈ S are said to form a topological contact, denoted by
tc(si, sj), if they are nonconsecutive in S (i.e., |i−j| ≥ 2) but
adjacent in the lattice. To be consistent with the notation of
the field, the free-energy function in the HP model is defined
as the negative of HHtc; maximizing HHtc is equivalent to
minimize such an energy function.

Formally, PSP in the HP model is defined as the problem
of finding the conformation c∗ ∈ C(S) such that ED85(c∗) =
min{ED85(c) | c ∈ C(S)}, where C(S) is the set of all
valid conformations of S. ED85(c) denotes the free energy
of conformation c, which is given by:1

ED85(c) =
∑

si,sj∈SH

e(si, sj) (1)

where

e(si, sj) =
{
−1 if tc(si, sj)
0 otherwise

1The acronym D85 is used to distinguish this conventional function from
the other approaches considered in this study.



An example of the optimal conformation for an HP protein
of length L = 20 on the square lattice is shown in Figure 3.
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Fig. 3. Optimal conformation for sequence HPHPPHHPHPPHPHHPPHPH
of length L = 20. Black and white balls denote H and P residues,
respectively. H-H topological contacts (HHtc) have been numbered. The free
energy of this conformation is ED85(c) = −9, since HHtc = 9.

Despite its apparent simplicity, finding the optimal con-
formation for a protein in the HP model represents a hard
combinatorial optimization problem. This problem has been
proved to be NP-complete [8, 9], which justifies the diversity
of metaheuristic-based approaches that have been adopted to
address it [10].

III. ALTERNATIVE HP ENERGY FUNCTIONS

This section describes the alternative HP energy functions
considered for this study. A three-letter acronym has been
assigned to each of the studied approaches. The acronyms are
based on first author’s initial and publication year.

A. Krasnogor et al., 1999 (K99)

In the conventional HP free-energy function, only H-H
topological contacts (HHtc) contribute to the quality assess-
ment of conformations. Given two conformations with the
same HHtc value, it is possible, however, that one of them
has better characteristics than the other. An example of this
scenario is shown in Figure 4.
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Fig. 4. Two conformations with the same HHtc value (HHtc = 6). However,
the structure in (a) is more compact and, therefore, closer to the optimal
conformation. This example was taken from [11].

Based on this observation, Krasnogor et al. [11] proposed
the following distance-dependent energy function:

EK99(c) =
∑

si,sj∈SH

e(si, sj) (2)

where

e(si, sj) =
{
−1 if tc(si, sj)
−1/(d(si, sj)k|SH |) otherwise

where d(si, sj) denotes the distance between residues si and
sj . In [11], the value of k was set to k = 4 for the square
lattice and k = 5 for the cubic and triangular lattices.

This approach preserves the rank order of the conformations
as imposed by the conventional function, at the same time it
enables a finer level of distinction among conformations with
the same HHtc value [11]. In [11], no significant improvements
in performance were achieved when using the modified energy
function. However, as the authors pointed out, the superiority
of this function is expected to become more evident for larger
instances and, particularly, when local search strategies are
implemented. The relevance of using this proposal needs to
be further investigated.

B. Lopes and Scapin, 2006 (L06)

Lopes and Scapin [12] proposed an energy function which
is based on the concept of radius of gyration. The radius of
gyration is a measure of the compactness of conformations;
the more compact the conformation, the smaller the value for
this measure. The proposed function is given by:

EL06(c) = HnLB ·RadiusH ·RadiusP (3)

The HnLB term comprises the number of H-H topological
contacts (HHtc) and a penalty factor which accounts for the
violation of the self-avoiding constraint. Formally:

HnLB = HHtc− (NC · PW ) (4)

where NC is the number of collisions (i.e., lattice nodes
assigned to more than one residue) and PW is the penalty
weight. The value of PW depends on the chain length, L,
and can be computed as PW = (0.033 · L) + 1.33 [15].

Before defining the RadiusH and RadiusP terms, let us
first define RgH as the radius of gyration for H residues:

RgH =

√√√√√
∑
s∈SH

[
(xs − X̄)2 + (ys − Ȳ )2

]
|SH |

(5)

where xs and ys are the lattice coordinates of residue s while
X̄ and Ȳ denote the arithmetic mean of the coordinates of all
H residues. Analogously, we can compute RgP , the radius of
gyration for P residues, by considering only P rather than H
residues in (5).

Once RgH has been defined, the RadiusH term measures
how compact the hydrophobic core of the conformation is, as
given by:

RadiusH = MaxRgH −RgH (6)

where MaxRgH is the radius of gyration of a totally unfolded
conformation; i.e., the maximum possible RgH value.



Finally, the RadiusP term aims to push P residues away
from the hydrophobic core. Given the previously defined RgH
and RgP measures, the RadiusP term is computed as:

RadiusP =
{

1 if (RgP −RgH) ≥ 0
1

1−(RgP−RgH) otherwise (7)

The RadiusP term will always lie in the range [0, 1]. A
value of (RgP −RgH) > 0 means that P residues are more
exposed than H residues. This is a convenient scenario, so the
RadiusP term has no contribution to the final energy value
(RadiusP = 1). Otherwise, (RgP − RgH) < 0 suggests H
residues to be more spread than the P ones, so the energy
value of the conformation is decreased. Note that (3) is to be
maximized.

In [12, 15], the authors argue that the above described func-
tion provides an adequate discrimination among conformations
with the same HHtc value, which makes the search landscape
smoother. However, no results are provided on the impact of
using this function rather than the conventional approach.

C. Berenboym and Avigal, 2008 (B08)

Berenboym and Avigal [13] proposed an alternative energy
function, called by them the global energy. In this function,
each pair of nonconsecutive H residues contributes to the
energy value, even if they are not topological neighbors. The
global energy for a given conformation c is defined as:

EB08(c) =
∑

si,sj∈SH

e(si, sj) (8)

where

e(si, sj) =

{
−1

(xsi
−xsj

)2+(ysi
−ysj

)2 if |i− j| ≥ 2

0 otherwise

In [13], the effects of using a local search operator within a
genetic algorithm were investigated for both, the conventional
and the proposed energy functions. However, an explicit
comparison to demonstrate the advantages of using a particular
energy function was not reported.

D. Islam and Chetty, 2009 (I09)

Islam and Chetty [14, 16] implemented into their memetic
algorithm a modified energy function which incorporates two
additional measures: H-compliance and P -compliance.
H-compliance measures the proximity of H residues to the

center of a hypothetical rectangle enclosing all H residues,
which is denoted by the reference point (xr, yr). Formally,
this measure is given by:

H-comp(c) =

∑
s∈SH

(xr − xs)2 + (yr − ys)2

|SH |
(9)

where xs and ys denote the coordinates of the s residue.
P -compliance is a measure of how close P residues are

to the boundaries of a hypothetical rectangle enclosing all P

residues. Such a rectangle is defined by xmin, xmax, ymin
and ymax. The P -compliance measure is formally given by:

P -comp(c) =

∑
s∈SP

min
{
|xmin − xs|, |xmax − xs|,
|ymin − ys|, |ymax − ys|

}
|SP |

(10)

Finally, the energy of a given conformation c is defined as:

EI09(c) = αED85(c) +H-comp(c) + P -comp(c) (11)

where ED85(c) is the conventional HP energy function (as
defined in Section II-C) and α is a high value integer constant
to ensure this will be the dominant term in (11). The value of
α = 10, 000 was used in this study.

In [14], the advantages of using the proposed energy
function were demonstrated for a 85-length HP benchmark
sequence. However, the impact of using this function should
be carefully investigated for a larger set of test cases.

IV. EXPERIMENTAL RESULTS

In Section III, several alternative approaches to evaluate
the quality of conformations in the HP model have been
described. The aim of this experimental phase is to investigate
the effectiveness of such approaches. It is important to note,
however, that even when an alternative evaluation function is
used, the goal of the optimization process remains to maximize
HHtc, which is the singular objective in the HP model (see
Section II-C). In this study, the exclusive purpose for using
alternative formulations of the energy function is to guide the
search process in a more effective manner.

Table I presents the 15 HP benchmark sequences adopted
for this study. These benchmarks are commonly used in studies
focusing on the two-dimensional square lattice.

TABLE I
HP BENCHMARK SEQUENCES FOR THE 2-DIMENSIONAL SQUARE LATTICE.

SEQUENCE LENGTH (L). OPTIMAL HHTC VALUE (HHTC∗).

Sequence L HHtc∗

S1 H2P5H2P3HP3HP 18 4
S2 HPHPH3P3H4P2H2 18 8
S3 PHP2HPH3PH2PH5 18 9
S4 HPHP2H2PHP2HPH2P2HPH 20 9
S5 H3P2HPHPHP2HPHPHP2H 20 10
S6 H2P2HP2HP2HP2HP2HP2HP2H2 24 9
S7 P2HP2H2P4H2P4H2P4H2 25 8
S8 P3H2P2H2P5H7P2H2P4H2P2HP2 36 14
S9 P2HP2H2P2H2P5H10P6H2P2H2P2HP2H5 48 23
S10 H2(PH)4H3P(HP3)3(P3H)3PH4(PH)4H 50 21
S11 P2H3PH8P3H10PHP3H12P4H6PH2PHP 60 36
S12 H12PHPH(P2H2P2H2P2H)3PHPH12 64 42
S13 H4P4H12P6(H12P3)3HP2H2P2H2P2HPH 85 53
S14 P6HPH2P5H3PH5PH2P4H2P2H2PH5P

H10PH2PH7P11H7P2HPH3P6HPH2

100 48

S15 P3H2P2H4P2H3PH2PH2PH4P8H6P2H6
P9HPH2PH11P2H3PH2PHP2HPH3P6H3

100 50

A. Degree of discrimination

The discrimination strategy is a very important component
which directly impacts the performance of search algorithms.
That is, if it is not possible to discriminate among solutions,
then the search process will be guided practically at random.



In this section, the degree of discrimination that each of the
studied approaches provides is investigated. This is done by
analyzing the distribution of ranks that these functions induce
on a set of solutions. A ranking expresses the relationship
among a set of items according to a given property. In the
context of this study, potential conformations are to be ranked
and the property to set such a relationship corresponds to their
quality. Given a set of solutions, we can get a ranking by
assigning the first rank to the best solution, the next rank to
the second best solution, and so on. If two or more solutions
present the same quality, they will share the same rank.

The relative entropy (RE) measure proposed by Corne and
Knowles [17] was adopted. Given a set of n ranked solutions
(there are at most n ranks, and at least 1), the relative entropy
of the distribution of ranks D is defined as:

RE(D) =

∑
r

D(r)
n

log(
D(r)
n

)

log(1/n)
(12)

where D(r) denotes the number of solutions with rank r.
RE(D) tends to 1 as approaching to the ideal situation where
each solution has a different rank (i.e., a total ordering of the
solutions). On the other hand, when all the solutions share
the same ranking position (i.e., the poorest discrimination),
RE(D) takes a value of zero.

In this experiment, 1, 000 different valid structures were
generated at random. For each of the studied energy functions,
these solutions were evaluated and ranked to finally compute
the RE measure. A total of 100 repetitions of this experiment
were performed for all the adopted benchmarks. The box plots
in Figure 5 present the overall statistics of this experiment.
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Fig. 5. Relative entropy (RE) of the distribution of ranks obtained by the
studied energy functions. Overall statistics for all test cases.

From Figure 5, it can be seen that some of the studied
approaches discriminate stronger than others. It is possible to
note that the conventional HP energy function, D85, achieved
the lowest RE values. These results confirm the poor discrim-
ination capabilities of this function, which has been the main
factor motivating the exploration of alternative approaches.
Function L06 reached high RE values most of the time.
However, the outliers indicate a low performance of this
function for some of the adopted benchmarks. Regarding I09,
note that the RE values obtained by this function were almost
always above 0.9, which is a strong discrimination. Finally,
it is important to remark the high degree of discrimination

provided by functions B08 and K99. B08 achieved the best
RE values, followed by function K99 whose outliers indicate
some slight decreases.

The above results can be better understood by analyzing
the histograms with the distribution of ranks achieved by
each function. Figure 6 presents such histograms for the first
repetition of this experiment regarding sequence S4.
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Fig. 6. Histograms showing the density of the distribution of ranks achieved
by the studied energy functions. Sequence S4, run 1.

From Figure 6, it is possible to note how poor the distribu-
tion of ranks achieved by function D85 is. Only five different
ranking positions were enough to classify the 1, 000 generated
solutions. It can be seen that almost 400 solutions are sharing
the same ranking position. In fact, no matter the amount of
generated solutions, the maximum number of ranks which can
be assigned through function D85 is 9, since HHtc∗ = 9 for
this benchmark sequence (S4).

Functions L06 and I09 enabled an increased discrimination,
since roughly 720 and 650 different ranking positions were
occupied to classify the totality of solutions, respectively. In
the case of function I09, a maximum of eight solutions were
assigned to the same rank. On the other hand, the histogram
for L06 indicates that there are about 250 equally ranked
conformations. Function L06 is defined as the product of three
terms, out of which one corresponds to HHtc (see Section
III-B). All solutions for which HHtc = 0 will have the
same energy value, 0. To some extent, this can be seen as



a drawback. Function L06 will not be able to discriminate
among these solutions even if some of them have better
chances than others to further improve.

Finally, the histograms for B08 and K99 confirm the high
discrimination potential of these approaches. B08 exhibited
the strongest discrimination among all the studied functions.
The corresponding histograms for these functions reveal that
almost all solutions were mapped to a different ranking posi-
tion. Only a few ranks were assigned to at most two solutions.

B. Search performance

A basic Memetic Algorithm (MA) was used in order to
evaluate the effectiveness of the studied energy functions at
guiding the search process. MAs were first introduced by
Moscato in 1989 [18]. The general idea behind MAs is the use
of a local search heuristic within a population-based technique.
The implemented MA is based on a Genetic Algorithm. Local
search is applied to the new individuals generated from the
standard genetic operators. Algorithm 1 describes such an MA.

Algorithm 1 The implemented Memetic Algorithm.
BEGIN MemeticAlgorithm()

1: P ← GenerateInitialPopulation()
2: while (stop condition) do
3: Selection-for-variation(P )

4: P ′ ←

 Recombination()
Mutation()
LocalSearch()

5: P ← Selection-for-survival(P ∪ P ′)
6: end while

END

At the beginning, an initial parent population P of different
valid structures is generated at random. At each generation, the
fittest individuals in P are selected for mating (selection-for-
variation). A children population P ′ is generated by applying
the variation operators to the selected parents. Then, local
search is applied to a randomly selected individual from P ′.
Finally, parents and children compete for a place in the new
population (selection-for-survival). This process repeats until
a stop condition is met. Implementation details are as follows:
• Encoding. An internal coordinates representation with

absolute moves was adopted [19]. That is, candidate con-
formations are encoded as sequences in {U,D,L,R}L−1,
denoting the up, down, left and right possible locations
for a residue with regard to the preceding one. Solutions
are decoded to Cartesian coordinates for evaluation.

• Selection. Selection-for-variation is performed by means
of binary tournament. In the selection-for-survival pro-
cess, the best individuals from the union of parents and
children are selected (duplicates are not allowed). It is
through these processes that the different energy functions
will play a decisive role in the behavior of the MA.

• Recombination. One-point crossover is applied with a
probability of 0.8. If invalid children are generated, then
parents are copied unchanged.

• Mutation. Uniform mutation is applied to all individuals
in P ′. Each encoding position is randomly mutated with
a probability of 1/(L−1). If mutation of a position leads
to an invalid conformation, the original value is restored.

• Local search. The implemented local search operator is
illustrated in Algorithm 2. This operator is applied to a
randomly selected individual from P ′, denoted by c. At
each iteration, a new conformation c′ is generated through
a single random change in the encoding of c. If c′ has
a better energy value than c (E(c′) < E(c)), then c is
replaced by c′. Only valid moves are accepted.

Algorithm 2 The local search operator.
BEGIN LocalSeach()

1: c← SelectRandomSolution(P ′)
2: while (stop condition) do
3: c′ ← RandomChange(c)
4: if valid(c′) and E(c′) < E(c) then
5: c← c′

6: end if
7: end while

END

It is important to remark that the aim of using the above
described MA is not to improve the state-of-the-art results for
this problem. In this study, the MA serves only as a tool to
measure the impact of using each of the studied functions.

The population size was set to |P | = 60 individuals. The
stopping condition for the local search operator was fixed to
25 iterations. The MA was allowed to run until a maximum
number of 200, 000 function evaluations was reached. All the
parameters were arbitrarily adjusted, so that the same values
were used for all the approaches here compared. For each
benchmark, 30 independent executions were performed.

The results of this experiment are presented in Table II.
For each benchmark sequence, this table shows the best
obtained HHtc value (β) as well as the number of times this
solution was found (fx). Also, the mean (µ) and standard
deviation (σ) are presented. Three additional measures have
been defined in order to assess the overall performance of
the studied approaches. First, the Overall Average Proximity
(OAP) measure is defined as the average ratio of the obtained
mean values (µ) to the optimum (HHtc∗). Formally:

OAP =
100
|B|

(∑
Si∈B

µ(Si)
HHtc∗(Si)

)
(13)

where B denotes the set of all benchmark sequences. Note
that the average ratio in (13) is multiplied by 100 in order to
express OAP as a percentage. Thus, a value of OAP = 100%
would suggest the ideal situation where the optimum value
was found in each of the 30 runs for all the benchmarks.
The second measure is given by replacing the mean µ in (13)
with the best found value β. Such a measure is to be referred
to as the Overall Best Proximity (OBP). A value of OBP =
100% indicates that the optimum value for each benchmark



TABLE II
PERFORMANCE OF THE MEMETIC ALGORITHM WHEN USING THE DIFFERENT ENERGY FUNCTIONS. BEST FOUND VALUE (β) AND FREQUENCY (fX).

MEAN (µ). STD. DEVIATION (σ). OVERALL AVERAGE PROXIMITY (OAP). OVERALL BEST PROXIMITY (OBP). OVERALL SUCCESS COUNTER (OSC).

D85 K99 L06 B08 I09
Seq. HHtc∗ β (fx) µ σ β (fx) µ σ β (fx) µ σ β (fx) µ σ β (fx) µ σ

S1 4 4 (10x) 3.3 0.5 4 (22x) 3.7 0.4 4 (16x) 3.5 0.5 4 (11x) 3.4 0.5 4 (22x) 3.7 0.4
S2 8 8 (20x) 7.7 0.5 8 (25x) 7.8 0.4 8 (20x) 7.7 0.5 8 (24x) 7.8 0.4 8 (24x) 7.8 0.4
S3 9 9 (6x) 8.2 0.5 9 (4x) 8.1 0.3 9 (10x) 8.3 0.5 9 (1x) 8.0 0.2 9 (5x) 8.2 0.4
S4 9 9 (24x) 8.8 0.4 9 (27x) 8.9 0.3 9 (25x) 8.8 0.4 9 (23x) 8.7 0.6 9 (25x) 8.8 0.4
S5 10 10 (15x) 9.0 1.0 10 (18x) 9.2 1.0 10 (19x) 9.3 0.9 10 (20x) 9.3 0.9 10 (24x) 9.6 0.8
S6 9 9 (3x) 7.7 0.7 9 (14x) 8.4 0.7 9 (21x) 8.7 0.5 9 (21x) 8.7 0.5 9 (20x) 8.6 0.5
S7 8 8 (8x) 6.7 1.0 8 (14x) 7.3 0.7 8 (12x) 7.1 0.9 8 (14x) 7.3 0.8 8 (16x) 7.5 0.6
S8 14 12 (4x) 10.4 1.1 14 (1x) 10.4 1.3 13 (1x) 10.2 1.1 14 (1x) 10.7 1.4 14 (1x) 10.5 1.4
S9 23 19 (2x) 15.5 1.9 19 (1x) 15.8 1.6 19 (1x) 16.0 1.3 21 (1x) 16.4 1.8 20 (1x) 16.2 1.9

S10 21 19 (1x) 15.6 1.3 20 (1x) 16.2 1.4 18 (2x) 15.5 1.1 17 (3x) 14.4 1.9 18 (4x) 16.3 1.1
S11 36 31 (1x) 26.8 2.2 33 (1x) 27.6 2.5 32 (1x) 27.8 2.0 31 (1x) 26.1 2.4 31 (3x) 27.6 2.0
S12 42 30 (3x) 26.9 1.6 30 (2x) 27.4 1.6 32 (1x) 27.8 1.9 30 (1x) 24.7 1.9 30 (3x) 27.2 1.9
S13 53 43 (1x) 37.5 2.3 43 (3x) 38.7 2.7 42 (3x) 37.9 2.5 41 (2x) 35.5 2.8 44 (1x) 38.7 2.4
S14 48 35 (3x) 31.3 2.4 35 (2x) 31.0 1.9 36 (1x) 31.6 2.5 35 (2x) 30.0 2.7 36 (1x) 31.8 2.0
S15 50 36 (1x) 31.7 2.1 38 (1x) 32.8 2.3 37 (1x) 32.0 2.5 35 (1x) 28.6 3.1 36 (2x) 32.3 2.1

OAP 78.72% 81.51% 80.91% 78.82% 82.27%
OBP 89.49% 91.40% 90.30% 90.00% 90.68%
OSC 86 125 123 115 137

was reached at least once. Finally, the third defined measure is
the Overall Success Counter (OSC), which refers to the total
number of times where the optimal HHtc value was found
considering all the test cases.

From Table II, it can be seen that the use of alternative
energy functions significantly impacted the performance of the
adopted MA. In most cases, the alternative functions allowed
better solutions to be reached or, at least, to increase the
success rate regarding the best found values.

The conventional function D85 exhibited the worst average
performance according to the OAP measure. However, the
OAP value for function B08 is almost as low as that for
D85. In spite of the outstanding behavior of function B08
at solving benchmarks S2, S6, S8 and particularly S9, this
approach obtained the lowest mean value (µ) for 8 out of
the 15 test cases (S3, S4, S10-S15). These results suggest a
slightly inconsistent behavior of function B08. On the other
hand, the advantages of using functions I09, K99 and L06
are more evident. These approaches allowed to increase the
average performance of the MA in most cases. Function I09
achieved the highest µ value for 7 out of the benchmarks, thus
being the best performer with regard to the OAP measure.

The results are slightly different when focusing on the OBP
measure. This measure suggests that function K99 performed
the best, reaching the best found HHtc value (β) for 11 out
of the 15 test cases (S1-S8, S10, S11 and S15). The I09 and
L06 approaches achieved the highest β value for 10 and 9 of
the benchmarks, being the second and third best performers
in terms of OBP, respectively. Although B08 obtained the best
β value for sequences S1 to S9, its β values were even worse
than those of function D85 for some of the remaining test
cases (S10, S13 and S15). The worst behavior regarding the
OBP measure was shown by the conventional function D85.

Finally, the OSC measure makes the benefits of using
alternative energy functions more evident. Even B08, the
worst performer among the alternative approaches, reached the
optimum HHtc value (115 − 86) = 29 more times than the
conventional function D85. Functions K99 and L06 achieved
the optimum value in 39 and 37 more runs than function D85,
respectively. The best performer in terms of the OSC measure
is function I09, allowing the optimum solution to be found in
(137− 85) = 51 more cases than the conventional approach.

V. CONCLUSIONS AND FUTURE WORK

The HP model for protein structure prediction captures
the fact that hydrophobicity is the dominant factor which
determines the functional conformation of proteins. Despite its
level of abstraction, this problem has been proved to be NP-
complete and constitutes a hard combinatorial optimization
task. Such a complexity represents the main motivation for
the use of metaheuristic algorithms to address this problem.

The conventional energy function of the HP model provides
a very poor discrimination among potential conformations.
Nevertheless, an effective evaluation scheme is an essential
requirement for metaheuristics in order to drive the search
process towards promising regions of the solutions space.
Alternative HP energy functions have been proposed in the
literature to enhance the performance of search algorithms.
However, for most of these approaches there are not reported
results where the benefits of their usage are demonstrated.

This paper presented the results of a comparative study
where five different formulations of the HP energy function
were considered. Our first experiment focused on the degree
of discrimination that each of the studied functions provides.
The obtained results confirmed the poor discrimination ca-
pabilities of the conventional function D85, which has been



the main motivation for exploring alternative approaches. All
the alternative functions demonstrated to provide a more fine-
grained discrimination than the conventional approach. The
most discriminative function according to our results is B08,
followed by the K99 and I09 approaches, in this order.

In our second experiment, we evaluated the impact of using
the different functions on the behavior of a basic memetic
algorithm (MA). In general, the use of alternative energy
functions improved the performance of the implemented MA.
These approaches allowed better solutions to be reached or to
increase the frequency of the times where the best found values
were achieved. Three measures were defined in order to assess
the overall performance of the approaches. As expected, the
conventional function D85 presented the worst overall behav-
ior. However, the average performance of function B08 was
almost as poor as that of D85. Functions I09 and K99 exhibited
the best performance according to the adopted measures.

From this study, it is possible to conclude that intensity
of discrimination does not imply effectiveness at guiding
the search process. Even when B08 provides the strongest
discrimination, this function presented a limited search per-
formance. That function D85 consistently exposed the worst
behavior confirmed, however, that a tighter evaluation scheme
is important to increase the performance of search algorithms.
These results support the relevance of exploring the use of
alternative approaches. Functions I09 and K99 were the best
performing approaches according to all the adopted criteria.

To the best of our knowledge, this is the first study that
has been reported in this direction. Nevertheless, this research
is in progress. The preliminary results presented in this paper
suggest that functions I09 and K99 are very promising ap-
proaches for studies on the HP model. However, the impact
of using these functions needs to be further investigated for
different search metaheuristics. In this study, all the parameters
of the adopted MA were arbitrarily adjusted. A fairer approach
would be to tune the algorithm independently for each function
before the comparison. Also, it is important to extend this
study to other lattice configurations in order to generalize our
conclusions. Finally, there are additional HP energy functions
reported in the literature (see, for example, [20, 21]) to be
considered in an extended version of this study.

ACKNOWLEDGMENT

The first author acknowledges support from CONACyT
through a scholarship to pursue graduate studies at the Infor-
mation Technology Laboratory, CINVESTAV-Tamaulipas. We
would like to acknowledge support from CONACyT through
projects 105060 and 99276. Also, this research was partially
funded by project number 51623 from “Fondo Mixto Conacyt-
Gobierno del Estado de Tamaulipas”. Finally, we would like
to thank to “Fondo Mixto de Fomento a la Investigación
cientı́fica y Tecnológica CONACyT - Gobierno del Estado de
Tamaulipas” for their support to publish this paper.

REFERENCES

[1] C. B. Anfinsen, “Principles that Govern the Folding of Protein Chains,”
Science, vol. 181, no. 4096, pp. 223–230, 1973.

[2] A. Kolinski and J. Skolnick, “Reduced Models of Proteins and their
Applications,” Polymer, vol. 45, no. 2, pp. 511–524, 2004.

[3] W. E. Hart and A. Newman, “Protein Structure Prediction with Lattice
Models,” in Handbook on Computational Molecular Biology, S. Aluru,
Ed. Chapman and Hall/CRC Computer and Information Science Series,
2005.

[4] C. Clementi, “Coarse-grained Models of Protein Folding: Toy Models
or Predictive Tools?” Current Opinion in Structural Biology, vol. 18,
no. 1, pp. 10–15, 2008.

[5] C. L. Pierri, A. De Grassi, and A. Turi, “Lattices for Ab Initio Protein
Structure Prediction,” Proteins: Structure, Function, and Bioinformatics,
vol. 73, no. 2, pp. 351–361, 2008.

[6] K. A. Dill, “Theory for the Folding and Stability of Globular Proteins,”
Biochemistry, vol. 24, no. 6, pp. 1501–9, 1985.

[7] K. F. Lau and K. A. Dill, “A Lattice Statistical Mechanics Model of
the Conformational and Sequence Spaces of Proteins,” Macromolecules,
vol. 22, no. 10, pp. 3986–3997, 1989.

[8] B. Berger and T. Leighton, “Protein Folding in the Hydrophobic-
Hydrophilic (HP) Model is NP-complete,” in RECOMB ’98: Proceed-
ings of the second annual international conference on Computational
molecular biology. New York, NY, USA: ACM, 1998, pp. 30–39.

[9] P. Crescenzi, D. Goldman, C. Papadimitriou, A. Piccolboni, and M. Yan-
nakakis, “On the Complexity of Protein Folding,” in STOC ’98: Proceed-
ings of the thirtieth annual ACM symposium on Theory of computing.
New York, NY, USA: ACM, 1998, pp. 597–603.

[10] X. Zhao, “Advances on Protein Folding Simulations Based on the Lattice
HP models with Natural Computing,” Appl. Soft Comput., vol. 8, no. 2,
pp. 1029–1040, 2008.

[11] N. Krasnogor, W. E. Hart, J. Smith, and D. A. Pelta, “Protein Structure
Prediction With Evolutionary Algorithms,” in Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO 1999), W. Banzhaf,
J. M. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. J. Jakiela, and
R. E. Smith, Eds. Orlando, Florida, USA: Morgan Kaufman, July 1999.

[12] H. Lopes and M. Scapin, “An Enhanced Genetic Algorithm for Protein
Structure Prediction Using the 2D Hydrophobic-Polar Model,” in Arti-
ficial Evolution, ser. Lecture Notes in Computer Science, E.-G. Talbi,
P. Liardet, P. Collet, E. Lutton, and M. Schoenauer, Eds. Springer
Berlin / Heidelberg, 2006, vol. 3871, pp. 238–246.

[13] I. Berenboym and M. Avigal, “Genetic Algorithms with Local Search
Optimization for Protein Structure Prediction Problem,” in GECCO ’08:
Proceedings of the 10th annual conference on Genetic and evolutionary
computation. New York, NY, USA: ACM, 2008, pp. 1097–1098.

[14] K. Islam and M. Chetty, “Novel Memetic Algorithm for Protein Struc-
ture Prediction,” in AI 2009: Advances in Artificial Intelligence, ser.
Lecture Notes in Computer Science, A. Nicholson and X. Li, Eds.
Springer Berlin / Heidelberg, 2009, vol. 5866, pp. 412–421.

[15] H. Lopes and M. Scapin, “A Hybrid Genetic Algorithm for the Protein
Folding Problem Using the 2D-HP Lattice Model,” in Success in
Evolutionary Computation, ser. Studies in Computational Intelligence,
A. Yang, Y. Shan, and L. Bui, Eds. Springer Berlin / Heidelberg, 2008,
vol. 92, pp. 121–140.

[16] K. Islam and M. Chetty, “Clustered Memetic Algorithm for Protein
Structure Prediction,” in IEEE Congress on Evolutionary Computation,
CEC 2010, Barcelona, Spain, July 2010.

[17] D. Corne and J. Knowles, “Techniques for Highly Multiobjective Opti-
misation: Some Nondominated Points are Better than Others,” in 2007
Genetic and Evolutionary Computation Conference (GECCO’2007),
D. Thierens, Ed., vol. 1. London, UK: ACM Press, July 2007, pp.
773–780.

[18] P. Moscato, “On Evolution, Search, Optimization, Genetic Algorithms
and Martial Arts: Towards Memetic Algorithms,” Caltech Concurrent
Computation Program, Pasadena, CA, Tech. Rep. C3P Report 826, 1989.

[19] R. Unger and J. Moult, “Genetic Algorithms for Protein Folding
Simulations,” Journal of Molecular Biology, vol. 231, no. 1, pp. 75–
81, May 1993.
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