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Abstract—This paper presents new upper bounds for binary
covering arrays of variable strength constructed by using
a new Simulated Annealing (SA) algorithm. This algorithm
incorporates several distinguished features including an efficient
heuristic to generate good quality initial solutions, a compound
neighborhood function which combines two carefully designed
neighborhoods and a fine-tuned cooling schedule. Its perfor-
mance is investigated through extensive experimentation over
well known benchmarks and compared with other state-of-the-
art algorithms, showing that the proposed SA algorithm is able
to outperform them.

I. INTRODUCTION

Software systems are becoming ubiquitous in modern

society where numerous human activities rely on them.

Ensuring that software systems meet people’s expectations

for quality and reliability is an expensive and highly complex

task. Especially, considering that usually those systems have

many possible configurations produced by the combination of

multiple input parameters, making immediately impractical

the use of exhaustive testing. An alternative technique to

accomplish this goal is called software interaction testing

[1]. It is based on constructing economical sized test-suites

that provide coverage of the most prevalent configurations.

Covering arrays (CAs) are combinatorial structures which

can be used to represent these test-suites.

A covering array, CA(N;t,k,v), of size N, strength t,

degree k, and order v is an N× k array on v symbols such

that every N× t sub-array contains all ordered subsets from

v symbols of size t (t-tuples) at least once. In such an array,

each test configuration of the analyzed software system is

represented by a row. A test configuration is composed by

the combination of k parameters taken on v values. This test-

suite allows to cover all the t-way combinations of parameter

values, (i.e. for each set of t parameters every t-tuple of

parameter values is represented). Then, software testing costs

can be substantially reduced by minimizing the number of

test configurations N in a covering array. The minimum N

for which a CA(N;t,k,v) exists is the covering array number
and it is defined according to (1).

CAN(t,k,v) = min{N : ∃CA(N;t,k,v)} (1)
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Finding the covering array number is also known in

the literature as the Covering Array Construction (CAC)

problem. This is equivalent to the problem of maximizing

the degree k of a covering array given the values N, t, and

v.

There exist only some special cases where it is possible

to find the covering array number using polynomial order

algorithms. For instance, Rényi, Katona, and Kleitman and

Spencer independently proposed constructions, in the 1970s,

for finding CAN(2,k,2); see [2] for references. However, in

the general case determining the covering array number is

known to be a hard combinatorial optimization problem [3],

[4].

Some other applications related to the CAC problem arise

in experimental design where it is absolutely necessary to

test the interaction of all combinations of t parameters, and

hence that all such selections are covered by columns of

the array. Some examples of these applications are: drug

screening, data compression, regulation of gene expression,

authentication, intersecting codes and universal hashing (see

[5] for a detailed survey).

Addressing the problem of finding the covering array

number in reasonable time has been the focus of much

research. Among the approximate methods that have been

developed for constructing covering arrays are: a) recursive

methods [6], b) algebraic methods [5], c) greedy methods

[7] and d) metaheuristics such as Simulated Annealing [8],

Genetic Algorithms [9], Ant Colony Algorithms [10] and

Tabu Search [11].

This paper aims at developing a powerful Simulated

Annealing (SA) algorithm for finding near-optimal solu-

tions for the CAC problem. In particular, we are interested

in constructing binary covering arrays of strengths three,

four and five and in establishing new upper bounds on

the covering array number. Contrary to other existing SA

implementations developed for solving the CAC problem, our

algorithm has the merit of improving three key features that

have a great impact on its performance: a method designed

to generate initial solutions containing a balanced number of

symbols in each column, a compound neighborhood function

combining two carefully designed neighborhoods and a fine-

tuned cooling schedule. The performance of the proposed

SA algorithm is assessed with a benchmark, composed by 40

binary covering arrays of strengths three, four and five taken

from the literature. The computational results are reported

and compared with previously published ones, showing that

our algorithm is able to find 22 new upper bounds and

to equal 18 previous best-known solutions on the selected



benchmark instances.

The rest of this paper is organized as follows. In Section

II, a brief review is given to present some representative

solution procedures for constructing binary covering arrays.

Then, the components of our new SA algorithm are discussed

in detail in Section III. Section IV is mainly dedicated to

computational experiments and comparisons with respect to

previous published upper bounds. This section is also devoted

to analyze the influence of the neighborhood function on

the performance of the proposed SA implementation as well

as the implications of the new upper bounds achieved by

our algorithm when they are used as ingredients to recursive

constructions [6]. Finally, the last section summarizes the

main contributions of this work.

II. RELEVANT RELATED WORK

Because of the importance of the CAC problem, much

research has been carried out in developing effective methods

for solving it. Most of the known algorithms are specially

designed for constructing strength two and three CAs [5], [8].

However, less is known about CAs with larger strength [12].

In this section, we give a brief review of some representative

procedures which were used in our comparisons.

A Simulated Annealing (SA) metaheuristic has been ap-

plied by Cohen et al. in [13] for solving the CAC problem.

Their SA implementation starts with a randomly generated

initial solution A which cost c(A) is measured as the number

of uncovered t-tuples. A series of iterations is then carried out

to visit the search space according to a neighborhood. At each

iteration, a neighboring solution A′ is generated by changing

the value of the element ai, j by a different legal member

of the alphabet in the current solution A. The cost of this

iteration is evaluated as ∆c = c(A′)− c(A). If ∆c is negative

or equal to zero then the neighboring solution A′ is accepted.

Otherwise, it is accepted with probability P(∆c) = e−∆c/Tn ,

where Tn is determined by a cooling schedule. In their im-

plementation, Cohen et al. use a simple linear function Tn =
0.9998Tn−1 with an initial temperature fixed at Ti = 0.20. At
each temperature, 2000 neighboring solutions are generated.

The algorithm stops either if a valid covering array is found,

or if no change in the cost of the current solution is observed

after 500 trials. The authors justify their choice of these

parameter values based on some experimental tuning. They

conclude that their SA implementation is able to produce

smaller CAs than other computational methods, sometimes

improving upon algebraic constructions. However, they also

indicate that their SA algorithm fails to match the algebraic

constructions for larger problems, especially when t = 3 [13].

In [14] a Tabu Search (TS) algorithm is presented by

Walker and Colbourn. This algorithm employs a compact

representation of CAs based on permutation vectors and

covering perfect hash families [15] in order to reduce the size

of the search space. Using this algorithm, improved CAs of

strength 3 to 5 have been found, as well as the first arrays

of strength 6 and 7 found by computational search.

Bryce and Colbourn published in [16] a method called

Deterministic Density Algorithm (DDA) which constructs

strength two covering arrays one row at a time using a

steepest ascent approach. In this algorithm the value for each

column k is dynamically fixed one at a time in an order

based on a quantity called density δ , which indicates the

fraction of pairs of assignments to columns remaining to

be tested. In DDA new rows are continually added making

selections to increase the density as much as possible. This

process continues until all interactions have been covered.

Later the authors extended DDA to generate covering arrays

of strength t ≥ 3 [17]. The main advantage of DDA over

other one-row-at-a-time methods is that it provides a worst-

case logarithmic guarantee on the size N of the covering

array. Moreover, it is able to produce covering arrays that

are of competitive size, and expending less computational

time than other published methods like TS [14] and SA [8].

More recently Forbes et al. [18] introduced an algorithm

for the efficient production of covering arrays of strength

t up to 6, called IPOG-F (In-Parameter Order-Generalized).

Contrary to many other algorithms that build covering arrays

one row at a time, the IPOG-F strategy constructs them one

column at a time. The main idea is that covering arrays of

k− 1 columns can be used to efficiently build a covering

array with degree k. In order to construct a covering array,

IPOG-F initializes a vt× t matrix which contains each of the

possible vt distinct rows having entries from {0,1, . . . ,v−1}.
Then, for each additional column, the algorithm performs

two steps, called horizontal growth and vertical growth.

Horizontal growth adds an additional column to the matrix

and fills in its values, then any remaining uncovered t-tuples

are covered in the vertical growth stage. The choice of which

rows will be extended with which values is made in a greedy

manner: it picks an extension of the matrix that covers as

many previously uncovered t-tuples as possible. IPOG-F is

currently implemented in a software package called FireEye,

which was written in Java. Even if IPOG-F is a very fast

algorithm for producing covering arrays it generally provides

poorer quality results than other state-of-the-art algorithm

like the recursive procedure proposed in [6].

III. AN IMPROVED SIMULATED ANNEALING ALGORITHM

Simulated Annealing (SA) is a general-purpose stochastic

optimization technique that has proved to be an effective

tool for approximating globally optimal solutions to many

NP-hard optimization problems. However, it is well known

that developing an effective SA algorithm requires a careful

implementation of some essential components and an appro-

priate tuning of the parameters used [19].

In this section we present a new implementation of a SA

algorithm for constructing binary CAs of strength five. It

improves three key features that have a great impact on its

performance: an efficient method to generate initial solutions

containing a balanced number of symbols in each column, a

composed neighborhood function and an effective cooling

schedule. Next all the details of the SA implementation

proposed are presented.



A. Internal Representation and Search Space

Let A be a potential solution in the search space A , that

is a covering array CA(N;t,k,v) of size N, strength t, degree

k, and order v. Then A is represented as an N× k array on

v symbols, in which the element ai, j denotes the symbol

assigned in the test configuration i to the parameter j. The

size of the search space A is then given by the following

expression:

|A | = vNk (2)

B. Evaluation Function

Previously reported metaheuristic algorithms for the CAC

problem have commonly evaluated the quality of a potential

solution (covering array) as the change in the number of

uncovered t-tuples [8], [9], [10], [11]. This evaluation func-

tion is formally defined as follows. Let A ∈A be a potential

solution, Sr a N×t subarray of A representing the r-th subset

of t columns taken from k, and ϑ j a set containing the union
1

of the N t-tuples in S j denoted by the following expression:

ϑ j =
N−1
⋃

i=0

S
j
i , (3)

then the evaluation function F (A) for computing the cost of

a potential solution A can be defined using (4).

F (A) =

(

k

t

)

vt −
(kt)−1

∑
j=0

|ϑ j| (4)

In the proposed SA implementation this evaluation func-

tion definition was used. Its computational complexity is

equivalent to O(N
(

k
t

)

). However, by using appropriate data

structures it allows an incremental fitness evaluation of

neighboring solutions in O(2
(

k−1
t−1

)

) operations.

C. Initial Solution

The initial solution is the starting covering array used for

the algorithm to begin the search of better configurations

in the search space A . In the SA implementations reported

in the literature [20], [8] the initial solution is randomly

generated. In contrast, in our implementation the starting so-

lution is created using a procedure that guarantees a balanced

number of symbols in each column of the generated covering

array CA(N;t,k,v). This procedure assigns randomly ⌊N/2⌋
ones and the same number of zeros to each column of the

covering array when its size N is even, otherwise it allocates

⌊N/2⌋+1 ones and ⌊N/2⌋ zeros to each column.

We have decided to use this particular method for con-

structing the initial solution because we have observed, from

preliminary experiments, that good quality solutions contain

a balanced number of symbols in each column.

1Please remember that the union operator ∪ in set theory eliminates
duplicates.

D. Neighborhood Function

Given that our SA implementation is based on Local

Search (LS) then a neighborhood function must be defined.

The main objective of the neighborhood function is to

identify the set of potential solutions which can be reached

from the current solution in a LS algorithm. Formally, a

neighborhood relation is a function N : A → 2A that

assigns to every potential solution (a covering array) A ∈ A

a set of neighboring solutions N (A) ⊆ A , which is called

the neighborhood of A.

The neighborhood function is therefore a key component

which has a great impact on the performance of every LS al-

gorithm. For instance, some neighborhoods allow the search

to obtain solution improvements in a quick and important

manner, but the improvement occurs only for a limited

number of iterations. On the contrary, other neighborhoods

only enable small improvements, but for a long time.

In case two or more neighborhoods present complementary

characteristics, it is then possible and interesting to create

more powerful compound neighborhoods. The advantage of

such an approach is well documented in [21], [22], [23].

Following this idea, and based on the results of our prelim-

inary experimentations, a neighborhood structure composed

by two different functions is proposed for this SA algorithm

implementation.

Let be a function allowing to change the value of the

element ai, j by a different legal member of the alphabet in the

current solution A, and W ⊆ A a set containing ω different

neighboring solutions of A created by applying the function

switch(A, i, j) with different random values of i and j (0 ≤
i < N, 0 ≤ j < k). Then the first neighborhood N1(A,ω) of

a potential solution A, used in our SA implementation can

be defined using the following expression:

N1(A,ω) =

{

A′ ∈ A : A′ = min
∀A′′∈W, |W |=ω

[F (A′′)]

}

(5)

In (6), the second neighborhood N2(A) used in our SA

implementation is defined. It requires the use of a function

swap(A, i, j, l) which exchanges the values of two elements

ai, j and al, j (ai, j 6= al, j) within the same column of A, and a

set R ⊆ A containing neighboring solutions of A produced

by γ successive applications of the function swap(A, i, j, l)
using randomly chosen values for the parameters i, j and l

(0≤ i < N, 0≤ l < N, 0≤ j < k).

N2(A,γ) =

{

A′ ∈ A : A′ = min
∀A′′∈R, |R|=γ

[F (A′′)]

}

(6)

During the search process a combination of both N1(A,ω)
and N2(A,γ) neighborhood functions is employed by our

SA algorithm. The former is applied with probability p,

while the latter is employed at a (1− p) rate. This combined

neighborhood function N3(A,x,ω ,γ) is defined in (7), where

x is a random number in the interval [0,1].

N3(A,x,ω ,γ) =

{

N1(A,ω) if x≤ p

N2(A,γ) if x > p
(7)



E. Cooling Schedule

The cooling schedule determines the degree of uphill

movement permitted during the search and is thus critical

to the SA algorithm’s performance. The parameters that

define a cooling schedule are: an initial temperature, a final

temperature or a stopping criterion, the maximum number

of neighboring solutions that can be generated at each

temperature, and a rule for decrementing the temperature.

The literature offers a number of different cooling sched-

ules, see for instance [24], [25], [26]. In our SA implemen-

tation we preferred a geometrical cooling scheme mainly for

its simplicity. It starts at an initial temperature Ti which is

decremented at each round by a factor α using the relation

Tk = αTk−1. For each temperature, the maximum number of

visited neighboring solutions is L. It depends directly on the

parameters (N, k and v) of the studied covering array. This

is because more moves are required for bigger CAs. We

will see later that thanks to the three main original features

presented previously, our SA algorithm using this simple

cooling scheme gives remarkable results.

F. Termination Condition

The algorithm stops either when the current temperature

reaches Tf , when it ceases to make progress, or when a valid

covering array is found. In the proposed implementation a

lack of progress exists if after φ (frozen factor) consecu-

tive temperature decrements the best-so-far solution is not

improved.

IV. COMPUTATIONAL EXPERIMENTS

The procedure described in the previous section was coded

in C and compiled with gcc using the optimization flag -

O3. It was run sequentially into a CPU Xeon at 2 GHz,

1 GB of RAM with Linux operating system. Due to the

incomplete and non-deterministic nature of the algorithm,

20 independent runs were executed for each of the selected

benchmark instances. In all the experiments the following

parameters were used for our SA implementation:

a) Initial temperature Ti = 4.0
b) Final temperature Tf =1.0E-10.

c) Cooling factor α = 0.99
d) Maximum neighboring solutions per temperature L =

(Nkv)2

e) Frozen factor φ = 11

f) The neighborhood function N3(A,x,ω ,γ) is applied using
a probability p= 0.6 and parameters ω = 10 and γ =N/2.

These parameter values were chosen experimentally and

taking into consideration our experience in solving other

combinatorial optimization problems with the use of SA

algorithms [22], [27].

In order to assess the performance of the SA algorithm

introduced in Section III (called hereafter SA), a benchmark

composed of 40 well known instances taken from the litera-

ture was used [14], [28], [18]. It includes binary instances of

degree 4≤ k≤ 25 and strength 3≤ t ≤ 5. The main criterion

used for the comparison is the same as the one commonly

used in the literature: the best size N found (smaller values

are better) given fixed values for k, t, and v.

A. Comparing SA With the State-of-the-art Procedures

The purpose of this experiment is to carry out a per-

formance comparison of the upper bounds achieved by SA

with respect to those produced by the following state-of-the-

art procedures: Deterministic density algorithm (DDA) [17],

Tabu Search (TS) [14], and IPOG-F [18]. The Simulated

Annealing implementation reported by Cohen et al. [13] for

solving the CAC problem was intentionally omitted from this

comparison because as their authors recognize this algorithm

fails to produce competitive results when the strength of the

arrays is t ≥ 3.

Table I lists the detailed computational results produced by

this experiment. The first two columns in the table indicate

the strength t and degree k of the instances. Next 3 columns

show, in terms of the size N of the CAs, the best solution

found by DDA [17], TS [14] and IPOG-F [18], respectively.

Column 6 presents the smallest (Best) CAs published in the

literature [28], while column 7 reports the best solutions

achieved by our SA. The computational times T , in seconds,

consumed by it are listed in column 8. Finally, the difference

(∆SA−Best) between the best result produced by SA and the

previous best-known solution is depicted in the last column.

From Table I we can observe that SA compares very

favorably with respect to the state-of-the-art procedures sum-

marized in column 6. Indeed, our SA implementation is able

to improve on 22 previous best-known solutions and to equal

these results for the other 18 instances in the benchmark

(see column ∆SA−Best). Remark that for certain instances, like

covering array CA(N;5,14,2), a significant reduction of the

size N, of 60.94%, is accomplished by our algorithm when

compared with the previous best-known solution.

We can also observe that DDA is dominated by IPOG-

F on the selected benchmark instances. However, IPOG-

F produces covering arrays which are in average 37.77%
bigger than those constructed by SA. It is also clear that the

solutions provided by our SA algorithm are better than those

created with the use of TS [14] since they are in average

57.32% worst than ours.

The favorable results achieved by SA are more evident

over the selected strength five benchmark instances. This

is illustrated in Figure 1. The plot represents the degree

k of the instance (abscissa) against the size N attained by

the compared procedures (ordinate). The bounds provided

by IPOG-F [18] are shown with squares, the previous best-

known solutions [28] are depicted as circles, while the

bounds computed with SA are shown as triangles. From

this figure it can be seen that SA consistently outperforms

IPOG-F, obtaining also important improvements with respect

to the previous best-known solutions on CAN(5,k,2) for

6≤ k ≤ 24.

Even if the results attained by SA are very competitive, we

have observed that the average computing time consumed by

our approach, to produce these excellent results, is greater

than that used by some recursive [29], [6] and algebraic



TABLE I

EXPERIMENTAL COMPARISON AMONG SA AND THREE STATE-OF-THE-ART PROCEDURES OVER 40 BINARY COVERING ARRAYS OF STRENGTHS THREE,

FOUR AND FIVE TAKEN FROM THE LITERATURE.

N

t k DDA TS IPOG-F Best SA T ∆SA−Best

3

4 8 8 8 8 8 0.001 0

5 10 10 11 10 10 0.001 0

11 20 12 18 12 12 0.001 0

12 21 15 19 15 15 0.003 0

14 27 16 21 16 16 52.450 0

16 27 17 22 17 17 21.720 0

20 30 18 25 18 18 59.100 0

22 32 19 26 19 19 31.700 0

23 34 22 26 22 20 38.920 -2

25 34 23 27 23 21 19.770 -2

4

5 16 16 22 16 16 0.001 0

6 26 21 26 21 21 0.001 0

12 52 48 47 24 24 0.001 0

13 53 53 49 34 32 725.670 -2

17 67 54 57 39 35 1876.450 -4

18 73 55 60 39 36 1467.890 -3

20 74 55 65 39 39 1476.170 0

21 85 80 68 42 42 1534.890 0

22 85 80 69 44 44 1675.450 0

24 89 80 71 46 46 1765.790 0

25 91 80 74 50 50 1894.450 0

5

6 32 32 42 32 32 0.001 0

7 52 56 57 42 42 0.001 0

8 76 56 68 56 52 0.880 -4

9 90 62 77 62 54 20.140 -8

10 102 62 87 62 56 649.590 -6

11 108 92 95 82 64 872.100 -18

12 126 92 105 89 64 1233.300 -25

13 136 110 111 95 64 1349.780 -31

14 146 110 119 103 64 1534.460 -39

15 153 152 127 110 79 1890.780 -31

16 171 152 134 117 99 2350.780 -18

17 176 176 140 123 104 5823.650 -19

18 197 176 144 127 109 13807.900 -18

19 205 176 148 135 117 18675.670 -18

20 205 194 155 136 120 20679.190 -16

21 229 261 160 136 122 22876.390 -14

22 236 261 163 136 124 24935.870 -12

23 257 261 168 136 132 37923.270 -4

24 260 261 175 136 132 39679.390 -4

Avg. 97.78 88.10 77.15 61.73 54.28 5173.59 -7.45

 20

 40

 60

 80

 100

 120

 140

 160

 180

 6  8  10  12  14  16  18  20  22  24

N

k

IPOG−F
Best

SA

Fig. 1. Previous best-known and improved bounds on CAN(5,k,2).

methods [30], [5], [31]. However, since SA outperforms

some of the state-of-the-art procedures, finding 22 new

bounds, we believe that the extra consumed computing time

is fully justified. Especially, if we consider that for this kind

of experiments the objective is to compare the best bounds

achieved by the studied algorithms. Furthermore, compared

with TS [14], which consumed between an hour and a day of

CPU time (on a 2.66 GHz Pentium 4 PC) for computing the

CAs reported here, SA is reasonably competitive because it is

able to solve the largest instance in the selected benchmark,

CA(N;5,24,2), by employing only 10.84 hours of CPU time

on the computer described in Section IV.

It is important to point out that, in general, authors of the

algorithms used in our comparisons only provide the best

solution quality achieved by them. Thus, these algorithms

cannot be statistically compared with our SA algorithm.
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Fig. 2. Execution profiles of SA over the instance CA(52;5,8,2).

Nevertheless, the average behavior of SA can be illustrated

and analyzed from the execution profiles produced during the

20 independent executions of this comparative experiment.

Figure 2 shows three SA’s execution profiles which represent

the evolution of the worst, average and best values of the

evaluation function F (A) during the search process for

constructing the covering array CA(56;5,10,2).
From Figure 2 we can observe a relatively small gap

between the worst and the best solution found during these

executions. This is a good indicator of the algorithm’s

precision and robustness since it shows that in average the

performance of our SA implementation does not present im-

portant fluctuations. For this particular instance the average

standard deviation is 6.54. This figure allows to summarize

the overall behavior of SA since similar results were obtained

with all the other tested instances.

B. Analysis of SA

In order to further examine the behavior of our SA

implementation we have performed an additional experiment

for analyzing the influence of the following neighborhood

functions (described in Section III-D) on its performance:

• switch(A, i, j)
• N1(A,ω)
• N2(A,γ)
• N3(A,x,ω ,γ)

For this experiment each one of the studied neighborhood

functions was implemented within SA, compiled and exe-

cuted independently 20 times over the selected benchmark

instances using the set of parameter values listed above. The

results of this experiment are summarized in Figure 3. It

shows the differences in terms of average solution quality

attained by SA, when each one of the studied neighborhood

relations is used to solve the instance CA(56;5,10,2) (com-

parable results were obtained with other instances). From this

graph it can observed that the worst performance is attained

by SA when the switch(A, i, j) neighborhood function is

used. The functions N1(A,ω) and N2(A,γ) produce better

results compared with switch(A, i, j) since they allow to
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Fig. 3. Four neighborhood functions and its influence on the performance
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improve the solution quality faster. However, due to their

large exploitation capacity they also cause that our SA

algorithm gets stuck on some local minima. Finally, the

best performance is attained by SA when it is employed the

neighborhood function N3(A,x,ω ,γ), which is a compound

neighborhood combining the complementary characteristics

of both N1(A,ω) and N2(A,γ).

C. Some Implications of the Results

The new upper bounds obtained with SA in the exper-

imental comparison presented in Section IV-A by them-

selves represent an important achievement in the study of

these combinatorial structures. However, they also have the

additional value of being excellent ingredients to recursive

constructions used to produce other new bounds for binary

CAs of higher degrees.

For instance, by employing the construction reported in

[32] over the CAs listed in column 4 of Table II, we can

construct the binary CAs of strength five indicated by the first

and third columns of this table. Those new results improve

the previous best-known solutions (Best) reported in the

literature for the given values k, t, and v [28]. The last column

∆ indicates the improvement achieved by the combination

of SA and this recursive construction (SA+Recursive) with

respect to the best-known size N depicted in column 2.

From Table II one observes that using recursive con-

structions taking as input certain CAs found with our SA

algorithm, permits to find 5 new upper bounds which are

considerably better (∆ up to -158) than those reported in

[28].

V. CONCLUSIONS

In this paper, we have introduced a highly effective Sim-

ulated Annealing (SA) algorithm, which integrates three key

features that importantly determines its performance. First,

an efficient method to generate initial solutions containing a

balanced number of symbols in each column. This initializa-

tion method allows us to replace some SA actions occurring

at the highest temperatures saving thus important computing



TABLE II

IMPROVED UPPER BOUNDS FOR BINARY CAS OF STRENGTH FIVE AND DEGREE k > 24 PRODUCED BY COMBINING SA AND RECURSIVE

CONSTRUCTIONS [32].

N

k Best SA+Recursive Using ∆

1014 946 788 CA(64;5,13,2), CA(32;5,6,2) -158

1183 946 797 CA(64;5,13,2), CA(42;5,7,2) -149

1352 946 807 CA(64;5,13,2), CA(52;5,8,2) -139

1521 946 809 CA(64;5,13,2), CA(54;5,9,2) -137

1690 946 811 CA(64;5,13,2), CA(56;5,10,2) -135

Avg. 946.00 802.40 -143.60

time. Second, a carefully designed composed neighborhood

function which allows the search to quickly reduce the total

cost of candidate solutions, while avoiding to get stuck on

some local minima. Third, an effective cooling schedule

allowing our SA algorithm to converge faster, producing at

the same time good quality solutions.

To assess the practical effectiveness of this SA algorithm,

we have carried out extensive experimentation using a set of

40 benchmark instances taken from the literature. In these

experiments our SA algorithm was carefully compared with

other three state-of-the-art algorithms. The results show that

SA was able to find 22 new upper bounds and to equal 18

previous best-known solutions on the selected benchmark.

Furthermore, it was demonstrated that certain of these new

upper bounds can be used as input to recursive construction

methods in order to produce other new bounds for binary

CAs of higher degrees.

The results obtained with the SA implementation presented

opens up an exciting range of possibilities for future research.

We are currently considering that one fruitful possibility is

to adapt our SA algorithm for the efficient construction of

CAs of strength t ≥ 6 and order v > 2.
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