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Abstract—Protein structure prediction is the problem of find-
ing the functional conformation of a protein given only its amino
acid sequence. The HP lattice model is an abstract formulation
of this problem, which captures the fact that hydrophobicity is
one of the major driving forces in the protein folding process.
This model represents a hard combinatorial optimization prob-
lem which has been widely addressed through metaheuristics.
However, the conventional energy function of the HP model does
not provide an adequate discrimination among candidate confor-
mations, which is an essential requirement for metaheuristics in
order to perform an effective search. Therefore, alternative HP
energy functions have been proposed in the literature to cope with
this issue. In this study, we inquire into the effectiveness of several
of such alternative approaches. The discrimination potential of
each of the studied functions is analyzed as well as their impact
on the behavior of a basic local search algorithm. The obtained
results support the relevance of exploring this research direction.

I. INTRODUCTION

Proteins are at the heart of cellular function, carrying most
of the key processes associated with life. The functional
properties of a protein are dictated by its three-dimensional
conformation. To fully understand the biological roles of a
protein it is imperative, therefore, to determine its structure.

The Protein Structure Prediction (PSP) problem aims to
determine the native conformation of proteins given only their
linear chain of amino acids. Such a structure is assumed to
be the one minimizing the overall free energy; i.e., the ther-
modynamically most stable state [1]. Solving PSP at atomic
resolution requires a prohibitive computational effort even for
relatively small proteins. Thus, simplified protein models have
emerged as valuable tools for studying the most general and
essential principles governing the protein folding process.

One of such simplified formulations of PSP is the HP model
[2, 3]. This model captures the fact that hydrophobicity is
one of the main driving forces determining the functional
conformation of proteins. In spite of its apparent conceptual
simplicity, the task of finding the optimal structure of a protein
in the HP model represents a hard combinatorial optimization
problem which has been proved to be NP-complete [4, 5].
Such a complexity has motivated the use of a variety of
metaheuristic-based approaches to address this problem [6].

Metaheuristics rely on an effective evaluation scheme to
guide the search towards promising regions of the solutions

This research was partially funded by CONACyT project 99276.

space. However, the conventional energy function of the HP
model features a very poor discrimination ability. Thus, no
preferences can be set among potential conformations, leading
the search process to be oriented almost at random. This prob-
lem is expected to have a major impact on the performance of
local search-based algorithms. The low discrimination of the
conventional HP energy function produces large plateaus in
the energy landscape, on which local search strategies could
fail to detect a promising search direction [7].

Alternative HP energy functions have been proposed to
improve the performance of search algorithms [7]–[12]. Never-
theless, there are no reported results on the advantages of using
most of such approaches. In this paper, a comparative study is
presented where seven different formulations of the HP energy
function are considered. The discrimination potential of these
approaches is first analyzed. Then, the effectiveness of each of
the studied functions to guide the search process is evaluated.
A basic local search algorithm was adopted for this sake.

The remainder of this paper is organized as follows. The
problem statement is provided in Section II. In Section III, the
alternative HP energy functions considered for this study are
described. Our experimental results are discussed in Section
IV. Finally, Section V provides our conclusions as well as
some possible directions for future research.

II. THE HP MODEL

Amino acids, the building blocks of proteins, can be clas-
sified on the basis of their affinity for water. Hydrophilic or
polar amino acids (P ) are usually found at the outer surface
of proteins. By interacting with the aqueous environment,
these residues contribute to the solubility of the molecule.
In contrast, hydrophobic or nonpolar residues (H) tend to
pack on the inside of proteins, where they interact with one
another to form a water-insoluble core. These properties of
the amino acids represent, therefore, one of the major driving
forces responsible for the folded state of proteins.

In the Hydrophobic-Polar (HP) model, proposed by Dill in
1985 [2, 3], proteins are represented as sequences of the form
S ∈ {H,P}L, where L denotes the number of amino acids.
The subsets of H and P residues in S are here referred to as
SH and SP , respectively. Valid conformations are modeled as
Self-Avoiding Walks of the HP sequence S on a lattice. That
is, 1) lattice nodes are labeled by the amino acids, 2) a lattice



node can be assigned to at most one residue and 3) adjacent
residues in S are also adjacent in the lattice. This study focuses
on the two-dimensional square lattice.

By emulating hydrophobic interactions, the HP model aims
to find a valid conformation where the number of H-H topo-
logical contacts (HHtc) is maximized. Two residues si, sj ∈ S
are said to form a topological contact, denoted by tc(si, sj), if
they are nonconsecutive in S (i.e., |i− j| ≥ 2) but adjacent in
the lattice. The free-energy function in the HP model is defined
as the negative of HHtc; maximizing HHtc is equivalent to
minimize such an energy function.

Formally, PSP in the HP model is defined as the problem
of finding the conformation c∗ ∈ C(S) such that ED85(c∗) =
min{ED85(c) | c ∈ C(S)}, where C(S) is the set of all
valid conformations of S. ED85(c) denotes the free energy
of conformation c, which is given by:1

ED85(c) =
∑

si,sj∈SH

e(si, sj) (1)

where

e(si, sj) =
{
−1 if tc(si, sj)
0 otherwise

An example of the optimal conformation for an HP protein
of length L = 20 on the square lattice is shown in Figure 1.
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Fig. 1. Optimal conformation for sequence HPHPPHHPHPPHPHHPPHPH
of length L = 20. Black and white balls denote H and P residues,
respectively. H-H topological contacts (HHtc) have been numbered. The free
energy of this conformation is ED85(c) = −9, since HHtc = 9.

Despite its apparent simplicity, finding the optimal confor-
mation for a protein in the HP model is a hard combinatorial
optimization problem, proved to be NP-complete [4, 5].

III. ALTERNATIVE HP ENERGY FUNCTIONS

This section describes the alternative HP energy functions
considered for this study. A three-letter acronym has been
assigned to each of the studied approaches. The acronyms are
based on first author’s initial and publication year.

A. Krasnogor et al., 1999 (K99)

In the conventional HP energy function, only H-H topo-
logical contacts (HHtc) contribute to the quality assessment
of conformations. Given two conformations with the same
HHtc value, it is possible, however, that one of them has
better characteristics (more compact) than the other. Krasnogor

1The acronym D85 is used to distinguish this conventional function from
the other approaches considered in this study.

et al. [7] proposed the following distance-dependent energy
function:

EK99(c) =
∑

si,sj∈SH

e(si, sj) (2)

where

e(si, sj) =
{
−1 if tc(si, sj)
−1/(d(si, sj)k|SH |) otherwise

where d(si, sj) denotes the distance between residues si and
sj . In [7], the value of k = 4 was used for the square lattice.

In [7], no significant improvements were achieved when
using the modified energy function. As the authors pointed
out, the superiority of the approach is expected to become
more evident for larger instances and, particularly, when local
search strategies are implemented. The relevance of using this
proposal needs to be further investigated.

B. Custódio et al., 2004 (C04)

Given that the aim of the conventional HP energy function
is only to maximize H-H interactions, the positioning of P
residues is not directly optimized. This may result in unnatural
structures for sequences with long P segments and, especially,
when P segments are located at the ends of the chain. An
example is presented in Figure 2.
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Fig. 2. Two conformations with the same HHtc value. However, the structure
in (a) is more natural-like (globular) than the one in (b).

Custódio et al. [8] proposed a modified energy function
based on the assumption that it may be preferable for an H
residue to have a P neighbor than to be in contact with the
aqueous solvent. In the proposed function, the energy of a con-
formation is computed as the weighted sum of the number of
hydrophobic-hydrophobic (HHc), hydrophobic-polar (HPc)
and hydrophobic-solvent contacts (HSc).2 Formally:

EC04(c) = ω1HHc+ ω2HPc+ ω3HSc (3)

where ω1, ω2 and ω3 denote the relative importance of HHc,
HPc and HSc. In [8], these weights were set to ω1 = 0,
ω2 = 10 and ω3 = 40 for the reported experiments.

In [8], the proposed function allowed to improve the per-
formance of a genetic algorithm for some of the adopted
test cases. The reported results also suggest that this function
presents a greater tendency to form more natural-like confor-
mations (more compact and more segregated).

2A free lattice location is said to be occupied by the solvent.



C. Lopes and Scapin, 2006 (L06)

Lopes and Scapin [9] proposed an energy function which
is based on the concept of radius of gyration. The radius of
gyration is a measure of the compactness of conformations;
the more compact the conformation, the smaller the value for
this measure. The proposed function is given by:

EL06(c) = HnLB ·RadiusH ·RadiusP (4)

The HnLB term comprises the number of H-H topological
contacts (HHtc) and a penalty factor which accounts for the
violation of the self-avoiding constraint. Formally:

HnLB = HHtc− (NC · PW ) (5)

where NC is the number of collisions and the penalty weight
PW can be computed as PW = (0.033 · L) + 1.33 [13].

Before defining the RadiusH and RadiusP terms, let us
first define RgH as the radius of gyration for H residues:

RgH =

√√√√√
∑

s∈SH

[
(xs − X̄)2 + (ys − Ȳ )2

]
|SH |

(6)

where xs and ys are the coordinates of residue s while X̄ and
Ȳ denote the mean coordinates for H residues. Analogously,
we can compute RgP , the radius of gyration for P residues,
by considering only P rather than H residues in (6).

The RadiusH term measures how compact the hydrophobic
core of the conformation is. This term is given by:

RadiusH = MaxRgH −RgH (7)

where MaxRgH is the radius of gyration of a totally unfolded
conformation; i.e., the maximum possible RgH value.

Finally, the RadiusP term aims to push P residues away
from the hydrophobic core. Given the previously defined RgH
and RgP measures, the RadiusP term is computed as:

RadiusP =
{

1 if (RgP −RgH) ≥ 0
1

1−(RgP−RgH) otherwise (8)

RadiusP lies in the range [0, 1]. A value of (RgP −RgH) >
0 means that P residues are more exposed than H residues.
This is a convenient scenario, so the RadiusP term has
no contribution to the final energy value (RadiusP = 1).
Otherwise, (RgP − RgH) < 0 suggests H residues to be
more spread than the P ones, so the energy value of the
conformation is decreased. Note that (4) is to be maximized.

In [9, 13], no results are provided on the impact of using
this function rather than the conventional approach.

D. Berenboym and Avigal, 2008 (B08)

Berenboym and Avigal [10] proposed an alternative energy
function, called by them the global energy. In this function,
each pair of nonconsecutive H residues contributes to the
energy value, even if they are not topological neighbors:

EB08(c) =
∑

si,sj∈SH

e(si, sj) (9)

where

e(si, sj) =

{
−1

(xsi
−xsj

)2+(ysi
−ysj

)2 if |i− j| ≥ 2

0 otherwise

In [10], the effects of using a local search operator within a
genetic algorithm were investigated for both, the conventional
and the proposed energy functions. However, an explicit
comparison to demonstrate the advantages of using a particular
energy function was not reported.

E. Cébrian et al., 2008 (C08)
Cébrian et al. [11] proposed an alternative formulation of

the HP energy function which measures the deviation from the
unit distance (i.e., topological contact distance) for each pair
of H residues. Let d(si, sj)2 = (xsi

−xsj
)2 + (ysi

− ysj
)2 be

the distance between residues si and sj , and let dv(si, sj) =
d(si, sj)2− 1 denote its deviation from the unit distance. The
energy value of a conformation c is given by:

EC08(c) =
∑

si,sj∈SH

dv(si, sj)k (10)

where k ≥ 1 is a parameter of the function, whose larger
values give more weight to unit distances. We used k = 2,
since this value seems to provide the best behavior based on
the results reported in [11]. EC08(c∗) = 0 would refer to the
ideal (potentially unrealistic) scenario where all pairs of H
residues are at a unit distance in conformation c∗. In [11], no
experimental results were reported about the benefits of using
the proposed energy function instead of the conventional one.

F. Islam and Chetty, 2009 (I09)
Islam and Chetty [12] proposed a modified HP function

based on two measures: H-compliance and P -compliance.
H-compliance measures the proximity of H residues to the

center of a hypothetical rectangle enclosing all H residues,
denoted by the reference point (xr, yr). Formally:

H-comp(c) =

∑
s∈SH

(xr − xs)2 + (yr − ys)2

|SH |
(11)

where xs and ys denote the lattice coordinates of the s residue.
P -compliance is a measure of how close P residues are

to the boundaries of a hypothetical rectangle enclosing all P
residues, defined by xmin, xmax, ymin and ymax. Formally:

P -comp(c) =

∑
s∈SP

min
{
|xmin − xs|, |xmax − xs|,
|ymin − ys|, |ymax − ys|

}
|SP |

(12)

Finally, the energy of a given conformation c is defined as:

EI09(c) = αED85(c) +H-comp(c) + P -comp(c) (13)

where ED85(c) is the conventional HP energy function (see
Section II) and α is a high value integer constant to ensure
this will be the dominant term in (13). We used α = 10, 000.

In [12], the advantages of using the proposed energy
function were demonstrated for a 85-length HP benchmark
sequence. However, the impact of using this function should
be carefully investigated for a larger set of test cases.



IV. EXPERIMENTAL RESULTS

In Section III, alternative approaches to evaluate the quality
of conformations in the HP model have been described. The
aim of this experimental phase is to investigate the effective-
ness of such approaches. It is important to note, however,
that even when an alternative evaluation function is used, the
goal of the optimization process remains to maximize HHtc,
which is the singular objective in the HP model (see Section
II). In this study, the exclusive purpose for using alternative
formulations of the energy function is to guide the search
process in a more effective manner.

Table I presents the 9 HP benchmark sequences adopted for
this study. These benchmarks are commonly used in studies
focusing on the two-dimensional square lattice.

TABLE I
HP BENCHMARKS. (L): SEQ. LENGTH. (HHTC∗): OPTIMAL HHTC VALUE.

Sequence L HHtc∗

S1 HPHP2H2PHP2HPH2P2HPH 20 9
S2 P2HP2H2P4H2P4H2P4H2 25 8
S3 P3H2P2H2P5H7P2H2P4H2P2HP2 36 14
S4 P2HP2H2P2H2P5H10P6H2P2H2P2HP2H5 48 23
S5 H2(PH)4H3P(HP3)3(P3H)3PH4(PH)4H 50 21
S6 P2H3PH8P3H10PHP3H12P4H6PH2PHP 60 36
S7 H12PHPH(P2H2P2H2P2H)3PHPH12 64 42
S8 H4P4H12P6(H12P3)3HP2H2P2H2P2HPH 85 53
S9 P6HPH2P5H3PH5PH2P4H2P2H2PH5P

H10PH2PH7P11H7P2HPH3P6HPH2

100 48

A. Degree of discrimination

The discrimination strategy is a very important component
which directly impacts the performance of search algorithms.
That is, if it is not possible to set preferences among solutions
the search process will be guided practically at random.

In this section, the degree of discrimination that each of
the studied functions provides is investigated. We analyzed
the distribution of ranks that these approaches induce on a set
of candidate solutions. A ranking expresses the relationship
among a set of items according to a given property. In
the context of this study, potential conformations are ranked
according to their quality. The first rank is assigned to the best
solution, the next rank to the second best solution, and so on.
Solutions with the same quality will share the same rank.

We adopted the relative entropy (RE) measure proposed by
Corne and Knowles [14]. Given a set of n ranked solutions
(there are at most n ranks, and at least 1), the relative entropy
of the distribution of ranks D is defined as:

RE(D) =

∑
r

D(r)
n

log(
D(r)
n

)

log(1/n)
(14)

where D(r) denotes the number of solutions with rank r.
RE(D) tends to 1 as approaching to the ideal situation
where each solution has a different rank (i.e., the maximum
possible discrimination). On the other hand, when all the
solutions share the same ranking position (i.e., the poorest
discrimination), RE(D) takes a value of zero.

In this experiment, 1, 000 different valid structures were
generated at random. For each of the studied energy functions,

these solutions were evaluated and ranked to finally compute
the RE measure. We performed 100 repetitions of this experi-
ment for all the adopted benchmarks. The box plots in Figure
3 present the overall statistics of this experiment.
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Fig. 3. Relative entropy (RE) of the distribution of ranks obtained by the
studied energy functions. Overall statistics for all test cases.

From Figure 3, it is possible to note that the conventional
HP energy function, D85, achieved the lowest RE values. This
confirms the poor discrimination capabilities of this function,
which has been the main factor motivating the exploration
of alternative approaches. C04 showed the worst performance
among the alternative functions. Function L06 achieved high
RE values most of the time, but the outliers indicate a low
performance of this function for some of the benchmarks.
Finally, it is important to remark the high discrimination
provided by functions B08, K99, C08 and I09.

The above results can be better understood by analyzing
Figure 4. This figure presents the histograms with the dis-
tribution of ranks achieved by each function for the first
repetition of this experiment regarding sequence S1. From
this figure, it is possible to note how poor the distribution
of ranks achieved by function D85 is. Only five different
ranking positions were enough to classify the 1, 000 generated
solutions. It can be seen a peak where there are almost 400
solutions sharing the same rank. In fact, no matter the amount
of generated solutions, the maximum number of ranks which
can be assigned through function D85 is 9, since HHtc∗ = 9
for this benchmark sequence (S1). The second worst scenario
is presented by function C04, where less than 40 different
ranking positions were required, out of which two were each
assigned to at around 100 conformations.

Functions L06 and I09 showed an increased discrimination,
since about 720 and 650 ranking positions were occupied to
classify the totality of solutions, respectively. In the case of
function I09, a maximum of eight solutions were assigned
to the same rank. On the other hand, the histogram for L06
presents a high peak indicating that there are about 250 equally
ranked conformations. Function L06 is defined as the product
of three terms, out of which one corresponds to HHtc (see
Section III-C). All solutions for which HHtc = 0 will have
the same energy value, 0. To some extent, this can be seen as
a drawback. Function L06 will not be able to discriminate
among these solutions even if some of them have better
chances than others to further improve.

Finally, the histograms for B08, K99 and C08 confirm the
high degree of discrimination that these approaches provide.
We can see that function C08 allowed roughly 950 different
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Fig. 4. Histograms showing the density of the distribution of ranks achieved
by the studied evaluation functions. Sequence S1, run 1.

ranks to be assigned. B08 showed the strongest discrimination
among all the studied functions, followed by K99. The corre-
sponding histograms for these functions reveal that almost all
solutions were mapped to a different rank. Only a few ranks
were assigned to at most two solutions.

B. Search performance

We implemented a Steepest Descent Hill Climbing algo-
rithm (SDHC) to evaluate the effectiveness of the studied
energy functions at guiding the search process. SDHC is a
parameter-free algorithm, whose motivation in this study is to
avoid affecting (neither negatively nor positively) the perfor-
mance of the approaches through parameter settings. Given
that SDHC is a local search technique, functions providing a
finer discrimination are expected to perform better. As pointed
out by Krasnogor et al. [7], a poor discrimination will produce
large plateaus in the energy landscape, on which local search
strategies could fail to identify a descent direction.

Algorithm 1 Steepest Descent Hill Climbing (SDHC).
BEGIN SDHC()

1: c← getRandomV alidSolution()
2: loop
3: c′ ← getBest(N(c))
4: if E(c′) < E(c) then
5: c← c′

6: else
7: Stop()

END

Algorithm 1 describes the implemented SDHC. The algo-
rithm starts with a valid conformation generated at random,
denoted by c. Once c is generated, we identify c′, the best
conformation among all defined in the neighborhood of c,
N(c). Then, solutions c and c′ are compared with respect
to their energy values. At this point is where the different
energy functions come to play a decisive role in the behavior
of the algorithm. If c′ has a better energy value than c
(E(c′) < E(c)), then a replacement occurs and the process
repeats. Otherwise, the process ends, since given the current
solution and the adopted neighborhood it is not possible to
achieve an improvement.

An internal coordinates representation with absolute moves
was adopted [15]. That is, candidate conformations are en-
coded as sequences in {U,D,L,R}L−1, denoting the up,
down, left and right possible locations for a residue with
regard to the preceding one (solutions are decoded to Cartesian
coordinates for evaluation). The implemented neighborhood
structure N(c) is defined by all solutions that can be reached
through 1-variable perturbations of c. Given a sequence of
length L, the size of such a neighborhood is |N(c)| = 3(L−1).
However, only valid conformations are considered.

It is important to remark that the aim of using the SDHC
algorithm is not to improve the state-of-the-art results for this
problem. In this study, SDHC serves only as a tool to measure
the impact of using each of the energy functions.

The behavior of the SDHC algorithm was evaluated when
using each of the studied functions. A total of 100 independent
executions were performed for all the adopted benchmarks.
The results of this experiment are presented in Figure 5.
Each plot in this figure shows the average number of H-H
topological contacts (HHtc) achieved by the algorithm as the
search progressed (iteration by iteration).

From Figure 5, it is possible to derive some general con-
clusions. The poorest performance for this experiment was
presented by function C08, whose results were even worse
than those of function D85 in most of the considered test cases.
This behavior can be explained by the fact that function C08
is not consistent with the conventional objective of the HP
model. As stated at the beginning of Section IV, even when
alternative functions are used to guide the search process, the
goal remains to maximize HHtc; or, which is equivalent, to
minimize function D85. The alternative function should not
contradict D85 when discriminating among potential confor-
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Fig. 5. Results of the SDHC algorithm. Achieved number of H-H topological contacts (HHtc) at each iteration. Average of 100 independent executions.

mations, otherwise we will probably be pursuing a different
optimum. Nevertheless, given two conformations c1 and c2,
it is possible the case where ED85(c1) < ED85(c2) but
EC08(c1) > EC08(c2), which is a contradiction.3 An example
of this scenario is presented in Figure 6. This can be seen as a
drawback, so function C08 is not expected to steer the search
in an effective manner. Such an important issue needs to be
further explored for all the studied approaches.

c1: ULLDRDLDLLDDRURRURU c2: LUUULURRRDRDLLDRRRU
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Fig. 6. C08 contradicts D85, since ED85(c1) = −7 < ED85(c2) = 0 but
EC08(c1) = 5548 > EC08(c2) = 5308..

3Note that the case where ED85(c1) = ED85(c2) but E(c1) 6= E(c2) is
not a contradiction. This is a convenient scenario, since the aim of using the
alternative function E is to enable a more fine-grained discrimination.

As expected, function D85 showed a low performance for
this experiment. For all instances, the algorithm achieved the
lowest number of iterations due to the poor discrimination this
function provides. Function D85 exposed the second worst
overall behavior. C04 reached slight improvements, but its
limited performance was comparable with that of function
D85 in some cases. Note that functions D85 and C04 were
previously identified in Section IV-A because of their low
discrimination capabilities. To some extent, this explains the
poor performance presented by these approaches.

Functions K99 and B08 behaved similarly for the smallest
benchmarks, but their performance curves diverged as the size
of the problem was increased. The results of B08 deteriorated
for the largest test cases, while the increasing performance
of K99 allowed this function to compete at the top of the
ranking. L06 obtained very competitive results most of the
time. Finally, we can highlight the outstanding behavior that
function I09 consistently showed for all the considered test
cases. Our results indicate that the best performers for this
experiment were I09, L06 and K99, in this order.

Functions I09, K99, B08 and C08 were all identified in Sec-
tion IV-A to provide a strong discrimination. However, only
K99 and I09 are among the best performers of this experiment.



That some equally discriminative functions performed better
than others suggests that more important than the strength
is the effectiveness of the discrimination (intensity does not
imply effectiveness).

V. CONCLUSIONS AND FUTURE WORK

The HP model for protein structure prediction captures
the fact that hydrophobicity is the dominant factor which
determines the functional conformation of proteins. Despite its
level of abstraction, this problem has been proved to be NP-
complete and constitutes a hard combinatorial optimization
task. Such a complexity represents the main motivation for
the use of metaheuristic algorithms to address this problem.

The conventional energy function of the HP model (D85)
enables a very poor discrimination among potential confor-
mations. Nevertheless, an effective evaluation scheme is an
essential requirement for metaheuristics in order to guide the
search process towards promising regions of the solutions
space. Alternative HP energy functions have been proposed to
enhance the performance of search algorithms. However, for
most of these approaches there are not reported experimental
results where the benefits of their usage are demonstrated.

This paper presented the results of a comparative study
where seven different formulations of the HP energy function
were considered. Our first experiment was concerned with the
analysis of the degree of discrimination that each of these
functions provides. The obtained results confirmed the poor
discrimination capabilities of the conventional function, which
has been the main motivation for exploring alternative ap-
proaches. All the alternative functions demonstrated to provide
a more fine-grained discrimination. The most discriminative
function according to our results is B08, followed by the K99,
C08 and I09 approaches, in this order.

In our second experiment, we evaluated the impact of using
the studied functions on the performance of a parameter-free
local optimizer. The aim of using a parameter-free algorithm
was to avoid influencing the behavior of the approaches
through parameter settings. In general, most of the alternative
functions allowed to increase the performance of the imple-
mented algorithm. As expected, function D85 exhibited a low
performance for this experiment. However, the C08 approach
behaved even worse for most of the adopted test cases. On the
other hand, functions I09, L06 and K99 consistently achieved
very competitive results, being the best performers in this test.

From this study, it is possible to derive some general con-
clusions. First, intensity of discrimination does not necessarily
imply effectiveness at guiding the search process. Even when
functions I09, K99, B08 and C08 were all identified to provide
a strong discrimination, only I09 and K99 behaved favorably.
In contrast, B08 and particularly C08 presented a limited
search performance. That the less discriminative approaches
(D85 and C04) showed a low overall performance confirmed,
however, that a tighter evaluation scheme is important to
improve the behavior of search algorithms.

The fact that D85 consistently exposed a poor performance
supports the relevance of exploring the use of alternative

approaches. To the best of our knowledge, this research is
producing the first results that have been reported in this direc-
tion. Nevertheless, this research is in progress. The preliminary
results presented in this paper suggest that functions I09, L06
and K99 are very promising approaches for studies on the
HP model. However, the impact of using these approaches
needs to be further investigated for more sophisticated search
algorithms. Also, it is important to extend this study to the
three-dimensional cubic lattice, or to other lattice configura-
tions (for example, the face-centered cubic lattice), in order to
generalize our conclusions.
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